
University of Pennsylvania
ScholarlyCommons

Center for Human Modeling and Simulation Department of Computer & Information Science

6-1-1993

Simulating Humans: Computer Graphics,
Animation, and Control
Bonnie L. Webber
University of Pennsylvania, bonnie@inf.ed.ac.uk

Cary B. Phillips
University of Pennsylvania

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/hms

Reprinted with Permission by Oxford University Press. Reprinted from Simulating humans: computer graphics animation and control, Norman I. Badler,
Cary B. Phillips, and Bonnie L. Webber (New York: Oxford University Press, 1993), 283 pages.
Author URL: http://www.cis.upenn.edu/~badler/book/book.html

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/68
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Webber, B. L., Phillips, C. B., & Badler, N. I. (1993). Simulating Humans: Computer Graphics, Animation, and Control. Retrieved
from http://repository.upenn.edu/hms/68

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/68?utm_source=repository.upenn.edu%2Fhms%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/68
mailto:libraryrepository@pobox.upenn.edu

Simulating Humans: Computer Graphics, Animation, and Control

Abstract
People are all around us. They inhabit our home, workplace, entertainment, and environment. Their presence
and actions are noted or ignored, enjoyed or disdained, analyzed or prescribed. The very ubiquitousness of
other people in our lives poses a tantalizing challenge to the computational modeler: people are at once the
most common object of interest and yet the most structurally complex. Their everyday movements are
amazingly uid yet demanding to reproduce, with actions driven not just mechanically by muscles and bones
but also cognitively by beliefs and intentions. Our motor systems manage to learn how to make us move
without leaving us the burden or pleasure of knowing how we did it. Likewise we learn how to describe the
actions and behaviors of others without consciously struggling with the processes of perception, recognition,
and language.

Comments
Reprinted with Permission by Oxford University Press. Reprinted from Simulating humans: computer graphics
animation and control, Norman I. Badler, Cary B. Phillips, and Bonnie L. Webber (New York: Oxford
University Press, 1993), 283 pages.
Author URL: http://www.cis.upenn.edu/~badler/book/book.html

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/hms/68

http://repository.upenn.edu/hms/68?utm_source=repository.upenn.edu%2Fhms%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages

SIMULATING HUMANS: COMPUTER

GRAPHICS, ANIMATION, AND CONTROL

Norman I. Badler

Cary B. Phillips1

Bonnie L. Webber

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104-6389

Oxford University Press

c1992 Norman I Badler, Cary B. Phillips, Bonnie L. Webber

March 25, 1999

1Current address: Paci�c Data Images, 1111 Karlstad Dr., Sunnyvale, CA 94089.

i

To Ginny, Denise, and Mark

ii

Contents

1 Introduction and Historical Background 1

1.1 Why Make Human Figure Models? : : : : : : : : : : : : : : : : 4
1.2 Historical Roots : 7
1.3 What is Currently Possible? : 11

1.3.1 A Human Model must be Structured Like the Human
Skeletal System : 12

1.3.2 A Human Model should Move or Respond Like a Human 12
1.3.3 A Human Model should be Sized According to Permis-

sible Human Dimensions : : : : : : : : : : : : : : : : : : 14
1.3.4 A Human Model should have a Human-Like Appearance 15
1.3.5 A Human Model must Exist, Work, Act and React

Within a 3D Virtual Environment : : : : : : : : : : : : 15
1.3.6 Use the Computer to Analyze Synthetic Behaviors : : : 16
1.3.7 An Interactive Software Tool must be Designed for Us-

ability : 18
1.4 Manipulation, Animation, and Simulation : : : : : : : : : : : : 19
1.5 What Did We Leave Out? : 20

2 Body Modeling 23

2.1 Geometric Body Modeling : 23
2.1.1 Surface and Boundary Models : : : : : : : : : : : : : : : 23
2.1.2 Volume and CSG Models : : : : : : : : : : : : : : : : : 25
2.1.3 The Principal Body Models Used : : : : : : : : : : : : : 27

2.2 Representing Articulated Figures : : : : : : : : : : : : : : : : : 28
2.2.1 Background : 29
2.2.2 The Terminology of Peabody : : : : : : : : : : : : : : : 30
2.2.3 The Peabody Hierarchy : : : : : : : : : : : : : : : : : : 31
2.2.4 Computing Global Coordinate Transforms : : : : : : : : 33
2.2.5 Dependent Joints : 33

2.3 A Flexible Torso Model : 34
2.3.1 Motion of the Spine : 36
2.3.2 Input Parameters : 37
2.3.3 Spine Target Position : : : : : : : : : : : : : : : : : : : 38
2.3.4 Spine Database : 38

iii

iv CONTENTS

2.4 Shoulder Complex : 39
2.4.1 Primitive Arm Motions : : : : : : : : : : : : : : : : : : 40
2.4.2 Allocation of Elevation and Abduction : : : : : : : : : : 41
2.4.3 Implementation of Shoulder Complex : : : : : : : : : : 41

2.5 Clothing Models : 45
2.5.1 Geometric Modeling of Clothes : : : : : : : : : : : : : : 46
2.5.2 Draping Model : 48

2.6 The Anthropometry Database : : : : : : : : : : : : : : : : : : : 49
2.6.1 Anthropometry Issues : : : : : : : : : : : : : : : : : : : 49
2.6.2 Implementation of Anthropometric Scaling : : : : : : : 50
2.6.3 Joints and Joint Limits : : : : : : : : : : : : : : : : : : 51
2.6.4 Mass : 53
2.6.5 Moment of Inertia : 53
2.6.6 Strength : 54

2.7 The Anthropometry Spreadsheet : : : : : : : : : : : : : : : : : 54
2.7.1 Interactive Access Anthropometric Database : : : : : : 56
2.7.2 SASS and the Body Hierarchy : : : : : : : : : : : : : : 57
2.7.3 The Rule System for Segment Scaling : : : : : : : : : : 57
2.7.4 Figure Creation : 59
2.7.5 Figure Scaling : 59

2.8 Strength and Torque Display : : : : : : : : : : : : : : : : : : : 60
2.8.1 Goals of Strength Data Display : : : : : : : : : : : : : : 61
2.8.2 Design of Strength Data Displays : : : : : : : : : : : : : 61

3 Spatial Interaction 67

3.1 Direct Manipulation : 67
3.1.1 Translation : 68
3.1.2 Rotation : 68
3.1.3 Integrated Systems : 69
3.1.4 The Jack Direct Manipulation Operator : : : : : : : : : 70

3.2 Manipulation with Constraints : : : : : : : : : : : : : : : : : : 75
3.2.1 Postural Control using Constraints : : : : : : : : : : : : 75
3.2.2 Constraints for Inverse Kinematics : : : : : : : : : : : : 77
3.2.3 Features of Constraints : : : : : : : : : : : : : : : : : : 78
3.2.4 Inverse Kinematics and the Center of Mass : : : : : : : 78
3.2.5 Interactive Methodology : : : : : : : : : : : : : : : : : : 80

3.3 Inverse Kinematic Positioning : : : : : : : : : : : : : : : : : : : 83
3.3.1 Constraints as a Nonlinear Programming Problem : : : 86
3.3.2 Solving the Nonlinear Programming Problem : : : : : : 87
3.3.3 Assembling Multiple Constraints : : : : : : : : : : : : : 91
3.3.4 Sti�ness of Individual Degrees of Freedom : : : : : : : : 93
3.3.5 An Example : 93

3.4 Reachable Spaces : 94
3.4.1 Workspace Point Computation Module : : : : : : : : : : 96
3.4.2 Workspace Visualization : : : : : : : : : : : : : : : : : : 97
3.4.3 Criteria Selection : 98

CONTENTS v

4 Behavioral Control 101

4.1 An Interactive System for Postural Control : : : : : : : : : : : 102
4.1.1 Behavioral Parameters : : : : : : : : : : : : : : : : : : : 103
4.1.2 Passive Behaviors : 109
4.1.3 Active Behaviors : 114

4.2 Interactive Manipulation With Behaviors : : : : : : : : : : : : 116
4.2.1 The Feet : 117
4.2.2 The Center of Mass and Balance : : : : : : : : : : : : : 117
4.2.3 The Torso : 120
4.2.4 The Pelvis : 123
4.2.5 The Head and Eyes : 123
4.2.6 The Arms : 123
4.2.7 The Hands and Grasping : : : : : : : : : : : : : : : : : 126

4.3 The Animation Interface : 126
4.4 Human Figure Motions : 128

4.4.1 Controlling Behaviors Over Time : : : : : : : : : : : : : 129
4.4.2 The Center of Mass : 129
4.4.3 The Pelvis : 130
4.4.4 The Torso : 130
4.4.5 The Feet : 130
4.4.6 Moving the Heels : 131
4.4.7 The Arms : 132
4.4.8 The Hands : 132

4.5 Virtual Human Control : 132

5 Simulation with Societies of Behaviors 137

5.1 Forward Simulation with Behaviors : : : : : : : : : : : : : : : : 139
5.1.1 The Simulation Model : : : : : : : : : : : : : : : : : : : 141
5.1.2 The Physical Execution Environment : : : : : : : : : : 142
5.1.3 Networks of Behaviors and Events : : : : : : : : : : : : 144
5.1.4 Interaction with Other Models : : : : : : : : : : : : : : 145
5.1.5 The Simulator : 147
5.1.6 Implemented Behaviors : : : : : : : : : : : : : : : : : : 149
5.1.7 Simple human motion control : : : : : : : : : : : : : : : 150

5.2 Locomotion : 150
5.2.1 Kinematic Control : 151
5.2.2 Dynamic Control : 152
5.2.3 Curved Path Walking : : : : : : : : : : : : : : : : : : : 154
5.2.4 Examples : 159

5.3 Strength Guided Motion : 161
5.3.1 Motion from Dynamics Simulation : : : : : : : : : : : : 161
5.3.2 Incorporating Strength and Comfort into Motion : : : : 163
5.3.3 Motion Control : 164
5.3.4 Motion Strategies : 167
5.3.5 Selecting the Active Constraints : : : : : : : : : : : : : 169
5.3.6 Strength Guided Motion Examples : : : : : : : : : : : : 170

vi CONTENTS

5.3.7 Evaluation of this Approach : : : : : : : : : : : : : : : : 173
5.3.8 Performance Graphs : 173
5.3.9 Coordinated Motion : 174

5.4 Collision-Free Path and Motion Planning : : : : : : : : : : : : 180
5.4.1 Robotics Background : : : : : : : : : : : : : : : : : : : 180
5.4.2 Using Cspace Groups : : : : : : : : : : : : : : : : : : : 181
5.4.3 The Basic Algorithm : 182
5.4.4 The Sequential Algorithm : : : : : : : : : : : : : : : : : 183
5.4.5 The Control Algorithm : : : : : : : : : : : : : : : : : : 185
5.4.6 The Planar Algorithm : : : : : : : : : : : : : : : : : : : 186
5.4.7 Resolving Conicts between Di�erent Branches : : : : : 186
5.4.8 Playing Back the Free Path : : : : : : : : : : : : : : : : 187
5.4.9 Incorporating Strength Factors into the Planned Motion 189
5.4.10 Examples : 190
5.4.11 Completeness and Complexity : : : : : : : : : : : : : : 191

5.5 Posture Planning : 192
5.5.1 Functionally Relevant High-level Control Parameters : : 196
5.5.2 Motions and Primitive Motions : : : : : : : : : : : : : : 197
5.5.3 Motion Dependencies : : : : : : : : : : : : : : : : : : : 197
5.5.4 The Control Structure of Posture Planning : : : : : : : 199
5.5.5 An Example of Posture Planning : : : : : : : : : : : : : 200

6 Task-Level Speci�cations 207

6.1 Performing Simple Commands : : : : : : : : : : : : : : : : : : 208
6.1.1 Task Environment : 208
6.1.2 Linking Language and Motion Generation : : : : : : : : 209
6.1.3 Specifying Goals : 209
6.1.4 The Knowledge Base : 210
6.1.5 The Geometric Database : : : : : : : : : : : : : : : : : 211
6.1.6 Creating an Animation : : : : : : : : : : : : : : : : : : 211
6.1.7 Default Timing Constructs : : : : : : : : : : : : : : : : 212

6.2 Language Terms for Motion and Space : : : : : : : : : : : : : : 214
6.2.1 Simple Commands : 214
6.2.2 Representational Formalism : : : : : : : : : : : : : : : : 215
6.2.3 Sample Verb and Preposition Speci�cations : : : : : : : 217
6.2.4 Processing a sentence : : : : : : : : : : : : : : : : : : : 219
6.2.5 Summary : 221

6.3 Task-Level Simulation : 222
6.3.1 Programming Environment : : : : : : : : : : : : : : : : 223
6.3.2 Task-actions : 224
6.3.3 Motivating Some Task-Actions : : : : : : : : : : : : : : 225
6.3.4 Domain-speci�c task-actions : : : : : : : : : : : : : : : 226
6.3.5 Issues : 228
6.3.6 Summary : 231

6.4 A Model for Instruction Understanding : : : : : : : : : : : : : 231

CONTENTS vii

7 Epilogue 243

7.1 A Roadmap Toward the Future : : : : : : : : : : : : : : : : : : 244
7.1.1 Interactive Human Models : : : : : : : : : : : : : : : : : 245
7.1.2 Reasonable Biomechanical Properties : : : : : : : : : : 245
7.1.3 Human-like Behaviors : : : : : : : : : : : : : : : : : : : 245
7.1.4 Simulated Humans as Virtual Agents : : : : : : : : : : : 246
7.1.5 Task Guidance through Instructions : : : : : : : : : : : 246
7.1.6 Natural Manual Interfaces and Virtual Reality : : : : : 246
7.1.7 Generating Text, Voice-over, and Spoken Explication

for Animation : 247
7.1.8 Coordinating Multiple Agents : : : : : : : : : : : : : : : 247

7.2 Conclusion : 248

Bibliography 249

Index 267

viii CONTENTS

Preface

The decade of the 80's saw the dramatic expansion of high performance
computer graphics into domains previously able only to irt with the tech-
nology. Among the most dramatic has been the incorporation of real-time
interactive manipulation and display for human �gures. Though actively pur-
sued by several research groups, the problem of providing a virtual or synthetic
human for an engineer or designer already accustomed to Computer-Aided De-
sign techniques was most comprehensively attacked by the Computer Graphics
Research Laboratory at the University of Pennsylvania. The breadth of that
e�ort as well as the details of its methodology and software environment are
presented in this volume.

This book is intended for human factors engineers requiring current knowl-
edge of how a computer graphics surrogate human can augment their analy-
ses of designed environments. It will also help inform design engineers of the
state-of-the-art in human �gure modeling, and hence of the human-centered
design central to the emergent notion of Concurrent Engineering. Finally, it
documents for the computer graphics community a major research e�ort in
the interactive control and motion speci�cation of articulated human �gures.

Many people have contributed to the work described in this book, but the
textual material derives more or less directly from the e�orts of our current
and former students and sta�: Tarek Alameldin, Francisco Azuola, Breck
Baldwin, Welton Becket, Wallace Ching, Paul Diefenbach, Barbara Di Eu-
ngenio, Je�rey Esakov, Christopher Geib, John Granieri, Marc Grosso, Pei-
Hwa Ho, Mike Hollick, Moon Jung, Jugal Kalita, Hyeongseok Ko, Eunyoung
Koh, Jason Koppel, Michael Kwon, Philip Lee, Libby Levison, Gary Monheit,
Michael Moore, Ernest Otani, Susanna Wei, GrahamWalters, Michael White,
Jianmin Zhao, and Xinmin Zhao. Additional animation help has come from
Leanne Hwang, David Haynes, and Brian Stokes. John Granieri and Mike
Hollick helped considerably with the photographs and �gures.

This work would not have been possible without the generous and often
long term support of many organizations and individuals. In particular we
would like to acknowledge our many colleagues and friends: BarbaraWoolford,
Geri Brown, Jim Maida, Abhilash Pandya and the late Linda Orr in the Crew
Station Design Section and Mike Greenisen at NASA Johnson Space Center;
Ben Cummings, Brenda Thein, Bernie Corona, and Rick Kozycki of the U.S.
Army Human Engineering Laboratory at Aberdeen Proving Grounds; James
Hartzell, James Larimer, Barry Smith, Mike Prevost, and Chris Neukom of
the A3I Project in the Aeroight Dynamics Directorate of NASA Ames Re-
search Center; Steve Paquette of the U. S. Army Natick Laboratory; Jagdish
Chandra and David Hislop of the U. S. Army Research O�ce; the Army Arti-
�cial Intelligence Center of Excellence at the University of Pennsylvania and
its Director, Aravind Joshi; Art Iverson and Jack Jones of the U.S. Army
TACOM; Jill Easterly, Ed Boyle, John Ianni, and Wendy Campbell of the
U. S. Air Force Human Resources Directorate at Wright-Patterson Air Force
Base; Medhat Korna and Ron Dierker of Systems Exploration, Inc.; Pete Glor

CONTENTS ix

and Joseph Spann of Hughes Missile Systems (formerly General Dynamics,
Convair Division); Ruth Maulucci of MOCO Inc.; John McConville, Bruce
Bradtmiller, and Bob Beecher of Anthropology Research Project, Inc.; Ed-
mund Khouri of Lockheed Engineering and Management Services; Barb Fecht
of Battelle Paci�c Northwest Laboratories; Jerry Duncan of Deere and Com-
pany; Ed Bellandi of FMC Corp.; Steve Gulasy of Martin-Marietta Denver
Aerospace; JoachimGrollman of Siemens Research; Kathleen Robinette of the
Armstrong Medical Research Lab at Wright-Patterson Air Force Base; Harry
Frisch of NASA Goddard Space Flight Center; Jerry Allen and the folks at Sil-
icon Graphics, Inc.; Jack Scully of Ascension Technology Corp.; the National
Science Foundation CISE Grant CDA88-22719 and ILI Grant USE-9152503;
and the State of Pennsylvania Benjamin Franklin Partnership. Martin Zaidel
contributed valuable LaTEX help. Finally, the encouragement and patience of
Don Jackson at Oxford University Press has been most appreciated.

Norman I. Badler
University of Pennsylvania

Cary B. Phillips
PDI, Sunnyvale

Bonnie L. Webber
University of Pennsylvania

x CONTENTS

Chapter 1

Introduction and

Historical Background

People are all around us. They inhabit our home, workplace, entertainment,
and environment. Their presence and actions are noted or ignored, enjoyed or
disdained, analyzed or prescribed. The very ubiquitousness of other people in
our lives poses a tantalizing challenge to the computational modeler: people
are at once the most common object of interest and yet the most structurally
complex. Their everyday movements are amazingly uid yet demanding to
reproduce, with actions driven not just mechanically by muscles and bones
but also cognitively by beliefs and intentions. Our motor systems manage
to learn how to make us move without leaving us the burden or pleasure
of knowing how we did it. Likewise we learn how to describe the actions
and behaviors of others without consciously struggling with the processes of
perception, recognition, and language.

A famous Computer Scientist, Alan Turing, once proposed a test to deter-
mine if a computational agent is intelligent [Tur63]. In the Turing Test, a sub-
ject communicates with two agents, one human and one computer, through
a keyboard which e�ectively restricts interaction to language. The subject
attempts to determine which agent is which by posing questions to both of
them and guessing their identities based on the \intelligence" of their answers.
No physical manifestation or image of either agent is allowed as the process
seeks to establish abstract \intellectual behavior," thinking, and reasoning.
Although the Turing Test has stood as the basis for computational intelli-
gence since 1963, it clearly omits any potential to evaluate physical actions,
behavior, or appearance.

Later, Edward Feigenbaum proposed a generalized de�nition that included
action: \Intelligent action is an act or decision that is goal-oriented, arrived
at by an understandable chain of symbolic analysis and reasoning steps, and
is one in which knowledge of the world informs and guides the reasoning."
[Bod77]. We can imagine an analogous \Turing Test" that would have the

1

2 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

subject watching the behaviors of two agents, one human and one synthetic,
while trying to determine at a better than chance level which is which. Human
movement enjoys a universality and complexity that would de�nitely challenge
an animated �gure in this test: if a computer-synthesized �gure looks, moves,
and acts like a real person, are we going to believe that it is real? On the sur-
face the question almost seems silly, since we would rather not allow ourselves
to be fooled. In fact, however, the question is moot though the premises are
slightly di�erent: cartoon characters are hardly \real," yet we watch them and
properly interpret their actions and motions in the evolving context of a story.
Moreover, they are not \realistic" in the physical sense { no one expects to
see a manifest Mickey Mouse walking down the street. Nor do cartoons even
move like people { they squash and stretch and perform all sorts of actions
that we would never want to do. But somehow our perceptions often make
these characters believable: they appear to act in a goal-directed way because
their human animators have imbued them with physical \intelligence" and
behaviors that apparently cause them to chase enemies, bounce o� walls, and
talk to one another. Of course, these ends are achieved by the skillful weaving
of a story into the crafted images of a character. Perhaps surprisingly, the
mechanisms by which motion, behavior, and emotion are encoded into car-
toons is not by building synthetic models of little creatures with muscles and
nerves. The requisite animator skills do not come easily; even in the cartoon
world re�nements to the art and technique took much work, time, and study
[TJ81]. Creating such movements automatically in response to real-time in-
teractive queries posed by the subject in our hypothetical experiment does not
make the problem any easier. Even Turing, however, admitted that the intel-
ligence sought in his original test did not require the computational process
of thinking to be identical to that of the human: the external manifestation
in a plausible and reasonable answer was all that mattered.

So why are we willing to assimilate the truly arti�cial reality of cartoons {
characters created and moved entirely unlike \real" people { yet be skeptical
of more human-like forms? This question holds the key to our physical Turing
Test: as the appearance of a character becomes more human, our perceptual
apparatus demands motion qualities and behaviors which sympathize with
our expectations. As a cartoon character takes on a human form, the only
currently viable method for accurate motion is the recording of a real actor
and the tracing or transfer (\rotoscoping") of that motion into the animation.
Needless to say, this is not particularly satisfying to the modeler: the motion
and actor must exist prior to the synthesized result. Even if we recorded
thousands of individual motions and retrieved them through some kind of
indexed video, we would still lack the freshness, variability, and adaptability
of humans to live, work, and play in an in�nite variety of settings.

If synthetic human motion is to be produced without the bene�t of prior
\real" execution and still have a shot at passing the physical Turing Test, then
models must carefully balance structure, shape, and motion in a compatible
package. If the models are highly simpli�ed or stylized, cartoons or caricatures
will be the dominant perception; if they look like humans, then they will be

3

expected to behave like them. How to accomplish this without a real actor
showing the way is the challenge addressed here.

Present technology can approach human appearance and motion through
computer graphics modeling and three-dimensional animation, but there is
considerable distance to go before purely synthesized �gures trick our senses.
A number of promising research routes can be explored and many are tak-
ing us a considerable way toward that ultimate goal. By properly delimiting
the scope and application of human models, we can move forward, not to re-
place humans, but to substitute adequate computational surrogates in various
situations otherwise unsafe, impossible, or too expensive for the real thing.

The goals we set in this study are realistic but no less ambitious than the
physical Turing Test: we seek to build computational models of human-like
�gures which, though they may not trick our senses into believing they are
alive, nonetheless manifest animacy and convincing behavior. Towards this
end, we

� Create an interactive computer graphics human model.

� Endow it with reasonable biomechanical properties.

� Provide it with \human-like" behaviors.

� Use this simulated �gure as an agent to e�ect changes in its world.

� Describe and guide its tasks through natural language instructions.

There are presently no perfect solutions to any of these problems, but sig-
ni�cant advances have enabled the consideration of the suite of goals under
uniform and consistent assumptions. Ultimately, we should be able to give
our surrogate human directions that, in conjunction with suitable symbolic
reasoning processes, make it appear to behave in a natural, appropriate, and
intelligent fashion. Compromises will be essential, due to limits in computa-
tion, throughput of display hardware, and demands of real-time interaction,
but our algorithms aim to balance the physical device constraints with care-
fully crafted models, general solutions, and thoughtful organization.

This study will tend to focus on one particularly well-motivated application
for human models: human factors analysis. While not as exciting as motion
picture characters, as personable as cartoons, or as skilled as Olympic athletes,
there are justi�able uses to virtual human �gures in this domain. Visualizing
the appearance, capabilities and performance of humans is an important and
demanding application (Plate 1). The lessons learned may be transferred to
less critical and more entertaining uses of human-like models. From modeling
realistic or at least reasonable body size and shape, through the control of
the highly redundant body skeleton, to the simulation of plausible motions,
human �gures o�er numerous computational problems and constraints. Build-
ing software for human factors applications serves a widespread, non-animator
user population. In fact, it appears that such software has broader applica-
tion since the features needed for analytic applications { such as multiple

4 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

simultaneous constraints { provide extremely useful features for the conven-
tional animator. Our software design has tried to take into account a wide
variety of physical problem-oriented tasks, rather than just o�er a computer
graphics and animation tool for the already skilled or computer-sophisticated
animator.

The remainder of this chapter motivates the human factors environment
and then traces some of the relevant history behind the simulation of human
�gures in this and other domains. It concludes with a discussion of the speci�c
features a human modeling and animation system should have and why we
have concentrated on some and not others. In particular, we are not consid-
ering cognitive problems such as perception or sensory interpretation, target
tracking, object identi�cation, or control feedback that might be important
parts of some human factors analyses. Instead we concentrate on modeling a
virtual human with reasonable biomechanical structure and form, as described
in Chapter 2. In Chapter 4 we address the psychomotor behaviors manifested
by such a �gure and show how these behaviors may be interactively accessed
and controlled. Chapter 5 presents several methods of motion control that
bridge the gap between biomechanical capabilities and higher level tasks. Fi-
nally, in Chapter 6 we investigate the cognition requirements and strategies
needed to have one of these computational agents follow natural language task
instructions.

1.1 Why Make Human Figure Models?

Our research has focused on software to make the manipulation of a simulated
human �gure easy for a particular user population: human factors design en-
gineers or ergonomics analysts. These people typically study, analyze, assess,
and visualize human motor performance, �t, reach, view, and other physical
tasks in a workplace environment. Traditionally, human factors engineers an-
alyze the design of a prototype workplace by building a mock-up, using real
subjects to perform sample tasks, and reporting observations about design
satisfaction. This is limiting for several reasons. Jerry Duncan, a human fac-
tors engineer at Deere & Company, says that once a design has progressed
to the stage at which there is su�cient information for a model builder to
construct the mock-up, there is usually so much inertia to the design that
radical changes are di�cult to incorporate due to cost and time considera-
tions. After a design goes into production, de�ciencies are alleviated through
specialized training, limits on physical characteristics of personnel, or vari-
ous operator aids such as mirrors, markers, warning labels, etc. The goal of
computer-simulated human factors analysis is not to replace the mock-up pro-
cess altogether, but to incorporate the analysis into early design stages so that
designers can eliminate a high proportion of �t and function problems before
building the mock-ups. Considering human factors and other engineering and
functional analyses together during rather than after the major design process
is a hallmark of Concurrent Engineering [Hau89].

1.1. WHY MAKE HUMAN FIGURE MODELS? 5

It is di�cult to precisely characterize the types of problems a human fac-
tors engineer might address. Diverse situations demand empirical data on
human capabilities and performance in generic as well as highly speci�c tasks.
Here are some examples.

� Population studies can determine body sizes representative of some
group, say NASA astronaut trainees, and this information can be used
to determine if space vehicle work cells are adequately designed to �t
the individuals expected to work there. Will all astronauts be able to
�t through doors or hatches? How will changes in the workplace design
a�ect the �t? Will there be unexpected obstructions to zero gravity
locomotion? Where should foot- and hand-holds be located?

� An individual operating a vehicle such as a tractor will need to see
the surrounding space to execute the task, avoid any obstructions, and
insure safety of nearby people. What can the operator see from a par-
ticular vantage point? Can he control the vehicle while looking out the
rear window? Can he see the blade in order to follow an excavation line?

� Speci�c lifting studies might be performed to determine back strain
limits for a typical worker population. Is there room to perform a lift
properly? What joints are receiving the most strain? Is there a better
posture to minimize torques? How does placement of the weight and
target a�ect performance? Is the worker going to su�er fatigue after a
few iterations?

� Even more specialized experiments may be undertaken to evaluate the
comfort and feel of a particular tool's hand grip. Is there su�cient room
for a large hand? Is the grip too large for a small hand? Are all the
controls reachable during the grip?

The answers to these and other questions will either verify that the design
is adequate or point to possible changes and improvements early in the design
process. But once again, the diversity of human body sizes coupled with
the multiplier of human action and interaction with a myriad things in the
environment leads to an explosion in possible situations, data, and tests.

Any desire to build a \complete" model of human behavior, even for the
human factors domain, is surely a futile e�ort. The �eld is too broad, the
literature immense, and the theory largely empirical. There appear to be
two directions out of this dilemma. The �rst would be the construction of
a computational database of all the known, or at least useful, data. Vari-
ous e�orts have been undertaken to assemble such material, for example, the
NASA sourcebooks [NAS78, NAS87] and the Engineering Data Compendium

[BKT86, BL88]. The other way is to build a sophisticated computational
human model and use it as a subject in simulated virtual environment tests.
The model will utilize an ever-expanding human factors data set to dictate its
performance. Upon some reection, it appears that database direction may

6 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

start out as the smoother road, but it quickly divides into numerous sinu-
ous paths pot-holed with data gaps, empirical data collection limitations, and
population-speci�c dependencies. The alternative direction (using a compu-
tational model underlying any data) may be harder to construct at �rst, and
may have many detours for awhile, but gradually it leads to more destinations
with better roads.

This metaphor carries a philosophy for animating human movement that
derives from a computer science rather than an empirical point of view. We
cannot do without the e�orts of the human factors community, but we cannot
use their work per se as the starting point for human �gure modeling. Com-
puter scientists seek computationally general yet e�cient solutions to prob-
lems. Human factors engineers often analyze a succession of speci�c tasks
or situations. The role we play is transforming the speci�c needs of the en-
gineer or analyst into a generalized setting where some large percentage of
situations may be successfully analyzed. There is su�cient research required
to solve general yet di�cult problems to justify building suitable software in
a computer science environment. The expectation is that in the long run
a more speci�c case-by-case implementation approach will be economically
impractical or technologically infeasible.

As we continue to interact with human factors specialists, we have come to
appreciate the broad range of problems they must address: �t, reach, visibility,
comfort, access, strength, endurance, and fatigue, to mention only some of
the non-cognitive ones. Our approach is not a denial of their perception and
analysis, rather it is an alternative view of the problem as modeling. Broadly
speaking, modeling is the embodimentwithin computer databases or programs
of worldly phenomena. Models can be of many types:

� Mathematical formulations: physical equations of motion, limb strength
in tables of empirical data, evaluation formulas measuring workload or
fatigue.

� Geometric and topological models: structures representing workplace
objects, human body segments, paths to follow, joints and joint limits,
spaces that can be reached, attachments, and constraints.

� Conceptual models: names for things, attributes such as color, exibil-
ity, and material, relationships between objects, functional properties.

Of course, modeling (especially of the �rst sort) is a signi�cant and fun-
damental part of many studies in the human factors domain, but it has been
di�cult to balance the needs of the engineer against the complexity of the
modeling software. Often, the model is elaborated in only a few dimensions
to study some problem while no global integration of models is attempted.
Clearly the broadest interpretation of modeling draws not only from many
areas of computer science such as arti�cial intelligence, computer graphics,
simulation, and robotics, but also from the inherently relevant �elds of biome-
chanics, anthropometry, physiology, and ergonomics.

1.2. HISTORICAL ROOTS 7

The challenge to embed a reasonable set of capabilities in an integrated
system has provided dramatic incentives to study issues and solutions in three-
dimensional interaction methodologies, multiple goal positioning, visual �eld
assessment, reach space generation, and strength guided motion, to name a
few. The empirical data behind these processes is either determined from
reliable published reports or supplied by the system user. By leaving the
actual data open to the user, the results are as valid as the user wishes to
believe. While this is not a very pleasant situation, the inherent variability
in human capability data makes some error unavoidable. Better, we think,
to let the user know or control the source data than to hide it. This attitude
toward validation is not the only plausible one, but it does permit exibility
and generality for the computer and allows �nal judgment to be vested in the
user.

Lest there be concern that we have pared the problem down so far that
little of interest remains, we change tactics for awhile and present an historical
view of e�orts to model humans and their movements. By doing so, we should
demonstrate that the human factors domain mirrors problems which arise in
other contexts such as dance, sports, or gestural communication. The criteria
for success in these �elds may be more stringent, so understanding the role
and scope of human movement in them can only serve to strengthen our
understanding of more mundane actions.

1.2 Historical Roots

Interactive computer graphics systems to support human �gure modeling,
manipulation, and animation have existed since the early seventies. We trace
relevant developments with a sense more of history and evolution rather than
of exhaustive survey. There are numerous side branches that lead to interest-
ing topics, but we will sketch only a few of those here.

Three-dimensional human �gure models apparently arose independently
from at least six di�erent applications.

1. Crash simulation. Automobile and aircraft safety issues led to the de-
velopment of sophisticated codes for linked mass deceleration studies.
These programs generally ran in batch mode for long hours on main-
frame computers. The results were tabulated, and in some cases con-
verted to a form that could animate a simple 3D mannequin model
[Fet82, Wil82, BOT79]. The application was characterized by non-
interactive positioning and force-based motion computations with anal-
ysis of impact forces to a�ected body regions and subsequent injury
assessment.

2. Motion analysis. Athletes, patients with psychomotor disabilities, ac-
tors, or animals were photographed in motion by one or more �xed,
calibrated cameras. The two-dimensional information was correlated
between views and reconstructed as timed 3D data points [RA90]. This

8 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

data could be �ltered and di�erentiated to compute velocities, accelera-
tions, torques and forces. Visualization of the original data validated the
data collection process, but required human �gure models. Often just
wire-frames, they served in a support role for athletic performance im-
provement, biomechanical analysis, cartoon motion [TJ81], and training
or physical therapy [Win90]. Related e�orts substituted direct or active
sensing devices for photographic processing [CCP80]. Presently, active
motion sensing is used not only for performance analysis but gestural
input for virtual environments (for example, [FMHR87, BBH+90] and
many others).

3. Workplace assessment. The earliest system with widespread use was
SAMMIE [KSC81]. This problem domain is characterized by interac-
tive body positioning requirements and analyses based on visual inspec-
tion of 3D computer graphics models. Fast interaction with wire-frame
displays provided dynamic feedback to the workplace evaluator. Other
modeling tools were developed, such as CAR II [HBD80], Combiman
[BEK+81], and Crew Chief [MKK+88, EI91] to provide validated an-
thropometric or capability data for real populations.

4. Dance or movement notation. The speci�cation of self-generated, pur-
posive, aesthetically-pleasing, human movement has been the subject
of numerous notational systems [Hut84]. Dance notations were consid-
ered as a viable, compact, computationally tractable mode of expres-
sion for human movement due to their re�nement as symbolic motion
descriptions [BS79]. An animation was to be the debugging tool to val-
idate the correctness of a given notated score. The direct creation of
movement through a notational or numeric interface was also considered
[CCP80, CCP82, HE78].

5. Entertainment. People (or at least animate creatures) are the favorite
subject of cartoons and movies. Two-dimensional animation techniques
were the most widely used [Cat72, BW76, Lev77, Cat78]. In an ef-
fort to avoid rotoscoping live actors, early 3D modeling and animation
techniques were developed at the University of Utah, Ohio State Univer-
sity, and the New York Institute of Technology [Wes73, Hac77, Stu84,
Gom84, HS85a].

6. Motion understanding. There are deep connections between human
motion and natural language. One of these attempted to produce a
sort of narration of observed (synthetic) movement by characterizing
changes in spatial location or orientation descriptions over time [Bad75].
More recently, the inverse direction has been more challenging, namely,
producing motion from natural language descriptions or instructions
[BWKE91, TST87].

Our earliest e�orts were directed at language descriptions of object motion.
Speci�cally, we created representations of 3D object motion and directional

1.2. HISTORICAL ROOTS 9

adverbials in such a way that image sequences of moving objects could be
analyzed to produce English sentence motion descriptions [Bad75, Bad76]. We
then extended the model to articulated �gures, concentrating on graphically
valid human �gure models to aid the image understanding process [BOT79].
This e�ort led to the work of Joseph O'Rourke, who attempted model-driven
analysis of human motion [OB80] using novel 3D constraint propagation and
goal-directed image understanding.

To improve the motion understanding component we focused on motion
representations specially designed for human movement [WSB78, BS79]. An
in-depth study of several human movement notation systems (such as La-
banotation [Hut70] and Eshkol-Wachmann [Hut84]) fostered our appreciation
for the breadth and complexity of human activities. Our early attempts to
re-formulate Labanotation in computational models reected a need to cover
at least the space of human (skeletal) motion. We investigated input sys-
tems for Labanotation [BS76, Hir77], although later they were discarded as a
generally accessible means of conveying human movement information from
animator to computer �gure: there was simply too much overhead in learning
the nuances and symbology of the notational system. Moreover, concurrent
developments in three-dimensional interactive computer graphics o�ered more
natural position and motion speci�cation alternatives. The �nal blow to us-
ing Labanotation was its lack of dynamic information other than timing and
crude \accent" and phrasing marks.

The movement representations that we developed fromLabanotation, how-
ever, retained one critically important feature: goal-directedness for e�cient
motion speci�cation. Given goals, processes had to be developed to satisfy
them. A simulation paradigm was adopted and some of the special problems
of human movement simulation were investigated [BSOW78, BOK80, KB82].
Others studied locomotion [CCP82, Zel82, GM85, Gir87, Bru88, BC89], while
we concentrated on inverse kinematics for reach goals [KB82, Kor85]. We were
especially anxious to manage multiple reach and motion goals that mutually
a�ected many parts of the body. Solving this problem in particular led to later
re-examination of constraint-based positioning and more general and robust
algorithms to achieve multiple simultaneous goals [BMW87, ZB89]. Chapter
4 will discuss our current approach in detail.

Our study of movement notations also led to an appreciation of certain
fundamental limitationsmost of them possessed: they were good at describing
the changes or end results of a movement (what should be done), but were
coarse or even non-speci�c when it came to indicating how a movement ought
to be performed. The notator's justi�cation was that the performer (for ex-
ample, a dancer) was an expert system who knew from experience and training
just how to do the notated motion. The transformation from notation into
smooth, natural, expressive movements was part of the art. The exception
to the nearly universal failure of notational systems to capture nuances of
behavior was E�ort-Shape notation [Del70, BwDL80]. We began a study of
possible computational analogues to the purely descriptive semantics of that
system. By 1986 a model of human movement emerged which integrated the

10 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

kinematic and inverse kinematic approach with a dynamic, force-based model
[Bad89]. Major contributions to dynamics-based animation were made by
others, notably [AG85, AGL87, WB85, Wil86, Wil87, IC87, HH87, Hah88].
Recently we combined some of the characteristics of the dynamics approach
{ the use of physical torques at the body joints { with goal-directed behavior
to achieve strength guided motion ([LWZB90] and Chapter 5).

While we were actively engaged in the study of motion representations,
concurrent developments in interactive systems for the graphical manipula-
tion of a computerized �gure were being actively implemented at the Uni-
versity of Pennsylvania. Implementation and development has been a strong
experimental component of our research, from the early positioning language
based on Labanotation concepts [WSB78], to the next generation frame bu�er-
based system called TEMPUS [Kor85, BKK+85], to the direct manipulation
of the �gure with a 6-axis digitizer [BMB86], and �nally to our present Silicon
Graphics workstation-based system JackTM1 [PB88, PZB90] (Chapters 2 and
4).

As our experience with interactive graphical manipulation of a �gure ma-
tured, we returned to the connections between language and motion we had
begun in the mid-1970's. The manipulation of the �gure for task analysis
begged for more e�cient means of specifying the task. So we began to in-
vestigate natural language control for task animation [Gan85, BG86, Kar87,
Kar88, Kal90, KB90, KB91]. New representations for motion verbs and tech-
niques for de�ning and especially executing their semantics were investigated.
A simple domain of panel-type objects and their motions were studied by Je�
Gangel. Robin Karlin extended the semantics to certain temporal adverbials
(such as repetitions and culminations) in a domain of kitchen-objects. Our
present e�ort is exempli�ed here by the work of Jugal Kalita and Libby Lev-
ison. Kalita studied verbs of physical manipulation and used constraints in a
fundamental fashion to determine generalized verb semantics. Levison makes
explicit connections between a verb's semantic representation and the sorts of
primitive behaviors and constraints known to be directly simulatable by the
Jack animation system (Chapter 6).

Given that natural language or some other arti�cial language was to be
used to describe tasks or processes, a suitable simulation methodology had
to be adopted. In his HIRES system, Paul Fishwick investigated task and
process simulation for human animation [Fis86, Fis88]. Output was produced
by selecting from among pre-de�ned key postures. For example, an animation
of the famous \Dining Philosophers" problem using �ve human �gure models
was produced by simulation of the petri net solution in the HIRES simula-
tor. By 1989 we replaced HIRES by a new simulation system, YAPS, which
incorporated temporal planning with imprecise speci�cations [KKB88], task
interruption, and task time estimation based on human performance models
[EBJ89, EB90, BWKE91] (Chapter 6).

This brings us to the present Jack system structure designed to accommo-

1
Jack is a registered trademark of the University of Pennsylvania.

1.3. WHAT IS CURRENTLY POSSIBLE? 11

date as many of the historical applications as possible within an integrated
and consistent software foundation. To begin to describe that, we need to
review what human modeling capabilities are needed and what problem im-
plementation choices we might make.

1.3 What is Currently Possible?

Since we wish to animate synthetic human �gures primarily in the human
factors engineering domain, we should decide what features are essential, de-
sirable, optional, or unnecessary. Only by prioritizing the e�ort can such a
large-scale undertaking be managed. Given priorities, implementation tech-
niques and trade-o�s may be investigated. Though we may often draw on ex-
isting knowledge and algorithms, there are many fundamental features which
we may have to invent or evolve due to the speci�c structure of the human
�gure, characteristics of human behavior, timing demands of real-time in-
teraction, or limitations of the display hardware. Accordingly, a variety of
human �gure modeling issues will be examined here to introduce and justify
the choices we have made in our broad yet integrated e�ort.

The embodiment of our choices for human modeling is a software system
called Jack. Designed to run on Silicon Graphics 4D workstations, Jack is
used for the de�nition, manipulation, animation, and human factors perfor-
mance analysis of virtual human �gures. Built on a powerful representation
for articulated �gures, Jack o�ers the interactive user a simple, intuitive, and
yet extremely capable interface into any three dimensional world. Jack incor-
porates sophisticated yet highly usable algorithms for anthropometric human
�gure generation, a exible torso, multiple limb positioning under constraints,
view assessment, reach space generation, and strength guided performance
simulation of human �gures. Of particular importance is a simulation level
which allows access to Jack by high level task control, various knowledge bases,
task de�nitions and natural language instructions. Thus human activities can
be visualized from high level task understanding and planning as well as by
interactive speci�cation.

One can think of Jack as an experimental environment in which a number
of useful general variables may be readily created, adjusted, or controlled: the
workplace, the task, the human agent(s) and some responses of the workplace
to internally or externally controlled actions. The results of speci�c instances
of these input parameters are reported through computer graphics displays,
textual information, and animations. Thus the �eld of view of a 50th percentile
male while leaning over backwards in a tractor seat as far a possible may be
directly visualized through the graphic display. If the �gure is supposed to
watch the corner of the bulldozer blade as it moves through its allowedmotion,
the human �gure's gaze will follow in direct animation of the view.

In the following subsections, several desiderata are presented for human
models. Under each, we summarize the major features { with justi�cations
and bene�ts { of the Jack software. The detailed discussions of these features

12 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

and their implementation constitute the bulk of the remaining chapters.

1.3.1 A Human Model must be Structured Like the Hu-

man Skeletal System

To build a biomechanically reasonable �gure, the skeletal structure should
resemble but need not copy that of humans. We can bu�er the complexity
of actual bone shapes, joint types and joint contact surfaces with require-
ments for interactive use and external motion approximations. For example,
rotational joints are usually assumed to have a virtual center about which
the adjacent body segments move. While such simpli�cations would not be
appropriate for, say, knee prosthesis design, there appears to be little harm
in variations on the order of a centimeter or so. Of course, there are situ-
ations where small departures from reality could a�ect the verisimilitude of
the �gure; accordingly we have concentrated on rather accurate models for
the torso and shoulder complex. Many other software systems (or manual
methods) presume a �xed shoulder joint but it is obvious that this is not true
as the arm is elevated.

1. Jack has a fully linked body model including a 17 segment exible torso
with vertebral joint limits. In general, individual joints may have one,
two, or three degrees of freedom (DOFs). Related groups of joints,
such as the spine or the shoulder complex, may be manipulated as a
unit. The result is reasonable biomechanical realism with only modest
computational overhead.

2. The Jack shoulder mass joint center is posture-dependent. Accurate
shoulder motion is modeled through an explicit dependency between
arm position and clavicle rotation. The �gure therefore presents appro-
priate shoulder and clavicle motions during positioning. The shoulder
joint has spherical (globographic [EP87]) limits for improved motion
range accuracy.

3. All joint rotations are subject to limits. During manipulation, rotations
propagate when joint limits would be exceeded.

4. A fully articulated hand model is attached.

5. The foot is articulated enough to provide toe and heel exibility. If more
DOFs were required, they could be easily added.

1.3.2 A Human Model should Move or Respond Like a
Human

Ideally, the motions presented by a simulated �gure will be biomechanically
valid. They should not only appear \human-like," but they should be vali-
dated against empirical data for real subjects under similar conditions. This

1.3. WHAT IS CURRENTLY POSSIBLE? 13

goal is desirable but di�cult to reach in a generalized motion model precisely
because such a model must allow interpolation and extrapolation to situations
other than those originally measured. Models are needed to provide reason-
able interpretations of data that by necessity must be sampled rather coarsely,
in speci�c situations, and with a collection of speci�c subjects. The closest we
can get to the ideal is to provide generic mechanisms that incorporate when-
ever possible empirical data that a user believes to be valid up to the degree
of error permitted for the task. Rather than hide such data, Jack takes the
view of an open database where reasonable default human anthropometric,
strength or performance data is provided, but user customizing is the rule
rather than the exception.

1. Jack permits multiple �gures to simultaneously inhabit an environment.
Multi-person environments and operator interactions may be studied for
interference, view, and coordinated tasks.

2. A number of active behaviors are de�ned for the �gure and may be se-
lected or disabled by the user. Among the most interesting is constrain-
ing the center of mass of the entire �gure during manipulation. This
allows automatic balance and weight-shifting while other tasks such as
reaching, viewing, bending over, etc. are being performed. Spare cycles
on the workstation are used inbetween human operator inputs to con-
stantly monitor the active constraints and move the body joints towards
their satisfaction.

3. People usually move in ways that conserve resources (except when they
are deliberately trying to achieve optimum performance). If strength
information as a function of body posture and joint position is available,
that data may be used to predict certain end-e�ector motion paths under
speci�ed \comfort" conditions. Thus the exact motions involved in,
say, lifting a weight are subservient to the strength model, comfort and
fatigue parameters, and heuristics for selecting among various movement
strategies. By avoiding \canned" or arbitrary (for example, straight
line) motion paths, great exibility in executing tasks is provided.

4. The Jack hand model has an automatic grip. This feature saves the user
from the independent manipulation of large numbers of joints and DOFs.
The user speci�es a grip type and an optional site on the object to be
grasped. When possible, the hand itself chooses a suitable approach
direction. Though frictional forces are not modeled, the positioning
task is greatly aided by the hand's skill. Once gripped, the object stays
attached to the hand and moves along with it until explicitly freed by
the user.

14 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

1.3.3 A Human Model should be Sized According to
Permissible Human Dimensions

E�ectively, there is no such thing as a \average" human. Statistically one
must always prescribe a target population when talking about percentiles of
size, weight, or stature. A person may be 50th percentile in stature, 75th

percentile in weight, but 40th percentile in lower leg length. Human dimen-
sional variability is enormous but not arbitrary. Within a given population,
for example, 5th percentile legs might never be found on anybody with 95th

percentile arms, even though the population allows such sizes individually.
Moreover, dimensions are not just limited to lengths, stature, and weight,
but include joint limits, moments of inertia for each body segment, muscle
strengths, fatigue rates, and so on. For proper behaviors, one must be able
to instantiate a properly sized �gure with appropriately scaled attributes,
preferably from a known population suitable for the required task analysis.

1. The Jack anthropometric database is not proprietary. All data is readily
available and accessible. Consequently, it is easily customized to new
populations or sets of individuals. Some databases are available, such
as NASA astronaut trainees, Army soldiers, and Society of Automotive
Engineers \standard people."

2. A database may consist of either population statistics or individuals.
If populations, then percentile data points are expected in order to de-
�ne body dimensions. If individuals, then explicit information for each
person in the collection is separately stored. For example, the NASA
astronaut trainees constitute an explicit list of individuals, while the
Army soldier data is statistically derived.

3. Enough information about a human �gure must be stored to permit
body sizing, display, and motion. We use overall segment dimensions
(length, width, thickness), joint limits, mass, moment of inertia, and
strength. Geometric properties are used during graphical manipulation;
physical properties aid active behaviors (balance), dynamic simulation,
and strength guided motion.

4. With so many DOFs in a body and many useful physical attributes,
there must be a convenient way of accessing, selecting, and modifying
any data. Jack uses a spreadsheet-like interface to access anthropometry
data. This paradigm permits simple access and data interdependencies:
for example, changing leg length should change stature; changing pop-
ulation percentile should change mass distribution.

5. Seeing the results of changing body dimensions is important to under-
standing how di�erent bodies �t, reach, and see in the same workplace.
Jack allows interactive body sizing while the body itself is under active
constraints. Changing a �gure seated in a cockpit from 95th percentile to

1.3. WHAT IS CURRENTLY POSSIBLE? 15

5th percentile, for example, creates interesting changes in foot position,
arm postures and view.

1.3.4 A Human Model should have a Human-Like Ap-
pearance

As we argued earlier, a human model's appearance has a lot to do with our
perception of acceptable behavior. The more accurate the model, the better
the motions ought to be. Providing a selection of body models is a convenient
way to handle a spectrum of interactive analysis and animation requirements.
For quick assessments, a human model with simpli�ed appearance might be
�ne. If the skin surface is not totally realistic, the designer can move the view
around to check for su�cient clearances, for example. When the completed
analysis is shown to the boss, however, an accurate skin model might be used
so that the robotic nature of the simpler model does not obscure the message.
Looking better is often associated (in computer graphics) with being better.

1. The \standard" or default body model in Jack strikes a balance between
detail and interactive manipulation speed. It appears solid, has a 17
segment exible torso, has a reasonable shoulder/clavicle mass, has a
full hand, and has a generic face. A hat is added to avoid modeling
hairstyles. The �gure is modeled by surface polygons to take advantage
of the available workstation display capabilities.

2. There are times when more accurate skin surface models are needed. For
that, computerized models of real people are used. These are derived
from a database of biostereometrically-scanned bodies.

3. For extra realism, clothing is added to body segments by expanding and
coloring the existing segment geometry. Besides the inherent desirability
of having a virtual �gure in a work environment appear to be dressed,
clothing will also a�ect task performance if adjustments are made to
joint limits or if collision tests are performed.

4. Facial features may be provided by graphical texture maps. By showing
a speci�c face a particular individual may be installed in the scene, the
�gure may be uniquely identi�ed throughout an animation, or generic
gender may be conveyed. Moreover, if the face is animated, an entire
communication channel is enabled.

1.3.5 A Human Model must Exist, Work, Act and React
Within a 3D Virtual Environment

We do not live in Flatland [Abb53] and neither should virtual �gures. Three-
dimensional environment modeling is the hallmark of contemporary computer-
aided design (CAD) systems. The workplace will frequently be constructed
electronically for design, analysis, and manufacturing reasons; we merely add

16 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

human factors analysis to the list. Design importation facilitates up-front
analyses before commitment to production hardware. Since geometric models
are readily constructed, we must be sure that our body models and interactive
software are compatible with the vast majority of CAD modeling schemes so
the two can work together in the same virtual space.

1. Since Jack manipulates surface polygon geometry, simple features are
provided to interactively construct and edit the geometry of the virtual
workplace. Jack is not intended as a substitute for a good CAD sys-
tem, but CAD features are provided for convenience. For example, if
a designer �nds a problem with the imported workplace, the o�ending
region can be immediately edited in Jack. When the changes prove
acceptable, the designer can use the data values from Jack to modify
the \real" model in the external CAD system. While not optimal, this
avoids any tendency to migrate the working model into Jack and bypass
the more generalized CAD features provided by most CAD systems.

2. Standardized geometric data transfer to and from Jack would be highly
desirable, but the state of standards in geometric modeling still leaves
some important gaps. For example, few CAD systems adequately model
articulated objects. Currently, Jack imports models from several com-
mon CAD vendors through a less satisfactory scheme of explicit trans-
lators from external geometry �les. This situation will change to a
standard as soon as possible.

1.3.6 Use the Computer to Analyze Synthetic Behaviors

What would a real person do in a real environment? How can we get a virtual
human to behave appropriately and report similar experiences? People are
constantly managing multiple simultaneous constraints or tasks, for example,
staying balanced while reaching to lift a box, or walking while carrying a cup
of co�ee. The essential parallelism of human motion demands an approach to
behavior animation that does not just cope with parallelism but exploits it.
We will be interested mostly in psychomotor and viewing behaviors; clearly
auditory and cognitive tasks are worthy of inclusion but are not dealt with
here.

1. Jack allows the user to specify, and the system maintains, multiple si-
multaneous position and orientation goals. For instance, a typical pos-
ture might involve reaching with two hands while looking at a target
and staying balanced. There are constraints on the positions of the
hands and the orientation of the eyes dictated by the task, and bal-
ance constraints required by gravity. Additionally, we might want the
torso to remain upright or, if seated, for the pelvis to tilt to a more re-
laxed posture. There are too many possible human body con�gurations
to manage every combination by specialized rules; our approach is to

1.3. WHAT IS CURRENTLY POSSIBLE? 17

use a global solution technique, inverse kinematics, to satisfy the given
constraints subject to the inherent joint limits of the body.

2. While in a posture, the strength requirements of the �gure may be
displayed on screen. This interactive strength data display shows all
torque loads along any selected chain of body segments. If a load is
attached to an end-e�ector, for example, it permits the easy visualization
of the distribution of that additional weight on the body.

3. What the �gure is looking at is often a critical question in human fac-
tors analysis. In Jack, the direction of eye gaze is controlled through
constraints to some environmental location or object site. If that site
moves, the gaze will follow. Since eye movement will a�ect head orienta-
tion, the e�ect of gaze direction can propagate (because of joint limits)
to the neck and torso and hence inuence overall body posture.

4. In Jack, the user can see what the �gure sees from an internal or exter-
nal perspective. Internally, a separate graphics window may be opened
which shows the view from the selected eye. The image appears nat-
urally shaded and it moves as the �gure's gaze is adjusted by direct
manipulation or constraints. Concurrent changes to the environment
and visible parts of the �gure's own \self" are displayed in the view
window. If �eld of view is critical, a retinal projection may be used
where a polar projection displays workplace features based on their an-
gle from the fovea. Although the image thereby appears distorted, the
actual �eld of view may be superimposed to assess the range of foveal
or peripheral perception. For the external perspective, a selected �eld
of view is displayed as a translucent pair of view cones, one for each
eye. The cones move with the eyes. Objects in view are shadowed by
the translucent cones. Any overlapped region is clearly in the area of
binocular vision.

5. It is not yet feasible to do real-time collision detection between all the
moving objects in a complex environment. By various simpli�cations,
however, su�cient capabilities may be presented. On fast displays with
real-time viewing rotation (such as the Silicon Graphics workstations),
the ability to rapidly change the view means that the user can quickly
move about to check clearances. Another method used in Jack is to
optionally project three orthogonal views of a �gure and other selected
objects onto back, side, and bottom planes. These three additional
views give simultaneous contact and interference information and are
used during interactive manipulations. Often, users will work with
shaded images and detect collisions by noting when one object visu-
ally passes into another. The alternative to visual collision detection
is direct object{object interference computation. Usually limited to a
selected body segment and a convex object, this method is slower but
guarantees to detect a collision even if it would be di�cult to see.

18 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

6. Sometimes it is valuable to visualize the entire reachable space of an
end-e�ector of the �gure. Empirical data is sometimes available in the
literature [NAS78, NAS87], but it is collected on speci�c subjects and
does not readily extend to �gures with di�ering anthropometry or joint
limits. By constructing the reach space for a given �gure in a given
posture as a geometric object, the reach space may be viewed and objects
may be readily classi�ed as in or out of the reach space.

1.3.7 An Interactive Software Tool must be Designed for
Usability

A system to build, move, and analyze virtual humans should be usable by mere
mortals with a modest training period. Isolating the potential user community
by requiring unusual artistic skills would be counter-productive to our wider
purposes of aiding design engineers. Existing interaction paradigms (such as
pop-up menus or command line completions) should be followed when they
are the most e�cacious for a particular task, but new techniques will be
needed to manage and control three-dimensional articulated structures with
standard graphical input tools. The interface should be simple yet powerful,
comprehensive but easy to learn.

1. The Jack user interface is designed for fast response to multiple con-
straint situations. Real-time end-e�ector interactive dragging through
arbitrary length joint chains means that the user can watch the �gure
respond to reach or movement tasks. The paradigm of manipulating one
joint angle at a time is possible, but almost useless. The goal-directed
behaviors provide an enormous bene�t to the user in allowing the spec-
i�cation of what is to be done while constraint satisfaction handles the
how through positioning interdependencies of the entire body structure.
Dragging also permits quick experimentation with and manual optimiza-
tion of postures.

2. By taking advantage of the Silicon Graphics display hardware, Jack

shows the user shaded or wireframe displays during interaction for nat-
ural images and easy real-time visualization.

3. For the highest quality images, Jack provides its own multi-featured
ray-tracing and radiosity programs.

4. Besides direct user input, Jack may be controlled through scripted com-
mands (in the Jack command language) built in the course of interactive
manipulation. This saves time and trouble in setting up complex situa-
tions, establishing a body posture, or trying a series of actions.

5. Jack also allows external control through operating system \sockets" to
other programs, simulations, or real sensors, providing hooks into exter-
nal data sources for virtual environments or networked remote systems

1.4. MANIPULATION, ANIMATION, AND SIMULATION 19

sharing a common virtual dataspace. Jack itself can share an environ-
ment with other Jack's on the network. This could be used for novel
cooperative workgroup applications.

6. The standard Jack user interface consists of just a three button mouse
and keyboard. It is simple to learn and no special hardware devices
are required unless a virtual environment setup is desired. The interac-
tion paradigms in Jack include menu-driven or typed commands, on-line
help, and command completion. It is easy to use after only a day or so
of training.

7. The direct manipulation interface into three dimensions implemented
in Jack is both highly e�cient and natural to use. Depending only
on the mouse and keyboard, it o�ers a friendly, kinesthetic correspon-
dence between manually comfortable hand motions, on-screen displays,
and three-dimensional consequences. Three dimensional cursors, rota-
tion wheels, and orthogonal projections of the principal view provide
excellent visual feedback to the user.

8. Jack provides multiple windows with independent camera views for com-
plex analyses, multiple points of view, and internal and external eye
views.

1.4 Manipulation, Animation, and Simulation

There are important distinctions between manipulation, animation, and sim-

ulation. Geometric manipulation is the process of interactive scene composi-
tion, or the interactive speci�cation of positions and postures for geometric
�gures, usually on a trial and error basis. Manipulation usually involves move-
ment of the �gures, but the movement serves to assist in the control process
and is generally not worth saving as a memorable motion sequence. Rather,
the purpose of manipulation is to get the �gures into a desired static posture,
although the posture need not remain static afterwards. Manipulation is in-
herently real-time: objects move as a direct response to the actions of the
user. In short, interactive manipulation is not necessarily choreography.

Animation, on the other hand, is choreography. In computer animation,
the goal is to describe motion, and the animator usually imagines the desired
motion before beginning the animation process. Of course, experimentation
may lead to revisions, like an illustrator who erases lines in a drawing, but
the computer does not serve so much to answer questions as to obey orders.
Animators measure the success of a computer animation system in terms of
how well it serves as a medium for expressing ideas.

Simulation is automated animation, and the concern is again with motion.
The system generates the motion based on some kind of input from the user
ahead of time. The input usually consists of objectives and rules for making
decisions, and it is generally less speci�c than with animation. The user knows

20 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

Figure 1.1: Is it the Motion or the Posture?

less about what motion should result. The job of the simulator is to predict
what would happen under certain circumstances and inform the user of the
results. Sometimes simulation can generate animation, as in the case of the
animation of physics and natural phenomena. Simulation of human �gures
generally implies some modeling of human capabilities to deliberately o�-load
some of the low-level positioning overhead from the animator.

Animation and simulation have been studied extensively, but manipulation
of articulated �gures has not received the attention it deserves. Volumes of
research discuss animation techniques and simulation algorithms, but most
research directed at interactive manipulation deals either with the low-level
input mechanisms of describing 3D translations and rotations, or with the
numerical issues of real-time dynamics. For example, consider the task of
bending a �gure over to touch its toes (Fig. 1.1. Is the bending motion
important, or is it just the �nal posture that is critical? In animation, it's
the motion: the motion must look realistic. In simulation, the motion must
be realistic. In manipulation, the �ner points of the posture are critical. Is
the �gure balanced? Are the knees bent? Where is the head pointed? How
are the feet oriented? The motion through which the manipulation system
positions the �gure is not important in itself. It serves only to assist the user
in arriving at the posture.

1.5 What Did We Leave Out?

It is only fair that in this exposition we are clear about what our existing
software does not do. There are choices to be made in any implementation, but

1.5. WHAT DID WE LEAVE OUT? 21

the vastness of the human performance problem demands scope boundaries
as well. There are fascinating problems remaining that we have not touched.
Some of these problems are being examined now, but the early results are
too premature to report. The activity in this �eld is amazing, and there
will surely be advances in modeling, animation, and performance simulation
reported each year.

A glance at the Engineering Data Compendium [BL88], for example, will
quickly show how much information has been collected on human factors and
simultaneously how little is available interactively on a computer. But even
without much thought, we can place some bounds on this study.

� We have ignored auditory information processing, environmental fac-
tors (such as temperature and humidity), vibration sensitivity, and so
on. While critical for harsh environments, we seek useful approxima-
tions to �rst order (geometric) problems to see if a �gure can do the
task in the absence of external signals, distress, or threats. The proba-
ble degradation of task performance may be established from intelligent
(manual) search through existing publications. While it would be at-
tractive to include such data, we have not begun to acquire or use it
yet.

� We have bypassed super-accurate skin models because the eneshment
of a �gure is so dependent on individual physiology, muscle tone, mus-
cle/fat ratio, and gender. For the kinds of analyses done with whole
body models, errors of a centimeter or so in skin surfaces are subordi-
nate to anthropometric errors in locating true joint centers and joint
geometry.

� We have avoided injury assessment, as that is another whole �eld devel-
oped from anatomy, crash studies, or national exertion standards. Of
course, Jack could be used in conjunction with such systems, but we
have not tried to connect them yet.

� Because we have taken a generalized view of human factors and re-
stricted analyses to reach, �t, view, and strength, we have necessarily
avoided any workplace-speci�c performance data. For example, action
timings will be most accurate when measured with real subjects in a
real environment. We have concentrated on measurements in environ-
ments prior to physical construction to save cost and possible personnel
dangers.

� We have only touched on perceptual, reactive and cognitive issues. Many
workers are engaged in control-theoretic activities: sensing the environ-
ment and reacting to maintain some desired state. We see this capabil-
ity eventually driving the �gure through the simulation interface, but at
the present we have not modeled such situations. Instead we are investi-
gating natural language instructions which generate an animation of the
simulated agent's \arti�cial intelligence" understanding of the situation.

22 CHAPTER 1. INTRODUCTION AND HISTORICAL BACKGROUND

� Finally, we are leaving issues of learning for later study. There is much to
be said for an agent who not only follows instructions but who also learns
how to do similar (but not identical) actions in comparable situations
in the future. Learning might �rst occur at the psychomotor level,
for example, to �gure out the best way to lift a heavy weight. Later,
learning can extend to the task level: to repeat a variant of a previously
successful plan when the overall goals are encountered again.

These issues are exciting, but we need to start with the basics and describe
what exists today.

Chapter 2

Body Modeling

In order to manipulate and animate a human �gure with computer graphics,
a suitable �gure must be modeled. This entails constructing a satisfactory
surface skin for the overall human body shape, de�ning a skeletal structure
which admits proper joint motions, adding clothing to improve the verisimil-
itude of analyses (as well as providing an appropriate measure of modesty),
sizing body dimensions according to some target individual or population,
and providing visualization tools to show physically-relevant body attributes
such as torque loads and strength.

2.1 Geometric Body Modeling

In computer graphics, the designer gets a wide choice of representations for
the surfaces or volumes of objects. We will briey review current geometric
modeling schemes with an emphasis on their relevance to human �gures.

We classify geometric models into two broad categories: boundary schemes
and volumetric schemes. In a boundary representation the surface of the
object is approximated by or partitioned into (non-overlapping) 0-, 1-, or 2-
dimensional primitives. We will examine in turn those representations relevant
to human modeling: points and lines, polygons, and curved surface patches.
In a volumetric representation the 3D volume of the object is decomposed
into (possibly overlapping) primitive volumes. Under volumetric schemes we
discuss voxels, constructive solid geometry, ellipsoids, cylinders, spheres, and
potential functions.

2.1.1 Surface and Boundary Models

The simplest surface model is just a collection of 3D points or lines. Surfaces
represented by points require a fairly dense distribution of points for accurate
modeling. Clouds of points with depth shading were used until the early
1980's for human models on vector graphics displays. They took advantage of

23

24 CHAPTER 2. BODY MODELING

the display's speed and hierarchical transformations to produce the perceptual
depth e�ect triggered by moving points [Joh76] (for example, [GM86]).

A related technique to retain display speed while o�ering more shape in-
formation is to use parallel rings or strips of points. This technique is used
in LifeFormsTM1 [Lif91, Cal91]. Artistically positioned \sketch lines" were
used in one of the earliest human �gure models [Fet82] and subsequently in a
Mick Jagger music video, \Hard Woman" from Digital Productions.

Polygons

Polygonal (polyhedral) models are one of the most commonly encountered
representations in computer graphics. The models are de�ned as networks of
polygons forming 3D polyhedra. Each polygon (primitive) consists of some
connected vertex, edge, and face structure. The polygons are sized, shaped,
and positioned so that they completely tile the required surface at some res-
olution. Polygon models are relatively simple to de�ne, manipulate, and dis-
play. They are the most common models processed by workstation hardware
and commercial graphics software. In general, polygons are best at model-
ing objects meant to have at surfaces, though with a large enough number
of polygons quite intricate and complex objects can be represented. \Large
enough" may mean hundreds of thousands of polygons!

All viable interactive human �gure models are done with polygons, pri-
marily because the polygon is the primitive easiest to manage for a modern
workstation such as the Silicon Graphics machines. With real-time smooth
shading, polygon models of moderate complexity (several hundred polygons)
can look acceptably human-like; accurate skin models require thousands. A
realistic face alone may require two or three thousand polygons if it is to be
animated and if the polygons are the only source of detail.

Polygon models are too numerous to cite extensively. Ones with an inter-
esting level of detail have been used in Mannequin software from Biomechan-
ics Corporation of America [Pot91], various movies such as \Tony de Peltrie"
from the University of Montreal [Emm85], and detailed synthetic actor models
of Marilyn Monroe and Humphrey Bogart from Daniel Thalmann and Nadia
Magnenat-Thalmann [MTT90, MTT91b]. They even model details of skin de-
formation by applying physical forces to polygon meshs [GMTT89, MTT91b].

The polygon models used in Jack are polygonal with two di�erent levels of
detail. The normal models have a few hundred polygons. More accurate mod-
els obtained from actual scans of real bodies have several thousand polygons.
(See Section 2.1.3.)

Curved Surfaces

Since polygons are good at representing at surfaces, considerable e�ort has
been expended determining mathematical formulations for true curved sur-
faces. Most curved surface object models are formed by one or more para-

1LifeForms is a registered trademark of Kinetic E�ects, Inc.

2.1. GEOMETRIC BODY MODELING 25

metric functions of two variables (bivariate functions). Each curved surface
is called a patch; patches may be joined along their boundary edges into
more complex surfaces. Usually patches are de�ned by low order polynomials
(typically cubics) giving the patch easily computed mathematical properties
such as well-de�ned surface normals and tangents, and computable continuity
conditions between edge-adjacent patches. The shape of a patch is derived
from control points or tangent vectors; there are both approximating and
interpolating types. The former take the approximate shape of the control
vertices; the latter must pass through them. There are numerous formulations
of curved surfaces, including: Bezier, Hermite, bi-cubic, B-spline, Beta-spline,
and rational polynomial [Far88, BBB87].

Various human �gure models have been constructed from curved patches,
but display algorithm constraints make these �gures awkward for real-time
manipulation. They are excellent for animation. provided that su�cient care
is taken to model joint connections. This is a good example of where increased
realism in the body segments demands additional e�ort in smoothing and
bending joint areas properly. Curved surface models were used in a gymnastic
piece [NHK86] and the Academy Award-winning \Tin Toy" [GP88].

2.1.2 Volume and CSG Models

The volume and CSG models divide the world into three-dimensional chunks.
The models may be composed of non-intersecting elements within a spatial
partition, such as voxels or oct-trees, or created from (possibly overlapping)
combinations of inherently 3D primitive volumes.

Voxel Models

The �rst volumetric model we examine is the voxel model. Here space is
completely �lled by a tessellation of cubes or parallelopipeds called voxels
(volume elements). Usually there is a density or other numerical value asso-
ciated with each voxel. Storing a high resolution tessellation is expensive in
space but simple in data structure (just a large 3D array of values). Usually
some storage optimization schemes are required for detailed work (1K x 1K
x 1K spaces). Special techniques are needed to compute surface normals and
shading to suppress the boxiness of the raw voxel primitive. Voxel data is
commonly obtained in the medical domain; it is highly regarded for diagnos-
tic purposes as the 3D model does not speculate on additional data (say by
surface �tting) nor suppress any of the original data however convoluted.

Voxel models are the basis for much of the scienti�c visualization work
in biomedical imaging [FLP89]. The possible detail for human models is
only limited by the resolution of the sensor. Accurate bone joint shapes may
be visualized, as well as the details of internal and external physiological
features. These methods have not yet found direct application in the human
factors domain, since biomechanical rather than anatomical issues are usually
addressed. Real-time display of voxel images is also di�cult, requiring either

26 CHAPTER 2. BODY MODELING

low resolution image sets or special hardware [GRB+85].

Constructive Solid Geometry

One of the most e�cient and powerful modeling techniques is constructive
solid geometry (CSG). Unlike the voxel models, there is no requirement to
regularly tessellate the entire space. Moreover, the primitive objects are not
limited to (uniform) cubes; rather there are any number of simple primitives
such as cube, sphere, cylinder, cone, half-space, etc. Each primitive is trans-
formed or deformed and positioned in space. Combinations of primitives or of
previously combined objects are created by the Boolean operations. An ob-
ject therefore exists as a tree structure which is \evaluated" during rendering
or measurement.

CSG has been used to great advantage in modeling machined parts, but
has not been seriously used for human body modeling. Besides the mechanical
look created, real-time display is not possible unless the CSG primitives are
polygonized into surfaces. When the set of primitives is restricted in one way
or other, however, some useful or interesting human models have been built.

Single Primitive Systems

The generality of the constructive solid geometry method { with its multiplic-
ity of primitive objects and expensive and slow ray-tracing display method {
is frequently reduced to gain e�ciency in model construction, avoid Boolean
combinations other than union, and increase display speed. The idea is to re-
strict primitives to one type then design manipulation and display algorithms
to take advantage of the uniformity of the representation. Voxels might be
considered such a special case, where the primitives are all coordinate axis
aligned and integrally positioned cubes. Other schemes are possible, for ex-
ample, using ellipsoids, cylinders, superquadrics, or spheres.

Ellipsoids have been used to model cartoon-like �gures [HE78, HE82].
They are good for elongated, symmetric, rounded objects. Unfortunately, the
shaded display algorithm is nearly the same as the general ray-tracing process.

Cylinders have also been used to model elongated, symmetric objects. El-
liptic cylinders were used in an early human modeling system [Wil82]. These
primitives su�er from joint connection problems and rather poor representa-
tions of actual body segment cross-sections.

Superquadrics are a mathematical generalization of spheres which include
an interesting class of shapes within a single framework: spheres, ellipsoids,
and objects which arbitrarily closely look like prisms, cylinders, and stars.
Simple parameters control the shape so that deformations through members
of the class are simple and natural. Superquadrics are primarily used to model
man-made objects, but when overlapped can give the appearance of faces and
�gures [Pen86].

Spheres as a single primitive form an intriguing class. Spheres have a
simplicity of geometry that rivals that of simple points: just add a radius.

2.1. GEOMETRIC BODY MODELING 27

There are two methods of rendering spheres. Normally they are drawn as
regular 3D objects. A human modeled this way tends to look like a large
bumpy molecule. Alternatively, spheres may be treated like \scales" on the
modeled object; in this case a sphere is rendered as a at shaded disk. With
su�cient density of overlapping spheres, the result is a smoothly shaded solid
which models curved volumes rather well. A naturalistic human �gure was
done this way in our earlier TEMPUS system [BB78, BKK+85, SEL84]. We
stopped using this method as we could not adequately control the sphere/disk
overlaps during animation and newer workstation display technology favored
polygons.

Potential Functions

An interesting generalization of spheres which solves some major modeling
problems is to consider the volume as a potential function with a center and a
�eld function that decreases monotonically (by an exponential or polynomial
function) from the center outward. There is no \radius" or size of the potential
function; rather, the size or surface is determined by setting a threshold value
for the �eld. What makes this more interesting is that potential functions act
like energy sources: adjacent potential functions have overlapping �elds and
the resultant value at a point in space is in fact the sum of the �elds active at
that point. Thus adjacent �elds blend smoothly, unlike the \creases" that are
obtained with �xed radius spheres [Bli82]. Recently, directional dependence
and selective �eld summation across models have been added to create \soft"
models that blend with themselves but not with other modeled objects in the
environment [WMW86, NHK+85]. Potential functions were originally used
to model molecules, since atoms exhibit exactly this form of �eld behavior,
but the models have an amazing naturalistic \look" and have been used to
great e�ect in modeling organic forms including human and animal �gures
[NHK+85, BS91]. The principal disadvantages to potential functions lie in
properly generating the numerous overlapping functions and very slow display
times. They remain an interesting possibility for highly realistic models in the
future.

2.1.3 The Principal Body Models Used

2The default polyhedral human �gure in Jack is composed of 69 segments,
68 joints, 136 DOFs, and 1183 polygons (including cap and glasses). The
appearance is a compromise between realism and display speed. No one is
likely to mistake the �gure for a real person; on the other hand, the movements
and speed of control are good enough to convey a suitably responsive attitude.
The stylized face, hat, and glasses lend a bit of character and actually assist
in the perception of the forward-facing direction.

For more accurate human bodies, we have adapted a database of actual
body scans of 89 subjects (31 males and 58 females) supplied by Kathleen

2Pei-Hwa Ho.

28 CHAPTER 2. BODY MODELING

Robinette of Wright-Patterson Air Force Base and used with her permission.
The original data came in contours, that is, slices of the body in the trans-
verse plane [GQO+89]. Each body segment was supplied as a separate set of
contours. A polygon tiling program was used to transform the contours of
each body segment into a surface representation.

In order to represent the human body as an articulated �gure we needed to
�rst compute the proper joint centers to connect the segments together. Joint
center locations were computed through the coordinates of anthropometric
landmarks provided with the contour data.

Real humans are not symmetrical around the sagittal plane: our left half
is not identical to our right half. This was the case with the contour data.
For consistency, rather than accuracy, we used the right half of the body data
to construct a left half and then put them together. We also sliced the upper
torso to take advantage of the seventeen segment spine model (Section 2.3).
The resulting human body model has thirty-nine segments and about 18,700
polygons compared to the 290 slices in the original data.

2.2 Representing Articulated Figures

Underneath the skin of a human body model is a representation of the skele-
ton. This skeletal representation serves to de�ne the moving parts of the
�gure. Although it is possible to model each of the bones in the human body
and encode in the model how they move relative to each other, for most types
of geometric analyses it is su�cient to model the body segments in terms
of their lengths and dimensions, and the joints in terms of simple rotations.
There are some more complex joint groups such as the shoulder and spine
where inherent dependencies across several joints require more careful and
sophisticated modeling.

The increasing interest in recent years in object-oriented systems is largely
due to the realization that the design of a system must begin with a deep
understanding of the objects it manipulates. This seems particularly true in a
geometric modeling system, where the word \object" takes on many of its less
abstract connotations. It has long been an adage in the user interface software
community that a system with a poorly designed basic structure cannot be
repaired by improving the interface, and likewise that a well designed system
lends itself easily to an elegant interface.

This section describes Peabody, which represents articulated �gures com-
posed of segments connected by joints. The Peabody data structure has a
companion language and an interactive interface in Jack for specifying and
creating articulated �gures. The data structure itself maintains geometric in-
formation about segment dimensions and joint angles, but it also provides a
highly e�cient mechanism for computing, storing, and accessing various kinds
of geometric information. One of the principal tasks requested of Peabody
is to map segment dimensions and joint angles into global coordinates for end
e�ectors.

2.2. REPRESENTING ARTICULATED FIGURES 29

Peabody was designed with several criteria in mind:

� It should be general purpose. It should be able to represent many types
of �gures of tree-structured topology. It should not be hard coded to
represent a speci�c type of �gure, such as a human �gure or a particular
robot manipulator.

� It should have a well developed notion of articulation. Rather than con-
centrating on representations for primitive geometric shapes, Peabody
addresses how such shapes can be connected together and how they
behave relative to each other.

� It should represent tree-structured objects through a hierarchy. The
inverse kinematics positioning algorithm can calculate and maintain the
information necessary to simulate closed loops.

� It should be easy to use. The external user view of the �gures should be
logical, clear, and easy to understand. Understanding the �gures should
not require any knowledge of the internal implementation, and it should
not require any advanced knowledge of robotics or mechanics.

2.2.1 Background

Kinematic Notations in Robotics

The most common kinematic representation in robotics is the notation of
Denevit and Hartenberg [Pau81, DH55]. This representation derives a set of
parameters for describing a linkage based on measurements between the axes
of a robot manipulator. The notation de�nes four parameters that measure
the o�set between subsequent coordinate frames embedded in the links, or
segments: 1) the angle of rotation for a rotational joint or distance of trans-
lation for a prismatic joint; 2) the length of the link, or the distance between
the axes at each end of a link along the common normal; 3) the lateral o�set
of the link, or the distance along the length of the axis between subsequent
common normals; and 4) the twist of the link, or the angle between neigh-
boring axes. The notation prescribes a formal procedure for assigning the
coordinate systems to the links in a unique way.

The objective behind these kinematic notations in robotics is to develop
a standard representation that all researchers can use in the analysis and
description of manipulators. There are several types of manipulators that are
extremely common in the robotics research community. The adoption of a
standard representation would greatly simplify the process of analyzing and
implementing robotics algorithms since so many algorithms are described in
the literature using these manipulators.

Animation Systems

Computer graphics and animation literature seldom addresses syntactic, or
even semantic, issues in representations for mechanisms, except as background

30 CHAPTER 2. BODY MODELING

for some other discussion of an animation technique or system.
Most interactive animation systems such as GRAMPS [OO81], TWIXT

[Gom84], and BBOP [Stu84, Ste83], as well as commercial animation packages
such as Alias [Ali90] and Wavefront [Wav89] only provide a mechanism of at-
taching one object to another. In this way, the user can construct hierarchies.
When the user manipulates one object, its child objects follow, but there is
no real notion of articulation. The attachments simply state that the origin
of the child object is relative to the origin of the parent.

Many animation systems are non-interactive and are based on scripts that
provide a hierarchy only through a programming language interface. Exam-
ples of such systems are ANIMA-II [Hac77], ASAS [Rey82] and MIRA-3D
[MTT85]. In this kind of system, the hierarchy is hard-coded into the script,
possibly through an interaction loop. A hierarchy designed in this way is
very limited, except in the hands of a talented programmer/animator who
can write into the animation a notion of behavior.

Physically-Based Modeling Systems

Physically based modeling systems such as that of Witkin, Fleisher, and Barr
[WFB87] and Barzel and Barr [BB88] view the world as objects and con-
straints. Constraints connect objects together through desired geometric re-
lationships or keep them in place. Otherwise, they oat in space under the
appropriate laws of physics. There is no notion of articulation other than
constraints. This forces the burden of maintaining object positions entirely to
the algorithms that do the positioning. For simple objects, this is conceptu-
ally pleasing, although for complex objects it is computationally di�cult. If
a system represents joints like the elbow as a constraint, the constraint must
have a very high weighting factor in order to ensure that it never separates,
requiring very small time steps in the simulation. This may also complicate
the user's view of objects such as robots or human �gures, which are inher-
ently articulated. We believe it is important to di�erentiate the relationship
between body segments at the elbow and the relationship between a hand and
a steering wheel.

2.2.2 The Terminology of Peabody

Peabody uses the term environment to refer to the entire world of geometric
objects. The environment consists of individual �gures, each of which is a
collection of segments. The segments are the basic building blocks of the
environment. Each segment has a geometry. It represents a single physical
object or part, which has shape and mass but no movable components. The
geometry of each segment is represented by a psurf, which is generally a
polyhedron or a polygonal mesh but can be of a more general nature.

The term �gure applies not only to articulated, jointed �gures such as a
human body: any single \object" is a �gure. It need not have moving parts.
A �gure may have only a single segment, such as a co�ee cup, or it may be

2.2. REPRESENTING ARTICULATED FIGURES 31

composed of several segments connected by joints, such as a robot. Sometimes
the term \object" denotes any part of the Peabody environment.

Joints connect segments through attachment frames called sites. A site is
a local coordinate frame relative to the coordinate frame of its segment. Each
segment can have several sites. Joints connect sites on di�erent segments
within the same �gure. Sites need not lie on the surface of a segment. A site
is a coordinate frame that has an orientation as well as a position. Each site
has a location that is the homogeneous transform that describes its placement
relative to the base coordinate frame of its segment.

Segments do not have speci�c dimensions, such as the length, o�set, and
twist of Denevit and Hartenberg notation, because the origin can lie anywhere
on the segment. The location of the axes of the joints that connect the seg-
ment are phrased in terms of this origin, rather than the other way around.
The measurement of quantities such as length is complicated, because seg-
ments may have several joints connected to them, and none of these joints is
designated in the de�nition as the \parent."

Joints may have several DOFs, which are rotational and translational axes.
Each axis and its corresponding angle form a single rotation or translation,
and the product of the transform at each DOF de�nes the transform across
the joint, de�ning the placement of the sites, and thus the segments, that the
joint connects.

The directionality of a joint is important because it de�nes the order in
which the DOF transforms are concatenated. Because these transforms are
not commutative, it is essential that the order is well-de�ned. This is an
especially important feature of Peabody, since it is sometimes convenient to
de�ne the direction of the joint in a way di�erent from the way the joint occurs
in the �gure hierarchy. An example of this is the human knee. Although it
may be useful to structure the hierarchy of a human body with the root at
the foot, it is also appealing to have the joints at both knees de�ned in the
same manner.

2.2.3 The Peabody Hierarchy

Peabody avoids imposing a prede�ned hierarchy on the �gures by encour-
aging the user to think of �gures as collections of segments and joints, none
with special importance. However, there must exist an underlying hierarchy
because Peabody is not equipped to handle closed-loop mechanisms. (Closed
loop structures are managed through the constraint satisfaction mechanism.)
The structure of the Peabody tree is de�ned by designating one site on the
�gure as the root. The root site roughly corresponds to the origin of the �g-
ure, and it provides a handle by which to specify the location of the �gure.
Viewing the �gure as a tree, the root of the �gure is the root of the tree.
The root site of a �gure may change from time to time, depending upon the
desired behavior of the �gure.

This means there are two representations for the hierarchy, one internal
and one external. There are many advantages to having a dual representation

32 CHAPTER 2. BODY MODELING

of the hierarchy. First, it allows the hierarchy to be inverted on the y. Most
models have a natural order to their hierarchy, emanating from a logical origin,
but this hierarchy and origin may or may not correspond to how a model is
placed in the environment and used.

The choice of the �gure root is particularly important to the inverse kine-
matics algorithm, since the algorithm operates on chains of joints within the
�gure. At least one point on the �gure must remain �xed in space. Because
the internal representation of the hierarchy is separate, the user maintains a
consistent view of the transform across a joint, regardless of how the �gure is
rooted.

The example below illustrates the Peabody hierarchy. Each segment has
its base coordinate frame in the middle and an arc leading to each of its sites.
The transform along this arc is the site's location. Each site may have several
joints branching out from it, connecting it downwards in the tree to sites on
other segments.

figure table {

segment leg {

psurf = "leg.pss";

attribute = plum;

site base->location = trans(0.00cm,0.00cm,0.00cm);

site top->location = trans(5.00cm,75.00cm,5.00cm);

}

segment leg0 {

psurf = "leg.pss";

attribute = springgreen;

site base->location = trans(0.00cm,0.00cm,0.00cm);

site top->location = trans(5.00cm,75.00cm,5.00cm);

}

segment leg1 {

psurf = "leg.pss";

attribute = darkslategray;

site base->location = trans(0.00cm,0.00cm,0.00cm);

site top->location = trans(5.00cm,75.00cm,5.00cm);

}

segment leg2 {

psurf = "leg.pss";

attribute = darkfirebrick;

site base->location = trans(0.00cm,0.00cm,0.00cm);

site top->location = trans(5.00cm,75.00cm,5.00cm);

}

segment top {

psurf = "cube.pss" * scale(1.00,0.10,2.00);

site base->location = trans(0.00cm,0.00cm,0.00cm);

site leg0->location = trans(95.00cm,0.00cm,5.00cm);

site leg2->location = trans(5.00cm,0.00cm,5.00cm);

2.2. REPRESENTING ARTICULATED FIGURES 33

site leg3->location = trans(95.00cm,0.00cm,195.00cm);

site leg4->location = trans(5.00cm,0.00cm,195.00cm);

}

joint leg1 {

connect top.leg3 to leg1.top;

type = R(z);

}

joint leg2 {

connect top.leg2 to leg0.top;

type = R(z);

}

joint leg3 {

connect top.leg4 to leg2.top;

type = R(z);

}

joint leg4 {

connect top.leg0 to leg.top;

type = R(z);

}

root = top.base;

location = trans(0.00cm,75.00cm,0.00cm);

}

2.2.4 Computing Global Coordinate Transforms

The root site for the �gure is the one at the top of the tree, and its global
location is taken as given, that is, not dependent on any other element of
the environment. The root, the site locations, and the joint displacements
uniquely determine the global location of every site and segment in the tree
in terms of a product of transforms from the root downward.

The computation of the coordinate transforms for each segment and site
in the downward traversal of the tree requires inverting the site locations
that connect the segment to other segments lower in the tree. It may also
require inverting joint displacements if the joint is oriented upwards in the tree.
Computationally, this is not expensive because the inverse of a homogeneous
transform is easy to compute, through a transpose and a dot product.

2.2.5 Dependent Joints

3The human �gure can be abstracted as an object which is to be instantiated
(into a certain pose) by any speci�cation of all the joint angles. While any
pose can be represented by a set of joint angles, it is not always possible to
supply a full and reasonable set of angles. Often, for example, there is a

3Jianmin Zhao.

34 CHAPTER 2. BODY MODELING

natural grouping of joints such as the torso or shoulder mass that typically
work together. Arbitrary (admissible) joint angles for the joints in the group
may not represent a legitimate posture: they are functionally dependent on
each other.

Conceptually, these dependencies compromise the notion of the joint and
joint angle and blur the boundary of the object de�nition. It seems that not
all joints are created equal. Rather than have a system which tries to cope
with every joint the same way, we take a more practical approach. We use a
joint group concept in Peabody to accommodate joint dependency so that
the relationship is coded into the object de�nition rather than the application
program.

A joint group is a set of joints which are controlled as one entity. Internal
joint angles are not visible outside of the group: they are driven by the group
driver. The driver is nothing but a mapping from a number of parameters
(counterparts of joint angles of the independent joint) to joint angles of its
constituent joints. Those independent parameters will be called group angles.
Similar to the joint angles of the independent joint, the group angles of the
joint group are subject to linear constraints of the form

nX
i=1

ai�i � bi (2:1)

where �'s are group angles and n is the number of �'s, or number of DOFs of
the joint group. There may be many such constraints for each group.

There can be many applications of the joint group. Forearm pronation and
supination change the segment geometry, so one way to manage that within
the geometry constraints of psurfs is to divide the forearm into a number of
nearly cylindrical sub-segments. As the wrist moves, its rotation is trans-
mitted to the forearm segments such that distal sub-segments rotate more
than proximal ones. The segment adjacent to the elbow does not pronate or
supinate at all. Fingers could be managed in a similar fashion by distributing
the desired orientation of the �ngertip over the three joints in the �nger chain.
The most interesting examples, though, involve the torso and the shoulder.
We address these cases in the next sections.

2.3 A Flexible Torso Model

4Human �gure models have been studied in computer graphics almost since
the introduction of the medium. Through the last dozen years or so, the
structure, exibility, and �delity of human models has increased dramatically:
from the wire-frame stick �gure, through simple polyhedral models, to curved
surfaces, and even �nite element models. Computer graphics modelers have
tried to maximize detail and realism while maintaining a reasonable overall
display cost. The same issue pertains to control: improving motion realism

4Gary Monheit.

2.3. A FLEXIBLE TORSO MODEL 35

requires a great number of DOFs in the body linkage, and such redundancy
strains e�ective and intuitively useful control methods. We can either sim-
plify control by simplifying the model, thereby risking unrealistic movements;
or complicate control with a complex model and hope the resulting motions
appear more natural. The recent history of computer animation of human
�gures is focused on the quest to move the technology from the former situ-
ation towards the latter while simultaneously forcing the control complexity
into algorithms rather than skilled manual manipulation.

This point of view motivates our e�orts in human �gure modeling and
animation, as well as those of several other groups. Though notable algorithms
for greater animation power have addressed kinematics, dynamics, inverse
kinematics, available torque, global optimization, locomotion, deformation,
and gestural and directional control, the human models themselves tended
to be rather simpli�ed versions of real human exibility. In the early 1980's
we warned that increased realism in the models would demand ever more
accurate and complicated motion control; now that the control regimes are
improving, we must return to the humanmodels and ask if we must re-evaluate
their structure to take advantage of algorithmic improvements. When we
considered this question, we determined that a more accurate model of the
human spine and torso would be essential to further realism in humanmotion.

Although many models have appeared to have a exible torso, they have
been computer constructions of the surface shape manipulated by skilled an-
imators [Emm85]. We needed a torso that was suitable for animation, but
also satis�ed our requirements for anthropometric scalability. Thus a single
model of �xed proportions is unacceptable as human body types manifest
considerable di�erences. (A similar type of exible �gure is found in snakes
[Mil88, Mil91], but the anthropometry issues do not arise. Moreover, this
snake animation is dynamics-based; humans do not need to locomote by wig-
gling their torsos and so a kinematics model was deemed adequate.) Zeltzer
and Stredney's \George" skeleton model has a detailed vertebral column, but
it is not articulated nor is it bent during kinematic animation [Zel82]. Lim-
ited neck vertebral motion in the saggital plane was simulated by Willmert
[Wil82]. Various body models attempt a spine with a 3D curve but shape and
control it in a ad hoc fashion.

If the spine were realistically modeled, then the torso, a vessel connected
and totally dependent on the spine, could then be viewed and manipulated
interactively. So we undertook the development of a far more satisfactory and
highly exible vertebral model of the spine and its associated torso shape.

The conceptual model of the spinal column is derived from medical data
and heuristics related to human kinesiology. The spine is a collection of verte-
brae connected by ligaments, small muscles, vertebral joints (called processes),
and intervertebral discs [BBA88]. Nature has designed the spine for support
of the body's weight, stability of the torso, exibility of motion, and protection
of the spinal cord [AM71, Hol82].

The spine moves as a column of vertebrae connected by dependent joints,
meaning that it is impossible to isolate movement of one vertebral joint from

36 CHAPTER 2. BODY MODELING

the surrounding vertebrae [Lou83]. Muscle groups of the head, neck, abdomen
and back initiate the movement of the spine, and the interconnecting ligaments
allow the movement of neighboring vertebrae [BBA88, Wel71].

2.3.1 Motion of the Spine

Anatomy of the Vertebrae and Disc

The spinal column consists of 33 vertebrae organized into 5 regions [BBA88]:
cervical, thoracic, lumbar, sacral, and coccyx.

The vertebrae are labeled by medical convention in vertical descending
order: C1{C7, T1{T12, L1{L5, and S1{S5. Which regions should be consid-
ered part of the torso? The cervical spine lies within the neck. The sacrum
and coccyx contain vertebrae that are �xed through fusion [AM71]. Since the
mobile part of the torso includes the 12 thoracic and 5 lumbar vertebrae, all
together 17 vertebrae and 18 joints of movement are included in the torso
model.

Each vertebra is uniquely sized and shaped, but all vertebrae contain a
columnar body and an arch. The body is relatively large and cylindrical, sup-
porting most of the weight of the entire spine. The vertebral bodies increase
gradually in size from the cervical to the lumbar region [AM71].

The arch supports seven processes: four articular, two transverse, and one
spinous [AM71]. The processes are bony protrusions on the vertebra that aid
and limit the vertebral motion. The transverse and spinous processes serve
as levers for both muscles and ligaments [BBA88]. The articular processes
provide a joint facet for the joint between successive vertebral arches. These
processes, due to their geometry, cause the vertebrae to rotate with 3 DOFs.
Ligaments and small muscles span successive vertebral processes. They give
the spinal column its stability. Because of this strong interconnectivity, spinal
movement is modeled as interdependent movements of neighboring joints.

Vertebrae are each separated by intervertebral discs. The disc has 3 parts
[Lou83]:

� nucleus pulposus - the sphere in the center, consisting of 85% water

� annulus �brosus - the �bers running as concentric cylinders around
the nucleus

� cartilaginous plates - a thin wall separating the disc from the vertebral
body.

The disc changes shape as the neighboring vertebrae bend. But, since the
nucleus is 85% water, there is very little compression. The disc can bulge
out spherically, as force is applied to the columnar body above or below.
Therefore, overall the disc does not function as a spring, but as a deformable
cylindrical separation between vertebrae, supporting the theory that the ver-
tebrae do not slide, but rotate around an axis [Lou83].

2.3. A FLEXIBLE TORSO MODEL 37

Range of Movement of Each Vertebra

Vertebral movement is limited by the relative size of the disks, the attached
ligaments, and the shape and slant of the processes and facet joints. Statis-
tics for joint limits between each successive vertebra have been recorded and
compiled [Lou83]. Also, the spine has a natural shape at rest position. The
initial joint position of each vertebra is input to the model.

The range of movement of each region of the spine is di�erent. For in-
stance, the optimum movement of the lumbar region is exion or extension.
The thoracic area easily moves laterally, while exion/extension in the sagittal
plane is limited. The cervical area is very exible for both axial twisting and
lateral bending. The joint limits for each region a�ect how much that joint
is able to participate in any given movement. The posture of the torso is a
result of the specialization of the spinal regions [Wil75].

E�ect of the Surrounding Ligaments and Muscles

The vertebrae are interconnected by a complex web of ligaments and muscles.
If the force initiated by a muscle group is applied at one joint, the joint moves
and the neighboring joints also move to a lesser degree. Some joints farther
away might not be a�ected by the initiator joint's movement.

It is possible to deactivate joints that are not initiating the movement.
This action is achieved by simultaneous contractions of extensor and exor
muscles around the spinal column [Wil75]. Depending on the force of these
resisting muscles, the joints on or near the joint closest to the resistor will
move less than they would if the resisting force had not been applied. The
�nal position of the spine is a function of the initiator force, the resisting
muscle, and the amount of resistance.

2.3.2 Input Parameters

The spine is modeled as a black box with an initial state, input parameters,
and an output state [MB91]. To initiate movement of the spine, several input
parameters are introduced. These parameters are:

joint range FROM and TO: Within the total number of joints in the
spine, any non-empty contiguous subset of vertebral joints may be spec-
i�ed by two joint indices. These joints indicate which part of the spine
is active in movement. For example, the user speci�es movement in the
range between T5 and T10. All other joints are frozen in the movement.

initiator joint: The joint where movement begins, usually the joint with
greatest motion.

resistor joint: The joint that resists the movement. This may be equated
to a muscle that contracts and tries to keep part of the spine immobile.

resistance: The amount of resistance provided by the resistor joint.

38 CHAPTER 2. BODY MODELING

spine target position: This is a 3D vector describing the target position
after rotation around the x, y, and z axis. The target position is the
sum of all joint position vectors in the spine after movement succeeds.

zero interpolation: A value of \yes" indicates that movement is interpo-
lated through the joint rest position. A value of \no" indicates that only
the joint limits are used to interpolate movement.

2.3.3 Spine Target Position

The joint between each vertebra has three degrees of rotation. The spine will
move toward the target position by rotating around the three possible axes
[Lou83]:

ROTATION OF THE SPINE

exion/extension Forward/backward bending Rotation around x axis

axial rotation Twisting Rotation around y axis

lateral bending Side bending Rotation around z axis

The position of the exion rotational axis for each vertebral joint has
been measured from cadavers, and is not equidistant to the two adjacent
vertebrae, but is closer to the bottom vertebra [Lou83]. The origin of the axis
of movement determines how the vertebrae move. When the torso is modeled
on the spine, the axis also directly determines how the torso changes shape.

Elongation and compression are absent from the model. The hydrophilic
intervertebral disc, when submitted to prolonged compression induces a slight
decrease in height due to uid leakage. Conversely, after a long period of rest
or zero-gravity, the spine elongates by maximum�lling of the nucleus pulposus
(at the center of the disc) [Lou83]. Dehydration during a day's activity can
result in a loss of height of 2 cm in an adult person. In any short duration
of movement the disc is essentially incompressible, and therefore elongation
is imperceptible [Hol81].

Shearing or sliding (translational movements) of the vertebrae would lead
to variation in the intervertebral separation. This would not be allowed by
the mechanics of the intervertebral disc [Lou83]. Therefore, the assumption
is made that for normal activities the three degrees of rotational movement
are the only ones possible for each vertebral joint.

2.3.4 Spine Database

Any human �gure can have a wide variety of torso shapes. Also, each person
has a di�erent degree of exibility and range of movement. In order to model
the position and shape changes of an individual's spine, a database has been
designed for creating a unique set of features for the spine and torso. Medical
data is the source of the database elements of an average person [Lou83].
The database consists of the size of each vertebra in the x; y; z dimension,

2.4. SHOULDER COMPLEX 39

Figure 2.1: Spherical Trajectory of the Shoulder.

the intervertebral disc size, the joint limits (3 rotations with 2 limits per
rotation), and the joint rest (initial) position. In Section 4.2.3 we will see how
spine movement is realized.

2.4 Shoulder Complex

5It is well known that the movement of the humerus (the upper arm) is not a
matter of simple articulation as most computer graphics models would have
it. The movement is caused by articulations of several joints { glenohumeral
joint, claviscapular joint and sternoclavicular joint. Collectively, they are
called the shoulder complex [EP87, ET89].

In Jack, the shoulder complex is simpli�ed with two joints { one connect-
ing the sternum to the clavicle and the other connecting the clavicle to the
humerus [GQO+89]. We call the former joint the clavicle joint and the latter
the shoulder joint. This simpli�cation implies that the rotational center of the
humerus lies on a spatial sphere when the upper arm moves. It turns out that
it is very close to empirical data collected with a 6-D sensor attached to the
external midpoint between the dorsal and ventral side of the right upper arm
[Mau91]. The z-axis of the sensor was along the longitudinal axis of the upper
arm with the positive z axis direction pointing proximally, and the negative
y-axis pointing into the upper arm. The sensor was placed 10 inches from the
shoulder (the extremal point of the humerus).

From the experimental data the trajectory of the shoulder can be easily
computed. We �tted the trajectory by the sphere which yields minimum
average residual error. The result is quite satisfactory: the radius of the
sphere is 6.05cm, and the average error (the distance from the trajectory
point to the sphere) is 0.16cm. (Figure 2.1). Notice that the radius of the

5Jianmin Zhao.

40 CHAPTER 2. BODY MODELING

Figure 2.2: A Neutral Human Figure.

sphere is not the same as the dimension of the clavicle. This is due to the
fact that the shoulder complex has indeed three joints instead of two. The
net result can be modeled by two joints, however, if we put the center of the
clavicle joint inbetween the two clavicle extremes.

In our applications we feel that two joints are adequate to model the
shoulder complex. So, we modeled the shoulder complex by grouping these
two joints into a joint group. Now we need to de�ne the group angles and the
way they drive the internal joint angles.

2.4.1 Primitive Arm Motions

It will be convenient to have the group angles of the shoulder complex describe
the arm's motion in a natural way. To focus on this motion, we assume
that the elbow, the wrist and all joints down to �ngers are �xed. What are
the arm's primitive motions? Mathematically, any three independent arm's
motions will su�ce. But careful selection will pay o� in positioning ease.

The arm's motion can be decomposed into two parts: spherical and twist-
ing motions. The motion which moves the vector from the proximal end to
the distal end of the upper arm is called spherical motion, and the motion
which leaves this vector unchanged is called twisting.

In a neutral body stance, consider a coordinate system where the z axis
points vertically downward, the x axis points towards the front, and the y

axis points to the right. If we place the starting end of the vector from
the proximal end to the distal end of the upper arm at the origin of the
coordinate system, the terminating end will stay on a sphere with the center
at the origin when the arm moves. The spherical motion can be further
decomposed into two motions: one which moves the arm vector along the
longitude of the sphere (elevation), and another which moves the vector along

2.4. SHOULDER COMPLEX 41

the latitude (abduction). To describe the current status of the arm vector, we
need a convention for zero elevation or abduction. Let us de�ne the amount
of elevation as the unsigned angle � between z axis and the arm vector and,
for the left arm, the amount of abduction as the signed angle � between the
�y axis and the projection of the arm vector on the xy plane. The positive
abduction is de�ned when the absolute angle from �y to the projection is
less than 180�. Joint limits can be speci�ed in terms of these spherical or
\globographic" limiting angles [EP87].

2.4.2 Allocation of Elevation and Abduction

Naturally, the joint group shoulder complex will have elevation, abduction
and twist as its group angles. They will be realized by internal joints | the
clavicle and the shoulder joints. The amounts of elevation and abduction of
the arm are allocated to the shoulder joint and the clavicle joint, while the
twist is allocated to the shoulder joint alone.

According to clinical data, Otani gave a formula for distributing elevation
and abduction to the shoulder and clavicle [Ota89]:

�c = cos(�)�1 + (1� cos(�))�2 � 90 (2.2)

�c = 0:2 � (2.3)

�s = �� �c (2.4)

�s = � � �c (2.5)

where � and � are total elevation and abduction of the shoulder complex,
subscripts \c" and \s" stand for the portions carried by the clavicle and
shoulder joints, respectively, and

�1 =

�
0:2514�+ 91:076 for 0 � � � 131:4
�0:035�+ 128:7 for � > 131:4

(2.6)

�2 =

�
0:21066�+ 92:348 for 0 � � � 130:0
120:0 for � > 130:0

: (2.7)

2.4.3 Implementation of Shoulder Complex

In Peabody,
R(x; y; z) (2:8)

is used to denote a generic rotation about the axis (x; y; z). Since we need
rotations about some coordinate axis, let

Rx(!) (2:9)

represent the rotation about x axis by ! degrees. Analogous notation will be
used for the y and z axes.

Peabody uses row vector convention. So a string of rotations, when read
from the right, can be interpreted as applying the �rst rotation (the rightmost

42 CHAPTER 2. BODY MODELING

one), then applying the next one about the rotated reference frame, and so
on. When read from the left, it should be interpreted as applying successive
rotations about the �xed starting frame.

With respect to the standing reference frame the spherical motion can be
described as

R(1; 0; 0) �R(0; 0; 1); (2:10)

that is, to achieve elevation and abduction of amounts � and �, the arm can
rotate about the x axis by �, followed by rotating about the unrotated y

axis by �. This is just spherical coordinates which designate a point on a
sphere. The �rst problem we shall encounter is the singularity inherent to the
spherical coordinate system.

Dealing with Singularities of Spherical Coordinates

As is known, the spherical coordinates have two singularities: when the eleva-
tion is 0 or 180�, it represents the pole (south pole for 0 or north pole for 180)
no matter what the longitude (abduction amount) is. To see how this would
a�ect the description of the spherical motion of the arm, let us do a small
experiment. Starting with your left arm hanging down at your side, elevate
your arm by 90�, then abduct by 90�, and �nally elevate by �90�. Now see
where your hand is. You will �nd that your hand comes back but with an
axial twist. Where does this twist come from? It means that the pair of so
de�ned elevation and abduction motions are not independent from twist. As
long as elevation is zero, the arm vector would not change. This is nothing
but a twist, as our decomposition of spherical motion and twisting motion in-
tended. The �nal coordinates are (0, 90), since the last elevation cancels the
�rst one and leaves the \abduction" there. To compensate for this unwanted
twist, we untwist the arm by the amount that the \abduction" would induce
before the shoulder leaves the zero elevation. Therefore, we need a joint of
three cascaded rotations as follows,

R(0; 0; 1) �R(1; 0; 0) �R(0; 0; 1) (2:11)

Let � , � and � be desired twist, elevation and abduction, respectively.
Then the joint angles (or displacement, in Peabody language) should be

(� � �; �; �): (2:12)

The values in (2.12) are the amount of rotation about each of the correspond-
ing axes in (2.11). The minus � term in the �rst joint angle is to compensate
for the unwanted twist induced by the abduction � (so realized). As a matter
of fact, the amount of twist is a relative quantity. It is meaningful only if we
have zero twist assumed for any direction of the arm. So (2.12) should be

(�0 + � � �; �; �); (2:13)

2.4. SHOULDER COMPLEX 43

where �0 is a function of (�, �), which de�nes the zero twist for each (�, �).
Function �0 should be such that

�0(0; �) = constant; (2:14)

since (0; �) denotes the same direction of the arm regardless of the value of
�. Now elevation by 90�, followed by abduction of 90�, and then elevation of
�90� would wind up with

(�0 � 90; 0; 90):

Since Rx(0) = identity matrix, the �nal matrix Rz(�0 � 90) �Rx(0) �Rz(90)
would be equal to Rz(�0), which is exactly the starting con�guration without
twisting.

Now let us take care of the other singular point, that is, when � = 180�.
At this point, Rx(180) 6= identity. But we have

Rx(180) �Rz(�) = Rz(��) �Rx(180):

To deal with this singularity, we require that

�0(180; �) = 2� + constant (2:15)

to compensate for unwanted twist induced by \abduction" �. When � = 180�,

Rz(�0(180; �) + � � �) �Rx(180) �Rz(�) (2:16)

= Rz(�0(180; �) + � � �) �Rz(��) �Rx(180)

= Rz(�0(180; �) + � � 2�) �Rx(180):

(2.15) guarantees that that the �nal con�guration is independent of the ab-
duction by �.

Combining (2.14) with (2.15), a possible choice of �0 could be

�0(�; �) =
�

90
�: (2:17)

This is the choice in our current implementation. To achieve more natural zero
twist de�nition, we need to �ne tune �0. One possibility is shown in Section
4.1.2 based on [Hut70] and [BOK80]. But (2.14) and (2.15) are required to
deal with the singularity due to the spherical coordinate system.

Dealing with Hierarchical Nature of Connection

So far, we have focused on the shoulder joint. However, as we argued, the
shoulder complex will consist of two joints { shoulder and clavicle joints. The
total amount of elevation and abduction will be distributed to shoulder and
clavicle joint according to the formula in Section 2.4.2.

In the Jack human �gure model, the clavicle joint has the form

R(1; 0; 0) �R(0; 1; 0); (2:18)

44 CHAPTER 2. BODY MODELING

HH
HH

HHY

��������

?

HHHHHHj

?

�������� Shoulder

sternumsterno-clavicle junction

Front

z

y

x

z

y

x

ShoulderFront

Figure 2.3: Site Orientations at Clavicle and Shoulder Joints.

�
��

XXX
XXX

XXXXy

?

A
A
A
A
A
A
A
A
A
AU

�����������
the clavicle joint
Elevation due to

Shoulder

Sternum

z

z'

y

�

Figure 2.4: Tilted Shoulder Frame.

since the site orientation at the clavicle joint is a little bit di�erent from that at
the shoulder joint (Figure 2.3). We do not need to worry about the singularity
problem here as we did with the shoulder joint because the arm, which the
shoulder complex drives, is not aligned with the center of this joint. The
amount of elevation and abduction of the clavicle is given in (2.2 � 2.5). The
clavicle is closer to the (normal) root of the human �gure than the shoulder.
This means that the global (relative to the neutral torso) orientation of the
site at the shoulder joint will be altered by the movement of the clavicle: the
z axis of the site at the shoulder would no longer point vertically downward.
This causes the trajectory of the hand drawn by \abduction" to no longer
be on the horizontal plane. Notice that the x axis will always be horizontal,
and hence the meaning of elevation is not challenged. To protect \abduction"
against this alteration, we need to do a transformation of the site coordinates.

After some movement of the clavicle, the shoulder reference frame is tilted
as shown in Figure 2.4. (The Figure displays only the plane x = 0. The x axis

2.5. CLOTHING MODELS 45

does not show up in the Figure, but should be understood by the right-hand
principle.) The tilted abduction is due to the tilted z axis. The \correct" ab-
duction should be the rotation about the dotted z0 axis. This axis is not con-
stant due to variable clavicle elevation, but the Peabody language requires a
constant axis. To circumvent this restriction, we can perform a transformation
of coordinates. The rotation axis described in (x; y0; z0) is simply R(0; 0; 1).
The matrix representation of a rotation in a di�erent coordinate system is
just a similarity transformation of the coordinate transformation matrix. Let
vectors in (x; y0; z0) be primed. The transformation of coordinates is

v = Rx(�)v
0 (2:19)

where � is the amount of elevation allocated to the clavicle joint. The rotation
about z0 axis by ! represented in (x; y0; z0) is Rz0(!) but, when represented
in the old coordinate frame (x; y; z), it would be

Rx(�)Rz(!)Rx(��): (2:20)

Substituting this for the second R(0; 0; 1) in the shoulder joint cascaded rota-
tions (2.11), we get

R(0; 0; 1) �R(1; 0; 0) �R(1; 0; 0) �R(0; 0; 1) �R(1; 0; 0):

We do not need to substitute for the �rst R(0; 0; 1) in (2.11), because it is
there for twist and to compensate for unwanted twist caused by the abduction
allocated to the shoulder joint. Two contiguous rotations about the x axis
can be combined into one. The �nal form of the shoulder joint becomes

R(0; 0; 1) �R(1; 0; 0) �R(0; 0; 1) �R(1; 0; 0): (2:21)

Let � be the amount of twist and the notations of elevation and abduction
be as in Section 2.4.2. The joint angles for the clavicle take values

(�c; �c) (2:22)

with respect to (2.18), and the joint angles for the shoulder take values

(� + (
�

90
� 1)�s; �; �s;��c): (2:23)

with regard to (2.21). It is not di�cult to verify that the hand orientation
does not depend on the abduction allocated to the shoulder joint, �s, when
the total elevation, �, is 0 or 180�.

2.5 Clothing Models

6In most workplace environments we have encountered, clothed �gures are the
norm and would be expected by the designer. Adding clothing to a human

6Eunyoung Koh.

46 CHAPTER 2. BODY MODELING

�gure improves its graphical appearance and realism. Clothes modeling can be
done in many ways ranging from very simple to more realistic but complicated.
The simplest clothing technique is to change the attributes of certain segments
of the body �gure; for example, by modifying the colors of the pelvis and upper
leg segments we get the e�ect of a body wearing short pants. This is not quite
as silly as it sounds, because the body segment geometry can be created with
a clothed rather than bare-skinned shape. The best but more complicated
approach is to drape and attach clothing over a body to simulate the intricate
properties of garments.

Besides improving realism, there is a practical human factors aspect to
clothing. Clothing constrains movement by restricting the joint angle limits.
Preliminary attempts to analyze this problem use collision detection over a
geometric clothes model.

2.5.1 Geometric Modeling of Clothes

Rigid clothing models are created by designing special segment psurfs. Thus
a shirt or jacket would have, say, �ve parts: one for the torso, and two for
each limb segment. Clothing exists independently of a given �gure model
as a library of objects which can be selectively placed on a model at user
determined sites. This database is modi�able through typical geometric edit-
ing commands. A clothing item is positioned by matching key points on the
clothing to key points on the body segments. A global deformation algorithm
[SP86] can be used to �t the clothing piece correctly on the segment.

One apparent problem with geometrically modeled clothing occurs when
the human �gure moves joints. Since the clothing model is not deformable,
there are gaps between segments. (This is in fact true even without clothing
if the �gure is modeled with polyhedral meshes. As the geometry is carried
on the segment, it inherits the geometric transformation without any com-
pensation for the interaction of material, esh or clothes, at the joint.) Extra
work is necessary to alleviate the joint gap problem. A gap �lling algorithm
has been developed to make up these gaps when animating. It connects the
boundaries of two adjacent segments by generating spline surfaces using the
tangent information of the two segments at the boundaries.

As an initial attempt to develop geometric models of clothes, a sweatshirt
and pants were designed (Plate 2). Each segment of a clothing item is a psurf
whose geometry and position are closely related to a corresponding body
segment. The following is a step by step procedure for geometric clothes
design.

2.5. CLOTHING MODELS 47

1. Determine the size of clothes:

In conventional clothing design, circumferences are measured at certain
positions of the body in order to determine the clothing size. In our
approach, the maximum segment breadth in two orthogonal directions
are measured instead of circumferences.

The following list shows the positions at which the maximum breadths
are measured and lists their corresponding slices from the accurate
biostereometric bodies (Section 2.1.3).

� For trousers

waist the 6th slice of lower torso
hip the 9th slice of hip ap
upper leg the �rst slice of upper leg
lower leg the last (24th) slice of lower leg

� For a sweatshirt

neck the �rst slice of upper torso
chest the 6th slice of upper torso
breast the 12th slice of upper torso
waist the �rst slice of lower torso
upper arm the 8th slice of upper arm
lower arm the last (16th) slice of lower arm

Also, a measure of the length from the neck to the bottom of the shirt is
provided to determine the length of the shirt. These sizes are speci�ed
in advance for each article of clothing.

2. Create psurfs:

The geometry of each segment is determined by a set of body slices.
A new set of slices for clothing is constructed by sculpturing the body
slices depending on the shape of the segment and the speci�ed sizes in
the previous step. The fundamental idea in the construction is to pick a
few thick slices and duplicate them appropriately along the segment after
scaling. Scaling is done by linear interpolation so that the scaled slices
may match with the speci�ed maximum breadth sizes at the positions
designated.

The completed surface de�nition of a clothes segment can be obtained
by tiling the slices. Tiling is performed by generating rectangles from
the data points which de�ne two adjacent slices.

3. Attach clothes segments to human body:

Each clothes segment can be attached to the corresponding body seg-
ment by a joint which is located at the upper part of that segment.

48 CHAPTER 2. BODY MODELING

The clothing shape can be easily modi�ed by changing the slice de�nition
of the clothes. For example, folded sleeves, short sleeves, and short pants can
be simulated by simple modi�cation or deletion of slices.

2.5.2 Draping Model

The most realistic clothing can be created by simulating the support and
draping of pattern pieces of arbitrary shape. Wrinkling, folding, and the ef-
fects of gravity are displayed through a relaxation method or a �nite element
method. Pattern pieces may also be stitched at seams and draped simultane-
ously. Pattern pieces of di�erent lengths may be sewn together, resulting in
an oversewing e�ect.

The draping of the pattern pieces is done on a �gure in a static posture.
Interference testing is done in the draping algorithm to make sure that the
pattern pieces slide over the surface of the �gure without penetrating the
surface (Plate 3).

There are several methods to simulate the draping of a square piece of
cloth, isolated from other cloth, which are based on a relaxation method.
Feynman [Fey86] uses a formula which minimizes the energy of a cloth and
tries to simulate the shape of thin exible membranes under the inuence of
force �elds and rigid bodies. The local minimum of the cloth is found by
moving each of the grid points in turn toward a position which decreases the
energy of the cloth. The energy expression of a cloth is described as:

Etotal(S) = kss(S) � kbb(S) � kgg(S)

where s(S); b(S); g(S) represent the e�ects of strain, bending, and gravity.
The parameters ks; kb; kg control the relative strengths of these three e�ects:
a large ks means the cloth is di�cult to stretch; a large kb means the cloth is
sti� and resists bending; and a large kg means the cloth is heavy.

Relaxing a single point is the process of moving it so that the energy of
the cloth of which it is a part is decreased. The method used to relax a single
point �rst �nds the direction in which the point would most like to move: the
direction of the negative gradient of the energy as a function of position. Then
it moves the single point in that direction so that its energy is minimized.

Feynman suggests using a multigrid method to speed up the relaxation
sweeping process. However, it must be used carefully to avoid distortion. He
also introduces �xed points in order to forbid the cloth to move into a solid.

Weil [Wei86] considered the problem of hanging a piece of cloth by �xing
some constraint locations of the cloth. The cloth is represented as a rectangu-
lar grid (u; v) of 3D coordinates (x; y; z). His method is a two phase algorithm.
The �rst part approximates the surface within the convex hull in (u; v) space
of the constraint points; that is, all the interior points are placed on catenaries.
The second phase uses an iterative relaxation process to minimize maximum
displacement of all the points in the grid up to a given tolerance.

Terzopoulos, Platt, Barr and Fleisher [TPBF87] use elasticity theory to
describe the behavior of a deformable object. The model responds in a natural

2.6. THE ANTHROPOMETRY DATABASE 49

way to applied forces, constraints, and impenetrable obstacles. The equations
of motion governing the dynamics of the deformable bodies under the inuence
of applied forces is given by

@

@t
(�

@r

@t
) +

@r

@t
+

�E(r)

�r
= f(r; t);

where r(a; t) is the position of the particle a at time t, �(a) is the mass
density of the body at a, (a) is the damping density, and f(r; t) represents
the net externally applied forces. E(r) is a functional which measures the net
instantaneous potential energy of the elastic deformation of the body.

To create animation with this model, the motion equation is solved nu-
merically, integrating through time. This model is active in the sense that it
responds to forces and interacts with objects.

2.6 The Anthropometry Database

7While animation research may be content with demonstrating action on a
convincing human form, there is often only a single carefully structured �gure
involved. Its body dimensions may be estimated or obtained by measurement
of a speci�c individual. In contrast, engineering human factors applications
have long been concerned with construction of valid ranges of human forms
based on empirically measured populations such as aircraft pilots, ight at-
tendants, or astronaut trainees. These engineering applications recognized
the need for a variety of accurately scaled body dimensions to facilitate reach
and �t analysis [Fet82, HBD80, KSC81, Doo82]. Unfortunately, most of these
systems are either proprietary, hard-wired to some particular population, non-
interactive, or otherwise di�cult to use with contemporary graphical systems.
Jack, however, permits an open and accessible database for human dimen-
sional data. Interactive access is provided through a novel spreadsheet-like
interface.

2.6.1 Anthropometry Issues

Anthropometry, the science of human body measurement, has been an area
of interest throughout history [LRM88]:

In his authoritative book \A History of the Study of Human
Growth," Professor Tanner writes that the ancient Greeks, as well
as sculptors and painters of the Renaissance, measured the human
body to estimate body proportions and, thus, reproduce life{like
images of varying sizes. Interest in absolute size developed later
in the 17th and 18th centuries out of military concerns. The Euro-
pean armies preferred taller soldiers, and recruiting o�cers became
anthropometrists. Interest in scienti�c study of growth and in the

7Marc Grosso, Susanna Wei.

50 CHAPTER 2. BODY MODELING

relative importance of nature versus nurture in explaining human
variability has been pronounced since the 19th century.

The vast majority of work in \modern" anthropometry has been done by
anthropologists who were studying the e�ects of some environmental factor
on some population. While there are studies dating back to the mid{ to late{
1800's, more recent studies covering groups of adults (i.e. populations) from
around the world are summarized in the Anthropometry Source Book [NAS78].
Its two volumes have become one of the foundation sources for contemporary
anthropometry.

Anthropometric studies di�er greatly in the number and kind of measure-
ments selected. They all report a statistical analysis of the values of each
measurement, giving at least a median with standard deviation and the max-
imum and minimum values. The studies typically report the above values
along with intermediate values at selected percentiles of the population, typ-
ically 1st, 5th, 25th, 50th, 75th, 95th and 99th, since body size data does not
vary linearly with percentile.

Some of the data found in these studies was used in the NASA Man{

Systems Integration Manual [NAS87], as the basis for the estimated mea-
surements for male and female astronauts in the year 2000, using the body
dimensions of American males and Japanese females. It is felt that these
populations provide the maximum range in body sizes in the developed world
today since the American male is among the largest of males and the Japanese
female is the smallest of females. There is a growth rate factor which is used
to adjust the values for projection to the year 2000.

The measurements selected for inclusion in the NASA Man{Systems In-

tegration Manual were chosen to meet the various needs of NASA and were
not intended to be a complete set of measurements for all purposes or for all
possible users. These measurements were publicly available, however, and de-
tailed enough to satisfy many ergonomic analysis requirements. They served
as the basis for the human �gure model we developed but are are not complete
enough to totally describe it [GQO+89, GQB89]. Some needed measurements
and data are missing; though most of the missing values can be found in the
Anthropometry Source Book, there were a number of measurements required
for our model which were not easy to track down. Where this occurred, intel-
ligent estimates have been made based upon data values from closely related
measurements (possibly from a di�erent population) or by calculating the
values from other measurements. In no case were the unde�ned values set
arbitrarily.

2.6.2 Implementation of Anthropometric Scaling

Each body segment or structure having associated geometry contains length,
width, and depth (or thickness) attributes8. Therefore, we require a minimum

8We presently ignore segment shape changes though we realize their importance for

realistic animation.

2.6. THE ANTHROPOMETRY DATABASE 51

of seventy{two (72) measurements to describe the physical dimensions of our
human �gure.

Psurfs describe the shape of each segment. Anthropometric scaling modi-
�es the segment dimensions as well as any associated psurfs. It is very simple
to change to alternative polygon models, e.g. to the detailed contour bod-
ies, to vary detail in the segment while preserving the correct anthropometric
scale. Each psurf for the various segments is stored in a normalized format
where the z (length) dimension ranges from 0 to +1, and the x (depth) and
y (width) dimensions range from �1 to +1. In order to display these psurfs,
using either real measurements for a person or percentile measurements for
some speci�ed population, the psurfs must be scaled.

Body de�nition �les containing the desired values can be created (or modi-
�ed) by manually entering the body part names and their values in the proper
format, but this is clumsy and rarely used. A superior approach uses the
Spreadsheet Anthropometry Scaling System (SASS) which will be discussed
in detail in Section 2.7.

2.6.3 Joints and Joint Limits

There are three di�erent types of human body joints [TA75]: Fibrous, Car-
tilaginous, and Synovial. Of these three we are only concerned with the
synovial joints (joints with joint cavities). The synovial joints are categorized
based upon the shape of the articulating surface of the joint. There are seven
sub{types of synovial joints found in the human body [MB77, TA75]. These
subtypes are:

� Monaxial (or uni{axial) joints (1 DOF)

a. Hinge joints. A convex surface of one bone �ts in a concave surface
of another bone. This joint allows movement in only one plane,
usually extension and exion, similar to that of a door hinge. Ex-
amples are the elbow joint, knee joint, ankle joint, and interpha-
langeal joints (joints in the toes and �ngers).

b. Pivot joint. A rounded, pointed, or conical surface of one bone artic-
ulates with a shallow depression in another bone. The primary mo-
tion of this joint sub{type is rotation. Examples are shown by the
supination and pronation of the palms, atlas{axis joint (Alanto{
Axial joints located at the very top of the spine), and radioulnar
joint (between radius and ulna in forearm).

� Bi{axial joints (2 DOFs)

a. Condyloid joints. These are the joints like those at the heads of
the metacarpals (hand bones), i.e. the knuckles, which is the best
example of this type of joint.

52 CHAPTER 2. BODY MODELING

b. Ellipsoidal joints. The oval{shaped condyle (end) of one bone �ts
into the elliptical cavity of another bone. This type of joint permits
side{to{side and back{and{forth movements (in the principal axes
of the ellipse). Examples are shown by the exion and extension
and abduction and adduction of the wrist (radiocarpal) joint.

� Tri{axial (or multi{axial) joints (3 DOFs)

a. Saddle joint. Both bones in this joint are saddle{shaped, that
is convex in one direction and concave in the other. This type of
joint is essentially a modi�ed ellipsoidal joint and has more freedom
of movement. Saddle joints allow side{to{side and back{and{forth
movements as well as rotation. An example is the joint between the
trapezium and metacarpal bones of the thumb (carpometacarpal
joint of the thumb).

b. Ball and socket joints. A ball{like surface of one bone �ts into a
cup{like depression of another bone. These joints permit exion{
extension, abduction{adduction, and rotation. Examples are the
hip and shoulder joints.

c. Gliding (or plane) joints. Bones involved have at or nearly at
articulating surfaces. Movement can occur in almost any plane,
with side{to{side and back{and{forth movements the most com-
mon. The movements are always slight. Examples of this type of
joint can be found between the carpal (wrist) bones (intercarpal
joints), between the tarsal bones (foot/ankle) (intertarsal joints),
between the sacrum (lower end of the spine) and ilium (a hip bone)
(the sacro{iliac joint), between the sternum (breast bone) and clav-
icle (collar bone), between the scapula (shoulder blade) and clav-
icle, between the individual vertebral arches, at the heads and at
the tubercles of the ribs, and at the front ends of the costal (rib)
cartilages.

Each joint in the human body has a range of motion over which it will al-
low movement to occur. A joint's range of motion is determined by a number
of factors including joint type, muscle size at the joint, muscle tension (tonus)
for the muscles at the joint (i.e. �tness of the person), ligament stretchabil-
ity or give, amount of fatigue, and training adaptations for the joint. The
term exibility is frequently used to describe the inuence that each of the
components listed above has on joint movement.

Joint range of motion, described in terms of angles, is measured in degrees
for each DOF, that is, each plane in which movement is allowed at a joint.
When a joint has more than one DOF, the range of motion at the joint for each
DOF may be variable because one DOF may inuence the others. Also, for
joints which are inuenced by muscles crossing two joints (as in some muscles
of the thigh, for example) there may be a two joint dependency on the joint
limit.

2.6. THE ANTHROPOMETRY DATABASE 53

Jack incorporates upper and lower joint limits for every single DOF joint.
For two DOF joints, independent limits for each DOF are used. But the
shoulder is treated as a three DOF system with spherical joint limits and
a function that relates the default upper arm orientation to the upper arm
position (Section 2.4). Jack respects these joint limits during both interactive
positioning and inverse kinematic reaching.

2.6.4 Mass

As dynamic simulations achieve ever more realistic animation, mass informa-
tion becomes essential. Fortunately, along with stature, mass is among the
most common body measures taken. There have been a number of studies
which have determined that each of the various body segments contributes
a certain percentage of the total body mass; this percentage determines the
mass of each individual segment. The mass percentages used are average
percentile values for a �t male population as would be found in the NASA
male crewmember trainees. The distribution may very well di�er for the
average general population or a population which is skewed toward either
the small/light weight (like horse racing jockeys) or large/heavy weight (like
American Football lineman). The segment mass percentages are also likely to
be di�erent for female subjects.

2.6.5 Moment of Inertia

The concept of moment of inertia is important when attempting to describe
the dynamic behavior of a human �gure. These values are needed when de-
termining the motion of a �gure under the inuence of forces (both external
and internal), moments, and instantaneous transfers of momentum (i.e. col-
lisions). When considering human �gure modeling the common forces and
moments e�ecting the human �gure include:

1. gravity: a force acting at the center of mass of each segment with a
magnitude proportional to the segment's mass.

2. internal forces generated by muscles: forces actually acting at some
insertion point along the length of the segment but modeled as a driving
moment applied at the joint.

3. reaction forces generated by the �gure's surroundings: for example, the
normal forces and friction forces applied to the �gure's hand by the
surface it is leaning on.

4. external forces: for example, weights lifted by the �gure, levers the �gure
attempts to pull, etc.

5. collisions: usually approximated as an instantaneous change in velocity
of the point on the �gure being struck.

54 CHAPTER 2. BODY MODELING

2.6.6 Strength

Human strength capabilities have been found crucial for more realistic and
natural human motions (Section 5.3). Human strength (maximum torques) is
de�ned as muscle group strengths and is stored on a joint DOF basis. Mod-
eling strength this way allows di�erent people to possess di�erent capacities
in di�erent muscle groups. Thus, the strength di�erences between two people
{ such as a dancer and a pianist { can be readily modeled and illustrated.
Each DOF of a joint has two joint movements which are associated with two
di�erent muscle groups. For example, an elbow joint is modeled to have one
DOF because it can only rotate around one axis. Its rotational movements are
exion and extension, corresponding to the exor and extensor muscle groups.
Therefore, strength data of exion and extension are stored for an elbow joint.
Each muscle group strength is modeled as a function of body position, anthro-
pometry, gender, handedness, fatigue, and other strength parameters [AHN62,
Lau76, NAS78, AGR+81, AGR+82, Imr83, CA84, HJER86, MS86, NAS87].
In terms of body position, we choose a more generalized model that takes the
e�ects of adjacent joint angles into consideration [Sch72]. For example, the
muscle group strengths of a shoulder joint are modeled to be functions not
only of the shoulder angles but also of the elbow angle.

2.7 The Anthropometry Spreadsheet

9Given the large number of data items needed for anthropometric body sizing,
a spreadsheet{like format was a natural choice for the user interface. We called
it SASS: the Spreadsheet Anthropometry Scaling System.

SASS was originally developed with one idea in mind, i.e., generating
the dimensions of each segment of a human �gure based upon population
supplied as input. The human model used by the current version of SASS
consists of thirty-one segments (body structures), of which twenty-four have
a geometrical representation. For each of those twenty-four segments, there
are three dimensions which are required, namely, length, width, and thickness.
This means that at least these seventy-two measurements should be available.

The psurf geometry of each segment must be scaled by real measurements
for a person, or percentile measurements for some speci�able population.
SASS generates �gure �les with the appropriate description of the segment
dimensions and joint limits, so that Jack can display the resulting �gure.

SASS uses population statistic data to create generic human �gures. Al-
ternately, SASS has a built-in database that stores anthropometric data for
(real) individuals and provides an interactive query system for database ac-
cess.

SASS allows exible interactive access to all variables needed to size a
human �gure described structurally by a Peabody body �le. The SASS
screens, as shown in Fig. 2.5 and more diagrammatically in Fig. 2.6, are

9Richard Quach, Francisco Azuola, Welton Becket, Susanna Wei.

2.7. THE ANTHROPOMETRY SPREADSHEET 55

Figure 2.5: Sample Display From SASS.

divided into di�erent sections including anthropometric group selection, global
data, command menu, local data.

Data that may be accessed is organized into anthropometric \groups". The
current version can handle four groups: segment girth, joint limits, segment
center of mass, and strength.

The global data section of the spreadsheet is intended to allow a \whole
body" view of the current �gure parameters. Currently, the six items con-
sidered for any human �gure are: population, sex, �gure type, mass,

stature, and overall percentile. It is important to realize that since SASS
is a relational spreadsheet, modifying any data in this section will a�ect the
values of the individual segments. For example, changing the �gure's per-
centile will cause the data to be scaled in other appropriate segments con-
tributing to stature.

The data section is used for the display of individual segment data and
their corresponding percentiles. The leftmost column is reserved for the seg-
ment names, while the other six columns are used for the data and percentile
display. The segment name column cannot be modi�ed. The data is read in
from the selected population input �le.

56 CHAPTER 2. BODY MODELING

Anthropometric Group
Global data Command Menu

Local Data Section

Command/Message line

Figure 2.6: SASS Screen Layout.

Data and its corresponding percentile is modi�ed by simply moving the
locator device to the desired cell and pressing on a button. Changing any
segment percentile will change its corresponding dimension. SASS keeps a
current measurement unit type for each group (in, cm, deg, rad). Unit
conversion is performed when necessary.

2.7.1 Interactive Access Anthropometric Database

An anthropometric database stores attribute data for a speci�c set of individ-
uals rather than a population. Each person has associated groups of anthro-
pometric data: girth (segment dimensions), joint limit, center of mass, and
strength. Each group of anthropometric data is stored in a separate relation.

In the application of a task simulation, it is very important to �nd an
individual with the requisite anthropometric characteristics such as body di-
mensions, joint limits, and strength. SASS provides a query system using
pop-up menus to allow the user to select the people with the desired charac-
teristics from the anthropometric database. Therefore, the user does not need
to know the database structure nor its query language.

The user can query on di�erent anthropometric characteristics separately
or in combination using operations and, or, greater than, equal to, less than,
etc. For example, the user can inquire about people with the desired strength
capabilities alone, or query about individuals with the required strength ca-
pabilities, body dimensions, joint limits, and center of masses together. The
individuals that satisfy the query and their global data are stored in a list
called the query list. After examining the global information in the query list,
the user can choose all or some of these individuals and store them in the
selected list. The detailed anthropometric data of each individual in the se-
lected list can be displayed on the anthropometric spreadsheet. If desired, the
user can also create the Peabody structure �les for those selected individuals
by using the SASS command Create Figure.

2.7. THE ANTHROPOMETRY SPREADSHEET 57

2.7.2 SASS and the Body Hierarchy

Our �rst version of SASS handled segments by gathering them in a simple
list. This was good enough to represent any number of segments, but pre-
sented some inconveniences in de�ning relations among the segments. In a
substantial modi�cation, the structure was changed to a hierarchical tree. At
the bottom of the tree the leaves correspond to the segments. The internal
nodes correspond to conceptual body parts composed of sets of actual body
segments, for example, the \arm" consists of the upper arm, lower arm, and
hand segments. Thus concepts such as the \length of the arm" can be well-
de�ned. A �gure can be de�ned as a collection of body parts, joined together
by joints. Each body part, in turn, can be de�ned as a collection of body
segments connected by joints.

2.7.3 The Rule System for Segment Scaling

The introduction of the body part hierarchy permits SASS to determine and
use attributes of body parts as well as individual segments. For example,
SASS de�nes a rule for computing the height of an individual as the sum of
the segments' lengths in a path that goes fromhead to feet. For those segments
in the path, the rule allows varying their lengths if the stature changes and,
vice versa, to change the stature if the length of any of the segments in the path
changes. There is an alternate rule that keeps the stature �xed and adjusts the
segments' lengths accordingly, if the length of one of them varies. Another rule
includes changing the mass according to the stature and, conversely, changing
the stature according to a speci�c mass value.

The underlying criterion for doing the stature changes is a linear one. The
segments in the stature path are head, neck, upper torso, center torso, lower
torso, upper leg, lower leg, and feet. The length of each of these segments,
except for the feet, is computed as the length in the z coordinate. For the
feet, the length is the y coordinate (since for the feet, the z coordinate is the
longitudinal dimension). The thickness and width of the segments are not
a�ected by these changes, for there is no rule to decide the e�ects of stature
changes in these parameters. The updating process must be done carefully,
for it might happen that modifying the length of a given segment violates
the range of possible stature values admitted by the current population or
conversely, if the stature is changed, it might not be satis�able by variations
in the segment lengths.

The other case considers �xed stature. The idea is to adjust the segments'
lengths along the stature path if the length of one of them varies, such that the
global length (stature) remains constant. While this might appear easy to do
at �rst, it is not a trivial matter. Recall that segment dimensions are based on
population percentile data suitably interpolated and are therefore restricted
to legitimate ranges. Furthermore, the stature itself is restricted by a \real"
set of values (for each of the percentiles). When the user speci�es a particular
change in the length (or other dimension) of a given segment, the underlying

58 CHAPTER 2. BODY MODELING

rule attempts to satisfy the constraint of �xed stature, that is, it tries to keep
the stature value constant. For example, assume the length of the head has
decreased. To keep the stature �xed, the lengths of the other segments in
the stature path must vary in the opposite way. Currently, the modi�cation
is done in a linear fashion since there are no rules to de�ne this otherwise.
But it might be the case that in the updating process one of the segment's
dimensions (length) cannot be satis�ed, that is, the resulting dimension is out
of the range established by the 5 � 95th percentile values. In this situation,
the rule sets the length to its closest limit (5th or 95th percentile value) and
tries to satisfy the requirement of �xed stature by modifying the remaining
segments in the path. Notice that there is a possibility that the stature cannot
be kept constant. There is one more step involved in the updating process
for �xed stature: if the stature is varied by the user the segments change
correspondingly if possible.

It is important to understand the back and forth process that goes on
between body parts and segments. If the overall body is supposed to be 50th

percentile, the body parts need not all be 50th percentile. In fact, we do not
have a rule yet to specify the percentile of the body parts (segment-wise) for a
given global body percentile. That information must come from multi-variate
analysis of population data. So we must be able to change dimensions of the
body parts or segments to comply with all the possible valid compositions of
a 50th percentile body. If the stature is modi�ed, then a new global percentile
is computed. For that new global percentile, we have a speci�c rule telling
us what the possible compositions are. Unfortunately, the compositions are
not unique since they depend on the population data used. To illustrate this,
suppose we have the following (partial) composition set percentiles: feet 30%,
legs 45%, torso 60%, head 40%,... for a 50th percentile body. Then suppose
we want to change the stature in such a way that the resulting body percentile
is 60th percentile, and the analogous (partial) composition set is (feet 40%,
legs 56%, torso 50%, head 40%,...). Then we scale the objects in the stature
path (which are those listed in the composition sets) to comply with this
second composition set. But we must be sure that there is no conict in
doing so; for instance, the feet might be able only to grow from 30% to a
40% under the given population. In general, di�erent populations will have
di�erent compositions.

In this example, the compositions were stated at the body part level. There
must be an equivalent composition at the segment level: the segment version
of the composition for the 50th percentile �gure is, for instance, upper leg
(45%, lower leg 60%) assuming legs decompose in two pieces. But what if the
compositions, even though being based on a particular population data, are
not available for all the possible percentiles? We would have to use a �xed
composition or else interpolate compositions (if it is sound to do that) and
make sure a given segment's length is not violated (according to its percentile
range) when trying to go from a composition for the 50th percentile �gure to
that of the 60th.

Anthropometrists who argue against the cavalier usage of percentiles in

2.7. THE ANTHROPOMETRY SPREADSHEET 59

characterizing body size distributions would seem to be on pretty safe ground.
Since the only obvious alternative involving enumerating all the individuals
in a database we are stuck with the population statistics available. As multi-
variate population dimension distribution data becomes available, SASS will
be ready to utilize it for proper �gure creation.

2.7.4 Figure Creation

SASS can produce a �le containing the scaling of a �gure which Jack then
interprets to create the �gure �le. Scaling �les o�er a particular bene�t over
direct creation of the �gure in SASS. Consider the situation in which the
Jack user wants to determine the percentile ranges of a �gure that can satisfy
a given task, that is, the problem of �nding the speci�c �gure percentile (or
range) that can �t in a particular workplace. One can attempt to read each
of the possible �gure �les out of Jack libraries and try to keep the �gure in
the desired position. The other, more sensible, option is not to load di�erent
�gure �les, but instead, to load di�erent scaling �les. Then the same �gure
can be scaled using all these di�erent �les to �nd the one that best suits the
given environment. This is faster and more appealing to the user.

2.7.5 Figure Scaling

The scales in the �gure scaling �le are obtained directly from the dimensions of
the body segments or parts. Thus, this scaling �le represents the dimensions
speci�ed in the (population's) girth �le, for a given �gure percentile. If there
were only one scale factor for each dimension of a segment, there would be
some scaling mismatches towards the ends of the segments. This is in fact
a major problem, especially for the low resolution polyhedral body model.
For instance, the scaled upper leg appears to be too thick and too wide, in
comparison to the lower leg. The same problem occurs with the upper arm and
the lower arm. The scaling of the pelvis of the simple polyhedral body seems
to be too wide and thick, while the torso appears to be too narrow and short.
There are various solutions to these problems. The simplest one is to adapt the
data to the model by modifying the scaling factors to obtain a good (looking)
�gure scaling. There are no strict rules for this, though. The rule we use is to
consider body lines as second order continuous curves. There are no abrupt
changes from one body part to the next one (assuming no deformations). Thus
we approximate (in a rather arbitrary way) the scaling factors to achieve this
continuity. The largest discrepancies are the ones mentioned above. Other
minor ones are the scaled neck being too wide and hands being too narrow. In
general, the scaling factors are not changed by more than 10% in the simple
polyhedral Jack �gure.

The scaling factors generated by SASS are mapped into the contour body
with almost no modi�cations necessary (for the contour �gure case, adjust-
ments are done to the torso, legs, arms, and hands). These adjustments do
not go over 5% of the actual values. Again, one must keep in mind that even

60 CHAPTER 2. BODY MODELING

though the contour model is a more accurate representation of the human
body, it is not a perfect one. Moreover, we must remember that the SASS
scaling factors �le is created based on a given population and the �gure re-
sulting from that scaling might not completely match a real human being (for
suppose that the population's average torso length is greater than the torso
length of a given individual and the population's average leg length is smaller
than that of the same individual, then we end up with a not so real scaling for
the contour model). Thus, even though we have assumed some adjustments
are required, it is still necessary to prove if this is the right way to proceed. So
far, the criterion that prevails is to display a good-looking (well proportioned)
human �gure.

2.8 Strength and Torque Display

10Human strength information has applications in a variety of �elds. In phys-
ical education, it can be used to classify participants for speci�c activities or
to search for a body position or motion which will improve an athlete's perfor-
mance; in medicine, it can be used as an indicator for a muscular injury or dis-
ease; and in ergonomics and human factors, it can be used to guide the design
of workspace or equipment to reduce work related injuries, and to help in per-
sonnel selections to increase work e�ciency [MKK+88, McD89, Eva88, CA84].
Human strength information can also be used in a human task simulation en-
vironment to de�ne the load or exertion capabilities of each agent and, hence,
decide whether a given task can be completed in a task simulation [EBJ89].

To convey the multi-dimensional characteristics of strength data, we use
special data display methods that use human �gures together with two or
three dimensional graphics. Various forms of strength box and strength bar

displays allow visualization of strength parameters, give a dynamic changing
view of the e�ects of parameters on strength, and show safe and forbidden
regions in terms of di�erent strength capabilities of individuals or populations
[WB92].

We de�ne strength (maximumtorque) to be the maximumachievable joint
torque. It is modeled as muscle group strength and is stored on a joint DOF
basis in the human �gure model. Each DOF of a joint has two joint move-
ments which are associated with two di�erent muscle groups. For example,
an elbow is modeled to have one DOF. It can only rotate around one axis;
its rotational movements are exion and extension which correspond to the
exor and extensor muscle groups. Therefore, strength information of exion
and extension is stored for an elbow joint. Each muscle group strength is
modeled as a function of body position, anthropometry, gender, handedness,
fatigue, and other strength parameters [AHN62, AGR+81, NAS87, HJER86,
Imr83, Lau76, NAS78].

10Susanna Wei

2.8. STRENGTH AND TORQUE DISPLAY 61

2.8.1 Goals of Strength Data Display

Strength depends on a set of parameters. To properly display these parame-
ters, one should use a multi-parameter system that can convey the meaning
of these parameters as well as their values. Unfortunately, existing multi-
dimensional display methods [And60, Ber83, GFS71, Har75, And72, Che73,
KH81] are unsuitable in presenting the human body-speci�c semantics of
strength parameters. They are also visually ine�ective in displaying strength
data because they fail to tie the parameters to the body properties they de-
scribe. We prefer to de�ne multi-dimensional graphing methods which use
the body itself as a context for the parameter display.

Strength data displays show the current force and torque capabilities of a
�gure in a given posture or motion. A good strength data display should show
the direction and magnitude of forces and torques. Since strength depends
on many parameters, for example, body posture, body size, gender, fatigue,
training, and handedness, it is useful to observe interactively how the change
of each parameter a�ects strength. Finally, a strength data display should
show the comparative capabilities of di�erent individuals or populations.

2.8.2 Design of Strength Data Displays

An e�ective strength data display conveys the meaning of the parameters and
their values [Eva85, CBR, EC86, EPE88, MKK+88]. To design displays that
can portray the multi-dimensional nature of strength e�ectively, we use the
human �gure as a context [Wei90].

The Jack strength data display system evaluates the strength �elds in the
current �gure's body de�nition �le. The strength data for the people who
are related (in the database sense) to the given �gure displayed on the screen
can be obtained by querying the strength database. For example, suppose
Fred is a NASA crewman. The required joint strength data for Fred can
be calculated from the equations stored in the strength �elds of Fred's body
de�nition �le. However, any strength data for other people in the NASA
crewmen population must be queried from the strength database. If end
e�ector forces are not stored in the strength database, they can be calculated.

Strength Box Display

Six orthogonally intersecting rods are used to show the end e�ector forces in
di�erent directions at a given body posture. They can also be used to show
muscle group strengths of a three DOFs joint at a given body con�guration.
The direction of the given force (or strength) is shown by the position and
the orientation of the rod. It is also indicated by the text at the side of rods.
The length of each strength rod shows the magnitude of the force/strength
value at a given direction of movement. As the body con�guration changes,
the rod lengths are changed to reect changing strength.

The strength rods in Figure 2.7 show the hand forces at up, down, left,
right, push, and pull directions of the displayed human �gure at the cur-

62 CHAPTER 2. BODY MODELING

rently displayed body con�guration. The internal box represents average fe-
male strength while the outer box represents average male strength given the
same posture. The length of the interior segment of the rod represents the
average strength value of females and the length of the exterior segment of the
rod indicates the di�erence between the female and male average strengths.
Thus, the average male strength is represented by the length of the whole
rod. The box itself is used to show the boundary of the maximum forces of
the range of motions in six di�erent directions. The length of the red line
attached to the end of each rod shows the di�erence between the maximum
force and the force of the current body position shown on the screen at a given
direction. The resulting display of the strength rods and the box is called the
strength box display. The user can �nd the body con�guration associated with
the maximum force for the entire range of motions at a given direction by in-
teractively adjusting the body posture until the end of the given rod touches
the corresponding edge of the box.

This strength box display can be modi�ed in many ways to show other
strength or force data. For example, it can be changed to display data for a
one or two DOF joint or to show the e�ects of di�erent parameters:

� Two collinear rods can be used to display the strength data for a one
DOF joint, and four coplanar rods can be used to display the strength
data of a two DOF joint.

� Each rod can be divided into one or more segments by using two di�erent
colors to show the comparative muscle group strength of a strength
parameter that has one or more values, respectively. This is shown for
a male/female comparison in Figure 2.7. Strengths corresponding to
dominant and nondominant hands can also be shown in this fashion.
A three-segment rod can be used to show strengths of three di�erent
percentiles of a population.

� A two-segment rod can be modi�ed to show the maximum strength and
required torque of a joint. For a given load applied at an end e�ector,
we can calculate the required torque via static force analysis at each
joint in the active joint chain.

� A trace can be incorporated in the strength display to show the move-
ment path of an end e�ector. Two di�erent trace colors can be used
to show the safe region where the maximum strength (of all joints) is
greater than the required torque (green), and the forbidden region where
the maximum strength (of at least one joint) is less than the required
torque (red). (Figure 2.8). The number \20 lbs." written on the cube
at the end e�ector is a reminder of the current load.

The strength box display is mainly designed to show the strengths for a
\single" joint or the forces of \one" end e�ector. Although it can also be
used to display strengths for more than one joint by showing them in two or

2.8. STRENGTH AND TORQUE DISPLAY 63

Figure 2.7: Strength Box Display of Hand Forces for Males and Females of a
Population.

more strength box displays, it may not be easy to compare the values across
di�erent boxes. To e�ectively display strengths for more than one joint or end
e�ector, we use the strength bar display.

Strength Bar Display

The strength bar display is used to show forces of end e�ectors or strengths
of joints in a given body chain. Figure 2.8 illustrates a strength bar display
that shows the maximum muscle group strengths and required torques of
joints in the highlighted body chain when the hand is holding a load of 20
lbs. If the maximummuscle group strength is greater than the corresponding
required torque, the interior segment of a bar shows the required torque in
red. Otherwise, the interior segment of a bar shows the maximum muscle
group strength in green. The exterior segment of a bar is always used to
show the di�erence between the maximum strength and the required torque.
If the maximum strength is greater than the required torque, the exterior
segment is shown in green, otherwise it is shown in red. The bar (joint) with
the required torque exceeding the maximum strength can be indicated by

64 CHAPTER 2. BODY MODELING

Figure 2.8: Strength Bar Display for Maximum Strengths and Required
Torques.

highlighting. A one-segment bar in green indicates that the required torque
is zero; the length of the green bar shows the value of the maximum strength.
Similarly, a one-segment bar in purple indicates that the required torque is
equal to the maximum strength.

The strength bar display can also be modi�ed to show strength or force
data in di�erent applications. We list some simple extensions in the following.

� Similar to a rod in the strength box display, each bar in the display can
also be divided into a number of segments by using various colors to
show strengths corresponding to di�erent values of a parameter.

� Multiple viewports can be used to display the strengths associated with
di�erent values of a parameter. For example, we can use two viewports
to show the strength bar displays for the dominant and non-dominant
hand of a given individual. Comparing strength values from di�erent
strength bar displays is as easy as comparing strength values within a
strength bar display because the 2D screen location of the display does
not a�ect the visual length of each bar.

2.8. STRENGTH AND TORQUE DISPLAY 65

Figure 2.9: Torques Computed by Static Analysis.

The strength bar display can be used to show strengths of any number of
joints in a body chain. It gives a very clear view of the simultaneous e�ects of
the body con�guration on several muscle group strengths. It also shows the
safe and forbidden regions of each joint in a body chain. This display method
does not depend on a particular strength model: it only shows whatever data
is currently available for the �gure.

Whole body strength and torque display

11Using static analysis, torques throughout the body may be computed given
any posture and any loading condition. The strength bar display can show
the individual joint torques (Figure 2.9). If suitable strength data for each
muscle group is available, then whole body loading may be assessed.

Of course, with so many joints the interpretation of multiple graphs be-
comes di�cult. To alleviate this problem we map the strength or torque data
directly onto the contour body (Figure 2.10)12. The mapping interpolates
a given value at a joint onto the adjacent contour body polygon vertices.
A parameter controls how far from the joint the mapped color will propa-
gate. A typical color scale is based on mapping zero torque load to white
and maximum strength to blue. Reacted torques exceeding the joint's max-
imum strength are colored red. Since only one attribute can be selected for

11Hyeongseok Ko, Susanna Wei, Michael Kwon
12This will also work for the simpler polyhedral body but is much less interesting.

66 CHAPTER 2. BODY MODELING

Figure 2.10: Contour Body with Color Coded Segments Representing Torque
Load.

a joint, the maximum load at multiple DOFs is used to select the color. As
the mapping and color interpolation across each polygon take advantage of
the Silicon Graphics workstation display speed, the visualization may even be
interactively observed as the posture and loads change.

Chapter 3

Spatial Interaction

This chapter describes the basic architecture of the Jack interactive system.
The primary tools available to the Jack user involve direct manipulation of the
displayed objects and �gures on the screen. With articulated �gures, move-
ment of one part will naturally a�ect the position of other parts. Constraints
are used to specify these relationships, and an inverse kinematics algorithm is
used to achieve constraint satisfaction. As a consequence of user actions, cer-
tain global postural manipulations of the entire human �gure are performed
by the system. This chapter presents the direct spatial manipulations o�ered
in Jack and shows how constraints are de�ned and maintained. One partic-
ular application of the body constraints is included: the generation of the
reachable workspace of a chain of joints.

3.1 Direct Manipulation

3D direct manipulation is a technique for controlling positions and orienta-
tions of geometric objects in a 3D environment in a non-numerical, visual
way. It uses the visual structure as a handle on a geometric object. Direct
manipulation techniques derive their input from pointing devices and provide
a good correspondence between the movement of the physical device and the
resulting movement of the object that the device controls. This is kinesthetic
correspondence. Much research demonstrates the value of kinesthetically ap-
propriate feedback [Bie87, BLP78, Sch83]. An example of this correspondence
in a mouse-based translation operation is that if the user moves the mouse to
the left, the object moves in such a way that its image on the screen moves
to the left as well. The lack of kinesthetic feedback can make a manipula-
tion system very di�cult to use, akin to drawing while looking at your hand
through a set of inverting mirrors. Providing this correspondence in two di-
mensions is fairly straightforward, but in three dimensions it is considerably
more complicated.

The advantage of the direct manipulation paradigm is that it is intuitive:

67

68 CHAPTER 3. SPATIAL INTERACTION

it should always be clear to the user how to move the input device to cause
the object to move in a desired direction. It focuses the user's attention on
the object, and gives the user the impression of manipulating the object itself.

3.1.1 Translation

Several techniques have been developed for describing three dimensional trans-
formations with a two dimensional input device such as a mouse or tablet.
Nielson and Olson [NO87] describe a technique for mapping the motion of
a two dimensional mouse cursor to three dimensional translations based on
the orientation of the projection of a world space coordinate triad onto the
screen. This technique uses a one-button mouse, and it compares the 2D
displacement of the mouse cursor to the screen projection of the six world co-
ordinate axes and causes a di�erential movement in world space along the axis
whose projection is closest to the mouse movement. For example, if the view
is positioned such that the world coordinate x axis points left, then moving
the mouse to the left will cause a +x translation. This provides good kines-
thetic correspondence, but it has problems if two of the axes project onto the
screen close to one another, since it will not be able to distinguish between
the two. In other words, it is highly dependent on the view.

3.1.2 Rotation

Rotations are considerably more complex, but several techniques have been
developed with varying degrees of success. The most naive technique is to sim-
ply use horizontal and vertical mouse movements to control the world space
euler angles that de�ne the orientation of an object. This technique pro-
vides little kinesthetic feedback because there is no natural correspondence
between the movements of the mouse and the rotation of the object. A better
approach, described by Chen et al [CMS88], is to make the rotation angles ei-
ther parallel or perpendicular to the viewing direction. This makes the object
rotate relative to the graphics window, providing much greater kinesthetic
feedback.

The problem with screen-space transformations is that it is impossible to
make movements around either the global or local axes. In an integrated
geometric environment, it is more common to move objects relative to either
the global or local coordinate frame, rather than along axes aligned with the
screen. For example, the simple task of raising an object vertically requires
translating along the global y axis. Unless the view in the graphics window is
perfectly horizontal, the vertical direction in screen coordinates is not exactly
vertical. As another example, the task of moving a hand forward may require
moving along an axis aligned with the body, not the screen.

Evans, Tanner, and Wein [ETW81] describe a rotation technique that
suggests a turntable on which objects sit. Movements of the mouse in circles
around the origin of the turntable cause the turntable, and thus the object,

3.1. DIRECT MANIPULATION 69

to rotate. There must also be a way of positioning the turntable underneath
the object.

Chen, Mountford, and Sellen [CMS88] also describe a technique originally
developed by Evans, Tanner, and Wein [ETW81] known commonly as the
virtual sphere. This technique simulates the e�ect of a trackball centered
around the object's origin. You \grab" the trackball with the mouse and
rotate it much as you would rotate a physical trackball with a single �nger.
The virtual sphere is an e�cient technique for certain operations, as Chen
et al verify experimentally. However, since the rotation is not con�ned to a
speci�c axis, it can be di�cult to rotate around a particular axis. It is nearly
impossible to make precise rotations around global coordinate axes.

Chen et al describe an experimental comparison between several tech-
niques for 3D rotation. The subjects were asked to rotate a geometric object,
in the shape of a house, to align it with a similar object in a random orien-
tation. They were measured for both speed and accuracy. The techniques
evaluated included several angle-based rotations with and without kinesthetic
correspondence, and the virtual sphere. The studies generally showed that
the virtual sphere was the best, out-performing the others in both precision
and speed.

The virtual sphere is good at \tumbling" objects, when the path of their
rotation is not important. This may be the case for objects oating in space.
However, in an integrated modeling environment, the technique has some
limitations because it does not allow constrained movement. Because of its
free-form nature, it is very di�cult to rotate an object around a single axis at
a time, global or local, which is often required. For example, to turn around a
human being standing on the oor requires rotating only around the vertical
axis. With the virtual sphere, it is nearly impossible to rotate precisely around
only one axis at a time.

An improvement over the virtual sphere is proposed by Shoemake [Sho92].
His \ArcBall" approach uses the visual correspondence between arcs on a
hemisphere and 3D quaternions to de�ne simultaneously both a rotation angle
and axis. Any 2D screen point input has a well-de�ned rotational value. The
ArcBall appears best for tumbling objects, but a constrained axis formulation
is essentially similar to the Jack local rotation operation described below.

3.1.3 Integrated Systems

Bier's snap-dragging technique [Bie86, Bie87, Bie90] simulates gravity between
objects and takes advantage of surface geometry to constrain and control
object movements. The user �rst positions jacks in space using a 3D cursor
called the skitter. The jacks are coordinate frames that serve as anchors
for other operations. The skitter slides along faces and edges, controlled
by the mouse or through dials. The technique determines the position and
orientation of the visible surface beneath the mouse in order to control the
position and orientation of the skitter. Jacks can be placed with the skitter
and then used to specify rotation axes or end-points for angles.

70 CHAPTER 3. SPATIAL INTERACTION

?

?

?

Redraw graphics windows

Apply manipulation transform to the environment

Convert to manipulation transform

Read mouse coordinates and button status

?

Figure 3.1: The manipulation loop.

This technique exploits the geometric structure of the objects, but it pro-
vides little help for manipulating positions and orientations in the absence of
geometry. This means that the technique does not work especially well for
manipulating points in open space as is often required.

3.1.4 The Jack Direct Manipulation Operator

The 3D direct manipulationmechanism in Jack interactively describes a global
homogeneous transform. Internally, this is called the manipulation trans-

form. There are many di�erent commands in Jack that require the user to
enter three-dimensional translational and rotational quantities. Each com-
mand may interpret the transform in its own way, possibly mapping it to a
local coordinate system.

The user manipulates this transform through the 3-button mouse, together
with the SHIFT and CONTROL keys on the keyboard. The keys alter the in-
terpretation of the mouse buttons. Each mouse button corresponds to an
axis in space, using a mapping scheme described below. The direct manipu-
lation mechanism can alter the manipulation transform based on the selected
axis by rotating around it, translating along it, or translating in a plane per-
pendicular to the axis. This characterizes the three primitive types of direct
manipulation: linear translation, planar translation, and rotation [PB88]. The
manipulation procedure is a loop, shown in Figure 3.1, that continues until
the user terminates it.

The Jack user interface is modal: each manipulation command places
Jack in a mode where the mouse buttons and keyboard keys are interpreted

3.1. DIRECT MANIPULATION 71

SHIFT CONTROL mouse buttons action

left linear transl along global x axis
middle linear transl along global y axis
right linear transl along global y axis
left and middle planar transl in global xy plane
left and right planar transl in global xz plane
middle and right planar transl in global yz plane

CONTROL left rotation around global y axis
CONTROL middle rotation around global y axis
CONTROL right rotation around global z axis

SHIFT left linear transl along local x axis
SHIFT middle linear transl along local y axis
SHIFT right linear transl along local y axis
SHIFT left and middle planar transl in local xy plane
SHIFT left and right planar transl in local xz plane
SHIFT middle and right planar transl in local yz plane
SHIFT CONTROL left rotation around local y axis
SHIFT CONTROL middle rotation around local y axis
SHIFT CONTROL right rotation around local z axis

Table 3.1: Axis mappings for manipulation.

as instructions to move the transform in question. How the movement is
interpreted depends upon the command. This mode is terminated by hitting
the ESCAPE key. While in the manipulation mode, the mouse buttons and
keys behave as described below.

The user interface for the manipulation operation encodes by default the
left, middle, and right mouse buttons to control translations along the x, y,
and z axes, respectively, of the global coordinate frame. When the user presses
down any mouse button, it enables translation along that axis. When the
user presses two mouse buttons, translation is enabled in the plane spanned
by those two axes. With this technique, it is not possible to translate along
three axes simultaneously, so pressing three buttons at once has no e�ect.

Rotation is signi�ed by holding down the CONTROL key. In this case, the
mouse buttons are interpreted as rotations around the x, y, and z axes of the
global coordinate. Only one rotation button may be selected at once.

The user can change the axes of translation and rotation to the local
coordinate frame of the manipulation transform by holding down the SHIFT

key. The CONTROL key still signi�es rotation, but the rotational axes are
local to the manipulation transform instead of the global axes. Table 3.1
summarizes how the state of the keys and mouse buttons translates into the
transform axis.

Jack relies on a set of graphical icons to inform the user about the axes of

72 CHAPTER 3. SPATIAL INTERACTION

translation and rotation. The manipulation transform is drawn as a labeled
six-axis coordinate frame. The translation icon is a transparent arrow. The
rotation icon is a spoked wheel. Each icon is overlaid against the objects
themselves, but since they are transparent, they do not intrude too severely.

The Mouse Line

The translation and rotation of the manipulation transform is determined
interactively by the ray in the world coordinates that is cast through the
location on the screen where the mouse cursor lies. This line in space is
referred to internally as the mouse line, and it can be easily computed by an
inversion of the viewing transform. The mouse line serves as a probe into the
environment with which to move the manipulation transform. This notion of
a probe is useful in describing the implementation, although it is not one that
is visible to the user. The user has the feel of moving the object itself.

Linear and angular displacements are computed by intersecting the mouse
line with lines and planes de�ned by the origin of the manipulation transform
and the translation or rotation axis using a scheme described below.

Linear Translation

As described above, linear translation takes place when the user presses one
mouse button. The mouse may move anywhere on the screen, but the trans-
lation is restricted to the particular axis, determined by which mouse button
was pressed. This axis projects to a line on the screen. The translation icon
illustrates this line, and it also instructs the user to move the mouse in that
direction on the screen. Ideally, the user moves the mouse exactly along this
line, but in practice the mouse will not follow the line precisely. The position
of the manipulation transform is the point along the translational axis that is
nearest to the mouse line. Figure 3.2 shows the translation icon.

Planar Translation

Planar translation is actually somewhat simpler than linear translation be-
cause its two DOFs more closely match those of the mouse. The plane of
translation passes through the origin of the manipulation transform, and is
spanned by the two axes de�ned by the selected mouse buttons. The tech-
nique is to intersect the mouse line with the plane of translation and supply
the point of intersection as the origin of the manipulation transform. This
means that the object automatically goes to the location in the plane that lies
underneath the mouse cursor. Figure 3.3 shows the planar translation icon.

The user can translate in the global or local xy, xz, or yz planes, but in
practice the linear and planar translation techniques provide a comfortable
pattern of use involving only planar translation in the xz plane. This is
the horizontal plane, and it is the most intuitive to visualize. The user can
comfortably translate objects in the horizontal plane using planar translation,
and then raise and lower them using linear translation along the y axis.

3.1. DIRECT MANIPULATION 73

Figure 3.2: Linear translation.

Figure 3.3: Planar translation.

74 CHAPTER 3. SPATIAL INTERACTION

Figure 3.4: Rotation.

Rotation

The user interface for rotation requires the user to move the mouse around in
circles on its pad. This is similar in some ways to the turntable technique of
[ETW81] described earlier, except that the turntable used a rotation angle in
screen coordinates, not world coordinates, making the angular displacement
independent of the viewing direction. The Jack operator provides a more
direct feel over the rotation because it gives the sense of actually holding on
to the wheel.

The three mouse buttons are encoded as rotation around the x, y, and
z axes. When the user presses down on a button, a wheel is displayed at
the origin of the manipulation transform describing the rotational axis. This
wheel lies in the plane in which the rotation is to take place, with the origin
of the wheel at the rotational axis. Then a vector is drawn from the current
intersection point between the plane and the mouse line. This vector forms an
extended spoke of the wheel, and as the user moves the mouse around in this
plane, Jack computes a new spoke and then measures the angular distance
between it and the original spoke. This determines the angle of rotation. The
sensation that the user gets is one of twisting a crank by moving the mouse
around in circles on the screen. Figure 3.4 shows the rotation wheel icon.

If the rotation involves a Peabody joint with joint limits, the inadmissible
sector of the rotation wheel is colored red. Mouse movements will cause the
wheel to rotate beyond its limits, but the rotated segment will not move past
the limit. Thus the semantics of the user's interaction are consistent with the

3.2. MANIPULATION WITH CONSTRAINTS 75

free rotation case, yet object behavior is natural.

3.2 Manipulation with Constraints

The term \constraint" has manymeanings and applications. Some researchers
use it to mean a very low level concept. Isaacs and Cohen [IC87] use the term
to mean essentially any kinematic control over a joint or group of joints dur-
ing dynamic simulation. The constraint removes DOFs from the system in
a straightforward way. Witkin and Kass [WK88] and Girard [Gir91] use the
term to mean a global optimization criterion, such as minimum expended
energy. Sometimes, the term means an desired relationship, which in com-
puter graphics usually implies a geometric one. This is the case of Nelson's
Juno system [Nel85]. Many researchers use the term to mean speci�cally a
desired spatial relationship, that is, goals for reference points. This is usually
the meaning in physically based modeling, as in the dynamic constraints of
Barzel and Barr [BB88].

Constraints that mean geometric goals may be interpreted with an ad-
ditional temporal component. Most constraint-based systems like those just
mentioned feature the ability to vary the e�ect of constraints over time. Given
this, it is rather nebulous whether the temporal component is a part of the
constraint de�nition. We feel that it is better to view a constraint instanta-
neously as a static entity, although its parameters can be changed over time
by some means external to the constraint itself.

3.2.1 Postural Control using Constraints

Most formulations of positioning algorithms in robotics and computer anima-
tion are principally concerned with motion | smooth motion. In robotics,
this is necessary because jerky motion could damage a manipulator. In an-
imation, jerky motion looks bad. For postural control the motion is not as
important because the static posture is the principal objective. This means
that for interactive postural control, it may be possible to entertain options
which are not available to robotics and animation.

In particular, the requirements for postural control are, �rst, that the
technique accommodate massively redundant �gures, and second, that it per-
form fast enough for interactive manipulation, even with complex, highly con-
strained �gures. The third concern is that it generate smooth movement. The
interactive postural control process consists of placing the �gure in a sequence
of postures closely spaced in time and space, giving the illusion of motion for
purposes of assisting in the postural speci�cation process.

We use inverse kinematics for posture determination [ZB89]. It dispenses
with physical interpretations and solves a minimization problem for pure func-
tions using a nonlinear programming algorithm. The approach uses a variable-
metric optimization technique. The function it minimizes is a de�ned through
a linear combination of kinematic constraints as de�ned below. The objective

76 CHAPTER 3. SPATIAL INTERACTION

function describes positions, not velocities. This approach essentially treats
the �gure a purely geometric entity rather than a physical one. It does not
take into account overtly the �gure's mass and inertia, though we will see that
it can be used to control the center of mass. Our implementation of inverse
kinematics is highly e�cient and is capable of controlling a complex �gure
model with large numbers of constraints.

The approach that we advocate for de�ning postures is somewhat similar
to the energy constraints of Witkin, Fleischer, and Barr [WFB87], although
there are some important distinctions. Their approach models connections
between objects using energy functions. The energy functions do not measure
mechanical energy, but are simply constructed to have zeros at the proper
locations and have smooth gradients so that the object can follow the gradient
towards the solution. This provides the animation of the solution process. The
user interface of Witkin, Fleischer, and Barr's system allows the user to specify
these energy functions and turn them on. This causes a sudden increase
in energy and thus causes the model to begin descending in the direction
of the gradient of the energy function. One drawback of this approach is
that the timestep of the iterative process must be su�ciently small to ensure
convergence. This is particularly a problem in the case of articulated �gures.
Witkin, Fleischer, and Barr's formulation of the gradient descent algorithm
does not permit jointed mechanisms, so they must model joints as constraints.
The joints must have a very steep energy function to ensure that they never
come apart. This means that the timestep must be very small, making the
system of equations very sti�.

Another problem with Witkin, Fleischer, and Barr's approach, from a
higher level point of view, is that the user's notion of time is embedded in the
algorithm. The energy function de�nes the path of the end e�ectors towards
their ultimate destinations because the gradient of the energy function de-
termines the direction of movement. We remove the notion of time from the
numerical process and put it in a higher level control scheme. This control
scheme decides on discrete locations for the goals for end e�ector reference
points, closely spaced in space and time | the user's notion of time. The in-
verse kinematics algorithm solves an instantaneous positioning problem. The
control scheme has two components, the interactive manipulation previously
discussed and the behaviors described in Chapter 4.

The inverse kinematics procedure itself has no notion of time. It uses
the joint angles of the Peabody �gures as the variables of optimization.
This means that the search step can be signi�cantly larger, and thus the
convergence is faster. The control scheme guides the movement in cartesian
space, rather than in the space of the energy function. It is still convenient to
interpret the positioning criteria as a potential energy function, but the control
scheme ensures that the �gure is always very near a state of equilibrium.

Using the example of a human arm reaching for a switch, the technique
of Witkin, Fleischer, and Barr would model the reach by de�ning an energy
function with a zero when the hand is on the switch, that is, a constraint
for the hand to lie at the switch. If the arm begins by the side of the body,

3.2. MANIPULATION WITH CONSTRAINTS 77

the arm would see a sudden increase in energy when the constraint becomes
active and would immediately begin to move in a way to minimize the energy.
This would cause the hand to begin to move towards the switch. The velocity
would be controlled through the intensity of the potential energy function.

Using inverse kinematics, the higher level control scheme computes suc-
cessive locations for the hand, starting at its current location and progressing
towards the switch. The number of steps and the spacing between them is
not the domain of the inverse kinematics algorithm but of the control scheme.
A kinematic constraint describes the position of the hand and the algorithm's
parameters at each time step. The inverse kinematics algorithm is invoked at
each time step to place the hand at the desired location.

3.2.2 Constraints for Inverse Kinematics

The Jack notion of a kinematic constraint de�nes a goal coordinate frame, an
end e�ector coordinate frame, a set of joints which control the end e�ector,
and an objective function which measures the distance between the goal and
the end e�ector. The set of joints is usually de�ned in terms of a starting joint,
and the joint set then consists of the chain of joints between the starting joint
and the end e�ector. We can think of individual constraints as de�ning a po-
tential energy, measured by the objective function, much like that of Witkin,
Fleischer, and Barr. The constraint is satis�ed when the objective function
is minimized, although the function need not be zero. The potential energy
of several constraints is a weighted sum of the energies from the individual
constraints.

The objective function of a constraint has separate position and orientation
components. The potential energy of the constraint is a weighted combination
of the two, according to the constraint's position/orientation weight. The
weight may specify one or the other, or a blending of the two. Our inverse
kinematics procedure provides the following objective types [ZB89]:

point The point-to-point distance between the end e�ector and
the goal.

line The point-to-line distance between the end e�ector and a line
de�ned in the goal coordinate frame.

plane The point-to-plane distance between the end e�ector and
a plane de�ned in the goal coordinate frame.

frame The orientational di�erence between the end e�ector frame
and the goal frame. This measures all three orientational
DOFs.

direction The orientational di�erence between a vector de�ned in
the end e�ector frame and a vector de�ned in the coordinate
frame of the goal.

aim A combined position/orientation function designed to \aim"
a reference vector in the coordinate frame of the end e�ector

78 CHAPTER 3. SPATIAL INTERACTION

towards the position of the goal. This is used mostly for
eye and camera positioning, but it could also be used, for
example, to point a gun. This should never be done in the
presence of multiple human �gures, of course, particularly
children.

3.2.3 Features of Constraints

Each constraint in Jack has its own set of joint variables, so the control of
each constraint can be localized to particular parts of the �gure. Since the
joint angles are the variables of optimization, this means that the algorithm
operates on chains of joints, ultimately terminated at the root of the �gure
hierarchy. This implies that the root of the �gure remains �xed during the
positioning process. This makes the placement of the �gure root particularly
important. One of the major components of Peabody is that the actual
de�nition of a �gure does not include the �gure root. Instead, the root is a
dynamic property which can be changed from time to time. Since the inverse
kinematics algorithm operates on chains emanating from the root, the inverse
kinematics algorithm cannot change the location of the root.

Our inverse kinematics algorithm works very well provided that it doesn't
have to search too far for a solution, although it will converge from any starting
point. The farther it has to search, the more likely it is to produce large
changes in the joint angles. In geometric terms, this means that the goals
should never be too far away from their end e�ectors, lest the interior segments
of the joint chains move too far. This also relieves the problem of getting
trapped in a local minimumbecause hopefully the higher level control strategy
which is specifying the goal positions will do so in a way to lead the �gure
away from such conditions.

The elegance of the potential energy approach, like that of Witkin, Fleis-
cher, and Barr, is that the constraints can be overlapped. This means that
it is acceptable to over-constrain the �gure. The posture which the algo-
rithm achieves in this case yields the minimum energy state according to the
weighting factors between the constraints. This provides a way of resolving
the redundancies in a massively redundant �gure: use lots of constraints,
and don't worry too much about whether the constraints specify conicting
information.

3.2.4 Inverse Kinematics and the Center of Mass

The center of mass of an object is one of its most important landmarks because
it de�nes the focal point for forces and torques acting on it. The center of
mass of an articulated �gure such as a human �gure is particularly signi�cant
because its location relative to the feet de�nes the state of balance. This
is critical for human �gures, because so many aspects of the movement of a
human �gure are dictated by the need to maintain balance. The center of
mass of is, of course, a dynamic property, but it is possible to manipulate it

3.2. MANIPULATION WITH CONSTRAINTS 79

in a purely kinematic way and thus produce some of the e�ects of dynamic
simulation without the extra cost.

Methods of Maintaining Balance

One approach to maintaining balance of an articulated �gure is to root the
�gure through its center of mass. The center of mass is a dynamic feature
of a �gure, so rooting the �gure through the center of mass means that each
time the �gure moves, the center of mass must be recomputed and the �g-
ure's location updated so that the center of mass remains at the same global
location.

This approach works, but it does not give good control over the elevation
of the center of mass, since the center of mass is e�ectively constrained to
a constant elevation as well as location in the horizontal plane. The �gure
appears to dangle as if suspended from its waist with its feet reaching out for
the oor. This is particularly true during an operation in which the center
of mass normally goes down, such as bending over. In order for the balance
behavior to function naturally, the elevation of the center of mass must be
allowed to oat up and down as required by the movement of the feet. This
is more appropriately handled through a constraint.

Kinematic Constraints on the Center of Mass

Balancing a �gure is achieved by constraining the center of mass to remain
directly above a point in the support polygon. The constraint designates a
single point as the balance point rather than using the entire support polygon
because this gives control over the placement of the point within the polygon.
This allows the �gure's weight to shift side to side or forward and backward,
without moving the feet.

Jack associates the center of mass logically with the lower torso region of
the human �gure, and it uses this as the end e�ector of the constraint, with
the ankle, knee, and hip joints of the dominant leg as the constraint vari-
ables. During the constraint satisfaction process at each interactive iteration,
the center of mass is not recomputed. Since the center of mass belongs logi-
cally to the lower torso, its position relative to the torso remains �xed as the
inverse kinematics algorithm positions the ankle, knee, and hip so that the
previously computed center of mass point lies above the balance point. There
are generally other constraints active at the same time, along with other pos-
tural adjustments, so that several parts of the �gure assume di�erent postures
during the process.

After the constraints are solved, Jack recomputes the center of mass. It
will generally lie in a di�erent location because of the postural adjustments,
indicating that the �gure is not balanced as it should be. Therefore, the con-
straints must be solved again, and the the process repeated until the balance
condition is satis�ed. In this case the structure of the human �gure helps.
Most of the postural adjustments take place on the �rst iteration, so on sub-

80 CHAPTER 3. SPATIAL INTERACTION

sequent iterations the changes in the center of mass relative to the rest of the
body are quite minor. Jack measures the distance that the center of mass
changes from one iteration to the next, and it accepts the posture when the
change is below a certain threshold. Although it is di�cult to guarantee the
convergence theoretically, in practice it seldom takes more than two iterations
to achieve balance.

3.2.5 Interactive Methodology

There are several possibilities for overcoming the problems with redundancies
and local minima. One is to incorporate more information into the objective
function, modeling such factors as strength, comfort, and agent preference
(Section 5.3). This is an important addition, although it adds signi�cantly
to the computational complexity of the constraint solving procedure. Jack's
technique is to provide the positional input to the inverse kinematics algo-
rithm with the 3D direct manipulation system. Jack allows the user to in-
teractively \drag" goal positions and have the end e�ector follow[PZB90]. In
this case, the geometric information obtained by the mouse at each iteration
of the manipulation process is applied to the goal position of a constraint,
and the inverse kinematics algorithm is called to solve the constraints before
the graphics windows are redrawn. Alternatively, the user can move a �g-
ure which has end e�ectors constrained to other objects. Each case causes a
relative displacement between the end e�ector and the goal.

Interactive Dragging

This dragging mechanism is a modi�ed version of the basic direct manipula-
tion scheme described in Section 3.1. After selecting the parameters of the
constraint, the manipulation procedure works as shown in Figure 3.5. The in-
verse kinematics procedure is invoked at every iteration during the interactive
manipulation.

This is a very e�ective and e�cient tool for manipulation for several rea-
sons. Because of the incremental nature of the interactive manipulation pro-
cess, the goals never move very far from one iteration to the next, as necessary.
The algorithm still su�ers from problems of local minima, but since the user
can drag the end e�ector around in space in a well-de�ned and easy to control
way, it is relatively easy to overcome these problems by stretching the �gure
into temporary intermediate con�gurations to get one part of the �gure posi-
tioned correctly, and then dragging the end e�ector itself into the �nal desired
position. This takes advantage of the user's abilities, because local minima
can be easy for the user to see but di�cult for the system to detect and avoid.

A common example of this dragging technique involves the elbow. The
user may initially position the hand at the proper place in space but then �nd
that the elbow is too high. If this is the case, the user can extend the hand
outwards to drag the elbow into the correct general region and then drag the
hand back to the proper location.

3.2. MANIPULATION WITH CONSTRAINTS 81

Redraw graphics windows

Invoke inverse kinematics algorithm

Apply manipulation transform to goal

Convert to manipulation transform

Read mouse coordinates and button status

?

?

?

?

?

Figure 3.5: Interactive Dragging.

Interactive Twisting

Another e�ective feature of the direct manipulation interface is the use of
orientation constraints, particularly the weighted combination of position and
orientation. In this case, the orientation of the goal is signi�cant as well as
the position, so the user may manipulate segments in the interior of the joint
chain by twisting the orientation of the goal and thus the end e�ector. This
is especially helpful because of the di�culty the user encounters in visualizing
and numerically describing rotations which will achieve a desired orientation.
The above example of the elbow position may be handled this way, too. By
twisting the desired orientation of the hand, the interior of the arm can be
rotated up and down while the hand remains in the same location. This
achieves in real-time a generalization of the \elbow circle" positioning scheme
implemented by Korein [Kor85].

This raises an interface issue concerning the relationship between the ac-
tual orientation of the end e�ector coordinate frame and the manipulation
transform. The manipulation technique described in Section 3.1 allows the
user to translate and rotate a 6D quantity which now guides the position
and orientation of the end e�ector. We noted, however, that this technique
is not so good at choreographing smooth movements through space. The
movement trajectory generated by the technique consists of intermittent seg-

82 CHAPTER 3. SPATIAL INTERACTION

Figure 3.6: The Orientation Constraint Icon.

ments of straight-line translations and rotations. As the user translates the
manipulation transform, its orientation remains �xed, and vice versa. Is this
appropriate behavior for the end e�ector as well?

If the end e�ector is sensitive to orientation, then translating the manip-
ulation transform means that the end e�ector will translate but will try keep
the same global orientation. Typically, the user can quickly arrive at a goal
position for the end e�ector which is not achievable.

Positional di�erences are easy to visualize; orientational di�erences are
not. It is easy to manipulate a positional goal which is outside of the reach-
able space of the end e�ector. We can intuitively think of a spring or rubber
band pulling the end e�ector towards the goal. Orientational di�erences are
much harder to visualize. Even though it may be easy to conceptualize \ro-
tational springs," in practice is it very di�cult to apply that intuition to the
geometric model. If the goal is very far outside of the reachable space of the
end e�ector along angular dimensions, all correspondence between the ori-
entation of the goal and the end e�ector gets quickly lost. Jack illustrates
orientational di�erences through rotation fans, shown in Figure 3.6, which
are icons to illustrate how an object must rotate to achieve a desired orienta-
tion, but no amount of graphical feedback can help when the di�erences are
large. Therefore, it is absolutely essential that the orientation of the goal {
the manipulation transform | not deviate too far from the end e�ector.

Jack solves this problem through an orientation o�set to the goal which
can be adjusted during the manipulation process. This o�set is a relative
transform which is applied to the manipulation transform to rotate it into the

3.3. INVERSE KINEMATIC POSITIONING 83

true orientation of the goal as supplied to the inverse kinematics algorithm.
The end e�ector dragging mechanism resets this o�set each time a translation
or rotation is completed during the manipulation process, that is, each time a
mouse button comes up and the movement stops. This means that each time
the user begins to rotate or translate the goal, the manipulation transform
starts out from the current orientation of the end e�ector. This prevents the
user from getting lost in the orientation di�erence.

This simulates the e�ect of a spring-loaded crank which applies a torque to
an object, but only as long as the user holds down the mouse button. When
the mouse button comes up, the torque disappears so that it doesn't continue
to have a undesirable e�ect. This lets the user control the goal through a
ratcheting technique of applying short bursts of rotation.

Manipulation with Constraints

The nature of the 3D direct manipulation mechanism allows the user to inter-
actively manipulate only a single element at a time, although most positioning
tasks involve several parts of the �gure, such as both feet, both hands, etc.
In addition to interactively dragging a single end e�ector, there may be any
number of other kinematic constraints. These constraints are persistent rela-
tionships to be enforced as the �gure is manipulated using any of the other
manipulation tools. By �rst de�ning multiple constraints and then manipu-
lating the �gure, either directly or with the dragging mechanism, it is possible
to control the �gure's posture in a complex way.

This mechanism involves another slight modi�cation to the direct manip-
ulation loop, shown in Figure 3.7. Step #4 may cause the end e�ectors to
move away from their goal positions. The inverse kinematics algorithm in
step #5 repositions the joints so the goals are satis�ed.

3.3 Inverse Kinematic Positioning

1Having modeled the articulated �gure with segments and joints we need to
deal with the issue of how to manipulate it. There are two basic problems:
given all joint angles, how to compute the spatial con�guration and, con-
versely, given a certain posture, what values should be assigned to joint angles.
The �rst problem, forward kinematics, is simply a matter of straightforward
transformation matrix multiplication [FvDFH90]. The second, inverse kine-
matic problem, is much harder to solve.

Inverse kinematics is extremely important in computer animation, since
the spatial appearance, rather than the joint angles, interest an animator. A
good interactive manipulation environment such as Jack may simply hide the
numerical values of the joint angles from the user. In such an environment,
where the user is concerned only with spatial con�guration, the joint angles
can become merely an internal representation. The transformation from the

1Jianmin Zhao.

84 CHAPTER 3. SPATIAL INTERACTION

Redraw graphics windows

Invoke inverse kinematics algorithm

Recompute global end e�ector and goal transforms

Apply manipulation transform to environment

Convert to manipulation transform

Read mouse coordinates and button status

?

?

?

?

?

?

Figure 3.7: Manipulation with Constraints.

spatial con�guration into the joint angles is carried out by the inverse kine-
matic computation so an e�cient implementation is most desirable.

Inverse kinematics for determining mechanism motion is a common tech-
nique in mechanical engineering, particularly in robot research [Pau81]. In
robots, however, redundant DOFs are usually avoided. Moreover, the compu-
tation is usually carried out on particular linkage systems [KH83, KTV+90].
In contrast, an interesting object in the computer animation domain { the
human body { has many redundant DOFs when viewed as a kinematic mech-
anism. Therefore a means for specifying and solving underconstrained posi-
tioning of tree-like articulated �gures is needed.

We �rst studied methods for kinematic chain positioning, especially in
the context of joint limits and redundant DOFs [KB82, Kor85]. Later we
tried position constraints to specify spatial con�gurations of articulated �gures
[BMW87]. A simple recursive solver computed joint angles of articulated
�gures satisfying multiple point-to-point position constraints.

About the same time, Girard and Maciejewski used the pseudo-inverse of

3.3. INVERSE KINEMATIC POSITIONING 85

the Jacobian matrix to solve spatial constraints [GM85]. The main formula is

�� = J+�r

where �� is the increment of the joint angle vector, �r is the increment of the
spatial vector and J+ is the pseudo-inverse of the Jacobian @r=@�. For a large
step size the method is actually the well-known Newton-Raphson method,
which is not globally convergent and often needs some special handling (e.g.,
hybrid methods [Pow70]). On the other hand, for a su�ciently small step
size, as Girard and Maciejewski suggested, excessive iterations are required.
The inverse operation is normally very expensive; moreover, they did not deal
with joint limits.

Witkin et al used energy constraints for positioning [WFB87]. The energy
function they adopted is the sum of all constraints including ones for position
and orientation. Constraints are satis�ed if and only if the energy function
is zero. Their method of solving the constraint is to integrate the di�erential
equation:

d�(t)=dt = �rE(�)

where � is the parameter (e.g., joint angle) vector, E is the energy function
of �, and r is the gradient operator. Clearly, if �(t) is the integral with some
initial condition, E(�(t)) monotonically decreases with time t. This integral
not only gives a �nal con�guration which satis�es the constraint in terms of
�, but also a possible motion from the initial con�guration which is driven by
the conservative force derived from the gradient of the energy function.

Instead of associating energy functions with constraints, Barzel and Barr
introduced deviation functions such that a constraint is met if and only if
the deviation function vanishes (= 0) [BB88]. They have presented various
constraints, such as point-to-point, point-to-nail, etc., and their associated
deviation functions. A set of dynamic di�erential equations are constructed
to control the way by which the deviations vanish (e.g., exponentially in a
certain amount of time). Constraint forces are solved which, along with other
external forces, drive geometric models to achieve constraints. They dealt with
rigid bodies which may be related by various constraints. Witkin and Welch
[WW90] used a dynamic method on nonrigid bodies. In all these approaches
articulated �gure joints would be considered as point-to-point constraints,
which are added to the system as algebraic equations. It is not unusual to
have several dozen joints in an highly articulated �gure, which would add to
the number of constraint equations appreciably. Besides, a joint is meant to
be an absolute constraint. In another words, it should not compete with other
constraints which relate a point in a segment of the �gure with a point in the
space. This competition often gives rise to numerical instability. So these
methods seem inappropriate to the highly articulated �gure.

Although the energy or dynamics methods may be used to solve the spa-
tial constraint problem, they are also concerned with computing plausible
(dynamically-valid) paths. For articulated �gure positioning, the additional
work involved in path determination is not so critical. So, we �rst focus on

86 CHAPTER 3. SPATIAL INTERACTION

a more elementary version of the problem | to position the articulated �g-
ure into desired pose | hoping that the solution can be found much faster
and more robustly, and joint angles limits can be dealt with e�ectively. We
will see later in Chapter 5 how more natural motions may be generated by
considering human strength models and collision avoidance.

3.3.1 Constraints as a Nonlinear Programming Problem

A spatial constraint involves two parts. The part on the �gure is called the
end-e�ector and its counterpart in the space is called the goal. A constraint
is a demand that the end-e�ector be placed at the goal. Since a goal always
implies a related end-e�ector, we may sometimes take goals as synonymous
for constraints.

As is done with energy constraints, we create a function with each goal
such that its value, when applied to the end e�ector, represents the \distance"
of the end-e�ector from the goal. This distance need not be only Euclidean
distance. Let us call this function \potential," because it is a scalar function
of spatial position or vectors. The vector �eld generated by the negation of the
gradient of the function could be interpreted as a force �eld toward the goal.
Depending on the goal types, an end-e�ector on a segment can be a point, a
vector, a set of two vectors, or a combination of them, in the local coordinate
system of the segment. Let P denote the potential function associated with
a goal and e the \location" of the end-e�ector. The constraint is satis�ed if
and only if P (e) vanishes. Clearly the end-e�ector is a function of the vector
of all joint angles.

A single constraint may not be su�cient to specify a pose. For example,
in addition to the position of the hand, the placement of the elbow is often
desired. In positioning two arms, we may need to keep the torso in some
orientation. The function associated with these conjunctively combined goals
is de�ned as a weighted sum:

G(�) =
mX
i=1

wiGi(�) (3:1)

where m is the number of goals combined, and

Gi(�) = Pi(ei(�)) (3:2)

where the subscript i refers to the ith goal, and wis are weights on respective
constraints.

Sometimes, goals may need be combined disjunctively. In other words, the
combined goal is achieved if and only if either constituent goal is achieved.
For example, the interior of a convex polyhedron is the conjunction of inner
half-spaces de�ned by its surrounding faces, while the exterior is the disjunc-
tion of those opposite half-spaces. Obstacle avoidance is a situation where
constraining an end-e�ector to the outside of a volume is useful. The function

3.3. INVERSE KINEMATIC POSITIONING 87

associated with the disjunctively combined goal is de�ned as

G(�) = min
i2f1;:::mg

Gi(�) (3:3)

By de�nition of the function G, the overall constraint is met if and only if
G vanishes. Due to the physical constraint of the �gure and the redundancy
of DOFs, there may not be � such that G(�) = 0, or there may be many such
�'s. Therefore we attempt to �nd a �, subject to constraints on joint angles,
which minimizes the function G. Although constraints on joint angles may be
complicated, linear constraints su�ce in most situations. Typical constraints
are represented as a lower limit and an upper limit for each joint angle. There-
fore we formulate our problem as a nonlinear programming problem subject
to linear constraints, i.e.,

8<
:

minG(�)
s:t: aTi � = bi; i = 1; 2; : : : ; l

aTi � � bi; i = l + 1; l+ 2; : : : ; k
(3:4)

where ai; i = 1; 2; : : : ; k are column vectors whose dimension is the total num-
ber of DOFs. The equality constraints allow for linear relations among the
joint angles. The lower limit li and upper limit ui on �i, the ith joint angle,
contribute to the set of inequality constraints on � :

��i � �li

�i � ui .

3.3.2 Solving the Nonlinear Programming Problem

There are many algorithms to solve problem (3.4). One e�cient algorithm is
based on Davidon's variable metric method with BFGS (Broyden, Fletcher,
Goldfarb, Shanno) rank-two update formula [Fle70, Gol70, Sha70]. Rosen's
projection method is used to handle the linear constraints on variables [Ros60,
Gol69]. No matter what algorithm we choose, e�ciency requires computation
of the gradient as well as the value of the objective function when � is given.
So �rst we develop an e�cient way to compute the gradient of, as well as the
value of, the objective function G(�) for �gures with tree-like data structure
and various sorts of goals.

Single Constraints

Since the human �gure has a tree-like structure, an end-e�ector of a constraint
depends only on those joints which lie along the path from the root of the
�gure tree to the distal segment containing the end-e�ector [BMW87]. Call
this path the constraint chain. The constraint chain is illustrated in Figure 3.8.
For simplicity, we assume each joint in Figure 3.8 has only one DOF. A joint
with multiple DOFs can be decomposed conceptually into several joints with
each having one DOF, i.e., zero distance from one joint to another is allowed.

88 CHAPTER 3. SPATIAL INTERACTION

hq�
�
�
�
�

�1

hq
A
A
A
A
A

�2

hq�
�
�
�
�

� � �

hq
@
@
@
@
@

�i�1

hq

�i

�
�
��
u

ri

hqHHHHH

� � �

hq
�n

q�
���

r

end e�ector segment

v

Figure 3.8: Constraint Chain.

The length of the constraint chain is the total number of joints along the
chain; in Figure 3.8, it is n.

This module is to compute Gi(�), as de�ned in equation (3.2) and its
gradient for a single constraint chain and its corresponding goal. In this
section, we only consider a single chain, so the subscript i is dropped.

Notice that

G(�) = P (e(�)) (3:5)

and

g(�) = r�G

= (
@e

@�
)T reP (3.6)

where @e
@�

is the Jacobian matrix of the vector function e(�), i.e.,

@e

@�
= (@e

@�1
@e
@�2

� � � @e
@�n

) .

These expressions suggest that end-e�ectors and goals can be abstracted as
functions e(�) and P (�) which, by pair, constitute constraints. The range of
the function e depends on the type of the constraint, but it must be equal
to the domain of its respective P function, which measures the distance of
the current end-e�ector to the goal. For the sake of numerical e�ciency, we
require that those functions be di�erentiable.

By virtue of equations (3.5) and (3.6), two sub-modules, end-e�ector and
goal modules, can be built separately. Note that the goal potential P does
not depend on the �gure model. Only the end-e�ector function e does.

End-e�ectors

This module is the only one which depends on the model of the articulated
�gure. It turns out that it is easy to compute e and @e

@�
, under our assumption

of rigidity of segments, for many useful types of constraint.

3.3. INVERSE KINEMATIC POSITIONING 89

We only consider constraints where end-e�ectors are points (for positions)
or vectors (for orientations) on distal segments. So e consists of either a
position vector r, one or two unit vectors attached on the distal segment v's,
or a combination of them (see Figure 3.8). Because all the joints of the human
body are revolute joints, we discuss here only revolute joints. (Translational
joints are simpler and can be treated similarly.)

Let the ith joint angle along the chain be �i, the axis of this joint be u
(a unit vector), and the position vector of the ith joint be ri. The vectors r
and v can be easily computed with cascaded multiplication of transformation
matrices. The derivative can be computed as follows [Whi72]:

@r

@�i
= u� (r� ri) (3.7)

@v

@�i
= u� v . (3.8)

These formulas are enough for the types of goals we have considered. The
particular forms of e will be explained with particular goals, since they must
match the arguments of the goal potential P (�).

Goal Types

We have implemented several useful, as well as simple, types of goals (or
constraints).

Position Goal. The goal is a point p in 3D space. The end-e�ector is, corre-
spondingly, a point r which sits on the distal segment of the constraint
chain, but it is not necessarily a leaf segment in the �gure tree (see
Figure 3.8). The potential function is:

P (r) = (p� r)2 (3:9)

where p is the parameter of the function, and the gradient is:

rrP (r) = 2(r� p) . (3:10)

Orientation Goal. The orientation in the space is determined by two or-
thonormal vectors. So the goal is de�ned by a pair of orthonormal
vectors, say,

fxg;ygg .

Accordingly, the end e�ector is a pair of orthonormal vectors

fxe;yeg

attached on the distal segment of the constraint chain.

The potential function could be:

P (xe;ye) = (xg � xe)
2 + (yg � ye)

2 .

90 CHAPTER 3. SPATIAL INTERACTION

In combination with a positional goal, this function implies that one
length unit is as important as about one radian in angle. To enforce one
length unit compatible with d degrees in angle, we need to multiply the
previous P by cd such that

1

cd
=

2�

360
d

i. e. ,
cd = 360=(2�d) . (3:11)

To be more general, our potential function is then

P (xe;ye) = c2dx(xg � xe)
2 + c2dy(yg � ye)

2 . (3:12)

The gradient is

rxe
P (xe;ye) = 2c2dx(xe � xg) (3.13)

rye
P (xe;ye) = 2c2dy(ye � yg) . (3.14)

Any direction, such as y, could be suppressed by setting cdy to 0. This
is useful, for example, to constrain a person holding a cup of water while
attaining other constraints.

Position/Orientation Goals. Position and orientation goals can be treated
separately, but sometimes it is convenient to combine them together as
a single goal. The potential function for position/orientation goal is just
the weighted sum of respectively goals:

P (r;xe;ye) = wp(p� r)
2 +woc

2
dx(xg � xe)

2 +woc
2
dy(yg � ye)

2 (3:15)

where wp and wo are weights put on position and orientation respectively
such that

wp +wo = 1 .

The gradients rrP;rxe
P and rye

P are obvious from above.

Aiming-at Goals. The goal is a point p in the space, but the end-e�ector is
a vector v attached to the distal segment at r (see Figure 3.8). The goal
is attained if the vector v points toward the point p. This is useful, for
example, when we want to make the head face toward a certain point.

The potential function is:

P (r;v) = c2d(
p� r

kp� rk
� v)2 (3:16)

where cd is de�ned in (3.11) and k � k denotes the norm operation. The
gradient is:

rrP (r;v) = 2c2d(kp� rk
2v � (p� r)�v (p� r))=kp� rk3(3.17)

rvP (r;v) = �2c2d(
p� r

kp� rk
� v) . (3.18)

3.3. INVERSE KINEMATIC POSITIONING 91

Line Goals. The goal is a line and the end-e�ector is a point r. The goal is
to force the point to go along the line. Let the line be de�ned by point
p and unit vector � such that the parametric equation of the line is

p+ t� .

The potential function is:

P (r) = ((p� r)� (p� r)�� �)2 (3:19)

and the gradient is:

rrP (r) = 2(� �(p� r) � � (p� r)) . (3:20)

Plane Goals. The goal is a plane and the end-e�ector is a point r. The
point must be forced to lie on the plane. Let a point on the plane be p
and the normal of the plane be �. The potential function is:

P (r) = ((p� r)��)2 (3:21)

and the gradient is:

rrP (r) = �2� �(p� r) � . (3:22)

Half-space Goals. The goal is one side of a plane and the end-e�ector is a
point r. The point is constrained to lie to one side of the plane. Let a
point on the plane be p and the normal of the plane be � which points
to the half space the goal de�nes. The potential function is:

P (r) =

�
0 if (p� r)�� < 0
((p� r)��)2 otherwise

(3:23)

and the gradient is:

rrP (r) =

�
0 if (p� r)�� < 0
�2� �(p� r) � otherwise .

(3:24)

As the number of joint angles n along the chain grows, the computational
complexity of G and g is linear for the listed goal types, since the end-e�ector
module needs O(n) time and the goal module needs O(1) time.

3.3.3 Assembling Multiple Constraints

In the single constraint module, we consider only those joint angles which
lie on the constraint chain. To make our constraint system useful, multiple
constraints would be combined to one constraint, as in equations (3.1) or
(3.3). The arguments in these formulas, the vector �, may involve joint angles
along many paths in the �gure tree. In other words, with respect to this

92 CHAPTER 3. SPATIAL INTERACTION

� the gradient of Gi in (3.1) or (3.3) contains many zeros. For the sake of
computational e�ciency and program modularity, we choose not to pass the
overall index of joint angles to the single constraint module.

Suppose there are m constraints. The ith constraint involves ni joint
angles, whereas the combined constraint involves n joint angles. Notice that
this n is not simply the summation of nis, since one joint angle may be
involved in several chains. The relationship between the index used in the ith
constraint chain and the overall index is represented by the mapping

Mi : f1; 2; : : :; nig �! f1; 2; : : : ; ng ; (3:25)

the jth joint angle in the ith constraint chain corresponds to the Mi(j)th joint
angle in the overall index system.

Let �i denote the vector formed by the joint angles along the ith constraint
chain. For disjunctively combined goals with G de�ned in (3.3) , one can
always focus on the goal with minimal Gi(�i) at each iteration. So this is
nothing but a collection of goals.

This module is designed for conjunctively combined goals with G de�ned
in (3.1). The evaluation of G is simply a summation of the individual Gi. To
compute the overall gradient

g = (g1 g2 � � � gn)T

= r�G(�)

by using the outputs of the single constraint module

gi(�i) = (g1i g2i � � � gnii)T

= r�iGi(�i) ,

we only need to do

1. gj 0, for j = 1; 2; : : :; n

2. For i = 1 to m do

gMi(j) gMi(j) +wig
j
i , for j = 1; 2; : : : ; ni .

From above one can see that all the Gi and their gradients gi can be
computed in parallel.

We assumed in Section 3.3.2 that the constraint chain went from the root
of the �gure tree to the distal segment. It is possible and sometimes useful
that the chain go from a speci�ed joint which is nearer to the root than the
distal segment is. Then we must take care of those joints which a�ect an end-
e�ector, but are not in the constraint chain. For example, suppose that the
torso is the root of the �gure, one constraint chain is from the right shoulder
to the right hand, and the other is from the torso to the left hand. Although
the torso is not assigned to the end-e�ector right hand, it will a�ect the right
hand when it moves the left one. The system should add joints from the torso
to the left shoulder to the constraint chain for the right hand [BOK80].

3.3. INVERSE KINEMATIC POSITIONING 93

Constraints may exist in a hierarchy. With multiple constraints, there may
be one (or more) constraint(s) which consists of several constraints disjunc-
tively combined. In general, a logic formula which contains conjunctive and
disjunctive connectors can be implemented. For example, the exterior of a
convex polyhedron can be de�ned as the union of the outside half-space of all
of its surrounding faces. This can be used to avoid obstacles: we may want
the hand to get somewhere while keeping the elbow away from the obstacle.
This does not solve segment obstacle avoidance, however.

Joints can be locked or added to the constraint chain for a particular task.

3.3.4 Sti�ness of Individual Degrees of Freedom

A nonlinear programming algorithm which utilizes gradient information has a
property that, given the same termination tolerance, a variable would undergo
more displacement if the value of the objective function changes more due to
the unit increment of that variable. This property can be used to control the
sti�ness of each DOF by assigning a scaling factor to each joint angle. These
scaling factors change the unit of each joint angle.

For example, if the standard unit of joint angles is a radian, and 0.5 is
assigned to a particular joint angle, which is to take half of the radian as
the unit of that joint angle, then this joint angle will be more reluctant to
move. One unit of change in this joint angle will have half of the e�ect on the
end-e�ector as it would without that scaling factor. This makes the e�ect of
other joint angles more apparent.

3.3.5 An Example

Jack contains an implementation of this multiple spatial constraint solver as a
basic tool for the interactive manipulation of articulated �gures. Constraints
can be of any types listed above, or can be sets of simple constraints disjunc-
tively combined. Users may create various constraints, any of which can be
moved interactively, and the achieving con�guration is solved and observed in
real-time.

The pose in Figure 3.9 is achieved by using 6 constraints. Two Posi-
tion/Orientation goals are used for two hands to hold the tube, where one
direction of the orientation is suppressed so that only normals of the hand
and the tube are aligned. Two Plane goals are used to constrain two elbows
on two side planes. To have the person look down towards the end of the
tube, we used two goals { a Line goal was used to constrain the view point
on the central axis of the tube; an Aiming-at goal was used to point the view
vector towards the end of the tube. In all, 22 DOFs are involved. To en-
courage forward bending, we set the rigidities of the lateral bending and axial
rotation of the torso to a mid-range (0.5) value. Starting from an upright
neutral position and moving from the waist, the solution took only 2 seconds
on a Silicon Graphics Personal Iris (4D-25TG), not one of the faster machines
of its type.

94 CHAPTER 3. SPATIAL INTERACTION

Figure 3.9: Looking Down Towards the End of the Tube.

3.4 Reachable Spaces

2The workspace is the volume or space encompassing all points that a ref-
erence point on the hand (or the end e�ector) traces as all the joints move
through their respective ranges of motion [KW81]. An articulated chain is
a series of links connected with either revolute or prismatic joints such as a
robotic manipulator or a human limb. Visualizing the 3D workspace for artic-
ulated chains has applications in a variety of �elds: in computer graphics and
arti�cial intelligence systems that generate plans for approaching and grasp-
ing an object in complex environments, in CAD systems to design the interior
layout of cars, vehicles, or space shuttles, in the evolving areas of telerobots
and parallel manipulators, in the coordination of di�erent manipulators to
perform certain tasks, and, �nally, in ergonomic studies to help understand-
ing the e�ects of body size, joint limits, and limb length on the workspace
volume.

Previous workspace algorithms [Kum80, Sug81, GR82, TS83, TS81, Tsa86,
YL83, Vij85, Muj87] are only capable of displaying 2D workspace cross-

2Tarek Alameldin.

3.4. REACHABLE SPACES 95

sections. This is not adequate for redundant (more than 6 DOFs) manip-
ulators with joint limits. We describe how to compute the 3D workspace for
redundant articulated chains with joint limits.

The �rst e�orts to compute the manipulator workspace, based on its kine-
matic geometry, started in the mid 1970's [Rot75, Sug81]. The �rst result
was that the extreme distance line between a chosen point on the �rst joint
axis and the center point of the hand/end e�ector (extreme reach) intersects
all intermediate joint axes of rotation. This is not valid, however, if any joint
has limits, any intermediate joint axis is parallel to the extreme distance line,
or two joint axes intersect.

Kumar and Waldron [KW81] presented another algorithm for the manip-
ulator's workspace. In their analysis, an imaginary force is applied to the
reference point at the end e�ector in order to achieve the maximum extension
in the direction of the applied force. The manipulator reaches its maximum
extension when the force's line of action intersects all joint axes of rotation
(since the moment of the force about each axis of rotation must be zero).
Every joint of the manipulator can settle in either of two possible positions
under the force action. Hence, this algorithm results in 2n�1 di�erent sets
of joint variables for a manipulator of n joints in the direction of the applied
force. Each set of joint variables results in a point on the workspace bound-
ary. The concept of stable and unstable equilibrium is used to select the set
of joint variables that result in the maximum extension in the force direction.
This algorithm is used to generate a shell of points which lie on the workspace
boundary by varying the direction of the applied force over a unit sphere.
This algorithm has exponential time complexity and deals only with those
manipulators that have ideal revolute joints.

Tsai and Soni [TS83] developed another algorithm to plot the contour of
the workspace on an arbitrarily speci�ed plane for a manipulator with n rev-
olute joints. The robot hand is moved to the speci�ed plane, then the tip
of the hand is moved on the plane until it hits the workspace boundary, and
�nally the workspace boundary is traced by moving the hand from one posi-
tion to its neighbor. Each of these three subproblems is formulated as a linear
programming problem with some constraints and bounded variables (to ac-
count for the joint limits). Accordingly, this algorithm is just a 2D workspace
cross-section computation and, moreover, has excessive computational cost.

Yang [YL83] and Lee [LY83] presented algorithms to detect the existence
of holes and voids in the manipulator's workspace. A workspace is said to
have a hole if there exist at least one straight line which is surrounded by
the workspace yet without making contact with it. The hole in a donut is
a simple example for the above de�nition. A workspace is said to have a
void if there exist a closed region R, buried within the reachable workspace,
such that all points inside the bounding surface of R are not reached by the
manipulator. Gupta [Gup86, GR82] classi�ed voids into two di�erent types.
The �rst one, called central, occurs around the �rst axis of rotation and is like
the core of an apple. The second type, called toroidal or noncentral, occurs
within the reachable workspace and is like a hollow ring. He [Gup86] also

96 CHAPTER 3. SPATIAL INTERACTION

presented qualitative reasoning about the transformation of holes to voids
and vice versa. Both the qualitative method developed by Gupta [Gup86]
and the analytical one developed by Yang and Lee [YL83, LY83] are based on
mapping the workspace from the distal link to the proximal one and studying
the relationship between the generated workspace and the new axis of rotation.

Tsai [Tsa86] presented another algorithm, based on the theory of recipro-
cal screws. In contrast to the above algorithms that only compute workspace
points, this algorithm traces the 2D workspace boundary for a given manip-
ulator. The use of reciprocal screw theory has made computing piecewise
continuous boundary that consists of straight line segments and circular arcs
possible. The manipulator's workspace is computed by performing the union
operation on all the workspaces of the manipulator's aspects. An aspect of a
robot is interpreted as a set of joint variables such that the manipulator can
reach points inside the workspace at one con�guration without hitting a joint
limit [Tsa86]. The computed workspace has interior surfaces which are the
boundaries of aspects. This algorithm is limited to manipulators which do
not have holes or voids in their workspaces.

Korein [Kor85] created conservative approximations to 3D reach volumes
by taking polyhedral unions of reach polyhedra, working along an articulated
chain from the distal joint inwards. The major drawbacks of his approach
are the high computational cost and numerical sensitivity of the polyhedral
unions which are very di�cult to perform once they become many-sided.

3.4.1 Workspace Point Computation Module

The purpose of this module is to compute a suitably dense set of workspace
points. The inputs to this module are a chain of linkages with a proximal
and distal end, the joint limits associated with each DOF and the desired
resolutions in the x, y and z directions (resx; resy; resz) for the end e�ector
position.

We classify the algorithms that can be used to implement this module as
follows:

1. Algorithms based on forward kinematics. The basic idea is to generate
end e�ector positions by cycling each DOF through some number of
discrete angles (if revolute) or distances (if prismatic).

2. Algorithms based on nonlinear programming. Here a collection of points
in space is provided as targets for the end e�ector and the linkage at-
tempts to solve for a satisfying posture.

3. Algorithms based on force application at the end e�ector. A series of
force directions is used to pull the chain to its maximum extension.

Each class is better than the others for some applications. Direct kine-
matics algorithms lend themselves easily to volume visualization applications
since they require less time and space than the other algorithms. It is di�cult,

3.4. REACHABLE SPACES 97

however, to determine the adequate density (the number of points to be gen-
erated) that would compute a workspace with the given resolution (resx; resy;
and resz) . Hence, direct kinematics based algorithms cannot be used alone
to compute the workspace volume since they are not guaranteed to compute
all the reachable points. The resolution values divide the space into cells of
dimensions resx � resy � resz . A cell is marked with one if it contains a
workspace point. A cell marked with zero does not necessarily mean that
it is unreachable since the direct kinematics based algorithm might not have
computed enough workspace points. This limitation is serious especially if the
application requires surface visualization which use edge detection algorithm
as will be described in the next section. On the other hand, algorithms based
on nonlinear programming are more appropriate for applications that only
require computing the envelope of the reachable workspace since these algo-
rithms compute only points that lie on the workspace envelope. However, the
cost of computing each point by the nonlinear programming based algorithms
is higher than the cost using forward kinematics based algorithms. Finally,
nonlinear programming based algorithms are more appropriate for applica-
tions that require partial surface computation in predetermined directions.
They can also be used in volume visualization applications by dividing the
space into voxels (of dimension resx�resy�resz) and using the inverse kine-
matics algorithm to determine whether the cell is occupied or not. However,
this operation is very costly and does not guarantee the correct result since
the nonlinear programming algorithms do not necessarily return the global
maximum or minimum (they might stop at local ones). Algorithms that are
based on force application are very costly since they require exponential time
to compute each point. All these algorithms can be hybridized to compute
better quality volumes or surfaces [Ala91, ABS90].

3.4.2 Workspace Visualization

We believe that either surface based techniques or voxel based techniques
can be used in workspace visualization depending on the application type. If
the application goal is to compute the workspace boundary in order to �nd
the intersection with other psurf objects in the environment, surface based
techniques can be used. On the other hand, binary voxel based techniques
lend themselves easily to applications that require computing cut-away views,
changing the view point, �nding the union or the intersection with other ob-
jects that are represented by voxels, and trading o� computation time against
image quality.

This module constructs a surface that encompasses the workspace points
that were computed by the workspace point generation module. We have
developed an algorithm that accepts the workspace contours computed by
the direct kinematics algorithm. The algorithm can be summarized in four
steps:

1. Region Filling. This step involves determining the number of regions
in a given workspace contour. The number of holes and voids in the

98 CHAPTER 3. SPATIAL INTERACTION

given workspace contour can be determined. Region �lling algorithms
are a common graphics utility and are widely used in paint programs
[Sha80, FB85, Fis90]. A region is a collection of pixels. There are two
types of regions: 4-connected and 8-connected. A region is 4-connected
if adjacent pixels share a horizontal or vertical edge. A region is 8-
connected if adjacent pixels share an edge or a corner. Region �lling
algorithms start with a given seed point (x; y) and set this pixel and all
of its neighbors with the same pixel value to a new pixel value. A good
region-�lling algorithm is one that reads as few pixels as possible. The
algorithm computes the number of regions in a given workspace cross-
section (contour). We search the contour for a reachable workspace
cell (marked with 1) and use it as a seed point. The set of all cells
connected to the seed point comprise a reachable region. The region
�lling algorithm sets those cells to a new value that greater than 2. The
region �lling algorithm is called as many times as necessary in order to
set di�erent regions with unique values.

2. Boundary Detection. The purpose of this step is to compute the bound-
ary of di�erent regions in a workspace cross-section. This is done by
testing the neighbors of each cell in the workspace cross-section. An
array element of the workspace cross-section is considered a boundary
cell if it has a di�erent value from its neighbor.

3. Contour Tracing. This step computes the edges that connect the bound-
ary points for a given region.

4. Triangulation. This step constructs the 3D workspace by tiling adjacent
contours with triangles. We have used the Fuchs' algorithm [FKU77]
that interpolates the triangular faces between parallel slices in order to
construct the 3D workspace surface from the di�erent cross sections.

3.4.3 Criteria Selection

This module interacts with the user and selects the most suitable point com-
putation and visualization algorithms based on the application requirements.
Those requirements (parameters) include:

� Surface/volume. This parameter allows the user to select to either com-
pute the workspace boundary (envelope) or compute the workspace vol-
ume based on the application requirements.

� Complete/partial. This parameter allows the user to compute either the
full 3D workspace or just the portion of interest. If the user selects a
partial workspace, it then asks for either the bounding cube or sphere
that limits the portion of interest. The criteria selection would call the
nonlinear-programming based algorithms from the point computation
module since they are most suitable for computing partial workspaces.

3.4. REACHABLE SPACES 99

� Holes and voids. This parameter allows the user to select computing
holes and voids based on the application requirements. Computing the
workspace envelope without holes and voids is important for some ap-
plications. On the other hand, computing the holes and voids is often
unnecessary and anyway requires more time and space.

� Resolution. This parameter allows the user to select between a simple
plot and a complex image based on the application deadline. The criteria
selection asks the user to enter values for the required resolution in
x; y; and z directions. These parameters are denoted resx; resy; and
resz respectively. The criteria selection passes those values to the point
computation algorithms so that they can compute the right number of
workspace points. If the user is interested in a quick response regardless
of the image quality, low resolution values for the resx; resy ; and resz
parameters can be entered.

We can now compute 3D workspaces for articulated chains with redun-
dant DOFs and joint limits. The criteria selection module interacts with the
user and selects the most suitable workspace computation and visualization
algorithms based on the application requirements. The second module of that
system computes workspace points for the given chain. The third module �ts
a 3D surface around the volume that encompasses the workspace points com-
puted by the second module. An example of a 3D workspace for the left arm
of a seated �gure is illustrated in Plates 4 and 5. In Plate 4 the global shape of
the workspace is visible as a translucent surface surrounding the body, while
in Plate 5 we see what the �gure can simultaneously reach with his left hand
and see within the cockpit.

100 CHAPTER 3. SPATIAL INTERACTION

Chapter 4

Behavioral Control

The behaviors constitute a powerful vocabulary for postural control. The
manipulation commands provide the stimuli; the behaviors determine the
response. The rationale for using behavioral animation is its economy of
description: a simple input from the user can generate very complex and
realistic motion. By de�ning a simple set of rules for how objects behave,
the user can control the objects through a much more intuitive and e�cient
language because much of the motion is generated automatically.

Several systems have used the notion of behaviors to describe and generate
motion [Zel91]. The most prominent of this work is by Craig Reynolds, who
used the notion of behavior models to generate animations of ocks of birds
and schools of �sh [Rey87]. The individual birds and �sh operate using a
simple set of rules which tell them how to react to the movement of the neigh-
boring animals and the features of the environment. Some global parameters
also guide the movement of the entire ock. William Reeves used the same
basic idea but applied it very small inanimate objects, and he dubbed the
result particle systems [Ree83].

Behaviors have also been applied to articulated �gures. McKenna and
Zeltzer [MPZ90] describe a computational environment for simulating virtual
actors, principally designed to simulate an insect (a cockroach in particular)
for animation purposes. Most of the action of the roach is in walking, and a
gait controller generates the walking motion. Reexes can modify the basic
gait patterns. The stepping reex triggers a leg to step if its upper body
rotates beyond a certain angle. The load bearing reex inhibits stepping if
the leg is supporting the body. The over-reach reex triggers a leg to move if
it becomes over-extended. The system uses inverse kinematics to position the
legs. Jack controls bipedal locomotion in a similar fashion (Section 5), but for
now we focus on simpler though dramatically important postural behaviors.

101

102 CHAPTER 4. BEHAVIORAL CONTROL

?

?

?

Redraw Graphics Windows

Evaluate Constraints

Execute Behavior Functions

Get info from mouse or keyboard
- geometric movement?
- command to execute?

?

Figure 4.1: The Interactive System Architecture.

4.1 An Interactive System for Postural Con-

trol

The human �gure in its natural state has constraints on its toes, heels, knees,
pelvis, center of mass, hands, elbows, head and eyes. They correspond loosely
to the columns of the sta� in Labanotation, which designate the di�erent
parts of the body.

The heart of the interactive system is a control loop, shown in Figure 4.1.
The system repeatedly evaluates the kinematic constraints and executes the
behavior functions [PB91]. It also polls the user for information, which can
be geometric movements through the direct manipulation operator described
in Section 3.1, or commands to execute which can change the state of the
system or the parameters of the constraints. The behavior functions can also
modify the state of the environment or the parameters of the constraints,
as described below. Each iteration of the control loop is a time step in a
simulated movement process, although this is an imaginary sense of time.

There are four categories of controls for human �gures, illustrated in Ta-
ble 4.1. First, there are behavioral parameters. These are the parameters of
the body constraints and govern things like whether the feet should remain
planted on the oor or whether they should be allowed to twist as the body
moves. Second, there are passive behaviors. These behaviors express relation-
ships between di�erent parts of the �gure. These relationships are usually
more complex than can be expressed through the behavioral parameters. An
example of a passive behavior is the parametrization of the distribution of

4.1. AN INTERACTIVE SYSTEM FOR POSTURAL CONTROL 103

weight between the feet. Third, there are active behaviors. Active behaviors
have a temporal component. They wait for events or conditions to occur and
then �re o� a response which lasts for a speci�ed duration. An example of an
active behavior is the automatic stepping action the �gure takes just before
it loses its balance. Finally, there are manipulation primitives. These are
the commands which allow the user to interactively drag or twist parts of a
�gure. These are the principal sources of input, the stimuli for the postural
adjustments, although much of the movement during a postural adjustment
usually comes from the response generated by the behavioral controls. Ta-
ble 4.1 provides a summary of Jack's current vocabulary for postural control.

4.1.1 Behavioral Parameters

The behavioral parameters are the properties of the constraints which model
the posture. Mostly, these parameters describe the objective functions of the
constraints, as in whether the constraint speci�es position, orientation, or
both. The parameters can include the goal values of the constraints as well.
These are simple relationships which require no computation on the part of
the system.

The Jack behaviors provide control over the position and orientation of the
feet, the elevation of the center of mass, the global orientation of the torso, the
orientation of the pelvis, and the gaze direction of the head and eyes. There
are additional non-spatial controls on the knees and elbows. These controls
were originally designed for the human �gure in a rather ad hoc fashion,
although they correspond loosely to the columns of the sta� in Labanotation.

Most of Jack's current behavioral parameter commands, listed in Table 4.1,
allow the user to instruct the �gure to maintain the current posture of the
part of the body that it controls, such as the position and orientation of
feet or the elevation of the center of mass. This means that this property
will be maintained whenever possible even as the other parts of the �gure
change posture. This works well in an interactive manipulation context: the
user manipulates the body part into place, and it stays there. This is the
\what you see is what you get" approach. This also obviates the need for a
complex syntax for describing positions and orientations grammatically, since
the method of describing the location is graphical and interactive, through
direct manipulation.

The Position and Orientation of the Feet

The foot behaviors are shown in Table 4.2. These are options to the set foot

behavior command. The standard human �gure model in Jack has a foot with
two segments connected by a single toe joint, and two natural constraints, one
on the toes and another on the heel. The toe constraint keeps the toes on the
oor; the heel constraint can keep the heel on the oor or allow it to rise if
necessary. For a standing �gure, the pair of behaviors keep heel on oor and
allow heel to rise control the height of the heel. The pivot behavior instructs

104 CHAPTER 4. BEHAVIORAL CONTROL

behavioral parameters

set foot behavior

pivot

hold global location

hold local location

keep heel on oor

allow heel to rise

set torso behavior

keep vertical

hold global orientation

set head behavior

�xate head

�xate eyes

release head

release eyes

set hand behavior

hands on hips

hands on knees

hold global location

hold local location

release hands

hand on site

grab object

passive behaviors

balance point follows feet

foot orientation follows balance line

pelvis follows feet orientation

hands maintain consistent orientation

root through center of mass

active behaviors

take step when losing balance

take step when pelvis is twisted

manipulation primitives

move foot

move center of mass

bend torso

rotate pelvis

move hand

move head

move eyes

Table 4.1: Behavioral Controls.

4.1. AN INTERACTIVE SYSTEM FOR POSTURAL CONTROL 105

set foot behavior

pivot

hold global location

hold local location

keep heel on oor

allow heel to rise

Table 4.2: Foot Behaviors.

the toes to maintain the same position, and to maintain an orientation at on
the oor while allowing them to rotate through a vertical axis. The hold global

location behavior disables the pivot behavior and �xes the toe orientation in
space. This is the appropriate behavior when the foot is not on the oor.
The hold local location behavior attaches the foot to an object such as a pedal.
If the object moves, the foot will follow it and maintain the same relative
displacement from it. If the �gure is seated, then the heel behaviors and the
pivot behavior have no e�ect, and the hold behaviors control the position and
orientation of the heel instead of the toes.

The behavior of the feet is usually activated by the manipulation of some
other part of the �gure, such as the center of mass or the pelvis. A good
example of the pivot behavior is when the center of mass is dragged towards
one foot: should the other foot pivot in order to extend the leg, or should it
remain planted and inhibit the movement of the center of mass? The behaviors
say which should occur.

The Elevation of the Center of Mass

The horizontal location of the center of mass is a passive behavior which
determines balance, as described below. The elevation of the center of mass
is more straightforward. This concept has a direct analog in Labanotation:
the level of support [Hut70]. A middle level of support is a natural standing
posture, a low level of support is a squat, and a high level of support is
standing on the tip-toes. The hold current elevation behavior is an option
of the set balance behavior command. It instructs the �gure to maintain the
current elevation of the center of mass. This behavior is o� by default. This
behavior is necessary because under normal circumstances, the center of mass
of the �gure is free to rise and fall as necessary to meet the requirements of the
feet. After adjusting the center of mass to an appropriate level, if no control
holds it there, it may rise or fall unintentionally.

The Global Orientation of the Torso

The torso behaviors are listed in Table 4.3. The default behavior is keep

vertical, which causes the torso to maintain a vertical orientation. Biomechan-
ics research tells us that one of the most constant elements in simple human

106 CHAPTER 4. BEHAVIORAL CONTROL

set torso behavior

keep vertical

hold global orientation

Table 4.3: Torso Behaviors.

locomotor tasks is the global orientation of the head. One theory explaining
this suggests that the head is the principle sensor of stability [BP88]. The
keep vertical behavior mimics this nicely through a directional constraint on
the chest to remain vertical, while not a�ecting its vertical rotation. This
means that as the pelvis of the �gure rotates forward, backward, or side to
side, the torso will automatically compensate to keep the head up. Since the
constraint is on the upper torso, not the head, the neck is free to move in order
for the �gure to look at certain reference points, as described below with the
head and eye behaviors.

The hold global orientation behavior involves all three DOFs of the torso.
This allows other parts of the body to be adjusted while the head and chest
stay relatively �xed. This is particularly important in making adjustments to
the pelvis and legs after positioning the torso acceptably. This behavior does
not involve position, because it is usually acceptable to have the position oat
with the rest of the body.

Movements of the spine are described in terms of total bending angles
in the forward, lateral, and axial directions. The technique uses weighting
factors that distribute the total bending angle to the individual vertebrae in
such a way that respects the proper coupling between the joints. Di�erent
weight distributions generate bends of di�erent avors, such as neck curls or
bends con�ned to the lower back. These parameters are options to the torso
behavior controls through the set torso behavior command because they govern
how the torso behaves as it bends to maintain the proper orientation. The
user can select one of the standard curl from neck or bend from waist options,
or alternatively input the range of motion of the spine by selecting a top and
bottom joint, and initiator and resistor joints which control the weighting
between the vertebrae.

The Fixation Point for the Head and Eyes

The head and eyes can be controlled by specifying a �xation point, modeled
through aiming constraints which orient them in the proper direction. The
constraint on the head operates on a reference point between the eyes, oriented
forwards of the head. The head constraint positions only the head, using the
neck. The constraint on the eyes rotates only the eyeballs. The eyeballs rotate
side to side and up and down in their sockets. The behavioral parameters
control the head and eyes independently during postural adjustments. The
active behaviors described below simulate the coupling between head and eye
movement.

4.1. AN INTERACTIVE SYSTEM FOR POSTURAL CONTROL 107

set head behavior

�xate head

�xate eyes

release head

release eyes

Table 4.4: Head Behaviors.

set hand behavior

hands on hips

hands on knees

hold global location

hold local location

release hands

hand on site

grab object

Table 4.5: Hand Behaviors.

The �xate head behavior option of the set head behavior command allows
the user to select a �xation point for the head. The �xate eyes behavior does
the same for the eyes. When these behaviors are active, the head and eyes
will automatically adjust to remain focused on the �xation point as the body
moves.

The Position and Orientation of the Hands

The principal control for the hands involves holding them at particular
points in space as the body moves. Postural control of the arms and hands is
usually a two step process. First, get the hands into position using the active
manipulation facilities, and second, set a control to keep them there as some
other part of the body moves. The hold global location and hold local location

behaviors serve much the same for the hands as their counterparts for the feet.
The desired geometric positions and orientations are either global or local to
some other object. The set hand behavior command provides several standard
postures. For a standing �gure, a pleasing reference point is the �gure's hips.
The hands rest on the hips with the elbows out to the side, the arms akimbo
posture. For a seated position, a pleasing reference point is the �gure's knees.
The site behavior moves the hand to a particular site, in both position and
orientation. This simulates a reaching movement, but its real purpose is to
hold the hand there once it reaches the site.

The controls for the hands are invoked whenever the body moves or when-
ever an object to which the hand is constrained changes location. A good

108 CHAPTER 4. BEHAVIORAL CONTROL

analogy is holding onto an object such as a doorknob. If the door closes, the
arm goes with it. Likewise, if the body bends over, the door stays �xed and
the arm adjusts accordingly.

Jack also allows the converse relationship which is more suited to the way
a person holds a screwdriver. A screwdriver is controlled completely by the
hand and is not �xed in space in the same sense as the door. If the body
bends over, the screwdriver should move along with the arm, not remain in
place like the doorknob. This type of a relationship comes from the grab object

behavior. \Grab" in this context does not mean \grasp"; it doesn't mean the
�ngers will wrap around the object. Such an action is available as a type of
motion (Section 4.2.7). It actually means that the object will subsequently
be attached to the �gure's hand, as if the �gure grabbed it. Once again, the
process has two-steps: �rst, position the hand and the object relative to each
other, then specify the grab behavior to hold it there.

The constraints on the hands are logically separate from the other con-
straints on the body. Jack evaluates the hand constraints after the other
constraints, not simultaneously. The reasons for structuring the arm behav-
iors this way are partly practical and partly philosophical.

In practice, the inverse kinematics algorithm does not perform well when
the hand constraint is considered collectively with the other body constraints.
With the human �gure rooted through the toes, there are too many DOFs
between the toes and the hands to be controlled e�ectively. Even though the
constraints on the pelvis, center of mass, and opposite foot help to resolve
this redundancy, if the hand constraint is on equal par with the other parts of
the body, the hand constraint can frequently cause the other constraints to be
pulled away from their goals. Since the potential energy function describing
the equilibrium state for the �gure is a weighted combination of all of the
constraints, the center of mass and pelvis constraints must have signi�cantly
higher weight to avoid having the hand pull the body o� balance. It has been
di�cult to arrive at a set of weights which give the right behavior. It has been
much easier to simply localize the movements of the arms and isolate them
from the rest of the body.

Philosophically, it is acceptable to consider the arm movements indepen-
dently as well. Normally, a reaching task does not initiate much movement of
the lower body, unless there are explicit instructions to do so. For example,
consider what happens when a human being reaches for a nearby object such
as a doorknob. If the door is near enough, this won't involve any bending
of the waist, but if the door is farther away, it may be necessary to bend
the waist. If the door is farther away still, it may be necessary to squat or
counter-balance by raising a leg backwards. This system of behaviors requires
an explicit control specifying which approach the �gure takes. If the torso
must bend or the center of mass must shift in order to perform a reaching
task, then the user, or some higher level behavior function, must initiate it.
Automatic generation of these intermediate postures is non-trivial. We discuss
two rather di�erent approaches in Sections 5.4 and 5.5.

4.1. AN INTERACTIVE SYSTEM FOR POSTURAL CONTROL 109

The Knees and Elbows

The knees and elbows require special care to prevent them from becoming
locked at full extension. The fully extended position not only appears awk-
ward, but it tends to cause the inverse kinematics algorithm to get trapped
in a local minimum. Because the algorithm uses a gradient descent approach,
if an elbow or knee reaches its limit, it has a tendency to stay there1. To
prevent this, Jack uses limit spring constraints to discourage the knees and
elbows from reaching their limiting value. The springs give a high energy level
to the fully extended angle. The springs can be tuned to any angle, but the
default is 10�, and in practice, this tends to work well.

This gives the �gure in its natural standing position a more pleasing pos-
ture, more like \at ease" than \attention". Biomechanics literature describes
this in terms of the stresses on the muscles [Car72]. Labanotation uses this
posture as the default: the elbows are \neither bent nor stretched" [Hut70]
and, in the middle level of support, the knees are \straight but not taut"
[Hut70].

The Pelvis

The pelvis and torso are intricatedly related. The torso includes all joints
in the spine from the waist to the neck, and rotating these joints allows the
�gure to bend over. However, when human beings bend over, they generally
bend their pelvis as well as their torso. This means manipulating the two hip
joints as a unit, which can be a problem for a computer model because there
is no single �xed point below the hips from which to rotate. However, this
problem is easy to handle by controlling the orientation of the pelvis through
a constraint.

4.1.2 Passive Behaviors

Passive behaviors can represent more complex relationships than the behav-
ioral parameters. They are like little processes attached to each �gure. The
passive behavior functions are executed at each interactive iteration. A pas-
sive behavior can involve a global property of the �gure such as the center of
mass or the shape of the �gure's support polygon. An example of this kind
of behavior is the parametrization of the distribution of the weight between
the �gure's feet: when the feet move, the balance behavior function must
compute the proper location for the balance point and register this with the
constraint on the center of mass. Passive behaviors are instantaneous in that
they explicitly de�ne a relationship to be computed at each iteration.

Passive behaviors are easy to implement in this basic system architecture
because their only job is to compute the necessary global information and sup-
ply it to the behavioral controls. Because of the general nature of the inverse

1Essentially the algorithm sees a zero gradient and hence �nds no advantage to moving

the locked joint as that does not decrease the overall distance to the goal: the required

motion is in fact exactly perpendicular to the aligned segments.

110 CHAPTER 4. BEHAVIORAL CONTROL

kinematics constraints, the behaviors can overlap to a degree not possible with
other systems, like Zeltzer's local motion processes [Zel82, Zel84].

Currently, Jack has implemented six basic passive behavior functions for
human �gures, and they illustrate a range of capabilities. They control the
location of the balance point, the orientation of the feet, the orientation of
the pelvis, and the orientation of the hands. The �nal two behaviors control
the �gure root.

Balance as a Passive Behavior

Probably the most important human postural behavior, and the one demand-
ing the most coordination, is balance. The need to remain balanced dictates
much of the subtle and elusive behavior of a human �gure. The location of
the balance point of a �gure is signi�cant in both cause and e�ect. The lo-
cation of the balance point is dependent on other parts of the �gure, namely,
the feet. Also, the balance point sends information to the other parts of the
body regarding the �gure's state of balance. Requiring a process to handle
balance in a global fashion was recognized long ago [BS79, BOK80], but sig-
ni�cant progress in computer interactivity and posture behavior algorithms
was needed to realize that design.

To parametrize the location of the balance point with respect to the feet
we use the balance line, which is the line between a �xed reference point in
the middle of each foot. Biomechanics literature [Car72] states that in the
standing rest position, the body's vertical line passes 2-5cm in front of the
ankle joint, midway through the arch of the foot. This line between the feet
divides the support polygon down the middle.

Given the location of the center of mass, the balance point parameters,
call them x and z, can be determined as shown in Figure 4.2. To do this,
project the balance point on the y = 0 plane and call the point b. Then
�nd the point on the balance line closest to this point, and call it p. z is
the distance between b and p, that is, the balance point's distance forward
from the balance line. However, it is more convenient to normalize z between
0.0 and 1.0 according to the placement of b between the balance line and
the front edge of the support polygon. Therefore, if z > 1 then the balance
point lies outside the support polygon. If the balance point is behind the
balance line, then let z be normalized between -1.0 and 0.0. Likewise, x is the
interpolation factor which gives p in terms of the left and right foot reference
points, normalized between 0.0 and 1.0, with x = 0 being the left foot. If x
is outside of the [0; 1], then the balance point is to the side of the support
polygon.

Once the system has the ability to measure balance, these parameters
are available for the behavior functions to use. The balance point follows feet

behavior, described in Section 4.1.2, falls directly out of this parametrization.
This behavior causes the distribution of weight between the feet to remain
constant even as the feet move. The active stepping behavior take step when

losing balance, described in Section 4.1.3, uses this parameter as its trigger.

4.1. AN INTERACTIVE SYSTEM FOR POSTURAL CONTROL 111

b

zx

p

Figure 4.2: The Parametrization of the Balance Point.

Global E�ects of Local Manipulations

Another capability of the passive behaviors in this system is to telegraph
changes in the posture of a local part of the �gure to the rest of the �gure
as a whole. This can provide coordination between the di�erent parts of
the �gure. The behavioral parameters as described above generally hold the
di�erent parts of the �gure in place, but sometimes it is better to have them
move automatically. A good example of this is the pelvis follows foot orientation

behavior, described in Section 4.1.2, in which the orientation of the pelvis
automatically adjusts to the orientation of the feet. Whenever the feet change
orientation, they radiate the change to the pelvis which mimics the rotational
spring-like behavior of the legs.

Negotiating Position and Orientation

The passive behaviors o�er a solution to the problem of negotiating the over-
lapping inuence of position and orientation while interactively dragging part
of the body. Because of the nature of the direct manipulation technique de-
scribed in Section 3.1, it is not possible to rotate and translate during a single
movement of the mouse. This has come up before, in Section 3.2.5: either
the dragging procedure has no control over orientation, in which case the ori-
entation is arbitrary and unpredictable, or the dragging procedure does have
control over orientation, in which case the orientation remains globally �xed
during spurts of translation. Fixing the orientation during translation can, for
example, cause the hand to assume an awkward orientation as it is translated.

Passive behavior functions allow the direct manipulation operator to have
control over the orientation and avoid awkward orientations. While the user
is translating with the mouse, the behavior function can automatically deter-
mine a suitable orientation based on heuristic observations. While rotating,
the user has complete control over the orientation. The heuristics can simply

112 CHAPTER 4. BEHAVIORAL CONTROL

be embedded in the behavior functions (Section 2.4).
The pair of behaviors foot orientation follows balance line and hands maintain

consistent orientation, use heuristics taken from Labanotation to predict suit-
able orientations for the hands and the feet during their manipulation. This
allows the user to position them mostly by translating them, making changes
to the orientation only as necessary.

The Figure Root

One passive behavior deserves special attention: the �gure root. The prin-
cipal disadvantage of modeling an articulated �gure as a hierarchy is that
one point on the �gure must be designated as the �gure root. Section 3.2.3
explains the e�ect of the �gure root on the inverse kinematics algorithm: the
positioning algorithm itself cannot move the �gure root. It can only manipu-
late chains emanating from the root. Any movement of the �gure root must
be programmed explicitly. Therefore, a major element of Peabody is the
ability to change the setting of the �gure root when necessary.

The �gure \root" is an unnatural concept. It has no natural analog for
a mobile �gure like a human being, so it has no place in the language for
controlling human �gures. Since it is a necessary internal concept, can it be
controlled internally as well? For certain postures of a human �gure, there
are distinct reference points on the �gure which serve as good �gure roots:
the feet, the lower torso, and the center of mass. It should be possible to have
the system choose these automatically and thus make the root transparent to
the user.

There are several possibilities for the �gure root of a human �gure. Many
systems which don't have the ability to change the root choose to locate it at
the lower torso [BKK+85]. However, this complicates the process of moving
the lower torso during balance adjustments. Using this approach, it can be
very di�cult to get the �gure to bend over convincingly because the hips
need to shift backwards and downwards in ways that are di�cult to predict.
However, for a seated posture, the lower torso is a good choice for the root.
When a �gure is standing, the feet are natural choices for the root.

The choice of the �gure root can be handled by designing a behavior func-
tion which monitors the �gure's posture and automatically changes the �gure
root when necessary to provide the best behavior. This behavior function
uses the following rules:

� It roots the �gure through a foot whenever the weight of the body is
more than 60% on that foot. This ensures that if the �gure is standing
with more weight on one leg than the other, the supporting leg serves
as the root. It also ensures that if the �gure is standing with weight
equally between the two legs but possibly swaying from side to side that
the root doesn't rapidly vacillate between the legs.

� If the height of the center of mass above the feet dips below 70% of
the length of the leg, then the root changes to the lower torso. This

4.1. AN INTERACTIVE SYSTEM FOR POSTURAL CONTROL 113

predicts that the �gure is sitting down. Heuristically, this proves to be
a good choice even if the �gure is only squatting, because the constraint
on the non-support leg tends to behave badly when both knees are bent
to their extremes.

Balance Point Follows Feet

Labanotation has a notion for the distribution of the weight between the feet
and the shifting of the weight back and forth [Hut70]. This notion is well-
de�ned regardless of the position of the feet: after specifying the distribution
of weight between the feet, this proportion should remain �xed even if the
placement of the feet need adjustment during a postural manipulation. This
is the job of the balance point follows feet behavior.

Given these two parameters, a new balance point can be computed based
on any new position of the feet. Holding these parameters �xed as the feet
move ensures that the balance point maintains the same relationship to the
feet, both laterally and in the forward/backward direction.

Foot Orientation Follows Balance Line

During the active manipulation of the feet with the move foot command, the
user can intersperse translations and rotations of the feet, centered around the
toes. Since it is not possible to rotate and translate during a single movement,
either the dragging procedure has no control over orientation, in which case
the orientation is arbitrary and unpredictable, or the dragging procedure does
have control over orientation, in which case the orientation remains globally
�xed during spurts of translation. The foot orientation follows balance line

behavior o�ers a convenient alternative.
The solution which the behavior o�ers is to predict the proper orientation

of the foot based on the balance line and adjust the orientation automatically
as the foot is translated with the move foot command. The balance line, as
described above, is an imaginary line between the middle of the feet. Actually,
this rule �xes the orientation of the foot with respect to the balance line. As
the foot translates, the balance line changes, and the orientation of the foot
changes to keep the same relative orientation. This behavior is particularly
appropriate when the �gure is taking a step forward with the intention of
turning to the side.

Pelvis Follows Feet Orientation

The muscles in the leg make the leg act like a rotational spring. The hip
and ankle joints provide only a little more than 90� of rotation in the leg
around the vertical axis. This means that the orientation of the feet and the
orientation of the pelvis are linked together. If the orientation of the feet
are �xed, the orientation of the pelvis is severely limited. What is more,
the extreme limits of pelvis orientation place an uncomfortable twist on the
legs. If the legs are rotational springs, then the \middle" orientation of the

114 CHAPTER 4. BEHAVIORAL CONTROL

pelvis can be determined by simply averaging the orientation of the feet. This
seems to be in fact what happens when a person stands naturally: the pelvis is
oriented to relieve stress on the legs. The pelvis follows feet orientation behavior
simulates this.

Hands Maintain Consistent Orientation

The same problem with the orientation of the feet during the move foot com-
mand occurs with the hands with the move hand command. In fact, the prob-
lem is more intricate because the hands have a much greater range of move-
ment than the feet. How is the orientation of the hand related to its position?
How can this be determined automatically in order to predict reasonable pos-
tures when moving the hands?

Labanotation suggests an answer. Labanotation has a detailed system for
describing arm postures and gestures, but what is most interesting here is
what the notation does not say. To simplify the syntax, Labanotation has
a standard set of orientations for the palms when the arms are in speci�c
positions. Notations need be made only when the orientations di�er from
these defaults. The rules are [Hut70]:

� When the arms hang by the side of the body, the palms face in.

� When the arms are raised forward or upward, the palms face towards
each other.

� When the arms are raised outward to the side, the palms face forward.

� When the arms cross the body, the palms face backward.

These rules are useful as defaults, but of course they do not dictate absolute
behavior. These rules govern the orientation of the hands when the user
translates them from one area to another without specifying any orientational
change. These rules only take e�ect when the hand moves from one region to
another.

Root Through Center of Mass

Most of the behaviors described so far are only appropriate for standing �g-
ures, which of course means that they are also only appropriate for earth-
bound �gures. But what about �gures in zero-gravity space? This is actually
quite easy to simulate by rooting the �gure through the center of mass and
disabling all other behaviors. The one constant element of zero-gravity is the
center of mass. When the �gure is rooted through the center of mass, the
global location of the center of mass remains �xed as the �gure moves.

4.1.3 Active Behaviors

Active behaviors mimic reexive responses to certain conditions in the body.
They can have temporal elements, so they can initiate movements of parts of

4.1. AN INTERACTIVE SYSTEM FOR POSTURAL CONTROL 115

the body which last for a certain duration. These behaviors make use of the
concept of a motion primitive. A motion primitive has a distinct duration
in terms of interactive iterations, and it typically involves a constraint which
changes over this time interval. An example of this is the stepping movement
of the feet which is initiated when the �gure's center of mass leaves its sup-
port area. The interactive system architecture maintains a list of currently
triggered active behaviors, and it advances them at each iteration until they
are complete. The behaviors terminate themselves, so the duration can be
explicit in terms of a number of interactive iterations, or they can continue
until a certain condition is met.

Active behaviors are like motor programs, or schemas [Kee82, Ros91,
Sch82b, Sch82a]. Considerable physiological and psychological evidence sug-
gests the existence of motor programs, which are preprogrammed motor re-
sponse to certain conditions. The theory of schemas suggests that humans
and animals have catalogs of preprogrammed motor responses that are �red
o� to produce coordinated movements in the body. Schemas are parametrized
motor programs which can be instantiated with di�erent settings. For some
motor programs, there even seems to be very little feedback involved. Ev-
idence of this comes from experiments which measure the excitation of the
muscles of the arm during reaching exercises. The patterns of excitation re-
main constant even if the movement of the hand is impeded [Ros91].

The incorporation of active behaviors into the postural control process
begins to blur the distinction between motion and manipulation. The purpose
of the behaviors is predictive: if the user drags the center of mass of a �gure
away from the support polygon, this probably means that the desired posture
has the feet in a di�erent location. The job of the active behavior is to
anticipate this and hopefully perform the positioning task automatically.

There are two active behaviors, both involving the placement of the feet.
The take step when losing balance and take step when pelvis is twisted behaviors
automatically reposition the feet just before the �gure loses its balance. They
use the balance point parameters described above as their triggers. The pur-
pose of these behaviors is to predict a proper posture for the �gure given that
its center of mass is leaving the support polygon.

Active behaviors can be used to simulate movement even in the context of
postural control. The entire process of interactive postural control can serve as
a good approximation to motion anyway. The active behaviors provide a way
in which motion primitives can be incorporated into the interactive system.
To do this more e�ectively, the interactive system needs a more sophisticated
notion of time and timed events (Section 4.3).

Take Step When Losing Balance

This behavior �res a stepping response to the loss of balance of a �gure. When
this behavior is active, it monitors the parametrization of the balance point
of the �gure as described with the balance point follows feet behavior. If the
balance point leaves the support polygon to the front or back, the behavior

116 CHAPTER 4. BEHAVIORAL CONTROL

move foot

move center of mass

bend torso

rotate pelvis

move hand

move head

move eyes

Table 4.6: The Manipulation Primitives.

moves the non-support foot forward or backward to compensate. The non-
support foot in this case is the one which bears less weight. The behavior
computes the new foot location such that the current balance point will lie
in the middle of the new support polygon once the foot arrives there. If the
balance point leaves the support polygon to the side, the stepping motion
moves the support foot instead. In this case, the support foot is the only one
which can be repositioned in order to maintain balance.

Take Step When Pelvis Is Twisted

The discussion of the pelvis follows feet orientation behavior above described the
relationship between the global orientations of the feet and pelvis, particularly
in terms of determining an orientation for the pelvis from the orientation of
the feet. The opposite relationship is possible as well. Consider standing with
your feet slightly apart, and then begin to twist your body to the right. After
about 45� of rotation, your legs will not be able to rotate any more. In order
to continue rotating, you will be forced to take a step, a circular step with
either your left or right foot.

The take step when pelvis twisted behavior mimics this. When it senses that
the orientation of the pelvis is near its limit relative to the feet, it repositions
the non-support foot in an arc in front of or behind the other foot, twisted
90�.

4.2 Interactive Manipulation With Behaviors

This section discusses the Jack manipulation primitives, but in the process
it describes the entire manipulation process, including the e�ect of all of the
implemented behaviors. The e�ect of the manipulation commands cannot be
treated in isolation. In fact, the very nature of the system of behaviors implies
that nothing happens in isolation. This discussion serves as a good summary
of these techniques because these are the commands (Table 4.6) which the
user uses the most. These are the verbs in the postural control language.

4.2. INTERACTIVE MANIPULATION WITH BEHAVIORS 117

The interactive postural control vocabulary includes manipulation prim-
itives which allow the user to push, poke, and twist parts of the body, and
behavior controls which govern the body's response. The manipulation com-
mands are su�ciently intuitive to provide good handles on the �gure, and the
behavioral controls make the responses reasonable.

The structure of the behaviors for human �gures did not come out of a
magic hat. The rationale behind the behaviors comes partially from biome-
chanics and physiology literature, and partially from the semantics of move-
ment notations such as Labanotation. Labanotation provides a good set of
default values for the behaviors because it incorporates so many assumptions
about normal human movement.

4.2.1 The Feet

The feet can be moved with the active manipulation commandmove foot. This
command allows the user to drag the foot interactively. This automatically
transfers the support of the �gure to the other foot, provided the �gure is
standing. The control over the position of the feet is straightforward. The
manipulation operator also gives control over the orientation. However, while
translating the foot, its orientation depends upon the foot orientation behav-
ior. The default behavior maintains a constant global orientation. The foot

orientation follows balance line behavior causes the orientation of the foot to
remain �xed with respect to the balance line during translation. This means
that if the foot goes forward, it automatically rotates as if the �gure is turning
toward the direction of the stationary foot.

The move foot command automatically causes a change in the balance point
according to the balance point follows feet behavior, which is the default. This
means that the distribution of weight between the feet will remain constant as
the foot moves. The location of the balance point within the support polygon,
both side to side and forwards/backwards, will remain �xed as the support
polygon changes shape. This is evident in Figure 4.3. The balance point shifts
along with the foot. If this behavior is disabled, the balance point will remain
�xed in space.

Manipulating the feet also telegraphs a change to the pelvis according to
the pelvis follows foot orientation behavior, which is the default. This means
that as the foot rotates, the pelvis automatically rotates as well. This keeps
the body turned in the direction of the feet.

4.2.2 The Center of Mass and Balance

The move center of mass command allows the user to interactively drag the
balance point of the �gure, shifting its weight back and forth or forward and
backward. This command changes the parametrization of the balance point in
terms of the feet. If the balance point follows feet behavior is active, then when
the move center of mass command terminates, the balance point will remain at
its new location relative to the support polygon.

118 CHAPTER 4. BEHAVIORAL CONTROL

Figure 4.3: Moving the Left Foot, with Balance Point Following Feet.

The location of the balance point has a great e�ect on the feet. If the foot
behavior is pivot, then shifting the weight laterally back and forth will cause
the feet to twist back and forth as well. On the other hand, if the feet do
not pivot, then they remain planted, possibly inhibiting the movement of the
balance point. In Figure 4.4, the feet are held in place, not pivoting.

The move center of mass command also gives control over the elevation
of the center of mass. Normally, the elevation of the center of mass is not
controlled explicitly, except through the hold current elevation behavior option
to the set balance behavior command. The move center of mass command gives
control over the elevation, so moving the center of mass up and down allows
the �gure to stand on its tip-toes or squat down. Figure 4.5 shows the center
of mass being lowered into a squatting posture. The constraint on the pelvis
ensures that the hips remain square and straight.

The movement of the center of mass also tends to trigger the rooting
behavior. This is mostly transparent, but to the trained eye, it is apparent in
the movement of the feet. The support foot (the rooted one) is always very
stationary.

The manipulation of the center of mass is the main instigator of the ac-
tive stepping behavior. While the stepping behavior is active, if the balance
point reaches the perimeter of the support polygon, the feet are automatically
repositioned by the stepping behavior. Figure 4.6 illustrates the stepping be-
havior as the center of mass is dragged forward. When this occurs, the visual
impression is of the �gure being pulled and taking a step just to prevent a
fall; it does not look like the �gure is deliberately trying to walk somewhere.
(In Section 5.2 more purposeful stepping and walking behaviors are utilized.)

4.2. INTERACTIVE MANIPULATION WITH BEHAVIORS 119

Figure 4.4: Shifting the Center of Mass.

Figure 4.5: Lowering the Center of Mass.

120 CHAPTER 4. BEHAVIORAL CONTROL

Figure 4.6: Taking a Step before Losing Balance.

4.2.3 The Torso

The Jack spine model provides a very important biomechanical feature for
e�ective human behavioral control. Each vertebra has a current position de-
�ned by the three joint angles relative to its proximal vertebra. Also de�ned
in the spinal database are joint rest positions and 6 joint limits for every joint.
If each attribute is summed up for all joints, then 3D vectors are de�ned for
current position, joint rest position, and two joint limits for the global spine.
The target position { the 3D vector sum of �nal joint positions { is supplied as
an input parameter. Movement towards the target position is either bending
or unbending, meaning either towards the joint limits or towards the spine's
rest position. Motion is de�ned as an interpolation between the current po-
sition and either the spine's position of maximum limit, or the spine's rest
position.

Three rotations are calculated independently and then merged into one.
For example, a 3D orientation vector (e.g. ex 45 degrees, rotate axially 20
degrees left, and lateral bend 15 degrees right) can be accomplished in one
function with 3 loop iterations. It is assumed for the model that the maximum
vertebral joint limit in one dimension will not a�ect the joint limits of another
dimension.

The spine's rest position is included in the model, because it is a position
of high comfort and stability. If the spine is unbending in one dimension
of movement, it will move towards that position of highest comfort in that
rotational dimension. The input parameters listed in Section 2.3 determine
how much each vertebra bends as the spine moves. The three dimensions are

4.2. INTERACTIVE MANIPULATION WITH BEHAVIORS 121

done separately, then combined for the �nal posture.
A participation vector is derived from the spine's current position, target

position, and maximum position. This global participation represents a 3D
vector of the ratio of spine movement to the maximum range of movement.
Participation is used to calculate the joint weights.

The following formulas are de�ned in each of three DOFs. Let

Target = spine target position
Current = spine current position
Max = spine sum of joint limits
Rest = spine sum of joint rest positions.

If the spine is bending, then the participation P is

P =
Target� Current

Max� Current
:

Otherwise, the spine is unbending and

P =
Target� Current

Rest� Current
:

The joint positions of the entire spine must sum up to the target position.
To determine how much the joint participates, a set of weights is calculated
for each joint. The participation weight is a function of the joint number,
the initiator joint, and the global participation derived above. Also, a resis-
tance weight is based on the resistor joint, degree of resistance, and global
participation. To calculate the weight for each joint i, let:

ji = joint position
limiti = the joint limit
resti = the rest position
pi = participation weight
ri = resistance weight.

If the spine is bending, then

wi = pi � ri � (limiti � ji);

while if the spine is unbending,

wi = pi � ri � (resti � ji):

122 CHAPTER 4. BEHAVIORAL CONTROL

The weights range from 0 to 1. A weight of k% means that the movement
will go k% of the di�erential between the current position and either the joint
limit (for bending) or the joint rest position (for unbending).

To understand resistance, divide the spine into two regions split at the
resistor joint. The region of higher activity contains the initiator. Label these
regions active and resistive. The e�ect of resistance is that joints in the resis-
tive region will resist participating in the movement speci�ed by the parameter
degree of resistance. Also, joints inbetween the initiator and resistor will have
less activity depending on the degree of resistance.

Resistance does not freeze any of the joints. Even at 100% resistance, the
active region will move until all joints reach their joint limits. Then, if there
is no other way to satisfy the target position, the resistive region will begin
to participate.

If the desired movement is from the current position to one of two maxi-
mally bent positions, then the weights calculated should be 1.0 for each joint
participating. The algorithm interpolates correctly to either maximally bent
position. It also interpolates correctly to the position of highest comfort. To
calculate the position of each joint i after movement succeeds, let:

ji = joint position
j�
i
= new joint position

Target = spine target position
Current = spine current position
M = Target �Current = incremental movement of the spine.

Then

j�i = ji +
MwiP

wi
;

and it is easy to show that
P

j�
i
= Target :

P
j�i =

P
(ji +

MwiP
wi
)

=
P

ji +
P

MwiP
wi

= Current+M

P
wiP
wi

= Current+M

= Target:

The bend torso command positions the torso using forward kinematics,
without relying on a dragging mechanism. It consists of potentiometers which
control the total bending angle along the three DOFs. The command also

4.2. INTERACTIVE MANIPULATION WITH BEHAVIORS 123

prompts for the avor of bending. These controls are the same as for the set

torso behavior command described above. They include options which specify
the range of motion of the spine, de�ned through a top and bottom joint,
along with initiator and resistor joints which control the weighting between
the vertebrae.

Bending the torso tends to cause large movements of the center of mass, so
this process has a great e�ect on the posture of the �gure in general, particu-
larly the legs. For example, if the �gure bends forward, the hips automatically
shift backwards so that the �gure remains balanced. This is illustrated in Fig-
ure 4.7.

4.2.4 The Pelvis

The rotate pelvis command changes the global orientation of the hips. This
can curl the hips forwards or backwards, tilt them laterally, or twist the
entire body around the vertical axis. The manipulation of the pelvis also
activates the torso behavior in a pleasing way. Because of its central location,
manipulations of the pelvis provide a powerful control over the general posture
of a �gure, especially when combined with the balance and keep vertical torso
constraints. If the torso is kept vertical while the pelvis curls underneath it,
then the torso curls to compensate for the pelvis. This is shown in Figure 4.8.

The rotate pelvis command can also trigger the active stepping behavior if
the orientation reaches an extreme angle relative to the feet.

4.2.5 The Head and Eyes

The move head and move eyes commands manipulate the head and eyes, re-
spectively, by allowing the user to interactively move a �xation point. The
head and eyes both automatically adjust to aim toward the reference point.
The head and eyes rotate as described in Section 4.1.1.

4.2.6 The Arms

The active manipulation of the arm allows the user to drag the arm around
in space using the mechanism described in Section 3.2.5. These movements
utilize the shoulder complex as described in Section 2.4 so that the coupled
joints have a total of three DOFs. Figure 4.10 shows the left hand being
moved forwards.

Although it seems natural to drag this limb around from the palm or �n-
gertips, in practice this tends to yield too much movement in the wrist and the
wrist frequently gets kinked. The twisting scheme helps, but the movements
to get the wrist straightened out can interfere with an acceptable position for
the arm. It is much more e�ective to do the positioning in two steps, the �rst
positioning the arm with the wrist �xed, and the second rotating the hand
into place. Therefore, our active manipulation command for the arms can
control the arm either from a reference point in the palm or from the lower

124 CHAPTER 4. BEHAVIORAL CONTROL

Figure 4.7: Bending the Torso while Maintaining Balance.

Figure 4.8: Rotating the Pelvis while Keeping the Torso Vertical.

4.2. INTERACTIVE MANIPULATION WITH BEHAVIORS 125

Figure 4.9: Moving the Head.

Figure 4.10: Moving the Hand.

126 CHAPTER 4. BEHAVIORAL CONTROL

end of the lower arm, just above the wrist. This process may loosely simulate
how humans reach for objects, for there is evidence that reaching involves
two overlapping phases, the �rst a ballistic movement of the arm towards the
required position, and the second a correcting stage in which the orientation
of the hand is �ne-tuned [Ros91]. If the target for the hand is an actual grasp,
then a specialized Jack behavior for grasping may be invoked which e�ectively
combines these two steps.

4.2.7 The Hands and Grasping

Jack contains a fully articulated hand. A hand grasp capability makes some
reaching tasks easier [RG91]. The grasp action requires a target object and
a grasp type. The Jack grasp is purely kinematic. It is a considerable conve-
nience for the user, however, since it virtually obviates the need to individually
control the 20 DOFs in each hand.

For a grasp, the user speci�es the target object and a grip type. The
user chooses between a prede�ned grasp site on the target or a calculated
transform to determine the grasp location. A distance o�set is added to the
site to correctly position the palm center for the selected grip type. The hand
is preshaped to the correct starting pose for the grip type selected, then the
palm moves to the target site.

The �ve grip types implemented are the power, precision, disc, small disc,
and tripod [Ibe87]. The grips di�er in how the hand is readied and where
it is placed on or near the object. Once these actions are performed, the
�ngers and thumb are just closed around the object, using collision detection
on the bounding box volume of each digit segment to determine when to cease
motion.

4.3 The Animation Interface

2The Jack animation system is built around the concept of a motion, which
is a change in a part of a �gure over a speci�c interval of time. A motion is
a rather primitive notion. Typically, a complex animation consists of many
distinct motions, and several will overlap at each point in time. Motions
are created interactively through the commands on the motion menu and the
human motion menu. There are commands for creating motions which control
the placement of the feet, center of mass, hands, torso, arms, and head.

Jack displays motions in an animation window. This window shows time
on a horizontal axis, with a description of the parts of each �gure which are
moving arranged vertically. The time interval over which each motion is active
is shown as a segment of the time line. Each part of the body gets a di�erent
track. The description shows both the name of the �gure and the name of the
body part which is moving. The time line itself displays motion attributes
graphically, such as velocity control and relative motion weights.

2Paul Diefenbach.

4.3. THE ANIMATION INTERFACE 127

The numbers along the bottom of the animation grid are the time line. By
default, the units of time are in seconds. When the animation window �rst
appears, it has a width of 3 seconds. This can be changed with the arrows
below the time line. The horizontal arrows scroll through time keeping the
width of the window constant. The vertical arrows expand or shrink the width
of the window, in time units. The current animation time can be set either
by pressing the middle mouse button in the animation window at the desired
time and scrolling the time by moving the mouse or by entering the current
time directly through the goto time.

Motions actually consist of three distinct phases, although this is hidden
from the user. The �rst stage of a motion is the pre-action step. This step
occurs at the starting time of the motion and prepares the �gure for the
impending motion. The next stage is the actual motion function itself, which
occurs at every time interval after the initial time up to the ending time,
inclusive. At the ending time after the last incremental motion step, the
post-action is activated disassociating the �gure from the motion. Because of
the concurrent nature of the motions and the possibility of several motions
a�ecting the behavior of one moving part, these three stages must occur at
each time interval in the following order: motion, post-action, pre-action.
This allows all ending motions to �nish before initializing any new motions
a�ecting the same moving part.

While the above description implies that body part motions are controlled
directly, this is not the true behavior of the system. The animation system
describes postures through constraints, and the motions actually control the
existence and parameters of the constraints and behaviors which de�ne the
postures. Each motion has a set of parameters associated with it which con-
trol the behavior of the motion. These parameters are set upon creation of
the motion and can be modi�ed by pressing the right mouse button in the an-
imation window while being positioned over the desired motion. This changes
or deletes the motion, or turns the motion on or o�.

Each motion is active over a speci�c interval in time, delimited by a start-

ing time and an ending time. Each motion creation command prompts for
values for each of these parameters. They may be entered numerically from
the keyboard or by direct selection in the animation window. Existing time
intervals can be changed analogously. Delimiting times appear as vertical
\ticks" in the animation window connected by a velocity line. Selecting the
duration line enables time shifting of the entire motion.

The yellow line drawn with each motion in the animation window illus-
trates the motion's weight function. Each motion describes movement of a
part of the body through a kinematic constraint. The constraint is only ac-
tive when the current time is between the motion's starting time and ending
time. It is entirely possible to have two motions which a�ect the same part of
the body be active at the same time. The posture which the �gure assumes is
a weighted average of the postures described by the individual motions. The
weights of each constraint are described through the weight functions, which
can be of several types:

128 CHAPTER 4. BEHAVIORAL CONTROL

constant The weight does not change over the life of the con-
straint.

increase The weight starts out at 0 and increases to is maximum
at the end time.

decrease The weight starts out at its maximum and decreases to
0 at the end time.

ease in/ease out The weight starts at 0, increases to its max-
imum halfway through the life of the motion, and then de-
creases to 0 again at the end time.

The shape of the yellow line in the animation window illustrates the weight
function. The units of the weight are not important. The line may be thought
of as an icon describing the weight function.

The green line drawn with each motion in the animationwindow represents
the velocity of the movement. The starting point for the motion comes from
the current posture of the �gure when the motion begins. The ending position
of the motion is de�ned as a parameter of the motion and is speci�ed when
the motion is created. The speed of the end e�ector along the path between
the starting and ending positions is controlled through the velocity function:

constant Constant velocity over the life of the motion.

increase The velocity starts out slow and increases over the life
of the motion.

decrease The velocity starts out fast and decreases over the life
of the motion.

ease in/ease out The velocity starts slow, increases to its max-
imum halfway through the life of the motion, and then de-
creases to 0 again at the end time.

The shape of the green line in the animationwindow illustrates the velocity
function. The scale of the velocity is not important. This line can be thought
of as an icon describing the velocity.

4.4 Human Figure Motions

The commands on the human motion menu create timed body motions. These
motions may be combined to generate complex animation sequences. Taken
individually, each motion is rather uninteresting. The interplay between the
motions must be considered when describing a complex movement. These
motions are also mostly subject to the behavioral constraints previously de-
scribed.

Each one of these commands operates on a human �gure. If there is only
one human �gure present, these commands automatically know to use that
�gure. If there is more than one human �gure, each command will begin

4.4. HUMAN FIGURE MOTIONS 129

by requiring the selection of the �gure. Each of these commands needs the
starting and ending time of the motion. Default or explicitly entered values
may be used. The motionmay be repositioned in the animation window using
the mouse.

A motion is a movement of a part of the body from one place to another.
The movement is speci�ed in terms of the �nal position and the parameters
of how to get there. The initial position of the motion, however, is de�ned
implicitly in terms of where the part of the body is when the motion starts. For
example, a sequence of movements for the feet are de�ned with one motion for
each foot fall. Each motion serves to move the foot from its current position,
wherever that may be, when the motion starts, to the �nal position for that
motion.

4.4.1 Controlling Behaviors Over Time

We have already seen how the posture behavior commands control the e�ect
of the human movement commands. Their e�ect is permanent, in the sense
that behavior commands and constraints hold continuously over the course of
an animation. The \timed" behavior commands on the human behavior menu

allow specifying controls over speci�c intervals of time. These commands,
create timed �gure support, create timed balance control, create timed torso control,
create time hand control, and create time head control each allow a speci�c interval
of time as described in Section 4.3 just like the other motion commands. The
behavior takes e�ect at the starting time and ends with the ending time. At
the ending time, the behavior parameter reverts to the value it had before the
motion started.

4.4.2 The Center of Mass

A movement of the center of mass can be created with the create center of mass

motion command. This controls the balance point of the �gure. There are two
ways to position the center of mass. The �rst option positions the balance
point relative to the feet by requiring a oating point number between 0.0
and 1.0 which describes the balance point as an interpolation between the left
(0.0) and right (1.0) foot; thus 0.3 means a point 3

10
of the way from the left

foot to the right. Alternatively, one can specify that the �gure is standing
with 30% of its weight on the right foot and 70% on the left.

The global location option causes the center of mass to move to a speci�c
point in space. Here Jack will allow the user to move the center of mass to
its desired location using the same technique as with the move center of mass

command on the human manipulation menu.

After choosing the positioning type and entering the appropriate parame-
ters, several other parameters may be provided, including the weight function
and velocity. The weight of the motion is the maximum weight of the con-
straint which controls the motion, subject to the weight function.

130 CHAPTER 4. BEHAVIORAL CONTROL

The behavior of the create center of mass motion command depends on the
setting of the �gure support. It is best to support the �gure through the
foot which is closest to the center of mass, which is the foot bearing most of
the weight. This ensures that the supporting foot moves very little while the
weight is on it.

The e�ect of the center of mass motion depends upon both the setting
of the �gure support at the time the motion occurs and when the motion is
created. For predictable behavior, the two should be the same. For example,
if a motion of the center of mass is to take place with the �gure seated, then
the �gure should be seated when the motion is created.

The support of the �gure can be changed at a speci�c moment with the cre-

ate timed �gure support command. This command requires starting and ending
times and the �gure support, just like the set �gure support command. When
the motion's ending time is reached, the support reverts to its previous value.

4.4.3 The Pelvis

The lower torso region of the body is controlled in two ways: through the
center of mass and through the pelvis. The center of mass describes the
location of the body. The pelvis constraint describes the orientation of the
hips. The hips can rotate over time with the command create pelvis motion.

The create pelvis motion command allows the user to rotate the pelvis into
the �nal position, using the same technique as the rotate pelvis command. It
also requires the velocity, and weight functions, and the overall weight.

4.4.4 The Torso

The movement of the torso of a �gure may be speci�ed with the create torso

motion. This command permits bending the torso into the desired posture,
using the same technique as the move torso command. Like the move torso

command, it also prompts for the torso parameters.
The create torso motion command requires a velocity function, but not a

weight or a weight function because this command does not use a constraint
to do the positioning. Because of this, it is not allowable to have overlapping
torso motions.

After the termination of a torso motion, the vertical torso behavior is
turned o�. The behavior of the torso can be changed at a speci�c moment
with the create timed torso control command. This command requires starting
time and ending times and the type of control, just like the set torso control

command. When the motion's ending time is reached, the behavior reverts
to its previous value.

4.4.5 The Feet

The �gure's feet are controlled through the pair of commands create foot motion

and create heel motion. These two commands can be used in conjunction to

4.4. HUMAN FIGURE MOTIONS 131

cause the �gure to take steps. The feet are controlled through constraints
on the heels and on the toes. The toe constraints control the position and
orientation of the toes. The heel constraint controls only the height of the
heel from the oor. The position of the heel, and the entire foot, comes from
the toes. The commands allow the selection of the right or left foot.

The create foot motion command gets the ending position for the foot by the
technique of the move foot command. In addition, a height may be speci�ed.
The motion causes the foot to move from its initial position to its �nal position
through an arc of a certain elevation. A height of 0 implies that the foot moves
in straight-line path. If both the initial and �nal positions are on the oor,
then this means the foot will slide along the oor. A height of 10cm means
the toes will reach a maximumheight from the oor of 10cm halfway through
the motion.

The e�ect of the create foot motion command depends upon how the �gure
is supported. Interactively, the move foot command automatically sets the
support of the �gure to the moving foot, and the create foot motion command
does the same. However, this does not happen during the generation of the
movement sequence. The behavior of the feet depends very much on the
support of the �gure, although the e�ect is quite subtle and di�cult to de�ne.
A foot motion can move either the supported or non-supported foot, but it is
much better at moving the non-supported one.

The general rule of thumb for �gure support during a movement sequence
is the opposite of that for interactive manipulation: during a movement se-
quence, it is best to have the support through the foot on which the �gure
has most of its weight. This will ensure that this foot remains �rmly planted.

The behavior of the feet can be changed at a speci�c moment with the
create timed foot control command. This command needs starting and ending
times and the type of control, just like the set foot control command. When the
motion's ending time is reached, the behavior reverts to its previous value.

4.4.6 Moving the Heels

The movement of the foot originates through the toes, but usually a stepping
motion begins with the heel coming o� the oor. This may be speci�ed with
the create heel motion command. This command does not ask for a location; it
only asks for a height. A height of 0 means on the oor.

Usually a stepping sequence involves several overlappingmotions. It begins
with a heel motion to bring the heel o� the oor, and at the same time a center
of mass motion to shift the weight to the other foot. Then a foot motion causes
the foot to move to a new location. When the foot is close to its new location,
a second heel motion causes the heel to be planted on the oor and a second
center of mass motion shifts some of the weight back to this foot.

132 CHAPTER 4. BEHAVIORAL CONTROL

4.4.7 The Arms

The arms may be controlled through the command create arm motion. This
command moves the arms to a point in space or to a reference point such as a
site. The arm motion may involve only the joints of the arm or it may involve
bending from the waist as well. The command requires the selection of the
right or left arm and whether the arm movement is to be con�ned to the arm
or include a bending of the torso. Arm movements involving the torso should
not be combined with a torso movement generated with the create torso motion

command. Both of these control the torso in conicting ways.

The hand is then moved to the new position in space, using the same
technique as the move arm command. The user can specify if this position is
relative to a segment; that is, to a global coordinate location or to a location
relative to another object. If the location is relative, the hand will move
to that object even if the object is moving as the hand moves during the
movement generation.

4.4.8 The Hands

Hand behavior may also be speci�ed over time with the create timed hand

control command. The hand can be temporarily attached to certain objects
over certain intervals of time. This command requires starting and ending
times and the type of control, just like the set torso control command.

Objects can be attached to the hands over an interval of time with the
create timed attachment command. The timing of the grasp action can be set
accordingly. During animation, one can specify the hand grasp site, the ap-
proach direction, the starting hand pose, and the sequencing of �nger motions
culminating in the proper grasp. If one is willing to wait a bit, the hand pose
will even be compliant, via collision detection, to changes in the geometry of
the grasped object as it or the hand is moved.

4.5 Virtual Human Control

3We can track, in real-time, the position and posture of a human body, using
a minimal number of 6 DOF sensors to capture full body standing postures.
We use four sensors to create a good approximation of a human operator's
position and posture, and map it on to the articulated �gure model. Such
real motion inputs can be used for a variety of purposes.

� If motion data can be input fast enough, live performances can be ani-
mated. Several other virtual human �gures in an environment can react
and move in real-time to the motions of the operator-controlled human
�gure.

3Michael Hollick, John Granieri

4.5. VIRTUAL HUMAN CONTROL 133

Figure 4.11: Sensor Placement and Support Polygon.

� Motion can be recorded and played back for analysis in di�erent environ-
ments. The spatial locations and motions of various body parts can be
mapped onto di�erent-sized human �gures; for example, a 5th percentile
operator's motion can be mapped onto a 95th percentile �gure.

� Virtual inputs can be used for direct manipulation in an environment,
using the human �gure's own body segments; for example, the hands
can grasp and push objects.

We use constraints and behavior functions to map operator body locations
from external sensor values into human postures.

We are using the Flock of Birds from Ascension Technology, Inc. to
track four points of interest on the operator. Sensors are a�xed to the op-
erator's palms, waist, and base of neck by elastic straps fastened with velcro
(Fig. 4.11). Each sensor outputs its 3D location and orientation in space.
With an Extended Range Transmitter the operator can move about in an
8-10 foot hemisphere. Each bird sensor is connected to a Silicon Graphics
310VGX via a direct RS232 connection running at 38,400 baud.

One of the initial problems with this system was slowdown of the simu-
lation due to the sensors. The Silicon Graphics operating system introduces
a substantial delay between when data arrives at a port and when it can be
accessed. This problem was solved by delegating control of the Flock to a
separate server process. This server will con�gure the Flock to suit a client's

134 CHAPTER 4. BEHAVIORAL CONTROL

x

y

z

x

y

z

Flexion

y

z

x

front front front

Lateral Axial

Figure 4.12: Extracting the Spine Target Vector

needs, then provide the client with updates when requested. The server takes
updates from the Birds at the maximum possible rate, and responds to client
requests by sending the most recent update from the appropriate Bird. This
implementation allows access to the Flock from any machine on the local
network and allows the client to run with minimal performance degradation
due to the overhead of managing the sensors. The sensors produce about 50
updates per second, of which only about 8 to 10 are currently used due to the
e�ective frame rate with a shaded environment of about 2000 polygons. The
bulk of the computation lies in the inverse kinematics routines.

The system must �rst be calibrated to account for the operator's size. This
can be done in two ways { the sensor data can be o�set to match the model's
size, or the model can be scaled to match the operator. Either approach may
be taken, depending on the requirements of the particular situation being
simulated.

Each frame of the simulation requires the following steps:

1. The pelvis segment is moved as the �rst step of the simulation. The
absolute position/orientation of this segment is given by the waist sensor
after adding the appropriate o�sets. The �gure is rooted through the
pelvis, so this sensor determines the overall location of the �gure.

2. The spine is now adjusted, using the location of the waist sensor and
pelvis as its base. The spine initiator joint, resistor joint, and resistance
parameters are �xed, and the spine target position is extracted from the
relationship between the waist and neck sensors. The waist sensor gives
the absolute position of the pelvis and base of the spine, while the rest
of the upper torso is placed algorithmically by the model.

The spine target position is a 3 vector that can be thought of as the
sum of the three types of bending the spine undergoes { exion, axial,
and lateral. Since the sensors approximate the position/orientation of
the base and top of the spine, we can extract this information directly.
Lateral bending is found from the di�erence in orientation along the z
axis, axial twisting is found from the di�erence in y orientation, and

4.5. VIRTUAL HUMAN CONTROL 135

exion is determined from the di�erence in x orientation (Fig. 4.12).
Note that the \front" vectors in this �gure indicate the front of the
human. This information is composed into the spine target vector and
sent directly to the model to simulate the approximate bending of the
operator's spine.

3. Now that the torso has been positioned, the arms can be set. Each arm
of the �gure is controlled by a sensor placed on the operator's palm.
This sensor is used directly as the goal of a position and orientation
constraint. The end e�ector of this constraint is a site on the palm that
matches the placement of the sensor, and the joint chain involved is the
wrist, elbow, and shoulder joint.

4. The �gure's upper body is now completely postured (except for the
head), so the center of mass can be computed. The active stepping
behaviors are used to compute new foot locations that will balance the
�gure. Leg motions are then executed to place the feet in these new
locations.

One unique aspect of this system is the absolute measurement of 3D carte-
sian space coordinates and orientations of body points of interest, rather than
joint angles. Thus, while the model's posture may not precisely match the
operator's, the end e�ectors of the constraints are always correct. This is very
important in situations where the operator is controlling a human model of
di�erent size in a simulated environment.

With a �fth sensor placed on the forehead, gaze direction can be approxi-
mated. Hand gestures could be sensed with readily available hand pose sensing
gloves. These inputs would directly control nearly the full range of Jack be-
haviors. The result is a virtual human controlled by a minimally encumbered
operator.

136 CHAPTER 4. BEHAVIORAL CONTROL

Chapter 5

Simulation with Societies

of Behaviors

1Recent research in autonomous robot construction and in computer graphics
animation has found that a control architecture with networks of functional
behaviors is far more successful for accomplishing real-world tasks than tra-
ditional methods. The high-level control and often the behaviors themselves
are motivated by the animal sciences, where the individual behaviors have the
following properties:

� they are grounded in perception.

� they normally participate in directing an agent's e�ectors.

� they may attempt to activate or deactivate one-another.

� each behavior by itself performs some task useful to the agent.

In both robotics and animation there is a desire to control agents in en-
vironments, though in graphics both are simulated, and in both cases the
move to the animal sciences is out of discontent with traditional methods.
Computer animation researchers are discontent with direct kinematic control
and are increasingly willing to sacri�ce complete control for realism. Robotics
researchers are reacting against the traditional symbolic reasoning approaches
to control such as automatic planning or expert systems. Symbolic reason-
ing approaches are brittle and incapable of adapting to unexpected situations
(both advantageous and disastrous). The approach taken is, more or less, to
tightly couple sensors and e�ectors and to rely on what Brooks [Bro90] calls
emergent behavior, where independent behaviors interact to achieve a more
complicated behavior. From autonomous robot research this approach has
been proposed under a variety of names including: subsumption architecture

by [Bro86], reactive planning by [GL90, Kae90], situated activity by [AC87],

1Welton Becket.

137

138 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

and others. Of particular interest to us, however, are those motivated ex-
plicitly by animal behavior: new AI by Brooks [Bro90], emergent reexive

behavior by Anderson and Donath [AD90], and computational neuro-ethology

by Beer, Chiel, and Sterling [BCS90]. The motivating observation behind all
of these is that even very simple animals with far less computational power
than a calculator can solve real world problems in path planning, motion
control, and survivalist goal attainment, whereas a mobile robot equipped
with sonar sensors, laser-range �nders, and a radio-Ethernet connection to a
Prolog-based hierarchical planner on a supercomputer is helpless when faced
with the unexpected. The excitement surrounding the success of incorporat-
ing animal-based control systems is almost revolutionary in tone and has led
some proponents such as Brooks [Bro90] to claim that symbolic methods are
fundamentally awed and should be dismantled.

Our feeling, supported by Maes [Mae90], is that neural-level coupling of
sensors to e�ectors partitioned into functional groupings is essential for the
lowest levels of competence (to use Brooks' term), though by itself this purely
reexive behavior will not be able to capture the long-term planning and pre-
diction behavior exhibited by humans and mammals in general. Association
learning through classical conditioning can be implemented, perhaps through
a connectionist approach [BW90], though this leads only to passive statistics
gathering and no explicit prediction of future events.

Our feeling is that symbolic reasoning is not awed, it is just not e�-
cient for controlling real-valued, imprecise tasks directly. The problem with
traditional planning is its insistence on constructing complete, detailed plans
before executing. Recent research in this area has focused directly on relax-
ing this constraint by interleaving planning and executing, reusing pieces of
plans, delaying planning until absolutely necessary, and dealing directly with
uncertainty. The distinction between the symbol manipulation paradigm and
the emergent computation paradigm is even blurring|Maes has shown how a
traditional means-ends-analysis planner can be embedded in an emergent com-
putation framework, and Shastri [Sha88] has shown how simple symbol rep-
resentation and manipulation can be accomplished in neural networks (which
can be seen as the most �ne-grained form of neuro-physiologically consistent
emergent computation).

Our strategy for agent construction will be to recognize that some form
of symbolic reasoning is at the top motivational level and biologically-based
feedback mechanisms are at the bottom e�ector level. By putting them in
the same programming environment we hope to gain insight into how these
extremes connect. Hopefully, the result will be more robust than the harsh,
rigid, feedback-devoid distinction between the planner and its directly im-
plemented plan primitives. As will be discussed in Section 5.1.7, however, an
important technique for understanding what is missing will be to make prema-
ture leaps from high-level plans to low-level behaviors appropriate for simple
creatures. This approach is bidirectional and opportunistic. Blind top-down
development may never reach the real world and pure bottom-up development
faces the horror of an in�nite search space with no search heuristic and no

5.1. FORWARD SIMULATION WITH BEHAVIORS 139

clear goals.
In this Chapter we �rst pursue this notion of societies of behaviors that

create a forward (reactive) simulation of human activity. The remaining Sec-
tions present some of the particular behaviors that appear to be crucial for
natural tasks, including locomotion along arbitrary planar paths, strength
guided motion, collision-free path planning, and qualitative posture planning.

5.1 Forward Simulation with Behaviors

Figure 5.1 is a diagram of the control ow of a possible agent architecture.
The cognitive model that will manage high-level reasoning is shown only as a
closed box. It will not be discussed in this section other than its input/output
relation | it is the topic of Chapter 6. The importance of encapsulating the
cognitive model is that it does not matter for the purposes of this section how it
is implemented. Inevitably, there are direct links between the subcomponents
of the cognitive model and the rest of the system. However, we believe the
level of detail of the current system allows ignoring these links without harm.
The components of an agent are:

1. Simulated Perception: this will be discussed in Section 5.1.1, but
note that raw perceptual data from the perception module is much
higher level than raw data in a machine perception sense | our raw
data includes relative positions of objects and their abstract physical
properties such as object type and color. In a simulation we have per-
fect environmental information, so it is the job of the sensors to also
simulate realistically limited values.

2. Perceptual (A�erent) Behavior Network: perceptual behaviors
that attempt to to �nd high-level information from raw sensory data.
Typically they respond to focusing signals which change �eld of view,
thresholds, distance sensitivity, restrictions on type of object sensed,
and the like.

3. Cognitive Model: the source of long-range planning and internal mo-
tivation (activity not triggered directly by perception).

4. E�erent Behavior Network: behaviors that derive activation or de-
activation signals. (Note that the a�erent and e�erent behavior net-
works are separated only for organizational convenience | they could
actually be one network.)

5. Simulated E�ectors: attempt to modify objects embedded in the
kinematics or dynamics simulation.

Although there may be a general feed-forward nature through the above
components in order, the connectivity must be a completely connected graph
with the following exceptions:

140 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Effectors
Simulated

Behaviors
Efferent

Model
Cognitive

Behaviors
(Afferent)

Perceptual
Perception
Simulated

Figure 5.1: Abstract Agent Architecture.

NetObjectsBehaviors DynamicObjectJackFigure

KinematicObjectActionController

SimulationParticipant

SimulationCore

Figure 5.2: Outline of System Class Hierarchy.

5.1. FORWARD SIMULATION WITH BEHAVIORS 141

1. The cognitive model cannot activate e�ectors directly.

2. There is no feedback directly from e�ectors | e�ector feedback is con-
sidered perception (usually proprioception, though pain from muscle
fatigue is also possible) and is thus fed-back through the environment.

Raw perceptual information may go directly to the cognitive model or
to e�erent behaviors, but it is typically routed through perceptual behaviors
which derive higher level information and are sensitive to various focusing
control signals from the cognitive model, e�erent behaviors, or perhaps even
other perceptual behaviors. The cognitive model may attempt to re-focus
perceptual information through signals to the perceptual behaviors or it may
activate or deactivate e�erent behaviors in order to accomplish some type of
motion or physical change. E�erent behaviors may send signals to e�ectors,
send feedback signals to the cognitive model, or attempt to focus perceptual
behaviors.

One typical pattern of activity associated with high-level motivation may
be that the cognitive model, for whatever reason, wants to accomplish a com-
plex motion task such as going to the other side of a cluttered room containing
several moving obstacles. The cognitive model activates a set of e�erent be-
haviors to various degrees, perhaps an object attraction behavior (to get to
the goal) and a variety of obstacle avoidance behaviors. The e�erent behaviors
then continually activate e�ectors based on activation levels from the cognitive
model and from information directly from perceptual behaviors. Note that
this �nal control ow from perception directly to e�erent behavior is what
is traditionally called feedback control. In another typical pattern of activity,
reex behavior, e�erent behavior is initiated directly by perceptual behaviors.
Note, however, that especially in high-level creatures such as humans, the cog-
nitive model may be able to stop the reex arc through a variety of inhibitory
signals.

5.1.1 The Simulation Model

Rather than implementing models on real robots we will implement and test
in detailed simulations that by analogy to the world have a physically-based,
reactive environment where some objects in the environment are under the
control of agent models that attempt to move their host objects.

For the agent modeler, the main advantage to testing in simulations is the
ability to abstract over perception. Because agents are embedded in a simu-
lation, they can be supplied with the high-level results of perception directly,
abstracting over the fact that general machine perception is not available. At
one extreme agents can be omniscient, having exact information about posi-
tions, locations, and properties of all objects in the environment, and at the
other extreme they can be supplied with a color bitmap image of what would
appear on the agent's visual plane. A good compromise that avoids excessive
processing but that also provides for realistically limited perception, is sug-
gested by [Rey88] and also by [RMTT90]. They use the Z-bu�ering hardware

142 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

on graphics workstations (or a software emulation) to render a bitmap pro-
jection of what the agent can see, except that the color of an object in the
environment is unique and serves to identify the object in the image. The
combination of the resulting image and the Z-bu�er values indicate all visi-
ble objects and their distances, and this can be used for object location or
determination of uncluttered areas.

Many models of reactive agents are accompanied by a simulation with 2D
graphical output such as [AC87, PR90, HC90, VB90], however, these sim-
ulation environments are extreme abstractions over a real environment and
assume discrete, two-dimensional, purely kinematic space. Such abstractions
are, of course, necessary in initial phases of understanding how to model an
intelligent reactive agent, but extended use of a system without real-valued
input parameters and immense environmental complexity is dangerous. As
will be discussed Section 5.1.3, Simon [Sim81] argues that complex behavior is
often due to a complex environment, where the agent responds to environmen-
tal complexity through simple feedback mechanisms grounded in sensation.
When environmental complexity is not present, the agent modeler, noticing
the lack of complexity, may commit agent bloating, also discussed in Sec-
tion 5.1.3, where environmental complexity is accounted for arti�cially in the
agent model.

5.1.2 The Physical Execution Environment

In our model, kinematic and dynamic behavior has been factored out of the
agent models and is handled by a separate, commonmechanism. The networks
of e�erent behaviors controlling a conceptual agent in the environment will
request motion by activating various e�ectors. The requested movement may
not happen due to the agent's physical limitations, collision or contact with
the environment, or competition with other behavioral nets.

Simulations of agents interacting with environments must execute on rea-
sonably �ne-grained physically-based simulations of the world in order to re-
sult in realistic, useful animations without incurring what we call the agent-

bloating phenomenon, where motion qualities arising from execution in phys-
ical environment are stu�ed into the agent model. One of Simon's central
issues [Sim81] is that complex behavior is often not the result of a complex
control mechanism, but of a simple feedback system interacting with a com-
plex environment. Currently, for simplicity, our animations are done in a
kinematic environment (one considering only velocity and position) and not
a dynamic one (also considering mass and force). Using only kinematics has
been out of necessity since general dynamics models have not been available
until recently, and even then are so slow as to preclude even near real time
execution for all but the simplest of environments. Kinematic environments
are often preferred by some since kinematic motion is substantially easier to
control with respect to position of objects since there is no mass to cause
momentum, unexpected frictional forces to inhibit motion, and so on. But as
we demand more of our agent models we will want them to exhibit properties

5.1. FORWARD SIMULATION WITH BEHAVIORS 143

that result from interaction with a complex physical world with endless, unex-
pected intricacies and deviations from desired motion. Unless we execute on a
physically reactive environment we will experience one form of agent-bloating
where we build the physical environment into the agents. If we build an actual
simulation model into agents we have wasted space and introduced organiza-
tional complexities by not beginning with a common physical environment.
If we build the environmental complexity into the agents abstractly, perhaps
through statistical models, we will have initial success in abstract situations,
but never be able to drive a meaningful, correct, time-stepped simulation with
multiple agents interacting with an environment and each other. We do not
mean that statistical and other abstract characterizations of behavior are not
necessary { just that abstract description is essential to understanding how
the underlying process works and judging when a model is adequate.

The much cited loss of control in dynamic simulations needs to be over-
come, and the message of emergent behavior research is that perhaps the
most straightforward approach to this is by looking at the plethora of work-
ing existence proofs: real animals. Even the simplest of single-celled crea-
tures executes in an in�nitely complex physical simulation, and creatures we
normally ascribe little or no intelligence to exhibit extremely e�ective con-
trol and goal-orientedness. Animals do this primarily through societies of
feedback mechanisms where the lowest levels are direct sensation and muscle
contraction (or hormone production or whatever).

In our system dynamic simulations should enjoy the following properties:

� E�ectors request movement by applying a force at a certain position to
an object.

� Collisions are detected by the system, which will communicate response
forces to those participating in the crash or contact situation.

� Viscous uid damping is simulated by applying a resistance force oppo-
site and proportionate to instantaneous velocity.

For simplicity, and especially when the motion is intended to be abstract,
a simulation may still be run on a purely kinematic environment which has
the following properties:

1. E�ectors request changes in position and orientation, rather than appli-
cation of force.

2. Every object has some maximum velocity.

3. No motion takes place unless requested explicitly by e�ectors.

4. Collisions are resolved by stopping motion along the system's estimated
axis of penetration.

5. The system adapts the time increment based on instantaneous velocity
and size of object along that object's velocity vector so that no object
could pass entirely through another object in one time step.

144 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

The particular physical simulation approach is to use a simple �nite-
di�erence approximation to the equations for elastic solids. Objects are mod-
eled as meshes of point masses connected by springs (including cross con-
nections to maintain shape), where tighter spring constants yield more rigid
looking bodies. This approach is discussed by Terzopoulos [TPBF87] and
Miller [Mil91] and has the advantage of extreme simplicity and generality. Be-
cause it is a discrete approximation to the \integral-level" analytical physics
equations it can solve many problems for free, though in general the cost is
limited accuracy and much slower execution times than the corresponding
direct analytical methods (the results, however, are not only \good enough
for animation" but are good enough considering our abstraction level). The
model can easily account for phenomena such as collision response, elastic
deformation, permanent deformation, breakage, and melting. Finite element
analysis yields a better dynamic behavior to the point-mass mesh (for accu-
racy and execution time), but is not as general as the mass/spring approach
and cannot model breakage and melting.

5.1.3 Networks of Behaviors and Events

The insulation of the cognitive model with networks of behaviors relies on
emergent computation. It is important to understand, then, why emergent
computation works where a strict hierarchy would not, and what problems an
emergent computation approach poses for the agent designer and how these
problems can be overcome.

For simplicity, existing high-level task-simulation environments tend to
model activity in strict tree-structured hierarchies, with competition occur-
ring only for end e�ectors in simulation models as in [Zel82], or for position of
a body component in purely kinematic models. However, for some time behav-
ior scientists and those inuenced by them have argued that although there is
observable hierarchy, behavior { especially within hierarchical levels { is not
tree structured but may have an arbitrary graph of inuence [Gal80, Alb81].
In particular a theory of behavior organization must anticipate behaviors hav-
ing more than one parent and cycles in the graph of inuence.

The central observation is that in many situations small components com-
municating in the correct way can gracefully solve a problem where a direct
algorithm may be awkward and clumsy. Of course this approach of solving
problems by having a massive number of components communicating in the
right way is nothing new: cellular automata, fractals, approximationmethods,
neural networks (both real and arti�cial), �nite-di�erence models of elastic
solids [TPBF87], simulated annealing, and so on use exactly this approach.

The drawback to such massively parallel systems without central control is
typically the inability to see beyond local minima. Certainly a high-level plan-
ner may periodically exert inuence on various system components in order
to pull the system state from a local minimum. The appropriate introduction
of randomness into component behavior, however, can help a system settle
in a more globally optimal situation. This randomness can be from explicit

5.1. FORWARD SIMULATION WITH BEHAVIORS 145

environmental complexity, introduction of stochastic components, limited or
incorrect information, or mutation.

This general approach is not limited to low-level interaction with the envi-
ronment. Minsky proposes a model of high-level cognition in [Min86] where a
\society of agents" interacts (organized as a graph) to accomplish high-level
behavior. Pattie Maes [Mae90] has proposed an approach to high-level plan-
ning through distributed interaction of plan-transformation rules. Ron Sun
proposed a distributed, connectionist approach to non-monotonic reasoning
[Sun91].

All of these approaches rest on emergent computation|behavior resulting
from communication of independent components. Common objections to such
an approach are:

1. it is doomed to limited situations through its tendency to get stuck in
local minima.

2. in order to implement, it requires an unreasonable amount of weight
�ddling.

The �rst objection has already been addressed. The second is a serious
concern. Our proposed solution will be to transfer the weight assignment
process to some combination of the behavioral system and its environment.
An evolution model is one way to do this, as Braitenberg [Bra84] does with
his vehicles, or as the Arti�cial Life �eld would do. Another is to combine
simple behavioral psychology principles and a connectionist learning model
in a creature that wants to maximize expected utility [Bec92], then provide a
reinforcement model that punishes the creature whenever it does something
wrong (like hits something).

Making it easy for a human designer to engage in an iterative design and
test process is another approach. Wilhelms and Skinner's [WS90] system
does exactly this by providing a sophisticated user interface and stressing
real-time or at least pseudo-real-time simulation of creatures interacting with
the environment. However, we will not pursue this approach for the following
reasons:

� Self-supervised weight assignment as agents interact with their environ-
ment is clearly more desirable from a simulation point of view, though
it sacri�ces direct control for realism and ease of use.

� For reasons discussed in Section 5.1.2, we encourage execution in com-
plex physically-based environments | an emphasis precluding real-time
playback on standard displays.

5.1.4 Interaction with Other Models

Our approach then, is to control physical simulation with the abstract �ndings
of the animal sciences, beginning by using the tricks that low-level animals

146 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

use. Low-level animal behavior tends, through its extensive use of environ-
mental feedback, to be incremental | it makes a new decision at every mo-
ment considering the current state of the environment. For this reason it is
considered reactive because it will incorporate unexpected events in constant
time as though they had been planned for in advance. Certainly human be-
havior exhibits short and long term planning that cannot be explained by
purely reactive processes. We hope to discover and elaborate abstraction lay-
ers with long-term symbolic planning at the top and feedback mechanisms at
the bottom.

However, there are countless areas in the neuro-physiological level study of
humans that are not well enough understood to allow direct or even abstract
implementation. Behavior such as human walking, to our knowledge, can-
not be described accurately in terms of feedback from proprioceptive sensors
and perhaps the vision system. Many such components of human behavior
can, however, be modeled directly by abstract methods and we ought to be
able to incorporate these as we progress. These direct methods will often be
considerably faster than the corresponding neuro-physiological models which
typically rely an massive parallel computation and will not run e�ciently on
sequential machines. So even if there were a neural-level walking algorithm
for humans, in cases where the robustness and correctness of locomotion are
unlikely to contribute to the usefulness of the overall simulation, say because
the are very few obstacles and the terrain is simple, it would be useful to use
the direct method to save time.

Algorithms that are designed to manipulate human body parts directly
can be incorporated into the described system as long as an approach to
conict resolution is also implemented should there be more than one behavior
attempting to control a given body segment (this can be weighted averaging,
or strict prioritization, or whatever). Since the rest of the system is totally
reactive and considers the current state of the environment at every instant, it
does not matter whether the physical model, kinematic model, or some other
process modi�ed a given object.

As will be discussed later, if a collision is detected, all behaviors controlling
the o�enders will be sent messages indicating the points of collision and the
impulse forces. For objects that do not have explicit velocity information a
velocity is simply computed by looking at the system's current �t and how far
the object was moved over the previous time step. The receiving behaviors
can do whatever they wish with the information | replan, respond to it,
ignore it, or anything appropriate. The only di�culty is when two objects
both controlled by unyielding direct control methods collide | they both
will fail to move any further. This can be avoided by keeping the number of
objects under direct control limited, or by always implementing some sort of
failure recovery method. Since communication is based on contact positions
and forces, di�erent control approaches can always communicate through their
e�ects on the environment.

Even other physically-based object controllers such as �nite element anal-
ysis, or direct rigid body dynamics can be incorporated. Direct control mes-

5.1. FORWARD SIMULATION WITH BEHAVIORS 147

sages across computer networks or through operating system pipes to dynam-
ics simulation packages can also be used. Direct manipulation is also possible
though there must be a way to compensate for speed di�erences if the simula-
tion is running much slower than real time. One way to do this is to have the
user move an object while the simulation is frozen, ask the user how long in
simulation time that action should take, then use a direct kinematic controller
to do a spline-smoothed approximation of the user's motion as the simulation
continues.

5.1.5 The Simulator

The simulation of intelligent agents interacting with a reactive environment
is advanced incrementally in small adaptive time steps. The �t for a time
slice will be no greater than 1

30
th of a second (the typical video frame rate)

and can be as small as oating point precision will allow. Typically, kine-
matically controlled objects will update on 1

30
ths of a second but dynamically

controlled objects when experiencing high-impact collisions will want very
small time steps. The distinction made in earlier sections between agents and
the environment is only conceptual at the simulator level| both components
of agent models and components of physical models are considered �rst-class
participants in a single simulation. Every time step is broken down into a
number of synchronizing phases. The synchronizing phases are motivated by
Haumann and Parent's behavioral simulation system [HP88], but augmented
with features for adaptive time steps. The following messages are broadcast
in the given order to every participant on every time step:

start This tells participants a time step is beginning. Typically bu�ers
for collecting messages in the a�ect stage are cleared here, and
state information is saved in case there is a backup.

a�ect Participants that attempt to modify the state of other partici-
pants may do so here by looking at the state of the environment
and sending messages calling for change. However, no partic-
ipant is allowed to change the appearance of an internal state
{ all calls for change must be bu�ered and dealt with in the
respond stage.

respond Objects are allowed to change their externally accessible state
variables, such as position and color for environmental objects
or activation level for behavioral network components.

data inject Rigid rules, such as static non-interpenetration, are enforced
here after objects have had a chance to update themselves. Pure
kinematic scripting may be done here also.

In addition, at any phase any object may request that the time step be
restarted with a smaller time step if it feels the simulation is running too fast.
A participant need only suggest a new �t, perhaps half the previous �t, then

148 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

call for a global backup. All participants are required to store persistent state
information in the start phase, and restore this state if a backup is called.
Participants may also request new �t values without requesting a backup
and if no requests are made, the system will try to double the �t on every
step until it reaches 1

30
th of a second.

The Class Hierarchy

An object-oriented approach is natural for implementing such a system, and
in order to allow fast execution for interactive development, we chose to use
C++. The cognitive model is based on Lisp and Prolog and will communicate
through C-callout functions to C++.

The class hierarchy is outlined in Figure 5.2. The SimulationCore class
manages the clock, the current �t, and a list of participants to which it broad-
casts synchronizing messages on each time step. SimulationParticipant en-
capsulates all participants in the simulation. A distinction is made between
participants that have spatial qualities (the KinematicObj class, which tends
to operate in the respond stage) and participants that try to modify the state
of other participants (the ActionController class which operates in both the
a�ect and respond stages).

Objects, actions, and networks

The KinematicObj class is broken into a JackFigure class which allows use
of the Jack �gures. The DynamicObj class is for objects controlled by dynamic
simulation and is a subset of kinematic objects because any dynamic object
ought to be able to respond to any message intended for a purely kinematic
object.

ActionControllers are broken down into Behaviors which include per-
ceptual and e�erent behaviors discussed above and NetObjectswhich connect
them. Our network package allows general neural network-type constructions,
though it is important to note that the system is not a neural network because:

� the 'neurons' (nodes) may be of arbitrary complexity.

� the messages passed along network links may be very complicated, in
particular, they can be pointers to objects.

Neural networks can be used within behaviors, however, and we have be-
gun experimenting with backpropagation learning [FS91, HKP91] and recur-
rent networks [Bec92, Sch90] as ways of learning how to behave.

All ActionController instances must respond to messages requesting the
start and end time of activation or an indication that the action has not started
or ended. This allows general implementation of conditional action sequencing
through meta-behaviors that on each time step check to see of a particular
action has started or ended or if an action of a particular type has begun or
ended.

5.1. FORWARD SIMULATION WITH BEHAVIORS 149

5.1.6 Implemented Behaviors

Presently, reactive agents resemble Reynolds' birds [Rey87] in that on each
time step the agent moves along its local z-axis. E�erent behaviors attempt
to modify the global orientation of the local z-axis and also determine by how
much it will move forward.

Our primary perceptual behavior is the Closest-k sensor. Its arguments
are the number and type of objects to which it is sensitive. In addition the
sensor needs to know what its relative position is to its host environmental
object (the z-axis of this transformation will be the forward direction). The
sensor produces k groups of outputs which will contain information on the
closest k objects of the de�ned type. Each group will have three oating-point
output nodes: the distance from the sensor's current global origin, the angle
between the sensor's z-axis and a vector to the detected object's centroid, and
the radius of the detected object (we currently use bounding cylinders and
bounding spheres around objects to simplify calculations). We have found no
pressing need yet to construct a corresponding furthest-k sensor.

Another perceptual behavior that is not behaviorally motivated, but useful
for abstract control is the ObjectSensor that is sensitive only to a particular
object in the environment and has outputs similar to a closest-k sensor.

The e�erent behaviors we have implemented are loosely motivated by
neuro-ethological �ndings about real creatures and are discussed by Wilhelms
and Skinner [WS90] in their implementation and abstraction of Braitenberg's
Vehicles [Bra84] and in Anderson and Donath's emergent reexive behavior
system [AD90]. What is novel about our behaviors is their dynamically ad-
justable tuning parameters:

1. threshold distance

2. �eld of view (angular threshold)

3. sensitivity of activation level to distance of object and angular distance
of object. Distance from threshold and angle from center scaled by an
exponent and a constant (both focusing parameters).

these can be adjusted directly by the cognitive component or by other behav-
iors. We have found the following behaviors particularly useful:

Attract go toward either closest-k of a certain type of object or a speci�c
object. Loosely corresponds to teleotaxis in animals [Gal80].

Avoid go away from a particular object or from a certain type of object.
Also a form of teleotaxis.

GoAround uses the incremental obstacle avoidance approach outlined by
Reynolds [Rey88], which is based on how birds avoid obstacles
while ying.

150 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Achieve go to a particular place or a particular place relative to another
object.

AttractLine go directly towards a line in space { used to follow walls.

AvoidLine go directly away from a line in space { used to avoid walls.

5.1.7 Simple human motion control

An important approach to developing human behaviors is to attempt to apply
the behaviors appropriate for low level animals directly to humans and see
where they appear awkward in order to understand what is missing. Our
initial attempt allows the above e�erent and perceptual behaviors to be used
directly in a human model except that instead of simply moving along the z-
axis the human agent attempts to reduce its current and desired headings by
taking steps. The stepping is accomplished by using a locomotion algorithm
(Section 5.2). Our walking algorithm is incremental in that it only needs to
know where the next footstep should go and how it should be oriented. Our
approach to supplying footsteps clips the di�erence between the current and
desired headings to 45 degrees and places the next foot to be moved alongside
the new heading. Heading is determined by the orientation of the lower torso
(which is oriented by the walking algorithm). The size of the step is currently
based on the curvature of the turn (smaller steps for larger turns), though
certainly step length should have other inuences.

Simulations involving this simple human agent model show very clearly
that humans anticipate the e�ects of placing the next step (perhaps through
behavioral gradient estimation) rather than blindly following inuences of the
current situation. In all complicated situations under the described model the
agent tends to oscillate around the behavior gradient.

There are other agent behaviors that are in the process of migrating
into this behavioral framework. In the next sections we look at locomotion,
strength-guided lifting, collision avoidance, and posture planning.

5.2 Locomotion

2Locomotion provides a tremendous extension of the workspace by moving
the body to places where other activities may be accomplished. A locomotion
system should provide a reasonable con�guration of the �gure at any time as
it moves along a speci�ed input path. There have been many e�orts to make
this process more realistic and automatic, which can roughly be summarized
into two major approaches: kinematic and dynamic controls. Rotoscopy data
and biomechanics knowledge can be utilized to control locomotion kinemati-
cally, but empirical data must be generalized to get walking under parametric
control. A dynamics computation can be done to get the locomotion path
and some of the body motion characteristics, but biomechanics knowledge is

2Hyeongseok Ko.

5.2. LOCOMOTION 151

DS=DOUBLE STANCE
TO=TOE OFF
HS=HEELSTRIKE

HS TO HS

TO HS

DS DS

RIGHT LEG

LEFT LEG

INTERVAL1 INTERVAL2

Figure 5.3: The Phase Diagram of a Human Walk.

useful in determining the details and reducing the complexity of the whole
body dynamic system.

These two approaches can be applied to get straight path walking. The
natural clutter and constraints of a workplace or other environment tend to
restrict the usefulness of a straight path so we must generalize walking to
curved paths. We have already seen the stepping behavior and the collision
avoidance path planning in Jack, so a locomotion capability rounds out the
ability of an agent to go anywhere accessible. First we give some necessary
de�nitions for the locomotion problem, then look at feasible ways of imple-
menting curved path walking.

At a certain moment, if a leg is between its own heelstrike (beginning)
and the other leg's heelstrike (ending), it is called the stance leg. If a leg is
between the other leg's heelstrike (beginning) and its own heelstrike (ending),
it is called the swing leg. For example, in Figure 5.3, the left leg is the stance
leg during interval 1, and the right leg is the stance leg during interval 2. Thus
at any moment we can refer to a speci�c leg as either the stance or swing leg
with no ambiguity. The joints and segments in a leg will be referenced with
pre�xes swing or stance: for example, swing ankle is the ankle in the swing
leg.

Let � = [�1; : : : ; �J] be the joint angles and � = [l1; : : : ; lS] be the links of
the human body model. Each �i can be a scalar or a vector depending on the
DOFs of the joint. Let � be the sequence of (~hi; ~di; sfi; lorri); i = 0; 1; : : : ; n,
where hi is the heel position of the ith foot, di is the direction of the ith foot,
sfi is the step frequency of the ith step, and lorri (\left" or \right") is 0 when
the ith foot is left foot and 1 otherwise. The locomotion problem is to �nd
the function f that relates � and � with � at each time t:

� = f(�;�; t): (5:1)

Usually the function f is not simple, so the trick is to try to devise a set
of algorithms that computes the value of � for the given value of (�;�; t),
depending on the situation.

5.2.1 Kinematic Control

The value of � can be given based on rotoscopy data. Two signi�cant prob-
lems in this approach are the various error sources in the measurements and

152 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

the discrepancy between the subject's body and the computer model. When
applying kinematic (empirical) data to the model, obvious constraints im-
posed on the walking motion may be violated. The most fundamental ones
are that the supporting foot should not go through nor o� the ground in the
obvious ways depending on the situation, and that the global motion should
be continuous (especially at the heel strike point). The violation of these con-
straints is visually too serious to be neglected. During motion generalization
the error is likely to increase. Therefore in the kinematic control of locomo-
tion, one prominent problem is how to resolve errors and enforce constraints
without throwing away useful information that has already been obtained.

So how can we generalize empirical data? The walk function � depends on
many parameters, and simple interpolation cannot solve the problem. Boulic,
Magnenat-Thalmann and Thalmann's solution for this problem [BMTT90] is
based on the relative velocity (RV), which is simply the velocity expressed in
terms of the height of the hip joint Ht (e.g. 2Ht=sec). For example the height
of the waist Os during the walk is given by

�0:015RV + 0:015RV sin 2�(2t� 0:35)

where t is the elapsed time normalized by the cycle time. Because this formu-
lation is based on both body size and velocity, the approach can be applied
under various body conditions and velocities.

5.2.2 Dynamic Control

Bruderlin and Calvert built a non-interpolating system to simulate human
locomotion [Bru88, BC89]. They generated every frame based on a hybrid
dynamics and kinematics computation. They could generate a wide gamut
of walking styles by changing the three primary parameters step length, step
frequency, and speed. The example we use here is based on their work.

Their model is divided into two submodels. The one (stance model) con-
sists of the upperbody and the stance leg. The other (swing model) represents
the swing leg. In the stance model, the whole upperbody is represented by
one link and the stance leg is represented with two collinear links joined by a
prismatic joint. So the stance leg is regarded as one link with variable length
!. In the swing model, the two links represent the thigh and calf of the swing
leg. In both models, links below the ankle are not included in the dynamic
analysis and are handled instead by kinematics.

Two sets of Lagrangian equations are formulated, one set for each leg
phase model. To do that, the �ve generalized coordinates, !, �1, �2, �3, �4
are introduced: ! is the length of stance leg; �1, �2, �3 is measured from the
vertical line at the hip to the stance leg, upperbody, and the thigh of the
swing leg, respectively; and �4 is the exion angle of the knee of the swing
leg. During the stance phase the stance foot remains at (x; y), so x and y
are regarded as constants. Once those �ve values of general coordinates are
given, the con�guration of the whole body can be determined by kinematics.

5.2. LOCOMOTION 153

So the goal of the dynamics computation is to obtain the general coordinate
values.

We will focus only on the stance model here. By formulating the La-
grangian equation on the stance model, we get the three generalized forces
F!, F�1 , and F�2 .

F! = m2�! �m2r2 ��2 sin(�2 � �1)�m2r2 _�2(_�2 � _�1) cos(�2 � �1)

�m2! _�1
2
�m2r2 _�2 _�1 cos(�2 � �1)

+m2g cos �1 (5.2)

F�1 = (I1 +m1r
2
1 +m2!

2)��1 + 2m2! _! _�1

�(m1r1 +m2!)g sin �1 +m2r2 ��2! cos(�2 � �1)

�m2r2 _�2
2
! sin(�2 � �1) (5.3)

F�2 = �m2r2�! sin(�2 � �1) +m2r2! ��1 cos(�2 � �1)

+(I2 +m2r
2
2)
��2 �m2gr2 sin �2

+2m2r2 _! _�1 cos(�2 � �1) +m2r2! _�1
2
sin(�2 � �1) (5.4)

which can be written in a matrix form as

2
4 a11 a12 a13

a21 a22 a23
a31 a32 a33

3
5
2
4 �!

��1
��2

3
5 =

2
4 Fw + b1

F�1 + b2
F�2 + b3

3
5 (5:5)

Let x(t) be the value of x at time t; x can be a scalar, a vector, or a matrix.
In equation 5.5 at time t, everything is known except �!; ��1; ��2; Fw; F�1; F�2 . If
we give the generalized force values at time t, the above linear equation can
be solved for accelerations. The position at the next time step is

~_qr(t+�t) = ~_qr(t) + �t~�qr(t) (5.6)

~q(t+�t) = ~q(t) + �t~_qr(t): (5.7)

The internal joint torques F (t) = [Fw; F�1; F�2]
T are not fully known.

Bruderlin adopted some heuristics from biomechanics to handle this problem.
For example, to get F�1, he noted

A signi�cant torque at the hip of the stance leg occurs only just
after heel strike and lasts for about 20% of the cycle time. Also,
the torque during this time interval is such that it rapidly reaches
a maximum value and decays quickly towards the end [IRT81,
Win90].

and approximated it by a constant function

F�1 =

�
c for the �rst 20% of cycle time
0 for the remaining cycle time.

(5:8)

154 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Similarly, in modeling the hip joint and waist joint as springs, the internal
torques were given by the following formulas:

F! = k!(!des + pa3 � !) � v! _! (5:9)

F�2 = �k2(�2 � �2 des) � v2 _�2: (5:10)

To handle the errors coming from these approximations, several check-
points were set. For example, the posture at the heel strike after the current
step can be derived based on the step symmetry. Integrating F (t) until the
checkpoint, we can compare the result with the desired one. The constants in
the equations above (e.g. c; a3) are adjusted according to the di�erence. This
process is repeated until the integration brings it close enough to the desired
posture.

5.2.3 Curved Path Walking

Research on biped locomotion has focused on sagittal plane walking in which
the stepping path is a straight line. Unfortunately, simply treating a complex
walking path as a sequence of straight-line path segments does not work.
The problems of turning and coordinating the limb motions at the turns is
frequently neglected and the rigid appearance of the resulting abrupt mid-air
turns is clearly unacceptable animation.

In building a general planar locomotion behavior, we utilized pre-existing
straight path ideas. We will call a linear path locomotion algorithm a 1D
system; we will use it as a process within our 2D behavior. For every 2D step,
we will consider its underlying 1D step, and the 1D system will provide some
needed information. Our generalization algorithm from 1D to 2D is based
on the intuition that there should be a smooth transition between linear and
curved locomotion. If the curvature is not large, the 2D walk generated should
be close to the 1D walk given by the underlying 1D system. In particular,
the degenerate 2D case of a straight line should be exactly the same as that
produced by the underlying 1D system. Since no assumptions are made about
the underlying 1D system, any 1D locomotion algorithm can be generalized
into our 2D one. Moreover, the underlying 1D system will determine the
stylistics (or faults) of the curved path walk.

When requested to create a step, the 1D step generation algorithmprovides
information to the 2D system. The 2D system �rst computes the center [of
mass] site trajectory and the locations of both hip joints. The locations of
the feet are computed based on the 1D step information. Because we have
the hip and foot locations of both legs, the con�gurations of both stance and
swing legs can be determined. The banking angle is computed, and the upper
body is adjusted to move the center of mass to achieve the required banking.
The parameters � that determine the con�guration of the whole body is now
available for Jack display. This entire process is incremental at the step level,
so that it �ts neatly into the behavioral simulation paradigm.

5.2. LOCOMOTION 155

i

i-1

d

d

ih

HSM TOM

λ

λ

α
α

2

1

δ
hi-1

E

E

i-1

i

Figure 5.4: The Step Length of the Underlying 1D Step.

Specifying the Walk

The direct input to the locomotion behavior is a step sequence � of 4-tuples,

�i = (~hi; ~di; sfi; lorri); i = 0; : : : ; n: (5:11)

Each tuple �i is called the ith foot description. The pair of adjacent two foot
descriptions (�i�1; �i) is called the ith step description or simply the ith step.

Even though we have maximum control of locomotion by using the step
sequence, generating such a sequence directly is a tedious job. The behavioral
simulation can generate a path incrementally, or an interactive user could
specify a curved path. In either case, the speci�cation is automatically trans-
formed to a step sequence.

The speci�cation of a walk in 1D can be done by giving a sequence of
(sli; sfi); i = 1; : : : ; n. Each (sli; sfi) a�ects the type of current step, start-
ing from the current heelstrike to the next one. For every step description
(�i�1; �i) in 2D, we consider its underlying 1D step. The step frequency sf1D
of this 1D step is given by sfi of �i. We can draw 2 lines �1, �2 on the
horizontal plane as shown in the Figure 5.4: �1 is in the direction of ~di�1
displaced by � from ~hi�1; �2 is in the direction of ~di displaced by � from ~hi.
Let � be the arc length of the spline curve fromEi�1 to Ei, where Ei�1 and Ei

are the projections of the heel positions to the lines �1, and �2, respectively.
(The derivatives at the end points of this spline curve are given by ~di�1 and
~di.) The step length sl1D of the underlying 1D step is given by this �.

Path of the Center Site

For this discussion we will keep the model simple by assuming that the center
of mass moves along a straight line from the heelstrike moment of the stance
leg (HS) to the toe o� moment of the swing leg (TO) (Figure 5.5). The
trajectory of the center site during this double stance phase (DS) is given

by the current stance foot direction ~di�1. From the TO to the next HS, the
center site moves along a spline interpolation (Figure 5.5). At both ends of the
spline, the derivative of the must match that of the adjacent line segments for

156 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

TOM

HSM

TOM

HSMTOM

HSM

Figure 5.5: The Trajectory of the Center Site (Top View).

HSM TOM

λ

λ

Y

X

α
α

2

1

h

d

h
d

i-1

i-1

i

i

CNHSM

CTOM

Figure 5.6: The Position of Center Site at Heelstrike Moment.

�rst order continuity. Through the whole locomotion, the pelvis is assumed
to face the derivative direction of the center site path, and be vertical to the
ground. The torso can be bent in any direction, a part of which is given
by the underlying 1D algorithm, and another part is given from a banking
adjustment.

To derive the spline curve, we need the position ~CNHS and derivative
_~CNHS of the center site at the next HS, as well as ~CTO and

_~CTO at TO which
are provided by the underlying 1D system (Figure 5.6). The assumptions

above imply that
_~CNHS = ~di, and ~CNHS should be put at pointX somewhere

on the line �2. Let �1D and �1D be the length of the center site trajectory from
HS to TO, and from TO to the next HS, respectively, during the underlying
1D step. Let �2D of corresponding 2D step be similarly de�ned. Let �2D(X)

be the arc length (top view) of the spline from ~CTO to X in Figure 5.6. Now

the position of the center site ~CNHS at the next HS is set to the point X on
the line �2 such that

�1D
�1D

=
�2D

�2D(X)
: (5:12)

This de�nition of ~CNHS is based on the smooth transition assumption from
1D locomotion to 2D. By a mapping which preserves arc length ratio [Gir87,
SB85, Far88], we can �nd the correspondence between the 2D trajectory of
the center site and underlying 1D one. Note that this de�nition also makes

5.2. LOCOMOTION 157

swH

λ
2DC

HSM TOM

HSM

BANKING

Figure 5.7: Banking of the Center Site.

sw

TURNING

HSM

H

2DC

TOM

HSM

Figure 5.8: Turning of the Center Site.

the degenerate case of 2D walk exactly same with the corresponding 1D walk.
The displacement of the curved path from the underlying linear path is

produced by banking as shown in Figure 5.7. The position of the displaced
center site in 2D step is C2D, andHsw is the position of the swing hip. Banking
mostly results from ankle joint adjustment. Even though the center site is put
on the spline curve by the ankle angle, the upper body has not bent yet to
generate the overall correct banking of the whole body. The banking should
be considered in terms of the center of mass of the body. The overall banking
is given by

� = arctan(
�v2

g
) (5:13)

where v is the velocity, g is the gravity, and � is the curvature of the path
[Gir87]. Here we use the spline curve of the center site as an approximation to
get the curvature. The upper body should be bent so that the center of mass
(which is in the upper body) may make the angle � around the stance ankle
with respect to the ground. Iteration can be used to compute the current
center of mass and reduce the di�erence from the current one and the desired
one.

We assume that the length of the dynamic leg ! in 2D locomotion at a
moment t, is the same as ! at the corresponding moment in the underlying 1D
step. So the displaced center site C2D will be lower than the corresponding 1D
center site C1D. The position (x1; y1; z1) of the hypothetical ankle is available
from the old foot location. Let (x2; y2; z2) be the position of the swing hip
Hsw in Figure 5.7. The horizontal components x2 and z2 can be computed

158 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

from the derivative at C2D and �. In Figure 5.7, � is the distance between
Hsw and C2D, and this distance is along the perpendicular direction of the
derivative.

Because we assumed that ! is the same in 1D and 2D locomotion, we have

j (x1; y1; z1)� (x2; y2; z2) j= ! (5:14)

where ! is given by the underlying 1D system. The value of y2 that satis�es
the above equation is the height of both Hsw and C2D. Because the pelvis is
assumed to be upright through the steps, the height of the stance hip H is
also y2.

The Stance Leg

The center site movement of 2D locomotion during DS is the same as that of
the 1D one, including the height component, so the stance leg con�gurations
are given by the underlying 1D system. During the single stance phase, we
still use 1D system to get the joint angle at the ball of foot. But because the
center site begins to deviate, the other joint angles should be computed.

In the stance leg, after the foot is put at on the ground, the toetip is
regarded as the root because that point is not moved until the next toe o�.
Because the joint angle at the ball of the foot is provided by the 1D algorithm,
we have the location A of the ankle. Since the location of the hip is also
available the con�guration of the stance leg can be determined.

The Swing Leg at the Double Stance Phase

Because a revolute joint is assumed at the ball of foot, if we exclude the
possibility of sliding, the toe group of the swing foot should stay �xed on the
ground during the DS. Because there are 3 links between the swing hip and
the ball of foot, we should resolve the redundancy in a reasonable way. If we
use the ball of the foot joint angle in the 1D algorithm this redundancy goes
away. This approximation works well in most of the cases. But when both
the direction change and the step length (the distance between the adjacent
steps) are extremely large, the distance j ~�sw j from Hsw to Asw becomes too
long to be connected by the lengths of thigh and calf. This problem is solved
by increasing the angle at the ball of foot until j ~�sw j becomes less than the
sum of thigh and calf. Then ~�sw is used to get the joint angles at ankle, knee,
and hip.

The Swing Leg at the Single Stance Phase

The trajectory (top view) followed by the swing ankle is approximated by a
second degree Casteljau curve [Far88]. The 3 control points are given by the
position D1 of the current swing ankle at TO, D2 which is the symmetric
point of the stance ankle with respect to the line �, and the ankle position
D3 at the next heel strike point (Figure 5.9).

5.2. LOCOMOTION 159

SWING FOOT (AFTER)

SWING FOOT (BEFORE)

STANCE FOOTλλ

D

D

D

3

2

1

α

Figure 5.9: The Path of the Swing Foot.

The height component of the ankle is determined by the underlying 1D
algorithm. So now we have the locations Asw andHsw, and can determine the
swing leg con�guration except for the two indeterminacies. At the moment of
heelstrike, the swing leg should have been prepared for the next step. Because
linear walking is assumed from HS and TO, the hip and ankle angles in swing
leg should become 0 except for the bending direction. So we should somehow
adjust the swing leg and foot from the chaos con�guration (at TO) to the
ordered con�guration (at the next HS).

At toe o�, the displaced (rotated around the forward axis) foot gets to
the normal position very quickly and it is approximated by an exponential
function that decreases rapidly to 0: for some positive constant G, we let �x3
at time t be

��(t) = ��(0) � exp
�Gt

tsw (5:15)

where t is the elapsed time after TO, and tsw is the duration between the TO
and the next HS. The rotation of the swing leg around the the axis from the
swing hip to the swing ankle is approximated by a parabola given by

~�(t) = ~�(0) � (
tsw � t

tsw
)2 (5:16)

If the 2D locomotion path is actually a straight line, the walk generated
is exactly the same as the walk given by the underlying 1D system. For
example, in the consideration of swing leg motion during the single stance
phase, D1; D2, and D3 will be collinear and parallel to the walking path.
Also in the equations 5.15 and 5.16, both �x3 (0) and �z7(0) will be 0 and the
trajectory of the swing leg will be exactly the same as that of 1D walking.

5.2.4 Examples

Figure 5.10 shows foot steps generated by the interactive step editor. Fig-
ure 5.11 shows the walking path generated by the interactive path editor. Fig-

160 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Figure 5.10: Steps Generated by the Step Editor.

Figure 5.11: Steps Generated by the Path Editor.

5.3. STRENGTH GUIDED MOTION 161

ure 5.12 shows snapshots during a turning step. Finally, Figure 5.13 shows a
path generated incrementally by the approach and avoidance behaviors.

5.3 Strength Guided Motion

3Human motion is likely to be hybrids of many motion and path generation
techniques. The task is to �nd e�ective combinations that provide realis-
tic motion behaviors while simultaneously o�ering the user reasonable and
intuitive control mechanisms. We have already seen several methods using
constraints and other simple control methods that implement various basic

human activities such as reaching, looking, grasping, and balancing. Now we
will look closer at a task-level control algorithm for object manipulation by
an end-e�ector, such as lifting a load to a speci�ed position in space. The re-
sulting motion is certainly dictated by the geometric limits and link structure
of the body; but more importantly the motion is strongly inuenced by the
strength and comfort of the agent.

5.3.1 Motion from Dynamics Simulation

Torques may be used to physically simulate motions of a �gure. Typically
the joint responses are conditioned by springs and dampers so that responses
to external forces can be computed. Such force- and torque-based methods
are called dynamic simulations [Gir87, Gir91, AGL87, IC87, WB85, Wil87,
FW88,Wil91, Hah88, HH87, Bar89]. Solving the dynamic equations, an initial
value problem, is computationally expensive, especially if the joints are sti�
[AGL87]. Natural external forces such as gravity and collision reactions easily
yield motions which are free-swinging or passive (purely reactive), but which
give the unfortunate impression of driving a hapless mannequin or puppet.
As might be expected, the best examples of dynamic simulation come from
crash studies [Pra84] where rapid deceleration produces forces that typically
overwhelm any agent-initiated torques. In less violent motions, the torques
may be derived from a spring or vibration model. Such have been used to
create convincing motions of worms, snakes, and other exible objects [Mil88,
PW89], but this cannot be the same mechanism used for human �gure motion.
Dynamic simulations are annoyingly di�cult to control by an animator since
force space speci�cations are highly non-intuitive.

Kinematic and inverse kinematic approaches are easier to manipulate and
may create the right \look," but su�er from potentially unrealistic (or un-
speci�ed) velocities or torques in the body joints. These problems have been
addressed as boundary value problems with objective functions. The trajec-
tories are then solved by global optimization approaches [WK88, Bre89] or
control theory [BN88], but their methods presume complete knowledge of the
driving conditions and overall constraints.

3Philip Lee.

162 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Figure 5.12: Snapshots during a Turning Step.

Figure 5.13: Incremental Walk Behavior.

5.3. STRENGTH GUIDED MOTION 163

Robotics emphasizes accomplishing a motion within constraints and op-
timizing it with respect to some criteria such as time, torque, energy, or
obstacles [Bob88, HS85b, KN87, Kha87, MK85, SL87]. Bioengineers try to
determine if human motion conforms to some optimality criterion, such as
time or energy [BC68, CJ71, YN87, Yeo76]. Given its range and diversity,
human motion is not optimal with respect to a single criteria.

Despite these various approaches to the human motion problem, none has
been successful at specifying a task by describing a load and a placement
goal, and then completing the task in a realistic (though possibly suboptimal)
manner. There have been e�orts to generate a path between two endpoints
[AAW74, Ayo91, SH86, KR79, SSSN85], but the usual solution incorporates
constraints and a single objective function that is optimized.

5.3.2 Incorporating Strength and Comfort into Motion

We o�er a solution which blends kinematic, dynamic and biomechanical in-
formation when planning and executing a path. The task is described by the
starting position, the load (weight) that needs to be transported, and a goal
position for the load. Some simple additional parameters help select from
the wide range of possible paths by invoking biomechanical and performance
constraints in a natural fashion. Thus a path is determined from a general
model rather than provided by default or by an animator. In addition, the
algorithm is incremental: it has the ability to adapt to changing forces that
are required to complete a task. The basic premise of the method is that a
person tends to operate within a comfort region which is de�ned by available

strength. This is even more probable when the person has to move a heavy
object.

We assume that a person tends to operate within a comfort region dic-
tated by muscular strength, especially when moving a heavy object. When a
person has to accomplish a given task, say lifting a box or cup, he starts from
some initial posture and then plans the direction for his hand to move. This
planning is based on the person's perception of his strength, comfort range,
and the importance of staying along a particular path. After a direction is
determined, he tries to move in that direction for a short distance with joint
rates that maintain the body's discomfort level below a particular thresh-
old. Once the position is reached another direction is selected by balancing
the need to �nish the task as directly as possible with restrictions derived
from the body's limitations. Again, joint rates can be determined once a new
direction is established.

The objective is to �nd the trajectories, both joint and end-e�ector, that
a human-like linkage would traverse to complete a lifting task The task can
be speci�ed as a force that has to be overcome or imparted to reach a goal
position over an entire path. The task speci�cation can be generalized to
describe a complicated task by letting the force be a function of body position,
hand position, time, or other factors. In general, task speci�cation can be
represented by a force trajectory. In addition to task speci�cation by a force

164 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

trajectory, we have seen other behaviors in which human motion is guided by
constraints limiting joint and end-e�ector trajectories. Constraints that guide
the end e�ector motion are discomfort level, perceived exertion, and strength.

Discomfort level is de�ned in a mechanical sense. It is found by calculating,
over the entire body, the maximum torque ratio: current torque divided by
the maximumtorque at each individual joint for the current joint position and
velocity. The Comfort level is just 1� discomfort. In general, when humans
move they try to maintain their e�ort below a particular discomfort level.
Therefore, it is desirable to dictate a motion that minimizes the maximum
torque ratio of a body in order to maximize the comfort level.

Perceived exertion is a variable used to indicate the expected level of dif-
�culty in completing a task. It depends on the perception of the amount of
strength required (an implicit function of the force trajectory) and the amount
of strength available. If perceived exertion is low then the discomfort level is
not expected to be exceeded for the paths \likely" to be taken to satisfy a
task, especially for a path that travels a straight line between the initial body
position and the goal. However, if the perceived exertion is high, then the
end-e�ector path needs to deviate from a straight path in order to abide by
the comfort constraint. Perceived exertion is represented by a cone which is
de�ned by the maximum deviation angle of a path from its current position.

Strength { the maximum achievable joint torque { also dictates end e�ec-
tor motion and path. For testing the strength-guided motion behavior any
suitable strength formulation would su�ce; we used empirical data collected
by Abhilash Pandya of NASA Johnson Space Center [PMA+91]. There are
two strength curves to represent the two muscle group strengths (exor and
extensor) at each DOF.

5.3.3 Motion Control

The motion controller consists of three components (Figure 5.14):

1. Condition Monitor which monitors the state of a body and suggests
motion strategies.

2. Path Planning Scheme (PPS) which plans the direction that an end-
e�ector will move.

3. Rate Control Process (RCP) which determines the joint rates for motion.

The condition monitor reports on the current state of a body: current posi-
tion, maximum strength for a current position, current joint torques, etc. It
then suggests motion strategies to the path planning scheme which determines
an end-e�ector's direction of travel. The amount of motion of the end-e�ector
in the suggested direction of travel can be arbitrarily set. The rate of travel,
constrained by torque, for a path interval can then be computed by the rate

control process. After the joint rates are resolved and new joint positions are
found, these procedures are repeated until the entire joint path is mapped

5.3. STRENGTH GUIDED MOTION 165

force trajectory, comfort,
perceived exertion, joint chain

Behavioral selector

Path Planning Scheme

strategy 1 strategy nstrategy 2
....

Joint
Control

Joint
Control

Reach
Goal ?

strength

external
dynamics

Joint
Control

Figure 5.14: Strength Guided Motion Architecture.

out in a manner that satis�es the speci�ed task. This system architecture
is an iterative process which allows changes to the parameters at any time
through other external processes. Possible situations to alter any of the pa-
rameters are dropping or changing the mass of a load, redirecting the goal, or
encountering an obstacle. This is di�erent from the global nature of optimal
control-based algorithms. We handle similar global considerations through an
external process [LWZB90].

Condition Monitor

The condition monitor gathers information about the current state of a body,
assembles the information, and suggests a motion strategy for the next pro-
cedure to process. The motion strategies are a function of the constraint
parameters: comfort, perceived exertion, and strength. Each motion strat-
egy, based on the constraints, concentrates on a separate fundamental aspect
of motion. The strategies can be divided into those that represent indirect
joint control and those that represent direct joint control. For indirect joint
control strategies, the end-e�ector's need to reach a goal is more important
than joint considerations; and for direct joint control, joint considerations are
more important than reaching a goal. We can also interpret the strategies as

166 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

particular optimization problems. The condition monitor is the highest level
of the three procedures in predicting a path.

Path Planning Scheme

The path planning scheme, guided by the condition monitor, determines the
direction to move. In general, the output of any system is bounded by its head-
room: the available range of a variable within a constraint. In the case when
there is much strength in a system (a situation where indirect joint control
applies) the headroom can be used to suggest incremental joint displacements,
d�. A larger headroom allows a larger displacement. The mapping between
the cartesian displacement and the joint displacement is

dx = Jd� (5:17)

where J is the 3 � n Jacobian matrix and n is the number of joint displace-
ments. If the headroom for each joint is represented by a weighting vector w
proportional to d�, then

dx̂ = Jw (5:18)

where dx̂ is a normalized direction of reach. The direction dx̂ is then com-
pared against a cone representing the feasible directions of travel derived from
perceived exertion. If dx̂ is within the cone then the direction of motion should
be dx̂, otherwise the direction can be dx̂ projected onto the cone.

When the system is relatively weak, the suggested direction of motion
must not violate the strength constraints. The decision process should shift
importance from one strategy where the desirability to reach a goal is a major
component of determining a suggested motion to an alternative strategy of
avoiding positions where the joints are greatly strained. This leads to schemes
where direct joint control is imperative to avoid positions where joints are
strained [Lee92].

Rate Control Process

The rate control process, the most basic of the three procedures, resolves the
speed with which a body moves along a prescribed end-e�ector path. This
requires the use of dynamics, especially when the motion is fast. However,
the incorporation of dynamics is di�cult. When torques are speci�ed to drive
a motion (direct dynamics), control is a problem; when the driving forces are
derived by kinematic speci�cation (inverse dynamics), the forces are useful for
only a short time interval and they may violate the body's torque capacity;
and �nally, when the forces optimize a particular function between two sets of
positional constraints (boundary value problem), the method presumes that
the optimization criteria is valid for the body's entire range of motion.

Dynamics equations can be interpreted as constraint equations solving for
joint trajectories if they satisfy the conditions imposed by speci�c end-e�ector
path and torque limits. The dynamics equations can be reformulated so that

5.3. STRENGTH GUIDED MOTION 167

they provide a mapping between an end-e�ector path and a binding torque
constraint. A binding torque constraint is the maximum torque allowed to
drive a body with maximumend-e�ector acceleration without the end-e�ector
deviating from the prescribed path. A greater torque would cause excessive
inertial force and therefore, undesirable path deviation. From the derivation
of the reformulated dynamics equations originally derived to solve for path
completion in minimum time [Bob88], joint trajectories can be found from
the acceleration of an end-e�ector. In addition to �nding the trajectories,
the reformulated dynamic equations implicitly determine the force functions
(joint torques) to guide an end-e�ector along a speci�ed path.

Torque limits are established by the current discomfort constraint. The
discomfort level variable dcl determines the torque limit at each joint by a
simple relation:

dcl =
�c;i

� (�)max;i

(5:19)

where �c;i is the torque load for a particular joint i. The value � (�)max;i is
the maximum torque for the joint's current position obtained by querying the
strength curves. When the value of dcl becomes greater than one, there is no
more strength to accomplish a task and therefore the attempt to complete a
task should cease. The discomfort level can be adjusted to achieve a desired
motion. It inuences both the rate of task completion and the direction of
travel.

5.3.4 Motion Strategies

This is a catalogue of human motion strategies that are evaluated in the
condition monitor and are executed in the path planner. The strategies are
given in the order of increasing discomfort.

Available Torque

When a person moves, the tendency is to move the stronger joint. This is
similar to the forces due to a spring or other types of potential forces. A
stronger spring, based on the spring's sti�ness coe�cient, would yield a larger
displacement per unit time than a weaker spring. Similarly, for a human, the
amount of displacement for a joint depends not only on the strength that a
joint is capable of, but mainly on the amount of strength that is currently
available. The amount of strength available, which is based on the di�erence
between the current required torque to support a particular position and the
e�ective maximum strength (the maximum strength factored by comfort), is
called torque availability. If torque availability is low, motion should not be
encouraged. Conversely, if the torque availability is high, the joint should do
more of the work. Torque availability is the driving factor for a joint to move
and to thereby redistribute the joint torques so that the comfort level is more
uniform.

168 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Reducing Moment

As a joint approaches its e�ective maximumstrength, the joint should move in
a manner that avoids further stress (discomfort) while still trying to reach the
goal. A path towards the goal is still possible as long as the maximumstrength
is not surpassed for any of the joints. As the body gets more stressed it should
attempt to reduce the moment caused by a force trajectory by reducing the
distance normal to the force trajectory's point of application. In addition, a
reduction in moment increases the torque availability of (at least) the joint
that is rapidly approaching its maximum strength. The reduction in the
total moment involves examining the moments on a joint by joint basis. At
each joint a virtual displacement is given to determine if that displacement
provides su�cient moment reduction to continue moving in that direction.
This strategy assumes that the body has enough e�ective strength to allow
its joints to move to positions where the overall stress level of the body is
smaller than if the joints were only guided by kinematic demands.

Pull Back

The two previous strategies depend on the current torque being less than the
maximum strength. In these cases, maneuverability in torque space is high
and therefore an end-e�ector can still consider moving toward a goal without
exceeding any joint's maximum strength.

When a particular joint reaches its maximumstrength, however, then that
joint can no longer advance toward a goal from the current con�guration.
The Pull Back strategy proposes that the end-e�ector approach the goal from
another con�guration. In an e�ort to determine another approach to the goal,
the constraint of moving toward a goal within a restricted path deviation can
be relaxed. The emphasis of the strategy is one where the joints dictate an
improved path in terms of torques. This can be accomplished by increasing
the ultimate available torque { the di�erence of maximum strength to current
torque { for a set of weak joints { joints that are between the joint which has
no ultimate available strength and an end-e�ector.

In general, the joint with the least amount of ultimate available torque will
reverse direction and cause the end-e�ector to pull back (move away from its
goal). The idea is to increase the overall comfort level. When the joints form
a con�guration that has a greater level of comfort, there might be enough
strength to complete the task. Then the governing strategy could return to
Reducing Moment, which allows the end-e�ector to proceed toward the goal.

The Pull Back strategy leads to a stable con�guration. This is a posture
that a set of joints should form so that it can withstand large forces, such
as those caused when changing from a near-static situation to one that is
dynamic.

5.3. STRENGTH GUIDED MOTION 169

Added Joint, Recoil, and Jerk

When the three strategies, Available Torque, Reducing Moment, and Pull
Back have been exhausted and an agent still cannot complete a task, it is
obvious that the active joints { the joints that were initially assigned to the
task { cannot supply su�cient strength. When this occurs it should be deter-
mined if the task should be aborted or if there are other means of acquiring
additional strength. One mode of acquiring more strength is to add a joint to
the chain of active joints. This assumes that the added joint is much stronger
than any of the active joints.

Another mode to consider is to use the added joint to jerk { apply with
maximum force { the set of active joints. Jerk reduces the forces necessary
to complete a task for the set of active joints. Before jerking is initiated,
a stable con�guration should be formed by the active joints. After a stable
con�guration has been formed and the added joint has jerked, the active
joints can then proceed to reach their goal since the required torques have
decreased. A third possibility is to recoil another set of joints and then jerk
with the recoiled set of joints in order to reduce the forces needed by the set
of active joints to complete a task. For example, a weight lifter sometimes
recoils his legs and then pushs o� to reduce the force required in his arms.

5.3.5 Selecting the Active Constraints

The path determination process has been uncoupled into two active con-
straints: comfort and perceived exertion. In the rate control process involving
dynamics, the two constraining parameters must be active to determine the
joint rates.

At higher levels of control (such as in the path planner), both need not
be active simultaneously. In fact, as the torque levels change the applicability
of a particular constraint to predict motion also changes. We use a model
that relates the comfort level to the constraints. The strategies bound various
comfort levels.

High Comfort. The perceived exertion constraint is not active but the com-
fort constraint is, because any changes in acceleration (not necessarily
large) may cause a joint to exceed the allowable discomfort level. In
general, the force trajectory associated with a motion of high comfort
is negligible, but dynamics is important because of the relatively large
inertial e�ects of the body. This group is bounded by motions that are
categorized by zero jerk condition [Gir91] and Available Torque.

Regular Comfort. The end-e�ector can advance toward the goal. Perceived
exertion and comfort are loosely constraining and dynamics should be
evaluated. Available Torque and Reducing Moment bounds this comfort
level.

Discomfort. At this point the discomfort level for one or more joints are
surpassed. The perceived exertion constraint needs to be changed so

170 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

that a larger path deviation is allowed. Motion should have slowed down
considerably, therefore dynamics is not important and, most likely, is not
meaningful. This group is formed by Reducing Moment and Pull Back.

Intolerable Discomfort Many of the joints' comfort levels have been ex-
ceeded and there may be other joints which could be approaching their
maximum available torque. In such a situation, strategies can be com-
bined. The pool of strategies are Added Joint, Pull Back, Recoil, and
Jerk. Perceived exertion is relaxed and depending on the combination
of the strategies, dynamics might be important.

5.3.6 Strength Guided Motion Examples

The strategies for Available Torque, Reducing Moment, Pull Back, and Added
Joint are implemented in Jack. Figures 5.15, 5.16, 5.17, and 5.18 show the
paths that were produced from these conditions. The task is to place an
increasingly heavy load from various initial positions at a goal which is located
above the body's head.

In Figure 5.15, there are two curves which outline the path of the hand.
The right curve is for a task that involves lifting a 10 pound object; the
left curve is for a 20 pound object. For the right curve, because the object
is relatively light, a fast motion is predicted and the solution resembles a
minimum time path. For the left curve, the heavier weight draws the hand
closer to the body. This path is rough because it is at the boundary of a
solution determined by Available Torque and Reducing Moment. In Figure
5.16, the right curve is for the 20 pound lift, and the left curve is for a lift
of 30 pounds. Once again the algorithm predicts that a heavier object would
bring the hand closer to the body.

Figure 5.17 shows the body with a heavier load (35 pounds). The body
immediately executes Pull Back. In this case, the body pulls back to a region
of high comfort and therefore the approach to the goal is smooth, without the
rough path evident in the previous �gures. In Figure 5.18, the joint chain,
initially composed of the joints between the hand and the shoulder, is allowed
to extend to the waist. The algorithm decides that it is better to distribute
the weight with more joints. Figure 5.18 shows the advantage of including the
waist in the set of active joints.

These algorithms can be applied to any type of task, as long as it is force-
based: even rising from a chair. A force trajectory is used to represent the
body weight and the shoulder's normal position when standing is used as the
force goal. The body leans forward to balance its weight (a consequence of
Reducing Moment) to reach the shoulder goal.

The average time of a path generation is under 10 seconds. Since our
examples mainly involved heavy loads, static torque computations were used.
The internal joint chain positions are determined by Jack inverse kinematics.

5.3. STRENGTH GUIDED MOTION 171

Figure 5.15: Lifting a 20 pound and 10 pound Object.

Figure 5.16: Lifting a 30 pound and 20 pound Object.

172 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Figure 5.17: Pull Back.

Figure 5.18: Added Joint.

5.3. STRENGTH GUIDED MOTION 173

5.3.7 Evaluation of this Approach

We have tried to generate a realistic motion path for a slow, weight-lifting
task represented by a time- and position-dependent force trajectory. The
method maps out an entire path automatically and incrementally for a force
trajectory over a set of constraints based on comfort level, perceived exertion,
and strength. Because the body state is constantly updated, these constraints
can also be a function of an external model, such as fatigue.

Motion is generated by integrating a condition monitor which suggests
basic motion strategies, a path planning scheme which locally plans the end-
e�ector's path and a rate control process which controls the joint rates. The
condition monitor o�ers strategies to pursue by balancing the goal of the task
against the resources that are currently available. The path planning scheme
proposes a direction of travel by executing the basic strategies. The elusive
force function that previous investigators have sought can be found by chang-
ing the role of the dynamic equations to a constraint equation which is es-
tablished with a dynamics model. By selecting the most restrictive constraint
from the constraint equations, the maximum joint rates can be computed.

Altering the constraints used in this problem still gives a goal-directed
motion that conforms to physical laws. We see this capability as an inherently
model-driven, exible, and crucial component for generating more natural
human behaviors. We will see shortly in Section 5.4 how this approach can
be extended to include collision avoidance during more complex actions.

5.3.8 Performance Graphs

Three types of graphs are developed for the user to analyze some pertinent me-
chanical relations of the agent's movements. The properties that are tracked
and graphed are comfort levels, work, and energy (Figure 5.19, 5.20, and
5.21).

The histogram of comfort shows the current discomfort value as well as
the user-speci�ed desired maximum. The e�ective comfort level is the actual
comfort level that controls the movements. It includes factors that may a�ect
the desired comfort level. Currently, an exponential function representing
fatigue is one of the factors that can alter the e�ective comfort level.

The graph of work the agent performs at each iteration is computed as

�Wj =
nX

i=n

�i ��i (5:20)

where n is the number of DOFs, �i is the current torque of the ith joint, and
��i is the change in joint position (�j � �j�1).

The energy graph represents the sum of all the work performed by the
joints since the beginning of the task. Because the amount of energy that is
expended grows very fast, the curve that represents energy is automatically
rescaled to �t within the designated plot area when necessary.

174 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Figures 5.22, 5.23, and 5.24 show the comparative trajectories of the hand
as load, comfort level, and perceived exertion are varied.

5.3.9 Coordinated Motion

Coordinated motion is when the execution of a task requires more than one
set of linkages either from the same agent or from two separate agents. Our
implementation of coordinated motion follows the same parameter control
philosophy. As in the task speci�cation of a single linkage, a coordinated task
is made a function of comfort and path deviation.

The coordination between the two joint chains is based on a master and
slave relation: the weaker chain is the master and the stronger chain is the
slave. The algorithm �rst determines which is the weaker linkage (master),
then its path is generated according to the strategy that is appropriate for its
comfort level. The other joint chain (slave) must comply with the master's
new position. Simple geometry from the master's new position, the dimension
of the object, and the magnitude of the slave's incremental displacement is
used to determine the slave's new position (see Figure 5.25). The magnitude
of the master and slave's incremental path is a nominal distance factored
by their respective comfort level; the master will travel less than the slave.
The master-slave assignment switches whenever the relative comfort { the
di�erence between the two linkages' comfort level { reverses.

The speci�cation of a coordinated task begins by instantiating each of
the joint chains as a separate task. Then the goal and the weight of the
object to be moved is stated. Next, the kinematic relation between the two
linkages is speci�ed; this involves identifying the attachment points on the
object (handle) with the corresponding end-e�ector. This is done for each of
the chains that participates in the coordinated task. The end-e�ectors are
automatically attached to the handle.

Finally, two control parameters which control the characteristics of the
path need to be speci�ed. The �rst control parameter, allowable comfort
di�erence, speci�es a tolerance in the relative comfort level before a master-
slave switch is made. A graph can be called to display the di�erence in comfort
between the two joint chains. The other parameter controls the amount of
allowable path deviation. The user can control the amount of path deviation
by entering a ratio that determines the relative propensity between the path
of moving to the goal directly and the path that is sensitive to the agent's
stress level. Unlike a task involving a single chain, the motion of each chain
cannot deviate or switch strategy without considerating the other chain. This
means that the strategies of the two linkages should coincide; both linkages
performing Pull-Back would not be permitted. Because of this limitation, the
strategies available in this current implementation are only Available-Torque
and Reduce-Moment.

5.3. STRENGTH GUIDED MOTION 175

Figure 5.19: Plots of Comfort Level, Work, and Energy (10 lb., pe = 0.30, cl
= 0.50)

176 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Figure 5.20: Plots of Comfort Level, Work, and Energy (20 lb., pe = 0.30, cl
= 0.50)

5.3. STRENGTH GUIDED MOTION 177

Figure 5.21: Plots of Comfort Level, Work, and Energy (30 lb., pe = 0.30, cl
= 0.50)

178 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Figure 5.22: 30 lb., pe = 0.30, cl = (0.40, 0.50, 0.85)

Figure 5.23: 30 lb., pe = 0.30, cl = (0.40, 0.50, 0.75, 0.85)

5.3. STRENGTH GUIDED MOTION 179

Figure 5.24: 5 lb., pe = (0.30, 0.20, 0.10, 0.05), cl = 0.50

masterslave

object's
virtual position

virtual
displacement

slave's sphere
of possible virtual
displacements

virtual
displacement

object's sphere
of possible virtual
positions

intersection
of both spheres

Figure 5.25: Construction of the Path for Coordinated Motion.

180 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

5.4 Collision-Free Path and Motion Planning

4Collision-free path planning has applications in a variety of �elds such as
robotics task planning, computer aided manufacturing, human �gure motion
studies and computer graphics simulations. A collision-free path for an ar-
ticulated �gure is the path along which the articulated �gure moves from
an initial con�guration to a �nal con�guration without hitting any obstacles
residing in the same environment as the articulated �gure.

A great deal of research has been devoted to the motion planning problem
in the area of robotics within the last 10 years, e.g. [LPW79, LP87, LP83,
Bro83b, BLP83, Bro83a, Don84, DX89, KZ86, Gou84]. However, despite the
applicability of motion planning techniques to computer graphics simulations,
the problem has not been addressed much in the computer graphics commu-
nity [Bre89, DLRG91].

Articulated human �gures are characterized by a branching tree structure
with many DOFs. Existing algorithms in robotics fall short in handling some
of the issues encountered when dealing with these types of �gures. We present
novel algorithms that can address all these issues. The basic idea is that
instead of treating all the DOFs in the �gure together, we divide them up
into groups and treat these groups one by one and playback the path in a
coordinated manner when all the groups are considered. Our motion planning
system can also take into consideration the strength data of human �gures so
that the planned motion will obey strength availability criteria (Section 5.3).

5.4.1 Robotics Background

The major challenge of our problem is to handle a redundant branching
articulated �gure with many DOFs. Many of the robotics algorithms deal
with manipulators with relatively few DOFs, e.g. mobile robots which typ-
ically have 3 DOFs or arm-like robots which have 6. Many of these algo-
rithms are based on the use of the con�guration space (C space) which is
the space encompassing the DOFs of the robot [LPW79, LP83]. The inher-
ent di�culty with this approach is due to the high dimensionality of the C
space. It is well known that the worst case time bound for motion plan-
ning for a robot arm is exponential in the dimensionality of its C space
[SS83a, SS83b]. It is only during the last few years that motion planning
algorithms that can handle manipulators with many DOFs have been pre-
sented [BLL89b, BLL89a, BL89, Gup90, Fav84, Bre89].

Very few studies consider articulated �gures with branches. Barraquand
et al gave an example involving a manipulator with 2 branches [BLL89b,
BLL89a, BL89]. In their work, they create an arti�cial potential �eld in the
3D workspace and the free path is found by tracking the valleys. A gain in
e�ciency is obtained as a result of the clever selection of potential functions
and heuristics. However, it is not clear how these can be selected in general.

4Wallace Ching.

5.4. COLLISION-FREE PATH AND MOTION PLANNING 181

Algorithm

Control Algorithm

Algorithm

Algorithm
Playback

Algorithm

Planar

Sequential Basic

Figure 5.26: Di�erent Modules and their Associated Algorithms in the Path
Planning System.

Faverjon et al [Fav84] partition the free space into oct-trees and uses some
probability measures to cut down the search tree during the A* search. Gupta
[Gup90] handles sequential linkages with manyDOFs using a sequential search
technique which basically treats the individual DOFs one by one instead of
considering all of them together. The initial stage of our path planner is based
on his work.

5.4.2 Using Cspace Groups

The main idea of our path planner is to handle the DOFs of the articulated
�gure not all at once but a certain number at a time. The general principle of
our path planner is �rst to divide the DOFs into a number of groups which we
call Cspace groups. We then compute the collision-free motion for the DOFs
in each group successively, starting from the �rst group. After the motion of
the DOFs in group i has been planned, we parameterize the resulting motion
with a parameter t. The motion for the DOFs in group i + 1 will then be
planned along this path by controlling the DOFs associated with it. The
problem is then posed in a t � �k space if there are k DOFs in this group.
We proceed in this manner along the whole �gure structure and solve for the
motion for all the groups. Finally a playback routine is invoked to playback
the �nal collision-free path for the �gure.

Our system adopts a modular design in that it is made up of a number of
modules each of which is based on an algorithm (Figure 5.26). Each module
carries out a particular function and contributes to the whole path �nding
process.

On a more global perspective, the path �nding procedure can be viewed
as consisting of two phases: the computation phase and the playback phase.
All of the steps involved in these phases are performed by the algorithms
described in later sections.

182 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

The overall path planning procedure is outlined as follows:

� Computation Phase:

1. Partition the articulated �gure's DOFs into Cspace groups accord-
ing to a grouping scheme.

2. Impose an order of traversal among the Cgroups. For a human
�gure, we use a depth-�rst traversal. This means we plan the
motion for one arm and then another.

3. Invoke the control algorithm that handles traversal of the tree and
�nds the �nal collision-free path. This algorithm will actually call
upon a subsidiary algorithm, sequential algorithm, to compute the
free path along a branch of the tree structure. The sequential
algorithm will in turn call another subsidiary algorithm, the basic
algorithm, to compute the path for the DOFs within each Cgroup.

� Playback Phase:

After all the Cspace groups have been considered, a special playback
algorithm will be called upon to traverse the tree structure in a reverse
order, collect and coordinate all the computed information and �nally
playback the overall collision-free path in discrete time frames. These
time frames can be further interpolated to produce smooth motion. Ide-
ally the behavioral simulation loop controls the frame timing and hence
the production of the output postures.

The translational movement of the articulated �gure as a whole on a plane
can also be generated with this planner. In this case, the �gure resembles a
mobile robot with two degrees of translational freedom and one degree of
rotational freedom. The module that handles this case is named the Planar
Algorithm.

Figure 5.27 shows the general redundant branching articulated structure
and symbols that we will use for reference. We will mainly focus on the upper
body of the human �gure. The system can be easily applied to the legs to
provide stepping or foothold movements as we will show later.

5.4.3 The Basic Algorithm

The particular algorithm we have chosen is the one presented by Lozano-
P�erez in [LP87] due to its simplicity and intuitiveness. It �rst constructs the
C space for the articulated �gure. For the sake of completeness, the process
is described below.

If the manipulator has n links, its con�guration space can be constructed
as follows:

1. i = 1.

2. While (i < n) do

5.4. COLLISION-FREE PATH AND MOTION PLANNING 183

parameters

groups
links

branches

n2

1

0

bb
b

b

)

)
12

(t

11(t

12
n2

1p
g

11

g

g

n

0

nml

n1

l

l

0m
l

03
l

02l

01
l

Figure 5.27: The Redundant Branching Articulated Figure.

(a) Ignore links beyond link i, and �nd the ranges of legal values of qi
by rotating link i around the position of joint i determined by the
current value ranges of q1; :::; qi�1 and check for collision with the
surrounding obstacles. Self collision can be avoided by checking
collision with linkages from the same �gure as well. Mark those
joint values at which link i will have a collision as forbidden.

(b) Sample the legal range of qi at the speci�ed resolution.

(c) Increment i and repeat step (a) for each of these value ranges.

The free space is then represented by a regions data structure to explore
the connectivity between the cells. A graph is then built on these region nodes
and an A* search is conducted to search for a free path from the start node
to the goal node.

5.4.4 The Sequential Algorithm

The Sequential Algorithm handles the motion planning problem for the Cspace
groups along a sequential branch. This algorithm is based on but di�ers from
Gupta's work.

184 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Referring to Figure 5.28, let n be the total number of Cspace groups on
this branch. Let the joint DOFs associated with the groups be represented
by qij where i is the group number and j is from 1 to mi where mi is the
maximum number of DOFs group i has. Let ri be the reference vertex for
group i. It is basically the distal vertex of the link associated with the DOFs
in the group i. Let ri(t) denote the trajectory of the reference vertex ri. The
initial and goal con�gurations of the arm are given as qsij and q

g
ij, i=1..n; j =

1..mi.
The algorithm is as follows:

1. Compute a collision-free trajectory for the links associated with group
1. The trajectory of the reference vertex on its link will be r1(t).

2. i = 2.

3. While (i < n)

(a) along ri�1(t), discretize the path according to a pre-speci�ed reso-
lution. Compute a collision-free trajectory for the DOFs in the ith
group from qsij to q

g
ij for j = 1..mi using the basic algorithm.

(b) given q1j(t); q2j(t); :::; qij(t), compute ri(t) using forward kinemat-
ics.

(c) Increment i.

The parameter used in parameterizing the path already computed can be
either interpreted as temporal or non-temporal. For a temporal interpretation
of the parameter, the path computed has to be monotonic with respect to
the parameter t simply because we cannot travel backward in time. Hence
backtracking within the Cspace group is not allowed and the chance of �nding
a path is greatly restricted. In the example shown in Figure 5.29, we will not
be able to come up with a path without backtracking. We have adopted a non-
temporal interpretation of the parameter in most cases as this will increase
the chance of �nding a path.

Each C group deals with one parameter and a certain number of DOFs.
The number of DOFs can vary between C groups so as to �t into the structure
of the �gure. For example, the shoulder joint can be handled by one C group
with 3 DOFs.

The number of DOFs handled at a time also a�ects the degree of optimality
of the resulting path (with respect to some criteria). Theoretically, the optimal
path can only be obtained by searching through the n-dimensional C space
built from considering all n DOFs together. However, such an algorithm has
been proven to be exponential in the dimensionality of its C space [SS83a].
There is a customary trade o� between speed and optimality.

Our choice of using the region graph instead of the visibility graph allows
for the path to be positioned farther away from the obstacles, hence leaving
more room for the next linkage (Figure 5.30).

5.4. COLLISION-FREE PATH AND MOTION PLANNING 185

Group 2

Group n 1r

= 21m

12
q

11q

Group 1

Figure 5.28: A Sequential Linkage.

q

t

Figure 5.29: An Example Showing the Case that a Path can only be Found
with Backtracking which Means the Parameter Takes on a Non-Temporal
Interpretation.

5.4.5 The Control Algorithm

The control algorithm performs the entire path planning process:

1. Apply the Planar Algorithm to the whole �gure to obtain the planar
collision-free translational movement of the �gure taken as a whole.

2. Parameterize the resulting motion.

3. Repeat the following to every branch, starting from the �rst.

(a) Apply the Sequential algorithm to the branch using the last pa-
rameter in the �rst group.

(b) Parameterize the resulting path computed for this branch accord-
ing to some prespeci�ed resolution.

(c) Invoke the PlayBack Algorithm to the branch to obtain the se-
quence of joint angle values of the branch when moving along the
computed path.

(d) Record this sequence of joint angles in the array FREEANGLES.

186 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

t

q1

(b)

(a)

1q

t

Figure 5.30: (a) A Path that is Too Close to an Obstacle. This Leaves Little
Room for the Next Linkage to Maneuver. (b) A Better Path that is Farther
Away from the Obstacle.

4. Apply the PlayBack Algorithm to the whole �gure, starting from the
last group of the very last branch.

5. The angle values obtained can then written into frames for continuous
playback.

5.4.6 The Planar Algorithm

The articulated �gure can translate and rotate on a plane, navigating around
obstacles. The whole �gure behaves just like a mobile robot. The path plan-
ning algorithm in this case deals with a three dimensional (2 translational, 1
rotational) Cspace. We can handle this case simply with our basic algorithm
or other existing mobile robot path planning techniques.

5.4.7 Resolving Conicts between Di�erent Branches

Although the di�erent branches are attached to the same rear link of branch
b0, we do not use the same parameter t that parameterizes the motion of
branch b0 in all these branches. The reason is that the parameters tij are in-
terpreted as non-temporal in general. Hence, backtracking within the Cspace
group is allowed and the values of tij along the computed path can be non-
monotonic. If we use the same parameter in computing the motion for the
�rst groups in all other branches, some of the joint angle values cannot be ob-
tained uniquely during the �nal playback phase. This reasoning may become
clear after looking at the playback algorithm.

Our solution to this problem is to further parameterize the already param-
eterized path of the previous branch and then use the new parameterization
variable in the next branch.

5.4. COLLISION-FREE PATH AND MOTION PLANNING 187

A

n, j

n, jn, j-1

n, jn, j-1

n, j-1

n, j

Branch n

n, j-1

)(g

Branch n, Group j-1

)(g

Branch n, Group j

(b)

(a)

q

q

t

Mapping

Linear

1

N

a

a

N

1

0.7

1

0

0.7 10

qq

t

Figure 5.31: An Example Showing How the Final Joint Angle Values of the
Whole Figure are Obtained from the Cspace Associated with the Cspace
Groups.

5.4.8 Playing Back the Free Path

During the playback phase, we start from the last group of branch bn and
then traverse the branches in a backward manner along branch bn�1, bn�2
and so on and �nally to branch b0. For example, let Figure 5.31 (a) represent
the con�guration space for the last group of the last branch, i.e. group gn;pn
of branch bn. We then discretize the free path according to a pre-speci�ed
playback resolution. The number of discretization intervals for this last group
will be equal to the number of time frames for the �nal simulation.

At every discretized point, say A, there is a corresponding (q; t) pair: the q
value is what we should set the last joint DOF to, and the parameter t is used
to deduce the motion of the preceding group. We �rst set the last DOF to the
q value. Then we use the parameter t in the pair to trace back to the preceding
(proximal) group. Note that within this preceding group, the parameter t is
monotonic by de�nition. Hence we can uniquely determine the corresponding
(q; t) pair within this preceding group. By the same token, we can continue
tracing back to the groups further preceding this one (Figure 5.31 (a)). We
carry on in this fashion recursively until we come to the �rst group within
this branch.

Note that at this point, all joint DOFs along this branch will have been
set to their correct value for this simulation time frame. The sequence of joint
values along the free path for all the other branches should have also been

188 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

recorded in the array FREEANGLESi. The parameter value left unused will
then be used as an index into the recorded joint angle array and to uniquely
determine the set of angles corresponding to the movement of the preceding
branch. The rest of the branches are processed similarly.

We will examine the playback algorithm by looking into its two components
separately: the Final Playback algorithm and the Single Branch Single Frame
Playback algorithm.

The Final Playback Algorithm

The Final Playback algorithm is driven by the behavior simulation cycle and
generates the intermediate body postures culminating in the �nal goal achieve-
ment.

� Discretize the path computed for the last group in the last branch intoN
discrete points according to some pre-speci�ed resolution. This number
also determines the total number of key postures or time frames we will
generate for the �nal simulation.

� For each time frame, do the following steps to get back the computed
angles.

1. Apply the Single Branch Single Frame Playback Algorithm
to branch bn, the last branch in the �gure.

2. A parameter value will be obtained at the termination of this algo-
rithm. Use this parameter as an array index into FREEANGLES

for the next branch. The joint angles recorded for the next branch
will be read from the array element pointed to by this parameter
value.

3. Set the joint angles in the next branch to the values read from the
array.

4. The last parameter value read from the array is used to index
into the FREEANGLES array for the next branch in a similar
manner.

5. Repeat the same process for the rest of the branches.

6. Now all the joint angles in the articulated �gure have been set to
their appropriate values in this time frame. What is left is the
position of the whole �gure. The last parameter value obtained
from the last step is used to index into the path computed from
the Planar Algorithm. Then we set the whole �gure location to
that indexed position.

The Single Branch Single Frame Playback Algorithm

Let the branch index we are considering be i. Here branch i has a total of
pi groups. This playback algorithm is called only after the motion for the

5.4. COLLISION-FREE PATH AND MOTION PLANNING 189

last group in the branch is computed. This algorithm only deals with one
discretized point, and hence only one time frame.

We start from the last group in the branch and go down the branch by
doing the following on each group.

1. From the discretized point on the computed path, read the values of
the qi;js associated with this Cspace group from the axes of the Cspace.
This is illustrated in Figure 5.31 (a) with a 2D Cspace as an example.

2. Set the joints in the articulated chain corresponding to these q variables
to the values just found.

3. Then read the normalized parameter value ti;j from the t axis.

4. Through a linear mapping, obtain the corresponding discretized point
on the path computed for the next group down the branch from this
parameter value.

Note that after this algorithm terminates, all the joint angles on this
branch will be set to the appropriate values for this simulation time step.

5.4.9 Incorporating Strength Factors into the Planned
Motion

In (Section 5.3) we demonstrated that realistic animation of lifting motions
can be generated by considering the strength of the human �gure. The basic
premise of the method is that a person tends to operate within a comfort
region which is de�ned by the amount of available torque. The static torque
values at all the joints required to sustain a load is a function of �gure con�g-
uration. The path planner incrementally updates the next joint angle values
according to the available torque at the current con�guration based on a num-
ber of motion strategies.

The planning methodology we have described so far divides the DOFs into
groups and plans the motion for each group sequentially. Therefore, only after
the control algorithm terminates do we have the complete path for each DOF.
However, we need to make use of the strength information during the planning
process. This requires values of all joint angles at a certain con�guration. The
solution is to use the value of the current parameter and project it over to the
rest of the angles that have not yet been computed. The projection function
PROJ is arbitrary (since this is only an approximation of reality), so we use
just a simple linear interpolation:

PROJ(t) = �initial + t(�final � �initial) .

Since our searching process uses the A* algorithm, a heuristic function is
evaluated at every step to �nd the node that has the smallest value. So far
we have been using only a spatial distance measure in this heuristic function.
The path found will be optimal up to the size of the regions used. Now,

190 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

however, we have a means to compute the required torque value of a partic-
ular con�guration, so this heuristic function can include terms representing
strength information. The weights attached to these terms represent the rel-
ative importance of the quantities they represent. Possible terms to include
are:

� Work Done. The total work done or energy expended can be measured
by the term

R
T (~�) � d~�. The integration is done over the path taken.

� Comfort. The comfort level of the resulting motion can be measured by
the available torque which is the quantity obtained by subtracting the
required torque from the strength limit at that particular joint con-
�guration. We can sum up all the contributions along the path asR
AvailT orque(~�) � d~� where the available torque is de�ned in terms

of its elements:

AvailT orque(~�)i =

�
Str(~�)i � T (~�)i if Str(~�)i > T (~�)i
0 otherwise

The subscript i stands for the i-th element in the vector. Str is the
strength limit vector. This integral value will then represent the overall
comfort level.

This term will properly be useful only in the g function as it only a�ects
future actions.

� Fatigue. Humans are not like robots: our strength will decrease with
time as a result of fatigue. We may include a term such as

R
kT (~�)kdt

to avoid taking a path that has a high torque value maintained over a
prolonged period of time.

The path found by the collision-free path planner is the best up to the
size of the regions (the basic entities). Paths within regions are chosen by the
strength guided motion heuristics. For example, in Figure 5.32 (a), the left
path may be chosen by search to be better than the one on the right. This path
can then be further re�ned by examining local comfort levels and invoking one
of the motion heuristics such as Available Torque, Reducing Moment and Pull
Back .

5.4.10 Examples

We have experimented with a variety of reaches involving shelves and aper-
tures. Figure 5.33 shows a human �gure reaching through two apertures with
both arms. The path computed is collision-free and involves more than 20
DOFs. These and similar examples take about 12 to 20 minutes elapsed time
to compute, depending on the complexity of the environment.

Simulating the wide range of human motions requires a number of di�erent
behavioral skills such as walking, grasping, and lifting. The path planner

5.4. COLLISION-FREE PATH AND MOTION PLANNING 191

R

R R

R
G

S

21

(c)

(b)

(a)

R

R R

R

S

1 2

G

G

21

S

R

RR

R

Figure 5.32: (a) Part of a Sample Cspace Showing Two Possible Paths Leading
from the Start to the Goal Node. (b) The Corresponding Regions Graph. (c)
Path Re�nement after Considering Comfortable Motion Heuristics.

interfaces with other existing techniques in simulating more complex human
behaviors. Figure 5.34 shows a human �gure climbing up a rocky surface.
The climbing movement of each limb and the torso translation are produced
by the path planner. Each limb is considered in turn by the planner; the other
three limbs are �xed by a point (reach) constraint. The spatial locations for
each hand grasp and foothold must be pre-speci�ed by the user. Even though
our path planner cannot handle closed loop systems directly, such motions
can be simulated with the help of other behaviors.

5.4.11 Completeness and Complexity

This planner is an approximate algorithm when backtracking among groups
is not employed: it may fail to discover a path even though one exists. When
backtracking is employed between groups, the algorithm is turned into a com-
plete algorithm. Alternatively, the DOFs can be re-grouped di�erently if a
path cannot be found for the previous grouping scheme.

The basic algorithm within a Cspace group has complexity O(rk�1(mn)2)
where k is the number of DOFs, r is the discretization interval, m is the
number of faces and edges for the �gure and n for the environment [LP87].
Since the number of DOFs in a Cspace group is bounded, the run time for
the basic algorithm can be treated as a constant. Consequently the whole
algorithm runs in O(p) time where p is the total number of groups in the tree

192 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

structure without backtracking between groups. With backtracking, the worst
case run time for the algorithm is exponential with respect to the number of
DOFs. This is the same as a conventional exhaustive search algorithm. We
believe that the average run time of the algorithm is fast enough for practical
though not interactive use.

5.5 Posture Planning

5Motion generation algorithms for geometric �gures typically start with ini-
tial, �nal, and sometimes intermediate con�gurations or postures. From these
input postures, \natural" motion sequences are generated which satisfy given
optimization criteria, e.g., time or energy. The assumption that the �nal joint
angle con�guration of a highly redundant articulated �gure such as the hu-
man body is known { in advance { is rather unrealistic. Typically, only the
task-level goals of the end e�ectors are known. In order for an agent to move
in accordance with such task-level goals, we need to provide the agent with
an ability to plan both intermediate and �nal postures. Posture planning uses
explicit reasoning along with numerical procedures to �nd a relatively natural
and collision-free sequence of postures that terminates at the desired goal.

The inputs to the posture planner are positional or orientational goals for
end e�ectors. The posture planner �nds the appropriate movements of rele-
vant body parts needed to achieve the goals. It discovers a �nal global posture
satisfying the given goals by �nding intermediate motions that avoid collision.
Typical motions used in the plan include stepping towards the workspace,
spreading the legs, bending the upper body at the waist while the whole body
remains balanced, and moving the upper arm with respect to the shoulder.
Only the geometric aspects of body motion are considered at this time. The
agent is assumed to be initially located in the vicinity of the target object so
that an end e�ector goal can be achieved by taking only one or two steps.
It is assumed that a given goal is not changed during the posture planning
process. Collision-avoidance will be alluded to as necessary but the details
are not addressed here [Jun92].

The fundamental problem in achieving postural goals is controlling the
massively redundant skeletal DOFs. There are 88 DOFs in the Jack model
(not counting �ngers). Figure 5.35 shows a simpli�ed tree containing only
36 DOFs that are necessary for gross motion. This excludes the vertebrae
which account for most of the remaining freedom. To solve the redundancy
problem, we should reduce the relevant DOFs to a manageable set at any
given moment during motion planning. We use constraints to supplement the
traditional methods of robot motion planning in joint space done solely using
numeric computations [LPW79, LP81, LP83, BHJ+83, LP87, Bro83b, Bro83a,
Don87, Kha86, MK85, BLL89a, Bre89, CB92]. We reduce the complexity of
the numeric computations by applying cues from qualitative knowledge and
reasoning.

5Moon Jung.

5.5. POSTURE PLANNING 193

Figure 5.33: A Human Figure Reaching Through Two Apertures with Both
Arms.

194 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Figure 5.34: A Human Figure Climbing up a Rocky Surface. This Animation
is Created with a Hybrid of Simulation Techniques.

5.5. POSTURE PLANNING 195

12

34

8,9,10 5,6,7

11,12,13

14,15,16 17,18,19

20,21,22

24

25,26,27

28,29,30

(31,32,33)

(34,35,36)

23

Figure 5.35: The Reduced Degrees of Freedom of the Human Body.

Here are the basic steps needed to determine postures needed to achieve
a given end e�ector goal.

1. Postulate primitive motions for the end e�ector goal considering motion
dependencies and a minimum disturbance constraint. For example, a
motion dependency causes the palm to move forward and downward
when the upper body is bent forward about the waist. While deciding
on movement of body parts, the body is subjected to a constraint which
requires minimal movements. For example, the agent does not bend if
a relevant object can be grasped just by extending the hand. Primitive
motions are de�ned in terms of salient parameters de�ned in the 3D
Cartesian task space. These parameters are called control points and
control vectors. They are points and vectors de�ned on parts of the
body that allow the conversion from task-level goals into an intuitive
subset of body DOFs.

2. Use mental simulation to bind parameters of primitive motions and to
detect collisions. The body is subject to inherent constraints such as one
that requires that the body remain balanced when a task is performed.

3. If the mental simulation indicates that a body part would collide with
an obstacle, identify collision-avoiding spatial constraints or suggest in-
termediate collision-avoiding goals by reasoning about the qualitative
geometric relations among the body part, the goal placement, and the
obstacle.

196 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

forehead

foot

pelvis-center

torso-up-vector

pelvis-forward-vector

body-ground-site

palm-center

view-vector

palm-up-vector
shoulder

Figure 5.36: Task-Level Control Parameters: Control Points and Vectors.

4. If the postulated motions violate already achieved goals or collision-
avoiding constraints, use the amount of violation to replan and compen-
sate for the violation.

5.5.1 Functionally Relevant High-level Control Parame-
ters

To control body postures e�ectively, we represent spatial con�guations of the
body in terms of \lumped" control parameters: control points and control
vectors (Figure 5.36). Control points are points de�ned on important body
parts such as feet, pelvis, head, and hands) to control their positions. Control
vectors are vectors de�ned to control orientations. The task-space control
points or vectors are considered to be the reduced set of DOFs of the body
with respect to the task-space. The number of task-space DOFs that we
consider is 14.

A control point or vector moves relative to a base site of the control point
or vector. For example, the palm-center may be moved with respect to a base
site at the shoulder, the pelvis-center, or the body-ground-site. Or it may be
moved as the whole body moves with respect to the base site outside of the
body, that is, the origin of the world coordinate frame. The pelvis-forward-
vector controls the horizontal orientation of the body and so is con�ned to
rotate along the horizontal circle centered at the pelvis-center. The torso-

5.5. POSTURE PLANNING 197

up-vector controls the forward/backward orientation of the upper body. Note
that the rough con�guration of the body is de�ned by the four primary control
parameters: body-ground-site, pelvis-center, pelvis-forward-vector, and torso-
up-vector.

5.5.2 Motions and Primitive Motions

Motions are de�ned by specifying control parameters and the directions and
the distances to move them. We use the three standard directions along which
to move or rotate: sagittal (forward/backward), vertical (upward/downward),
and sideward (leftward/rightward). These relative directions are considered
unit vectors de�ned with respect to the body-centered coordinate frame.
When we say that a control point moves forward, it means that the movement
of the control point has the forward component. It may have other motion
components. For example, we use the motion goal move-by(forehead, down-
ward, Dist) to refer to a goal of moving the forehead downward by distance
Dist and orient-by(torso-up-vector, forward, Angle) to refer to a goal of ro-
tating the torso-up-vector forward by angle Angle. A motion along a given
direction is decomposed into the three components along the standard direc-
tions. This is convenient for two reasons. First, the component motions can
be independently planned, although interference among them must be taken
into account. Second, it is easy to �nd cooperative motions that contribute
to a given standard motion component.

Note that motion move-by(forehead, downward, Dist) does not specify
the base site relative to which the forehead is to move. The forehead may
move relative to the pelvis-center (by bending the torso-up-vector forward),
or relative to the body-ground-site (by lowering the pelvis-center down), or do
both in sequence or parallel. A motionwhich speci�es the base site of a control
point or vector is called a primitive motion. Examples of primitive motions
are given in Table 5.1. Primitive move-by(left.palm-center, downward, Dist,
pelvis-center) means that the agent moves the left palm center downward by
distance Dist with respect to base site pelvis-center. When the body-ground-
site is moved, its base site is the world origin world. For example, move-
by(body-ground-site, forward, Dist, world) means that the body-ground-site is
moved forward by distance Dist with respect to the world origin.

The consequences of a primitive motion are not speci�ed in terms of
precondition-action-e�ect rules. Rather they are computed by incremental
motion simulation by taking advantage of the underlying geometric proper-
ties of the body and the body balance constraint. Enumerating e�ects of
primitive motions under di�erent conditions is simply not feasible in the con-
tinuous domain of motion planning with massively redundant bodies.

5.5.3 Motion Dependencies

A positional goal is translated into a conjunction of simultaneous goals. For
example, given a positional goal positioned-at(right.palm.center, GoalPos),

198 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Table 5.1: Primitive Motions for Manipulating Control Parameters.

move-by(left.palm-center, downward, Dist)
move-by(left.palm-center, downward, Dist, shoulder)
move-by(left.palm-center, downward, Dist, pelvis-center)
move-by(body-ground-site, forward, Dist, world)
orient-by(pelvis-forward-vector, leftward, Ang)
orient-by(pelvis-forward-vector, leftward, Ang, pelvis-center)
orient-by(pelvis-forward-vector, leftward, Ang, body-ground-site)

the di�erence vector from the current position of the palm center to the goal
position GoalPos is decomposed into the forward, downward, and rightward
component vectors, with their distances being F, D, and R respectively . That
is, positional goal positioned-at(right.palm-center, GoalPos) is translated to
the conjunction of the three component motion goals: move-by(right.palm-
center, forward, F), move-by(right.palm-center, downward, D), and move-
by(right.palm-center, rightward, R).

There are several ways to achieve each component motion goal. They are
determined based on the motion dependencies among di�erent body parts.
More precisely, they are relationships among control parameters described as
follows:

1. move-by(right.palm-center, forward, Dist) has four contributors:

(a) move-by(right.shoulder, right.palm-center, forward, D1),

(b) rotate-by(pelvis-forward-vector, leftward, Ang2),

(c) rotate-by(torso-up-vector, forward, Ang3, pelvis-center),

(d) move-by(body-ground-site, forward, D4, world),

such that Dist = D1 + D2(Ang2) + D3(Ang3) + D4, where D2(Ang2)
is the distance that the right-palm-center travels due to the rotation
of the pelvis-forward-vector leftward by angle Ang2 and D3(Ang3) is
the distance that the right-palm-center travels due to the rotation of
the torso-up-vector forward by angle Ang3. In general, these distances
are dependent on the body context, the situation in which the body is
placed. Hence it would be extremely hard to compute them analytically
in advance without incremental simulation.

2. move-by(palm-center, downward, Dist) has two contributors:

(a) move-by(palm-center, downward, D1, shoulder),

(b) move-by(shoulder, downward, D2)

such that Dist = D1 + D2.

5.5. POSTURE PLANNING 199

3. move-by(shoulder, downward, Dist) has two contributors:

(a) rotate-by(torso-up-vector, forward, Ang1, pelvis-center),

(b) move-by(pelvis-center, downward, D2, body-ground-site)

such that Dist = D1(Ang1) + D2, where D1(Ang1) is the distance
that the shoulder travels due to the rotation of the torso-up-vector with
respect to the pelvis-center by angle Ang1.

4. move-by(palm-center, leftward, Dist) has four contributors:

(a) move-by(right.shoulder, right.palm-center, leftward, D1),

(b) rotate-by(pelvis-forward-vector, leftward, Ang2),

(c) rotate-by(torso-up-vector, leftward, Ang3, pelvis-center),

(d) move-by(body-ground-site, leftward, D4, world),

such that Dist = D1 + D2(Ang2) + D3(Ang3) + D4, where D2 is the
distance that the right-palm-center travels due to the rotation of the
pelvis-forward-vector leftward by angle Ang2 and D3 is the distance
that the right-palm-center travels due to the rotation of the torso-up-
vector leftward by angle Ang3.

How much to move or rotate the contributing control parameters to achieve
a given goal is not part of what we call motion dependencies. They are
determined by mental simulation.

5.5.4 The Control Structure of Posture Planning

The control structure of posture planning (Figure 5.37) is described. The
planner maintains the partial plan (the plan under construction that has un-
ordered goals and motions) and the list of constraints on goals or motions.
The partial plan is initialized to the input goals: [positioned-at(palm-center,
GoalPos), aligned-with(palm-up-vector, GoalVector)], which are subject to the
proximity constraints. The motion postulator is invoked to suggest a se-
quence of primitive motions needed to achieve the current goal. The motions
are �rst postulated without considering collisions, while respecting the previ-
ously identi�ed constraints. When the motions are postulated, the motion
simulator selects motions to achieve the positional goal. To do so, the mo-
tion dependencies among body parts are used. They permit many alternative
ways of achieving a given goal. They are partly constrained by the minimum
disturbance constraint which prescribes that body parts farther away from the
end e�ector or the upper body are to move only when movements of body
parts nearer the end e�ector or the upper body are not su�cient to achieve
a given postural goal. The minimum disturbance constraint is procedurally
incorporated into the motion postulator. To determine the values of distance
parameters, selected motions are simulated by incrementally changing the

200 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Motion
Simulator

Simulated
Geometric
World

Motion
Postulator

-Proximity

Generator
Goal

current

motions

: Data Flow

collision-avoiding goals / constraints

collision

collision-avoiding goal generated

Control Flow:

Collision
Avoiding
Goal
Generatorend-

goal

effector

postulated
motionscurrent

/
constraints

result of simulation

start

PARTIAL PLAN / CONSTRAINT LIST

goals

Figure 5.37: The Overall Control of Planning.

control parameters until the goal values are reached. The incremental step
size for each control parameter is assumed to be �xed.

When the motions are determined, the motion simulator is again in-
voked to detect potential collisions of important body parts, hand(s), the
upper body (including the head), and the lower body. Collision detection of
important body parts seems su�cient for the purpose of �nding a gross motion
plan. If collisions are detected, themotion simulatormarks the faces of the
obstacles with which body parts collided for the �rst time and continues the
simulation, even with object penetration, until the selected motions are fully
achieved. This reveals all potential body part collisions and provides more
lookahead without signi�cant extra cost. If collision has occurred during the
motion simulation the planner calls the collision-avoiding goal genera-
tor to generate intermediate goals. The achievement of the collision-avoiding
goals is then planned by the motion postulator.

5.5.5 An Example of Posture Planning

The process of posture planning is best described using an example. Con-
sider a positional goal positioned-at(right.palm-center, GoalPos). Assume that
the proximity constraints which the positional goal is subject to are already

5.5. POSTURE PLANNING 201

achieved and are maintained. For simplicity of exposition, the end e�ector
goal is assumed to have only the forward and downward components, ignoring
the sideward component. Consider the situation in Figure 5.38.

1. Translate the input goal positioned-at(right.palm-center, GoalPos) to
its contributor motions: move-by(right.palm-center, forward, F) and
move-by(right.palm-center, downward, D), where the goal vector from
the palm center to goal position GoalPos is decomposed to vectors F
and D.

2. According to the minimumdisturbance constraint, the shoulder is tried
�rst as the base joint of the palm-center motions. This will be done if
the distance between the shoulder and the goal position is less than the
arm length. Otherwise, the shoulder should be �rst moved so that the
distance between the new shoulder position and the goal position will
be less than the arm length. A plausible goal position of the shoulder
can be simply found as shown in Figure 5.39. To �nd it, �rst get the
vector ArmLine between the shoulder and the goal position of the end
e�ector. Get the vector Arm whose length is equal to the arm length
and which is parallel to vector ArmLine. Then the di�erence vector
Di� = ArmLine � Arm becomes the motion vector of the base site, the
shoulder. Suggest parallel primitive motionsmove-to(right.palm-center,
forward, F0, right.shoulder) and move-to(right.palm-center, downward,
D0, right.shoulder) and add them to the goal tree. Then, extract the
downward and forward motion components from the di�erence vector
Di�. Let the downward component be DDist and the forward compo-
nent FDist (Figure 5.39). Add two goals move-by(right.shoulder, down-
ward, DDist) and move-by(right.shoulder, forward, FDist) to the goal
tree. They are parallel goals to be achieved at the same time. They are
added to the goal tree to be achieved before the end e�ector motions
previously added.

3. Get the top two goals from the goal tree. Nonlinear planning is used to
plan for the goals, that is, each goal is planned for independently start-
ing from the current situation. If the goals interfere, they are resolved
by �nding and removing the causes of the conict. According to the mo-
tion dependencies, goal move-by(right.shoulder, forward, FDist) can be
achieved by (i) orient-by(torso-up-vector, forward, Ang2, pelvis-center)
and (ii) move-by(body-ground-site, forward, F1, world) where FDist =
F1 + F2(Ang2). Goal move-by(right.shoulder, downward, DDist) is
achieved by (a) orient-by(torso-up-vector, forward, Ang1, pelvis-center)
and (b) move-by(pelvis-center, downward, D2, body-ground-site), where
DDist = D1(Ang1) + D2. Here D1(Ang1) is the movement of the shoul-
der caused by bending the torso-up-vector by angle Ang1 and D2 is the
movement of the shoulder caused by lowering the pelvis-center.

4. Consider subplan (i) orient-by(torso-up-vector, forward, Ang1, pelvis-
center) and (ii) move-to(body-ground-site, forward, FDist, world) for

202 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

the forward component goal of the shoulder. Based on the minimum
disturbance constraint, motion (i) alone is �rst tried, because its base
site pelvis-center is more proximal to the control point, the shoulder,
than is the base site (world) of motion (ii). Motion (i) orient-by(torso-
up-vector, forward, Ang2, pelvis-center) helps achieve the �rst goal as
long as the precondition holds that the shoulder is above the horizon-
tal plane passing through the pelvis-center (Figure 5.40). Incrementally
simulate motion (i) to determine angle parameter Ang2 (Figure 5.39).
This angle value is di�cult to predict without incremental simulation,
because this value is a�ected by the body balance constraint. Simulate
the motion until the forward component goal of the shoulder is achieved
or the precondition is violated. Because the precondition is violated
before the forward component goal is achieved, it is concluded that mo-
tion (i) alone is not su�cient. Motion (ii) is used to �ll the remaining
gap. The distance F1 that motion (ii) should achieve is easily predicted
by simple arithmetic (Figure 5.41). The temporal relation between mo-
tions (i) and (ii) is determined, because the motion whose base site is
the world origin world is to be achieved �rst.

Consider subplan (a) orient-by(torso-up-vector, forward, Ang1, pelvis-
center) and (b)move-by(pelvis-center, downward, D2, body-ground-site),
where DDist = D1(Ang1) + D2, for the downward component goal of
the shoulder. According the minimum disturbance constraint, motion
(a) alone is chosen �rst, because its base site pelvis-center is more prox-
imal to the hand than is the base site of motion (b), body-ground-site.
This is compatible with the observation that lowering the pelvis-center
requires bending the knees and is considered more di�cult than bend-
ing the torso-up-vector. (This may not be possible if bending the torso
causes collision. But in this example, collisions are not considered.)
Incrementally simulate motion (b) to determine angle parameter Ang2.
Simulate until the downward component goal of the shoulder is achieved,
that is, DDist = D1(Ang1). Because motion (a) for the downward com-
ponent is the same (bending the torso) as motion (ii) for the forward
component, the simulation of motion (a) will be done by augmenting or
subtracting the simulation of motion (ii).

5. The above reasoning suggests two motions move-by(body-ground-site,
forward, F1, world) and orient-by(torso-up-vector, forward, Ang2, pelvis-
center) for the forward component goal of the shoulder, and one motion
orient-by(torso-up-vector, forward, Ang1, pelvis-center) for the down-
ward component goal of the shoulder. If the two sets of motions do not
interfere with each other with respect to the achievement of the two par-
allel goals, the motion postulation is successful. But this is not the case.
When motion orient-by(torso-up-vector, forward, Ang1, pelvis-center) is
simulated to achieve the downward motion component DDist, the shoul-
der goes below the horizontal plane passing through the pelvis-center
(Figure 5.42). It therefore also contributes negatively to the forward mo-

5.5. POSTURE PLANNING 203

tion component FDist, partly violating the goalmove-by(right.shoulder,
forward, FDist). The motion postulator �rst attempts to resolve this
goal interference by modifying distance parameters of motions in the cur-
rent partial plan (goal tree). (If the rebinding of motion parameters fails,
themotion postulatorwill try other combinations of contributing mo-
tions.) When the motion postulator modi�es the subplans, subplans
with more contributing motions are tried earlier than are those with
fewer motions. In particular, subplans with single motions cannot be
rebound without destroying the goals they achieved. Consider a subplan
with more than one contributing motion. If the distance of one motion
is modi�ed to avoid the goal interference, this also causes the violation
of the goal of the subplan. But the distances of the other motions can be
modi�ed to compensate for that violation. In the current example, the
motion postulator keeps the subplan for the downward goal of the shoul-
der, because it has only one motion orient-by(torso-up-vector, forward,
Ang2, pelvis-center). This decision a�ects motion orient-by(torso-up-
vector, forward, Ang1, pelvis-center) in the subplan for the forward goal
of the shoulder, with Ang1 := Ang2. (This decision in fact turns out to
be the same as the initial arbitrary decision used to simulate the two
subplans.) Simulate the two subplans thus obtained. Get the distance
of the negative contribution from the resulting simulated situation. Let
the distance be NegDist. The distance can be achieved by adding an
additional motion move-by(body-ground-site, forward, NegDist, world).
This motion compensates for the distance DegDist without doing any
harm to the downward goal of the shoulder. But the motion postula-
tor is supposed to see �rst that modifying the distance parameters of
the current plans will work, before trying to add other motions. That
is possible in this case by modifying motion move-by(body-ground-site,
forward, FDist, world) to move-by(body-ground-site, forward, FDist +
NegDist, world).

6. After the shoulder goals are achieved, the current motions in the goal
tree to be considered are the downward and forward motions of the
palm-center with respect to (the current position of) the shoulder. Sim-
ulate these motions. Both motion components are achieved with equal
importance given to each of them. They will be achieved if there are
no hindrances (constraints or obstacles) at all, because the position of
the shoulder has been obtained based on that assumption. If there
are hindrances, the base of the palm-center (the shoulder) needs to be
relocated as the palm-center is moved to intermediate goals. The in-
termediate goals are found to avoid the hindrances while achieving the
goal of the palm-center.

204 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

Figure 5.38: The Initial Situation for a Given Goal.

FDist

DDist

shoulder

shoulder
new

hand

Figure 5.39: The Two Components of the Shoulder Di�erence Vector.

5.5. POSTURE PLANNING 205

The horizontal line

passing the pelvis center

Figure 5.40: As Long as the Shoulder is Above the Horizontal Line, Bending
the Torso-Up-Vector Moves the Shoulder Forward.

shoulder

DDist

F1

FDist

F2

Ang2

(FDist = F1 + F2(Ang2))

Figure 5.41: Achieving the Forward Component: By Moving the Body-
Ground-Site and Bending the Torso.

206 CHAPTER 5. SIMULATION WITH SOCIETIES OF BEHAVIORS

DDist

FDist

Ang1

(DDist = D1(Ang1)) BDist : Negative Contribution
of Bending the Torso

BDist

Figure 5.42: Achieving the Downward Component: By Rotating the Torso-
Up-Vector Forward, Which Violates the Forward Component by Distance
BDist.

Chapter 6

Task-Level Speci�cations

So far we have been talking about real-time interactive display and manip-
ulation of human �gures, with the goal of enabling human factors engineers
to augment their analyses of designed environments by having human �gures
carry out tasks intended for those environments. This chapter explores the
use of task-level speci�cations as an alternative to direct manipulation for
generating task simulations.

By now, the reader should be convinced of the value of being able to sim-
ulate, observe and evaluate agents carrying out tasks. The question is what
is added by being able to produce such simulations from high-level task spec-
i�cations. The answer is e�cient use of the designer's expertise and time. A
designer views tasks primarily in terms of what needs to be accomplished, not
in terms of moving objects or the agent's articulators in ways that will eventu-
ally produce an instance of that behavior { e.g., in terms of slowing down and
making a left turn rather than in terms of attaching the agent's right hand to
the clutch, moving the clutch forward, reattaching the agent's right hand to
the steering wheel, then rotating the wheel to the left and then back an equal
distance to the right. As was the case in moving programming from machine-
code to high-level programming languages, it can be more e�cient to leave
it to some computer system to convert a designer's high-level goal-oriented
view of a task into the agent behavior needed to accomplish it. Moreover,
if that same computer system is exible enough to produce agent behavior
that is appropriate to the agent's size and strength and to the particulars of
any given environment that the designer wants to test out, then the designer
is freed from all other concerns than those of imagining and specifying the
environments and agent characteristics that should be tested.

This chapter then will describe a progression of recent collaborative ef-
forts between the University of Pennsylvania's Computer Graphics Research
Lab and the LINC Lab (Language, INformation and Computation) to move
towards true high-level task speci�cations embodying the communicative rich-
ness and e�ciency of Natural Language instructions.

The �rst section will describe our earliest work on using simple Natural

207

208 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

Language commands to drive task animation. This work also dealt with an
aspect of performance simulation that is rarely communicated in task spec-
i�cations: how long an action will take an agent to perform. Section 6.2
describes our next e�ort at using Natural Language commands to drive task
animation, focusing on how kinematic and spatial aspects of desired behavior
are conveyed in Natural Language commands.

One of the consequences of these �rst two studies is understanding the
value of a strati�ed approach to mapping from language to behavior: it is not
e�cient for, say, the language understanding components to make decisions
that commit the agent moving a hand or a knee in a particular way, unless
those movements are stated explicitly (but rarely) in the text. Because of
this recognized need for intermediate representations between Natural Lan-
guage descriptions and animation directives, an experiment was performed,
described in Section 6.3, in which an intermediate level compositional lan-
guage was created for specifying task-actions and generating task-level ani-
mated simulations from scripts written in this language. This demonstration
paves the way for the ultimate connection between the behavioral simulation
structure of the preceding Chapter and the conceptual structures of this one.

Each of these early e�orts focused on individual commands in Natural
Language. Task speci�cations, on the order of Natural Language instructions,
go beyond individual commands in specifying what an agent should (and
shouldn't) do. Since our current work is aimed at generating task animations
from speci�cations as rich as Natural Language instructions, we devote the
discussion in Section 6.4 to describing some features of instructions and what
an understanding system requires in order to derive from them what a person
would in understanding and acting in response to instructions.

6.1 Performing Simple Commands

1Our �rst work on driving task animation through Natural Language com-
mands was a prototype system developed by Je�rey Esakov that explored
simple relations between language and behavior [EBJ89]. In this case, the de-
sired behaviors were simple arm reaches and head orientation (view) changes
on the part of the animated �gures. While seemingly very easy, these tasks
already demonstrate much of the essential complexity underlying language-
based animation control.

6.1.1 Task Environment

In Esakov's work, the tasks to be animated center around a control panel (i.e.
a �nite region of more or less rigidly �xed manually-controllable objects) {
here, the remote manipulator system control panel in the space shuttle with
its variety of controls and indicators. Because Esakov was producing task
animations for task performance analysis, he needed to allow performance

1Je�rey Esakov.

6.1. PERFORMING SIMPLE COMMANDS 209

to depend upon the anthropometry of the agent executing the task. In the
experiments, all the controls were in fact reachable without torso motion by
the agents being animated: failure situations were not investigated and the
fully articulated torso was not yet available. An animation of one of the
experiments can be found in [EB91].

6.1.2 Linking Language and Motion Generation

The primary focus of this work was to combine Natural Language task speci-
�cation and animation in an application-independent manner. This approach
used the following Natural Language script:

John is a 50 percentile male.

Jane is a 50 percentile female.

John, look at switch twf-1.

John, turn twf-1 to state 4.

Jane, look at twf-3.

Jane, look at tglJ-1.

Jane, turn tglJ-1 on.

John, look at tglJ-2.

Jane, look at twf-2.

Jane, turn twf-2 to state 1.

John, look at twf-2.

John, look at Jane.

Jane, look at John.

(The abbreviations denote thumbwheels such as twf-1 and toggle switches such
as tglJ-1. Thumbwheels have states set by rotation; toggles typically have
two states, on or off.)

This type of script, containing simple independent commands, is com-
mon to checklist procedures such as those done in airplanes or space shuttles
[Cen81]. The verb \look at" requires a view change on the part of the �gure,
and the verb \turn" requires a simple reach. (Fine hand motions, such as
�nger and wrist rotations, were not animated as part of this work.) The two
primary problems then are specifying reach and view goals, and connecting
object references to their geometric instances.

6.1.3 Specifying Goals

For these reach tasks the goal is the 3D point which the �ngertips of the hand
should touch. A view goal is a point in space toward which one axis of an
object must be aimed. Spatially, such goals are just Peabody sites and must
be speci�ed numerically with respect to a coordinate system. Within the
natural language environment, goals are not seen as coordinates, but rather
as the objects located there { for example,

John, look at switch twF-1.

Jane, turn switch tglJ-1 on.

210 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

Because the exact locations of the switches is unimportant at the language
level, in creating an animation, the switch name tglJ-1 must be mapped to
the appropriate switch on the panel in the animation environment. The same
process must be followed for the target object toward which an object axis
must be aligned in a view change. This problem reduces to one of object
referencing.

6.1.4 The Knowledge Base

In general, all objects have names. Since the names in the task speci�cation
environment may be di�erent from those in the animation environment, there
must be a mapping between the names. The knowledge base that Esakov used
contained information about object names and hierarchies, but not actual
geometry or location. He used a frame-like knowledge base called DC-RL to
store symbolic information [Ceb87]. For example, the DC-RL code for an
isolated toggle switch, tglJ-1, follows:

{ concept tglJ-1 from control

having (

[role name with [value = "TOGGLE J-1"]]

[role locative with [value = panel1]]

[role type-of with [value = switch]]

[role sub-type with [value = tgl]]

[role direction with [value = (down up)]]

[role states with [value = (off on)]]

[role movement with [value =

(discrete mm linear ((off on) 20 5))]]

[role current with [value = off]])

}

To reference this switch from within the animation environment, a map-
ping �le was generated at the same time the graphical object was described.

{ concept ctrlpanel from panelfig

having (

[role twF-1 with

[value = ctrlpanel.panel.twf_1]]

[role twF-2 with

[value = ctrlpanel.panel.twf_2]]

[role twF-3 with

[value = ctrlpanel.panel.twf_3]]

[role tglJ-1 with

[value = ctrlpanel.panel.tglj_1]]

[role tglJ-2 with

[value = ctrlpanel.panel.tglj_2]]

)

}

6.1. PERFORMING SIMPLE COMMANDS 211

The names twF-1, twF-2, tglJ-1 correspond to the names of switches in
the existing knowledge base panel description called panelfig. These names
are mapped to the corresponding names in the animation environment (e.g.,
ctrlpanel.panel.twf 1, etc.) and are guaranteed to match.

6.1.5 The Geometric Database

The underlying geometric database is just Peabody code. The salient tog-
gle and thumbwheel locations were simply mapped to appropriate sites on a
host segment representing the control panel object. The relevant part of the
Peabody description of the panel �gure is shown:

figure ctrlpanel {

segment panel {

psurf = "panel.pss";

site base->location =

trans(0.00cm,0.00cm,0.00cm);

site twf_1->location =

trans(13.25cm,163.02cm,80.86cm);

site twf_2->location =

trans(64.78cm,115.87cm,95.00cm);

site twf_3->location =

trans(52.84cm,129.09cm,91.43cm);

site tglj_1->location =

trans(72.36cm,158.77cm,81.46cm);

site tglj_2->location =

trans(9.15cm,115.93cm,94.98cm);

}

}

This entire �le is automatically generated by a modi�ed paint program. Using
the panel as a texture map, switch locations are interactively selected and the
corresponding texture map coordinates are computed as the site transforma-
tion. The panel itself is rendered as a texture map over a simple polygon
and the individual sites then refer to the appropriate visual features of the
switches.

6.1.6 Creating an Animation

Linking the task level description to the animation requires linking both ob-
ject references and actions. A table maps the names of objects from the task
description environment into the psurf geometry of the animation environ-
ment. In this simple problem domain the language processor provides the
other link by associating a single key pose with a single animation command.
Each part of speech �lls in slots in an animation command template. Simple
Jack behaviors compute the �nal posture required by each command which
are then strung together via simple joint angle interpolation.

212 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

6.1.7 Default Timing Constructs

Even though the basic key poses can be generated based upon a Natural
Language task description, creating the overall animation can still be di�cult.
We have already discussed posture planning and collision avoidance issues, but
there is yet another problem that bears comment. From the given command
input, the timing of the key poses is either unknown, unspeci�ed, or arbitrary.

Action timings could be explicitly speci�ed in the input, but (language-
based) task descriptions do not normally indicate time. Alternatively, de�ning
the time at which actions occur can be arbitrarily decided and iterated until
a reasonable task animation can be produced. In fact, much animator e�ort
is normally required to temporally position key postures. There are, however,
more computational ways of formulating a reasonable guess for possible task
duration.

Several factors e�ect task performance times, for example: level of ex-
pertise, desire to perform the task, degree of fatigue (mental and physical),
distance to be moved, and target size. Realistically speaking, all of these need
to be considered in the model, yet some are di�cult to quantify. Obviously,
the farther the distance to be moved, the longer a task should take. Further-
more, it is intuitively accepted that performing a task which requires precision
work should take longer than one not involving precision work: for example,
threading a needle versus putting papers on a desk.

Fitts [Fit54] and Fitts and Peterson [FP64] investigated performance time
with respect to two of the above factors, distance to be moved and target size.
It was found that amplitude (A, distance to be moved) and target width (W)
are related to time in a simple equation:

Movement Time = a+ b log
2A

W
(6:1)

where a and b are task-dependent constants. In this formulation, an index of
movement di�culty is manipulated by the ratio of target width to amplitude
and is given by:

ID = log
2A

W
(6:2)

This index of di�culty shows the speed and accuracy tradeo� in movement.
Since A is constant for any particular task, to decrease the performance time
the only other variable in the equation W must be increased. That is, the
faster a task is to be performed, the larger the target area and hence the
movements are less accurate.

This equation (known as Fitts' Law) can be embedded in the animation
system, since for any given reach task, both A and W are known. The con-
stants a and b are linked to the other factors such training, desire, fatigue,
and body segments to be moved; they must be determined empirically. For
button tapping tasks, Fitts [FP64] determined the movement time (MT) to
be

MTarm = 74ID � 70msec (6:3)

6.1. PERFORMING SIMPLE COMMANDS 213

Task Duration Times (msec)
Actor Action ID Fitts Duration Scaled Duration

John Look twf-1 2.96 321 963
John Turn twf-1 5.47 335 1004
John Look tglJ-2 4.19 566 1697
John Look twf-2 4.01 530 1590
John Look Jane 4.64 655 1966
Jane Look twf-3 4.28 584 876
Jane Look tglJ-1 3.64 456 685
Jane Turn tglJ-1 5.39 329 493
Jane Look twf-2 4.16 560 840
Jane Turn twf-2 4.99 299 449
Jane Look John 4.33 594 891

Table 6.1: Task Durations Using Fitts' Law.

In determining this equation, it was necessary to �lter out the extraneous
factors. This was done by having the subjects press the button as quickly
as possible and allowing them to control the amount of time between trials.
Jagacinski and Monk [JM85] performed a similar experiment to determine the
movement time for the head and obtained the following equation

MThead = 199ID0 � 268msec (6.4)

ID0 = log
2A

W �W0

(6.5)

This equation is the result of equating the task to inserting a peg of diameter
W0 into a hole of diameter W , and resulted in a better �t of the data.

For our purposes the above constants may not apply. Since it was our
desire to have the man in our animation move sluggishly and the womanmove
quickly (but not too quickly), we scaled Equations 6.3 and 6.4 by di�ering
constants.

MTman(arm) = 3 �MTarm

MTman(head) = 3 �MThead
MTwoman(arm) = 1:5 �MTarm

MTwoman(head) = 1:5 �MThead

This width of the target, W in equation 6.2 was chosen to be 1cm. For
head movements, we chose W0 = :33� after [JM85]. This results in the action
durations shown in Table 6.1.

Although Fitts' Law has been found to be true for a variety of movements
including arm movements (A = 5 � 30cm), wrist movements (A = 1:3cm)

214 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

[Dru75, JM85, LCF76], and head movements (A = 2:45� 7:50�) [JM85] the
application to 3D computer animation is only approximate. The constants
di�er for each limb and are only valid within a certain movement amplitude
in 2D space, therefore the extrapolation of the data outside that range and
into 3D space has no validated experimental basis. Nonetheless, Fitts' Law
provides a reasonable and easily computed basis for approximatingmovement
durations.

While it may seem odd at �rst to have attacked both Natural Language
interpretation and timing constructs as part of the same research, Esakov's
work foreshadows our more recent work on language and animation by fo-
cusing on the fact that the same instruction, given to agents with di�erent
abilities, will be carried out in di�erent ways. Language tells an agent what
he or she should attempt to do: how he or she does it depends on them.

6.2 Language Terms for Motion and Space

2The next piece of work that was done on driving task animation through
Natural Language commands was Jugal Kalita's work on how Natural Lan-
guage conveys desired motion and spatial aspects of an agent's behavior. In
English, the primary burden falls on verbs and their modi�ers. Kalita's work
showed how verbs and their modi�ers can be seen as conveying spatial and
kinematic constraints on behavior, thereby enabling a computer to create an
animated simulation of a task speci�ed in a Natural Language utterance. This
work is described at greater length in [Kal90, KB90, KB91].

6.2.1 Simple Commands

To understand Kalita's contribution, consider the following commands:

� Put the block on the table.

� Turn the switch to position 6.

� Roll the ball across the table.

Each of these commands speci�es a task requested of an agent. Perform-
ing the task, requires inter alia that the agent understand and integrate the
meanings of the verbs (put, turn, open, roll) and the prepositions (on, to,
across). This requires understanding the signi�cant geometric, kinematic or
dynamic features of the actions they denote.

In Kalita' approach to physically based semantics, a motion verb denotes
what may be called a core or kernel action(s). This kernel representation
is then used with object knowledge and general knowledge about actions to
obtain semantic representations and subsequent task performance plans which
are speci�c to a context { for example,

2Jugal Kalita.

6.2. LANGUAGE TERMS FOR MOTION AND SPACE 215

� The core meaning of the verb put (as in Put the block on the table)
establishes a geometric constraint that the �rst object (here, the block)
remains geometrically constrained to (or, brought in contact with and
supported by) a desired position on the second object (here, the table).

� The core meaning of the verb push (as in Push the block against the
cone) involves applying a force on the manipulated object (here, the
block) through the instrument object (here, the hand). The preposi-
tional phrase speci�es the destination of the intended motion.

� The verb roll (as in Roll the ball across the table) involves two related
motions occurring simultaneously|one rotational about some axis of
the object, and the other translational, caused by the �rst motion. The
rotational motion is repeated an arbitrary number of times.

6.2.2 Representational Formalism

Geometric relations and geometric constraints

The meanings of locative prepositions are represented using a template called
a geometric-relation. A simple geometric relation is a frame-slot structure:

geometric-relation: spatial-type:
source-constraint-space:
destination-constraint-space:
selectional-restrictions:

Spatial-type refers to the type of the geometric relation speci�ed. Its values
may be positional or orientational. The two slots called source-constraint-
space and destination-constraint-space refer to one or more objects, or parts
or features thereof, which need to be related. For example, the command
Put the cup on the table requires one to bring the bottom surface of the cup
into contact with the top surface of the table. The command Put the ball
on the table requires bringing an arbitrary point on the surface of the ball
in contact with the surface of the table top. Since the items being related
may be arbitrary geometric entities (i.e., points, surfaces, volumes, etc.), we
call them spaces. The �rst space is called the source-constraint space and
the second, the destination-constraint space. The slot selectional-restrictions
refers to conditions (static, dynamic, global or object-speci�c) that need to
be satis�ed before the constraint can be executed.

More complex geometric relations require two or more geometric relations
to be satis�ed simultaneously:

geometric-relation:
f g-union

g-relation-1
g-relation-2
� � �
g-relation-n g

216 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

where g-relation-i is simple or complex.

Geometric relations are also used in the speci�cation of geometric con-
straints, which are geometric goals to be satis�ed:

Geometric-constraint: execution-type:
geometric-relation:

Geometric constraints are distinguished by their execution-type slot, which
can take one of four values: achieve, break, maintain or modify.

Kinematics

The frame used for specifying kinematic aspects of motion is the following:

Kinematics: motion-type:
source:
destination:
path-geometry:
velocity:
axis:

Motions are mainly of two types: translational and rotational. In order to
describe a translational motion, we need to specify the source of the motion,
its destination, the trajectory of its path (path-geometry), and the velocity
of the motion. In the case of rotational motion, path-geometry is circular,
and velocity, if speci�ed, is angular. Rotational motion requires an axis of
rotation. If not speci�ed, it is inferred by consulting geometric knowledge
about the object concerned.

Kernel actions

The central part of an action consists of one or more components: dynamics,
kinematics and geometric-constraints|along with control structures stating
its other features. The control structures used in the examples that follow
are: repeat-arbitrary-times and concurrent. The keyword concurrent is speci-
�ed when two or more components, be they kinematic, dynamic or geometric
constraints, need to be satis�ed or achieved at the same time. The keyword
repeat-arbitrary-times provides a means for specifying the frequentation prop-
erty of certain verbs where certain sub-action(s) are repeated several times.
The verbs' semantic representation need not specify how many times the ac-
tion or sub-action may need to be repeated. However, since every action
is presumed to end, the number of repetitions of an action will have to be
computed from simulation (based on tests for some suitable termination con-
ditions), or by inference unless speci�ed linguistically as in Shake the block
about �fty times.

6.2. LANGUAGE TERMS FOR MOTION AND SPACE 217

6.2.3 Sample Verb and Preposition Speci�cations

Many of the features of Kalita's representation formalism can be seen in his
representation of the verbs \roll" and \open" and the prepositions \in" and
\across". Others can be seen in the worked example in Section 6.2.4.

A kinematic verb: roll

The verb roll refers to two motions occurring concurrently: a rotational motion
about the longitudinal axis of the object and a translational motion of the
object along an arbitrary path. The rotational motion is repeated an arbitrary
number of times. The verb roll is thus speci�ed as:

roll (l-agent, l-object, path-relation)
agent: l-agent
object: l-object
kernel-action:
concurrent ff f kinematic:

motion-type: rotational
axis: longitudinal-axis-of (l-object)

g repeat-arbitrary-times g
f kinematic:
motion-type: translational
path: path-relation g g

selectional restrictions: has-circular-contour (l-object,
longitudinal-axis-of (l-object))

A verb that removes constraints: open

One sense of open is to move (as a door) from closed position. The meaning
is de�ned with respect to a speci�c position of a speci�c object. The closed
position of the object can be viewed as a constraint on its position or orien-
tation. Thus, this sense of open involves an underlying action that undoes
an existing constraint. The object under consideration is required to have at
least two parts: a solid 2D part (the cover) and an un�lled 2D part de�ned
by some kind of frame (the hole). The meaning must capture two things: (1)
that at the start of the action, the object's cover must occupy the total space
available in object's hole in the constrained position, and (2) that the result
of the action is to remove the constraint that object's cover and its hole are
in one coincident plane. This is ful�lled by requiring that the two sub-objects
(the hole and the cover) are of the same shape and size.

The de�nition for open is:

open (Ag, Obj)
agent: Ag
object: Obj
kernel-action:

geometric-constraint:

218 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

execution-type: break
spatial-type: positional
geometric-relation: source-constraint-space: Obj � hole

destination-constraint-space: Obj � cover
selectional-restrictions: contains-part (Obj, hole)

contains-part (Obj, cover)
area-of (Obj � cover) = area-of (Obj � hole)
shape-of (Obj � cover) = shape-of (Obj � hole)

A locative preposition: in

The sense of in captured here is within the bounds of, contained in or included
within. According to Herskovits [Her86], this use type for in is spatial entity
in a container. This meaning of in is speci�ed as

in (X,Y) �
geometric-relation:

spatial-type: positional
source-constraint-space: volume-of (X)
destination-constraint-space:interior-of (Y)
selectional-restrictions:

or (container-p (Y), container-p (any-of (sub-parts-of (Y))))
size-of (X) � size-of (Y)
normally-oriented (Y)

A container is an object which can hold one or more objects such that the ob-
ject is \surrounded by" the volume de�ned by the boundaries of the container.
It is a concept which is di�cult to de�ne clearly, although heuristics can be
devised to recognize whether an object is a container. For our purposes, if
an object or any of its part(s) can work as container(s), it will be so labeled
in the function slot of its representation. The second selectional restriction
is due to Cooper [Coo68]. The third restriction is due to Herskovits, who
explains its necessity by stating that the sentence The bread is in the bowl is
pragmatically unacceptable if the bowl is upside down and covers the bread
under it [Her86].

A path preposition: across

Path is a part of kinematic speci�cation of a motion or an action. A com-
plete de�nition of path requires specifying its source, destination and path
geometry, which Kalita does, using a structure called a path-speci�cation:

path-speci�cation:
source:
destination:
path-geometry:

6.2. LANGUAGE TERMS FOR MOTION AND SPACE 219

Across is one of several path prepositions in English. Others include from,
to, around, round and along. Across has two types of meanings|dynamic
and static (locative) meaning. The dynamic meaning implies a journey across
an object, whereas the static meaning implies a location between two lines
(edges) perpendicular to them and touching, and (possibly) extending beyond
them. The dynamic sense of across is seen in:

� Roll/Slide/Move the block/ball across the board.

This dynamic sense of across speci�es all three components required for path
speci�cation.

across (X, Y) � path-speci�cation:
source: any-of (exterior-edges-of (Y, parallel-to (longitudinal-axis (Y))))
destination:any-of (exterior-edges-of (Y, parallel-to (longitudinal-axis (Y))))
path-geometry: straight-line
selectional-restrictions:
destination 6= source
has-axis (X, longitudinal)
angle-between (path-geometry, longitudinal-axis (Y), 90�)
length (Y) � width (Y)
length (Y) > dimension-of (X,along-direction (longitudinal-axis (Y)))

The longitudinal axis of an object is the axis along which the length of an
object is measured. There are a number of selectional restrictions imposed on
the objects X and Y also. For example, the reason for the fourth selectional
restriction can be gauged from the two phrases: across the road and along the
road.

6.2.4 Processing a sentence

The sentence Put the block on the table can be used to show how Kalita's
system obtains a meaning for a whole sentence from the meanings of its parts,
i.e., the lexical entries of its constituent words.

The lexical entry for put speci�es the achievement of a geometric relation-
ship between an object and a location speci�ed by a prepositional phrase. The
meaning of the verb is speci�ed in terms of a yet-unspeci�ed geometric rela-
tion between two objects. The preposition on along with the objects involved
leads to the sense that deals with support.

A bottom-up parser [FW83] returns the logical meaning representation
as (put you block-1 (on block-1 table-1)). In this representation, the verb
put takes three arguments: a subject, an object and the representation for
a locative expression. Entities block-1 and table-1 are objects in the world
determined to be the referents of the noun phrases. The logical representation
has you as the value of the subject since the sentence is imperative.

Now, to obtain the intermediate meaning representation, the arguments
of put in the logical representation are matched with the arguments in the
following lexical entry for put:

220 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

put (l-agent, l-object, l-locative) �
agent: l-agent
object: l-object
kernel-actions:

geometric-constraint:
execution-type: achieve
geometric-relation: l-locative

This lexical entry has three arguments. After matching, l-agent has the value
you, l-object has the value block-1, and l-locative has the value (on block-1
table-1). The value of the geometric-relation slot (of the kernel-actions slot in
the representation) is �lled in by the semantic representation for the l-locative
argument which is created from the meaning of \on the table", using the
following de�nition of \on":

on (X,Y) �
geometric-relation:

spatial-type: positional
source-constraint-space: any-of (self-supporting-spaces-of (X))
destination-constraint-space: any-of (supporter-surfaces-of (Y))

selectional-restrictions:
horizontal-p (destination-constraint-space)
equal (direction-of (normal-to

destination-constraint-space), \global-up")
free-p (destination-constraint-space)

As a result, the intermediate meaning representation of \put the block on
the table" is:

agent: you
object: block-1
kernel-actions:

geometric-constraint:
execution-type: achieve
geometric-relation:

spatial-type: positional
source-constraint-space: any-of
(self-supporting-spaces-of (block-1))

destination-constraint-space: any-of
(supporting-surfaces-of (table-1))

selectional-restrictions:
horizontal-p (destination-constraint-space)
equal (direction-of (normal-to
destination-constraint-space), \global-up")

free-p (destination-constraint-space)

In order to execute the action dictated by this sentence, the program looks
at the knowledge stored about the block to �nd a part of the block on which

6.2. LANGUAGE TERMS FOR MOTION AND SPACE 221

it can support itself. It observes that it can be supported on any one of its
faces and no face is more salient than any other. A cube (the shape of the
block) has six faces and one is chosen randomly as the support area. Next,
the program consults the knowledge stored about the table and searches for
a part or feature of the desk which can be used to support other objects. It
gathers that its function is to support \small" objects on its top. This top
surface is also horizontal. As a result, �nally, the system concludes that one
of the sides of the cube has to be brought in contact with the top of the table.

The �nal meaning for the sentence obtained is

agent: you
object: block-1
kernel-actions:

geometric-constraint:
execution-type: achieve
geometric-relation:

spatial-type: positional
source-constraint-space: block-1�side-2
destination-constraint-space: table-1�top-1

block-1�side-2 represents a speci�c face of a speci�c block. table-1�top-1 rep-
resents the top surface of a speci�c table. This �nal representation is then
sent to a planner [JKBC91] which produces a plan for performing the task by
an animated agent in a given workspace. The plan is taken up by a simula-
tor [BWKE91] which establishes connection with Jack and then produces an
animation:

The block is initially sitting on top of a closed box. The agent
reaches for it with his right hand, grasps it, moves it to a point
near the top of a table to his left, places it on the table, and moves
his hand back.

As with Esakov's work, there were still unfortunate capability gaps in the
simulator available to Kalita. In particular, the lack of a exible torso,
unchecked collisions with the environment, and no balance constraints led to
some painful-looking postures and object trajectories which passed through
obstacles.

6.2.5 Summary

This section has discussed the representation of meanings of some verbs and
prepositions, emphasizing the importance of geometric information such as
axes of objects, location of objects, distance or angle between objects, path of
object motion, physical contact between objects, etc., in the meaning repre-
sentation of prepositions. Elsewhere it is shown that such geometric consid-
erations are important for not only representing verbs and prepositions, but
also adverbs [KB90].

222 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

In the work described here, the operational meanings of action verbs and
their modi�ers have been represented in terms of components pertaining to
constraints and kinematic/dynamic characterization. For additional examples
of decomposition see [Kal90].

6.3 Task-Level Simulation

3The third experiment tested the feasibility of using what might be viewed as
low-level task primitives to create task animations [Lev91]. If successful, this
would have two advantages:

� Since we viewed some kind of low-level task primitives as being the
output speci�cation language of any language processing stages, it would
allow us to design and test a set of primitives in parallel with the other
system components.

� This kind of lower-level speci�cation language might itself be usable by
an engineer to generate animations in terms of task-level actions rather
than having to specify particular body movements.

To illustrate the latter contrast, consider a scene with an animated agent,
a table, and a cup on a shelf next to the table. The animator{engineer wants
to create an animation of the agent moving the cup from the shelf to the table.
A task-level speci�cation could enable the animator{engineer to produce the
desired behavior, using a set of task-action speci�cations. For example, the
sequence

grasp-action (hand cup)
position-action (cup table-top)

could be used to generate an animation of the agent's hand grasping the cup,
followed by a positioning of the cup on the top of the table.

As a test environment we used an expanded version of some written in-
structions to remove a Fuel Control Valve (FCV) from an imaginary aircraft
fuselage (Figure 6.1).

Fuel Control Valve Removal Instructions:

1. With right hand, remove socket wrench from tool belt, move to front of
body. With left hand, reach to tool belt pocket, remove 5/8 inch socket,
move to wrench, engage. Adjust ratchet for removal.

2. Move wrench to left hand bottom hole, apply pressure to turn in a
loosening motion, repeat approximately 7 times to loosen threaded bolt.

3. Move wrench away from bolt, with left hand reach to bolt and remove
bolt and washer from assembly, move left hand to belt pouch, place bolt
and washer in pouch.

3Libby Levison.

6.3. TASK-LEVEL SIMULATION 223

Figure 6.1: A Frame from the Fuel Control Valve Removal Task. The FCV is
the Cylindrical Object Mounted to the Flat Plate.

4. Move wrench to bottom right hand bolt, apply pressure to turn in a
loosening motion, repeat approximately 7 times to loosen threaded bolt.

5. Repeat operation 3.

6. Move wrench to top bolt, apply pressure to turn in a loosening motion,
repeat approximately 6 times to loosen threaded bolt. Move left hand
to grasp assembly, loosen the bolt the �nal turn. Move wrench to tool
belt, release. With right hand reach to bolt, remove bolt and washer,
place in pouch. Return right hand to assembly, with both hands move
Fuel Control Valve to movable cart and release.

6.3.1 Programming Environment

The work area, tools and parts for the scene were modeled with Jack. Just as
the engineer who currently writes the instruction manuals has knowledge of
the task and knows, for example, that a Phillips head screwdriver is required,
it is assumed that the engineer-animator will have the knowledge required to
lay out the scene of the animation. It is also assumed that a skilled engineer is
already trained in analyzing tasks and developing instruction sets for the do-

224 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

main. This project simply provides a di�erent medium in which the engineer
can explain the task.

The task simulation is based onYaps, a symbolic process simulator [EB90,
BWKE91]. Yaps provides animation-directives which access Jack's behaviors.
These animation-directives are not only ordered and sequenced via Yaps'
temporal and conditional relationships [KKB88], but can also be composed
to produce parameterized simulation procedures. These procedures, called
task-actions, are de�ned for a number of parameters (agent, object, loca-
tion, etc.). The same task-action can thus be used at various times with
di�erent parameters to create distinct animation segments. The possibility of
de�ning and reusing these procedures simpli�es the animation programming
problem for the engineer. By extending these procedural compositions, high-
level procedures could be generated so that the mapping from the instructions
to these procedures would be straightforward.

KB [Esa90] is a frame-based, object-oriented knowledge system which
establishes symbolic references to Jack's geometric data. While Jack main-
tains and manipulates the geometric model of the world, KB maintains the
symbolic information. Yaps uses KB's symbolic representation to manipu-
late the geometric model. (These symbolic KB representations are passed
to the Yaps task-actions as parameters.) This frees Yaps from \knowing"
the speci�c world coordinates of an object or the object's exact geometric
representation. For instance, if Jack contains a model of a cup, KB would
have an entry which identi�ed cup as that particular Jack entity. Yaps has no
knowledge of the object's location;KB's mapping from symbolic to geometric
representation will resolve any ambiguity. Thus the animator need not talk
about the-cup-on-the-table-at-world-coordinates-(x,y,z), but can reference the
symbolic entity, cup. Should the cup move during the course of the action,
KB resolves the problem of the cup's exact location.

6.3.2 Task-actions

At the time of this research, Yaps provided only three low-level animation-
directives with which to access Jack behaviors. These are generate-motion,
create-constraint and delete-constraint. Generate-motion causes an object
(not necessarily animate) to move from its current location to another. (No
path planning was performed in the Jack version of the time, and Yaps
handled frame-to-frame timing directly as described in Section 6.1.) Create-
constraint establishes a physical link between two (not necessarily adjacent)
objects. If two objects are linked together and one of the objects is moved,
the second object moves along with it. The physical constraint (relation) be-
tween the objects is maintained. Create-constraint can be further speci�ed to
use positional and/or orientational alignments. Delete-constraint removes the
speci�ed constraint between two objects.

Yaps provides a mechanism for building animation templates by combin-
ing or composing the above animation-directives. Using di�erent combina-
tions of generate-motion, create-constraint, and delete-constraint, and vary-

6.3. TASK-LEVEL SIMULATION 225

ing the agents and the objects of these animation-directives as well as their
temporal and causal relations, it is possible to build a set of task-actions.
Task-actions can themselves be composed into more complex task-actions.
As the procedures acquire more speci�cation, the task-actions approach task-
level descriptions. It is important to note, however, that task-actions simply
de�ne templates; an animation is realized by instantiating the task-actions,
supplying parameters as well as timing constraints and other conditions. The
composability of the task-actions allows for the de�nition of some abstract
and high-level concepts. It is these high-level animation descriptions which
will allow the engineer to program an animation at the task-level.

6.3.3 Motivating Some Task-Actions

The �rst templates to be de�ned were simply encapsulations of the Jack
animation-directives: reach-action(agent object), hold-action(agent ob-
ject) and free-object-action (object) { were just generate-motion, create-
constraint and delete-constraint, respectively. (Although the names chosen
for the task-actions do make some attempt to elicit their de�nition, there was
no attempt to come up with de�nitive de�nitions of these actions in this seg-
ment of the research project.) In the following, the use of agent and object
is simply for readability; for example, a hold-action can be applied between
two objects (e.g., hold-action (wrench-head 5-8th-socket)).

Consider trying to describe the actions inherent in the example:

Move the cup to the table

assuming that the agent is not currently holding the cup. The agent must
�rst hold the cup before he can move it. How is this animation speci�ed?
Explicitly stating the sequence of actions:

reach-action (agent cup)
hold-action (agent cup)

to cause the agent to reach his hand to the location of the cup and to constrain
his hand to the cup seems awkward. Composing two task-actions allows a new
task-action grasp-action to be de�ned:

(deftemplate grasp-action (agent object)
reach-action (agent object)
hold-action (agent object)).

(This is the actual Yaps de�nition. Deftemplate is the Yaps command to
de�ne a new task-action template.) Grasp-action is a sequence of instanti-
ations of two primitive task-actions.

Now that the agent can grasp the cup, how can he move the cup? A second
action, position-action, is de�ned to relocate the cup to a new location and
constrain it there:

226 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

(deftemplate position-action (object1 location)
reach-action (object1 location)
hold-action (object1 location)).

If a previous action had left an object (the cup) in the agent's hand, this
task-action could be used to move the object to a new location (position-
action cup table). (In this instruction set, the only use of the instruction
\move something that is already being held" required that the object be
constrained to the new location. This is the justi�cation of the hold-action
in this de�nition.) Note here that location could be the location of object2.

Thus, to animate the instruction:

Move the cup to the table

the animation-script could be:

grasp-action (agent-right-hand cup)
position-action (cup table-top).

It is still necessary to specify a list of commands, since no high-level task-
action has been de�ned for move, and therefore the action must be described
in increments. However move-action could be de�ned as:

(deftemplate move-action (agent object1 location)
grasp-action (agent object1)
position-action (object1 location)).

In other words, grasp (reach to and hold) object1, and position (move to and
constrain) object1 at location (where location might be the location of some
object2). In the Move the cup example, the instantiation required to achieve
the desired animation would be:

move-action (agent-right-hand cup table-top).

This conciseness is one bene�t of task-action composition.
Once the cup is actually on the table, it can be \un-grasped" by using:

free-object-action (cup)

which breaks the constraint between the hand and the cup. If the hand is
later moved, the cup will no longer move with it.

The �nal animation script for Move the cup to the table becomes:

move-action (agent-right-hand cup table-top)
free-object-action (cup).

6.3.4 Domain-speci�c task-actions

The Move the cup to the table example motivated a few fundamental task-
action de�nitions. Some of these are actions common to many instructional

6.3. TASK-LEVEL SIMULATION 227

tasks and milieus; this set of task-actions is also usable in the instruction set
describing the FCV removal. However, it was also necessary to return to the
instruction set and develop Yaps de�nitions for actions speci�c to the domain
in question. These task-actions can be either primitive (see turn-action
below) or compositional (see ratchet-action). The �rst new task-action,
attach-action, is de�ned as:

(deftemplate attach-action (agent object1 object2)
move-action (agent object1 object2)
hold-action (object1 object2)).

This allows the agent to grasp object1, move it to the location of object2, and
establish a constraint between object1 and object2. The expansion of this
task-action is the command string:

reach-action, hold-action, reach-action, hold-action.

Attach-action could have been equivalently de�ned as:

(deftemplate attach-action (agent object1 object2)
grasp-action (agent object1)
position-action (object1 object2))

which would expand to exactly the same Jack animation-directive command
string as above. The task-action de�nitions are associative; this provides
exibility and power to the system, and increases the feasibility of de�ning a
minimal set of task-actions to be used throughout the domain.

The FCV removal instructions also require: turn-action (object degrees).
Turn-action causes the object to rotate by the speci�ed number of degrees.
The geometric de�nition of the object includes information on its DOFs; for
example, around which axis a bolt will be allowed to rotate. At the time that
this research was done, the system did not have a feedback tool to monitor
Jack entities; instead of testing for an ending condition on an action (a bolt
being free of its hole), actions had to be speci�ed iteratively (the number of
times to turn a bolt). Turn-action is actually a support routine, used in the
�nal task-action needed to animate the FCV instructions: ratchet-action.
This is de�ned as:

(deftemplate ratchet-action (object degrees iterations)
turn-action (object degrees)
turn-action (object �degrees)
ratchet-action (object degrees iterations�1)).

Ratchet-action is used to animate of a socket wrench ratcheting back and
forth.4

4Having to explicitly state a number of degrees is not an elegant programming solution;

it would have been preferable to take advantage of Jack's collision detection algorithms to

determine the range of the ratchet movement. Processing considerations at the time the

work was done required this rather rough implementation.

228 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

The complete set of task-actions is listed below. With this set of only
nine task-actions, it was possible to program the entire animation script from
the natural language instructions (see Table 6.2 for an excerpt of the �nal
animation script).

� reach-action (agent object)

� hold-action (agent object)

� free-object-action (object)

� grasp-action (agent object)

� move-action (agent object location)

� attach-action (agent object1 object2)

� position-action (object1 object2)

� turn-action (object degrees)

� ratchet-action (object degrees iterations)

6.3.5 Issues

Where Does Task-Action Decomposition Stop?

There is an interesting question as to whether, in de�ning task-actions, one
needs to be concerned with variations that arise from di�erences in agents
and their abilities.

Because our work is embedded in Jack, variations in agent ability at the
animation speci�cation level is not a concern. As long as the animation is
within the agent's capabilities (and thus the animation is \solvable"), sub-
stituting di�erent agents gives di�erent valuations of the tasks. By testing
di�erent agents with varying abilities, one can analyze the task requirements
and gather information on human factors issues. Similarly, it is possible to
vary workplace geometry, tools, and agent placement.

Note the comparison here between innate and planned action. In reaching
to grab a cup, we do not think about how to control the muscles in the forearm;
we do, however, consider the goal of getting our hand to the same location as
the cup. This distinction between cognizant motion and action is internal in
this animation; Jack manages the motor skills. The same distinction is found
in the level of detail of the instructions. One does not tell someone:

Extend your hand to the cup by rotating your shoulder joint 40�

while straightening your elbow joint 82� degrees. Constrain your
hand to the cup by contracting �ngers : : : .

Rather, we give them the goal to achieve and allow that goal to lend informa-
tion as to how to accomplish the instruction. The hierarchy of the task-actions
captures some of this knowledge.

The task-actions have been de�ned in such a way that they are not con-
cerned with the abilities of a speci�c agent, but rather allow for interpretation

6.3. TASK-LEVEL SIMULATION 229

Table 6.2: Animation Script Excerpt.

;;; No. 1

;;; With right hand, remove socket wrench from tool belt,

;;; move to front of body. With left hand, reach to tool belt

;;; pocket, remove 5/8" socket, move to wrench, engage.

;;; Adjust ratchet for removal.

;

; with the right hand, grasp the wrench from the tool belt,

; and move it to site-front-body

;

(instantiate move-action

(fred-rh wrench-handle fred-front-body-site planar)

:instancename "r0-wrench-to-front"

:time-constraints '((start now)

(duration

(eval(+(fitts fred-rh wrench-handle)

(fitts wrench-handle

fred-front-body-site)))))

; with the left hand, attach socket to wrench handle.

; an attach entails, reaching for the socket, grasping

; it and moving it to the wrench head.

; if successful, free the left hand from the socket.

;

(instantiate attach-action

(fred-lh 5-8th-socket wrench-head

attach-socket-time planar oriented)

:instancename "r5-attach-socket"

:time-constraints '((start (end "r0-wrench-to-front"))

(duration (eval

(+ (fitts fred-lh 5-8th-socket)

(fitts fred-left-pocket

fred-front-body-site)

attach-socket-time))))

:on-success '(progn

(free-object-action fred-lh)

(free-object-action 5-8th-socket)

(hold-action wrench-head 5-8th-socket

:orientation-type '("orientation")))

230 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

based on each agent's capabilities. Not only does this allow the same anima-
tion script to be used for di�erent agents, generating di�erent analyses, but it
also means that the de�nitions of the task-actions decomposition stops at the
level of innate action. There is no need to have multiple task-action de�nitions
for various physical attributes; Jack handles this issue for us.

Instruction Translation

We noted earlier that one advantage of a task-action level of speci�cation
was that it might allow an engineer/animator to animate tasks directly. In
terms of the above task-actions, moving the cup to the table (noted in the
introduction) could be animated by issuing either of two command sequences:

grasp-action (agent-right-hand cup)
position-action (cup table-top)
free-object-action (cup)

or:

move-action (agent-right-hand cup table-top)
free-object-action (cup).

In both cases, the engineer has decided to release the constraint between the
agent and the cup as soon as the cup is on the table-top. The engineer has
also described the required animation at the task-level.

Sequencing Sub-tasks

Yaps is a simultaneous language; that is, all task-action instantiations are
resolved concurrently. To sequence the actions and force them to occur in a
speci�c order, the engineer/animator must use the timing-constraints option
provided by Yaps. This construct allows the user to specify starting, ending
and duration conditions for the instantiation of each action. It is possible to
achieve the ordering needed to create a sequential animation by predicating
the starting condition of instruction-2 on the ending condition of instruction-
1; but a task-action template, which is de�ned as a series of other task-actions,
has the sequencing automatically built in via the instantiation process. If this
were not the case, de�ning grasp-action, for example, would be impossible
because achieving and completing the reach-action before starting the hold-
action could not be guaranteed.

The actions do not need to be performed discretely. Other Yaps timing
constructs allow the actions to be overlapped and delayed by specifying (start
(after 5 min)) or (start now), for example [KKB88]. Nor is de�ning a discrete
linear order on the sub-tasks the only possibility. The simultaneous nature of
Yaps is used to animate actions (such as moving an object with both hands)
by simultaneously animating:

move-action (agent-left-hand box)
move-action (agent-right-hand box).

6.4. A MODEL FOR INSTRUCTION UNDERSTANDING 231

The Yaps timing constraints provide a powerful mechanism for specifying
the relationships among the task-actions in the animation. Timing is one of
the most critical issues involved in generating realistic animations; the power
that Yaps provides in resolving timing issues greatly enhances the potential
of the Jack animation system.

Task Duration

The Yaps timing constraints provide a powerful mechanism for specifying the
inter-relationships among the task-actions in the animation script. Timing is
one of the most critical issues involved in generating realistic animations.
We have already noted that it is not su�cient to simply list all the actions;
they must be times, sequenced and connected temporally. As in Esakov's
work, adaptations of Fitts' Law were used to determine mimimum action
times. Fitts' Law was used to calculate the duration of all reach-action
instantiations. Thus, time requirements were cumulative (i.e., the sum of
the sub-task-action times). Create-constraint uses a small default constant
time to estimate sub-task duration. Although Fitts' Law only approximates
the action times in this domain and must be further scaled by a motivation
factor, it does give reasonable estimates. Relative to one another, the sub-
task times make sense. Although the length of each task-action might not
be correct, the animation does appear to be temporally coherent.

6.3.6 Summary

Recent work in de�ning animation behaviors reviewed earlier in this book
greatly expands the set of animation directives available in Jack. In our cur-
rent work, we will investigate using the new animation behaviors to script
animations. Since animation directives form the semantical basis for our ac-
tion de�nitions, a more powerful set of animation directives provides us with
a richer language with which to work. As it becomes easier to de�ne new
task-actions, the animator will spend less time coordinating sub-actions.

Finally, this new vocabulary will allow us to express tasks (or de�ne task-
actions) which di�er from the earlier work in their semantic content. Our �rst
attempt at rescripting the instruction set resulted in a more realistic anima-
tion, in that the new behaviors allowed us to include such low-level actions
as take step to maintain balance when the animated agent was reaching
beyond his comfort range. We need to compare the expressive powers of the
previous animation directives with the enhanced set of animation behaviors.

6.4 A Model for Instruction Understanding

5The three experiments described in the previous sections were all concerned
with the operational semantics of single-clause commands. But the range of

5Barbara Di Eugenio, Michael White, Breck Baldwin, Chris Geib, Libby Levison,

Michael Moore.

232 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

tasks that can be communicated to an agent with such commands is very lim-
ited { the less expertise and experience on an agent's part, the more he needs
to be told. A telling example of this is given in [Pri81]. Here, Prince compares
a recipe for stu�ed roast pig given in a nineteenth century French cookbook
with that given in Rombauer's contemporary The Joy of Cooking. The former
says, essentially, \Roast pig. Stu� with farce anglaise." Rombauer's instruc-
tions go on for two pages: she assumes very little culinary experience with
pigs on the part of today's men and women.

Multi-clause commands are very common in maintenance and assembly in-
structions, such as the following examples from Air Force maintenance manual
T.O. 1F-16C-2-94JG-50-2:

\With door opened, adjust switch until roller contacts cam and
continuity is indicated at pins A and B. Verify positive switch
contact by tightening bottom nut one additional turn." (p. 5-24)

\Hold drum timing pin depressed and position entrance unit on
drum. Install three washers and three bolts, release drum timing
pin, and torque bolts to 60-80 inch-pounds." (p. 6-14)

Now just as multi-clause texts are commonly organized into paragraphs,
multi-clause instructions are commonly organized into steps. In fact, the
above multi-clause commands are actually single steps from longer, multi-
step instructions. While there are no �rm guidelines as to what a single
instruction step should encompass, there is a strong tendency at least for
steps to be organized around small coherent sub-tasks (such as adjusting a
switch or installing a component, as in the above examples). A typical step
may specify several actions that need to be performed together to accomplish a
single subtask, or several aspects of a single complex action (e.g. its purpose,
manner, things to watch out for, appropriate termination conditions, etc.).
The agent must develop some degree of understanding of the whole step before
starting to act.

In our current work on instruction understanding, we add to this sub-task
sense of step, the sense that a step speci�es behavior that the agent must
attend to continuously: while carrying out a step, the agent's attention is
�xed on the task at hand. Communication with the instructor is not allowed
until completion (or failure) of the current step. Because of this, a step de�nes
the extent of the instructions that must be processed before the agent begins
to act on them. (With some reection on one's own confrontations with new
instructions, it is easy to recall situations where one has tried to understand
too much or to act on too little understanding. It is not always obvious when
one should begin to act.)

While our focus is on multi-clause instructions, it turns out that many
of their important features can be demonstrated simply with two-clause in-
structions. (As in many things, the biggest leap is from one to two.) The
two-clause example we will use here to describe our framework for instruction
understanding and animation is:

6.4. A MODEL FOR INSTRUCTION UNDERSTANDING 233

\Go into the kitchen to get me the co�ee urn."

This example will be used to illustrate, among other things:

� expectations raised by instructions;

� the need for incremental generation of sub-goals (plan expansion) in
order to act in accordance with instructions;

� the need to accommodate the agent's behavior in carrying out actions,
to the objects being acted upon; and

� the need to develop plans at more than one level.

Figure 6.2 shows a schematic diagram of the AnimNL (ANIMation from
Natural Language) architecture. Before going through the example, we want
to call attention to the system's overall structure { in particular, to the fact
that it consists of two relatively independent sets of processes: one set of
which produces commitments to act for a particular purpose, what we call
animated task actions { e.g.

� goto(door1, open(door1)) { \go to door1 for the purpose of opening it"

� grasp(urn1, carry(urn1)) { \grasp urn1 for the purpose of carrying it"

and the other set of which �gures out how the agent should move in order
to act for that purpose. In this framework, instructions lead to initial com-
mitments to act, and actions once embarked upon allow further commitments
to be made and acted upon. (While our discussion here will be in terms
of single-agent procedures, it can be extended to multi-agent procedures by
adding communicative and coordinating actions. As shown in earlier chapters,
both Jack and its behavioral simulator can support the activity of multiple
agents. However, extending the upper set of processes to delineate the com-
munication and coordination required of multiple agents cooperating on a task
requires solution of many problems currently under investigation by members
of the AI planning community.

We now begin by giving AnimNL the instruction step:

\Go into the kitchen to get me the co�ee urn."

A picture of the agent in its starting situation, when it is given the instruction,
is shown in Plate 6.

Steps are �rst processed by a parser that uses a combinatory categorial
grammar (CCG) [Ste90] to produce an action representation based on Jack-
endo�'s Conceptual Structures [Jac90]. We are using CCG because of its
facility with conjoined constituents, which are common in instructions { for
example

\Clear and rope o� an area around the aircraft and post warning
signs." [Air Force Maintenance manual T.O. 1F-16C-2-94JG-50-2]

234 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

Figure 6.2: AnimNL System Architecture.

6.4. A MODEL FOR INSTRUCTION UNDERSTANDING 235

We are using Jackendo�'s Conceptual Structures for two reasons: �rst, the
primitives of his decompositional theory capture important generalizations
about action descriptions and their relationships to one another, and second,
they reveal where information may be missing from an utterance and have to
be provided by inference. For the instruction step \Go into the kitchen to get
me the co�ee urn", the parser produces the following structure:�

GOSp([agent]i; [TO([IN([kitchen])])])
FOR(�)

�
�

[CAUSE(i; [GOSp([coffee-urn]j; k)])]��
FROM([AT(j)])
TO(l)

�
k

This representation makes explicit the fact that getting the co�ee urn involves
its moving from its current location to a new one (which should be the location
of the instructor). The FOR-function (derived from the to-phrase) encodes
the purpose relation holding between the go-action � and the get-action �.
Indices indicate di�erent instances of a single conceptual type [ZV92].

From these indexed conceptual structures, an initial plan graph is con-
structed to represent the agent's intentions, beliefs and expectations about
the task it is to perform. To do this, the system consults the agent's knowl-
edge of actions and plans (the Action KB and Plan Library in Figure 6.2), to
develop hypotheses about the instructor-intended relationships between the
speci�ed actions (e.g., temporal relations, enablement relations, generation
relations, etc.). The initial plan graph for our running example is shown in
Figure 6.3.

This initial plan graph is further elaborated through processes of reference
resolution, plan inference, reference grounding, plan expansion and perfor-
mance (through simulation). To show the interaction between these processes
and how they are used to elaborate the plan graph, we will contrast our ex-
ample

\Go into the kitchen to get me the co�ee urn."

with a somewhat di�erent but related example

\Go into the kitchen and wash out the co�ee urn."

In the �rst case, recall from the conceptual structure produced by the
parser, that \get me" is interpreted as an instance of a \cause something to
go somewhere" action. One recipe that the system has in its Plan Library for
accomplishing this is shown in Figure 6.4. With respect to this recipe, \go"
can be seen as a substep of \get" { which is one way it can serve the purpose
of \get". (This action representation and the plan graph are described in
greater detail in [EW92].)

Getting an object from one place to another requires �rst going to its
location. This leads to the assumption, noted in Figure 6.3, that the co�ee

236 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

substep

Γ1
Γ2

substep

enab Γ
3

"GO.sp.with(urn)"

enab

substep

"GO.sp(TO(urn))" "GO.ctrl(urn)"

A1: BE(urn, IN([other-room]))

gen

(A1)

"GET(urn)"

"GO.sp(INTO(kitchen))"

Figure 6.3: Initial Plan Graph: \Go into the kitchen and get me the co�ee
urn."

urn is in the kitchen. (The role of plan inference in instruction understanding
is discussed in more detail in [Di 92, DW92].) Reference resolution cannot
contribute any further constraints to the description \the co�ee urn", since
(1) there is no urn in the discourse context (nor anything that has a unique
co�ee urn associated with it), and (2) the assumption that the urn is in the
kitchen is incompatible with its being unique in the current spatio-temporal
context (which is the room next to the kitchen). Reference grounding does
not attempt to associate this description with an object in the current spatio-
temporal context, for the same reason. In fact, the agent will not attempt to
ground this referring expression until it has entered the kitchen. (Whether
the agent then succeeds immediately in grounding the expression will depend
on whether the urn is perceivable { i.e., out in full view. We will discuss this
shortly. In any case, the agent expects to be able to get access to the urn when
it gets to the kitchen. This is what will drive it to seek the urn, if it is not in
view when it gets to the kitchen.)

In the contrasting example \Go into the kitchen and wash out the co�ee
urn", the system again hypothesizes that the purpose relation between go and
wash-out is a substep relation { but in this case, it is because washing out an
object requires being at a washing site (e.g., a sink or tub). That kitchens
usually have sinks gives further weight to this hypothesis.

Reference resolution may now contribute something to the agent's un-
derstanding of the de�nite expression \the co�ee urn". While the discourse
context does not provide evidence of a unique co�ee urn, either directly or by
association, there is also no evidence against the hypothesis that the urn is
in the current spatio-temporal context. An initial hypothesis added by refer-
ence resolution that the urn is in the current space, if con�rmed by reference

6.4. A MODEL FOR INSTRUCTION UNDERSTANDING 237

Header

[CAUSE([agent]i; [GOSp(j; k)])]�
FROM([AT(j)])
TO(l)

�
k

Body

- [GOSp([i, [TO([AT(j)])])]1

- [CAUSE(i, [GOCtrl(j, [TO([AT(i)])])])]2

-

�
GOSp(i; k)
[WITH(j)]

�
3

- Annotations -
- 1 enables 2 enables 3

Quali�ers

- [NOT BESp(j, l)]

E�ects

- [BESp(j, l)]

Figure 6.4: A Move Something Somewhere Action.

grounding, would lead plan expansion (through sub-goal generation) to get
the agent over to its location. Failure of that hypothesis would lead to the
alternative hypothesis that the co�ee urn is in the kitchen. This is the same
hypothesis as in the original example { it has just arisen in a di�erent way.

The next thing to discuss is how the plan graph is expanded, and why it is
expanded incrementally, as actions are performed in accordance with earlier
elements of the plan graph. How it is expanded is through subgoal generation
down to what we have called annotated task actions. This process makes use
of a new kind of planner that (1) eschews pre-conditions in favor of decisions
based on the agent's positive and negative intentions, and (2) takes upcoming
intentions into account when deciding how to expand current goals, so as to
put the agent in the best position with respect to satisfying those intentions.
This planner, called ItPlanS, is described in more detail in [Gei92]. It is also

238 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

Figure 6.5: The Urn is Not Visible, so Cabinets will be Opened.

the source of the annotations of purpose in annotated task actions.

The main reason why the plan graph is expanded incrementally is that the
agent does not have su�cient knowledge, before beginning to act, of what it
will need to do later. In particular, AnimNL assumes that an agent cannot
have up-to-date knowledge of any part of its environment that is outside its
direct perception. (An AnimNL agent may know what non-visible parts of its
environment were like, when it saw them earlier, and have expectations about
what they will be like, when it sees them next, but its knowledge is limited
to general truths about the world and to its direct perceptions.) As for the
extent of the agent's perception, it is assumed that an agent cannot see into
any space that has no portal open into the space the agent occupies. Thus
AnimNL agents have to open doors, closets, boxes, etc., if they want to know
what is inside, or go into other rooms to �nd out what is there.

What this means in our example is that only the plan graph node corre-
sponding to \go into the kitchen" can be expanded { in this case, to \go over
to the door", \open door", and \enter kitchen" { before the agent begins to
act. The node corresponding to \go to the location of the co�ee urn" cannot
be expanded until the door has been opened and the agent can see whether
or not the urn is visible. If it is visible, the agent can go to its location (Plate
6). If it is not visible, this same node must be expanded with actions cor-
responding to �nding the urn { going through the kitchen cabinets one at a
time looking for the urn, until it is found or all cabinets have been searched
(Figure 6.5).

When an annotated task action becomes su�ciently speci�ed for the agent

6.4. A MODEL FOR INSTRUCTION UNDERSTANDING 239

to be ready to commit to it and temporal dependencies permit such commit-
ment, it is gated, triggering other, low-level planning processes (see Figure 6.2
below the \action gate"). An annotated task action is su�ciently speci�ed if

� the action is \executable" (i.e., a task action, as described in Sec-
tion 6.3).

� all actions temporally prior to it have been committed to. (Note that
previous actions need not be completed before a new action is committed
to: an agent can be (and usually is) doing more than one thing at a
time.)

� its purpose has been determined.

It is worthwhile saying a bit more here about these purpose annotations,
since we have come to believe they play a large part in low-level decisions
about how to act. The kind of observations that motivates them are the
following:

� when told to pick up a book and hand it to someone, an agent will grasp
it one way;

� when told to pick up the same book and turn it over, an agent will
commonly grasp it in quite a di�erent way;

� when told to pick up the book and open to page 70, the agent will grasp
it yet a third way.

� when just told to pick up the book, and nothing further, agents com-
monly grasp it, lift it up and wait expectantly for the next command.

These variations in grasp extend to such low-level features as grasp site and
wrist position.

What we have tentatively concluded from such observations is that when
agents don't know the purpose of some action they are told to perform, they
put themselves into a position that easily supports subsequent action. Of
course, always going into a position in which an agent is poised for subse-
quent action is very ine�cient, especially when the agent knows what that
subsequent action will be. In that case, he or she acts in such a way to
smoothly and e�ciently transition from one to the other. In AnimNL, pur-
pose annotations (including \PFA" or poised for action) are there to allow the
simulator, upon action commitment, to come up with the most e�ective ways
of moving the agent's body for the given purpose. It is also why the system is
designed to delay commitment until it knows the purpose of any task action
or knows that the only thing it can know is PFA.

When an action is committed to, there is still further work to be done
in order to determine the agent's behavior. In particular, one result of the
experiment described in the previous section (Section 6.3) was our recognition
of the need for tailoring an agent's behavior in carrying out an action to the

240 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

type of object given as an argument to that action. This follows from the fact
that the same Natural Language verb is commonly used with di�erent objects
to denote very di�erent behavior on an agent's part, and for a task animation
to be correct, these di�erences must be depicted.

Consider, for example, the following de�nition (from [JCMM73]) of the
word \remove" and sentences illustrating its use:

Remove: to perform operations necessary to take an equipment unit
out of the next larger assembly or system;
to take o� or eliminate; to take or move away.

1a. Remove bleed air shuto� valves.
1b. Remove bolts from nuts.
2. Remove paint.
3. Remove covers.

For each di�erent object, the behavior needed to e�ect a \remove" is quite
di�erent. The question is whether to de�ne a single remove-action, to use
in animating both Remove the paint and Remove the bolt? The alternative {
de�ning a multitude of animation procedures (e.g. remove-paint, remove-bolt,
remove-nut, remove-nail, remove-boxtop, etc.) { appears expensive in terms
of time and e�ort, and prone to error.

The solution we are adopting is to build a hybrid system. Instead of
specifying complete de�nitions for each verb, we can identify the core or ker-
nel action for a verb like remove in a fashion similar to that described in
Section 6.2. We will use this core meaning, central to many di�erent instan-
tiations of the verb, in building the task-action. The missing information can
be supplied by the verb's object: The knowledge base is object-oriented and
so can store relevant information about individual objects. For example, one
slot of informationmight be the DOFs an object has { a bolt \knows" (i.e., its
geometric constraints specify) around which axis it turns. Joint and rotation
information is already available in Jack.

The hybrid system would process an instruction by combining the in-
formation in the two representations { the underspeci�ed de�nitions of the
task-actions, in conjunction with the object-oriented knowledge base. By
identifying which information is lacking in the task-actions, the system can
try to supply that information from the knowledge base.

The advantages of a hybrid system is economy of both action de�nitions
and of the object feature information to be stored. We no longer need to worry
about developing separate de�nitions for each animation movement based on
distinct verb/object pairs. Instead we take advantage of the compositional
nature of the task-actions, and the object-oriented, hierarchical knowledge-
base. Using these utilities, we can de�ne a single animation de�nition for
remove which will allow us to animate both Remove the bolt and Remove nuts
from bolts while still distinguishing the instruction Remove covers.

Our work on using complex Natural Language instructions to motivate the
behavior of animated agents is still in its infancy. There is much more to be
done before it is a useful tool in the hands of task designers and human factors

6.4. A MODEL FOR INSTRUCTION UNDERSTANDING 241

engineers. On the other hand, we have begun to demonstrate its potential
exibility in accommodating the task behavior of an agent to the environment
in which the task is being carried out and the agent's own capabilities.

242 CHAPTER 6. TASK-LEVEL SPECIFICATIONS

Chapter 7

Epilogue

1To de�ne a future for the work described in this book, it is essential to keep
in mind the broad goals which motivated the e�orts in the �rst place. Useful
and usable software is desired, to be sure, but the vision of manipulating and
especially instructing a realistically behaved animated agent is the greater
ambition. Some of our visions for the near future are presented, not just for
the sake of prognostication, but for its exciting prospects and possibilities.

Any discussion of the future of software must take into account the ex-
traordinary pace of developments in the hardware arena. Even conservative
predictions of hardware capabilities such as speed and capacity over the �ve
year term lead one perilously close to science �ction. Accordingly, predictions
of \better, faster, cheaper, more reliable, more fault tolerant, more highly par-
allel computers" are easy to make but do little to inform us of the applications
these fantastic machines will facilitate. Rather, as general purpose comput-
ers improve in all these ways, specialized hardware solutions will decrease
in importance and robust, usable software and symbiotic human-computer
interfaces will remain the crucial link between a task and a solution.

Transforming research into practice is a lengthy process, consisting of a
ow of concepts from ideas through algorithms to implementations, from test-
ing and analysis through iterated design, and �nally transfer of demonstrat-
ably workable concepts to external users and actual applications. This entire
process may span years, from the initial description of the concept to a �elded
system. The publication of initial results often breeds over-optimism and has
been known to lead researchers to allow false expectations to arise in the minds
of potential users, with unfortunate results. (Automatic machine translation
of text, speech understanding, and early promises of Arti�cial Intelligence
problem solving are good examples of premature speculations.) At the other
end of the spectrum, however, are concepts which take a long time to work
their way into mainstream technological consciousness. (3D computer graph-
ics is a good example where concepts and even working systems pre-dated

1With the help of Mark Steedman.

243

244 CHAPTER 7. EPILOGUE

widespread commercial availability by more than a decade.) So we will at-
tempt to strike a balance in making speculations: while looking toward a long
term research plan we will generally consider technology transfer to occur
when serious but sympathetic users can experiment and accomplish real work
with it. Our experience with software in the past is both our model and our
promise for expecting new concepts to eventually reach potential users for
evaluation and feedback.

7.1 A Roadmap Toward the Future

We seek to study the conceptual structure and limits of \virtual agents" in
\simulated tasks" (VAST): the software and interface systems necessary to
permit a user to describe, control, animate, analyze, interact with, and co-
operate with multiple virtual computer-synthesized human models. We will
remain cognizant of anticipated developments in underlying computer capa-
bilities, but our principal intention will be to probe the intelligent software
and user-interface issues. VAST focuses on the simulated human �gure not
just as a graphical entity but as an active, behaviorally complex agent who
can follow instructions and autonomously negotiate its own way in the world.

Recall that our introduction emphasized certain simulation goals:

� Create an interactive computer graphics human model;

� Endow it with reasonable biomechanical properties;

� Provide it with \human-like" behaviors;

� Use this simulated human as an agent to e�ect changes in its world;

� Describe and guide its tasks through natural language instructions;

VAST augments this list to further improve the symbiosis between user and
virtual agents:

� Control the agent through natural manual interfaces;

� Automatically generate explications or commentary on its behavior as
sub-titles (text), voice-over or its own speech;

� Coordinate the activity of multiple agents engaged in a task.

We have probed the state-of-the-art in the �rst set of goals, but many prob-
lems and prospects remain for study. Indeed, there are other e�orts that are
advancing human modeling and animation. But our emphasis on interactivity
and usability, especially by non-animators, outweighs mere visual beauty.

7.1. A ROADMAP TOWARD THE FUTURE 245

7.1.1 Interactive Human Models

While we are currently partway toward this goal with Jack, there are enhance-
ments that are necessary before a virtual human looks and behaves realisti-
cally. Increases in hardware capability will certainly aid in the presentation
of highly detailed models with smooth real-time response. The realistic and
beautiful human models created by the Thalmanns [MTT90, MTT91a] are
illustrative of the surface veracity possible under non-real-time conditions.

7.1.2 Reasonable Biomechanical Properties

Joint limits prevent unnatural adjacent body segment postures, but do noth-
ing to prevent non-adjacent collisions. Collision-avoidance should be an im-
plicit part of interactive manipulation for body integrity and natural appear-
ance. In addition, clothing or equipment worn by the virtual human should
demonstrate similar collision-free behavior.

Realistic strength models for the whole body and especially the torso
should be incorporated into the model not only as a source of data but as
an active resource for body motions. Preliminary work on strength-guided
motion has shown feasibility, but more study of joint torque distribution
strategies under comfort and loading constraints is needed. Ongoing \per-
formance" models of the virtual human should be maintained throughout an
interactive session or animation so that realistic assessments of workload and
fatigue may be monitored.

7.1.3 Human-like Behaviors

We must continue to build a \primitive" behavior library so that the \innate"
motion vocabulary of the virtual �gure is as broad as possible. Ideally the
behaviors can be \taught" to the �gure rather than procedurally coded. Each
behavior should enumerate the consequences of its execution so that higher
level planning activities may take its potential e�ects into account.

Posture planning should take into account the spatial organization of the
world and the virtual agent's desire to maximize e�ective behavior while min-
imizing useless movements (work). This can be done, in part, by having
e�ective collision-avoidance schemes for articulated �gures and, in part, by
using symbolical spatial information to prune the high-dimensional numerical
search space and move the �gure into predictably useful postures. We already
realize that classical AI planning paradigms are too weak for posture planning,
and more reactive, incremental planners with \mental motion simulation" are
needed.

Moving a virtual �gure around an environment requires more than simple
locomotion behavior: the behavioral repertoire and planner should under-
stand crawling, climbing, jumping, sliding, etc. With this large repertoire of
possible behaviors, a planner will be busy coordinating them all and sorting
out priorities, even for simple activities.

246 CHAPTER 7. EPILOGUE

7.1.4 Simulated Humans as Virtual Agents

The notion of skill level should be quanti�ed with notions of context-sensitive
execution time and [optimal] motion smoothness. Synthesized animations
should be customized to the user's own body size and capabilities (or limita-
tions) for training situations.

The environment in which the virtual humans work must be imported
from any number of external CAD systems, preferably through standardized
interfaces. During importation, perceptually and behaviorally signi�cant fea-
tures such as articulations, handles, removable parts, and open spaces (holes)
should be recognized from the geometric model. We can expect some CAD
systems to o�er some of this data, but in general we should expect to build
enhanced semantics into the models interactively or semi-automatically our-
selves. For example, handles are needed to determine likely grasp points,
and articulations, parts, and holes are needed for automatic generation of
disassembly behaviors given only the object descriptions.

7.1.5 Task Guidance through Instructions

For a designer to use Natural Language instructions to describe and guide
a virtual agent through a task, the overall system must know how to un-
derstand instructions and to use them appropriately in a given environment.
Instructions must be understood in terms of intention { what is meant to be
achieved in the world { and in terms of positive and negative constraints on
the behavior used to achieve it. Instructions must be used to interpret fea-
tures of the environment and to coordinate the agent's task-level knowledge
and skills in acting to achieve its given goals. Advances in AI planning and
execution are coming at a rapid rate, independent of our own work, and we
will be incorporating those advances into VAST, to make the bridge to actual
behavior.

7.1.6 Natural Manual Interfaces and Virtual Reality

The virtual �gure should exist in a virtual 3D world that is accessible to a
user with a minimum of training and little, if any, computer expertise. While
mouse and keyboard input to Jack addresses some of these goals, it is still
too \low level." By taking advantage of novel 3D, 6D, multiple 6D, and hand
posture sensor input devices, the user's movements can be translated directly
into virtual �gure behaviors. The trick is not to make the mapping one-to-
one, so the user exhausts herself ailing arms and twisting her body as the
current Virtual Reality paradigms would have one do. Rather the mapping
should have considerable intelligent \multipliers" so that the suggestion of
action is enough to precipitate complete behaviors in the virtual human. We
can already control the center of mass of the �gure to e�ect a signi�cant
multiplier of input e�ort, this needs to be extended to arm gestures, view
focus, and locomotion generation. We envision a strong corroborating role

7.1. A ROADMAP TOWARD THE FUTURE 247

from our animation from instructions work, such as speech-based commands.
Minimal device encumbrances on the user are deemed essential.

7.1.7 Generating Text, Voice-over, and Spoken Explica-
tion for Animation

Animation for purposes of instruction in the performance of a task frequently
requires spoken or written text, as well as graphic presentation, if it is to
be understood. Negative instructions such as \warnings" or \cautions" pro-
vide an obvious example. While written captions can be adequate for some
purposes, presenting few problems for animation, spoken language is more
e�cient and more engaging of the viewers' attention. For certain purposes
even, a human face speaking in accompaniment to action is the most e�cient
and attention-holding device of all. Among the problems involved in including
linguistic information in an on-going animation are: appropriately allocating
information to the di�erent modalities; integration of the two modalities over
time; limitations of existing speech synthesizers with respect to intonation;
integration of a facial animation with speech. All of these are tasks which the
animator can in principle take over, but all of them, especially the last, are
laborious. It would be highly desirable to automate all of them, especially if
they are to be used in highly interactive animations, in which model-based
synthesis-by-rule is required, rather than image based techniques.

One of the extensions to Jack is an animated facial model with a program-
ming language for integrating its movements with a segmental representation
of speech [PBS91, Pel91]. This e�ort is now focused on the following exten-
sions:

� Provide an improved programming language for facial animation of
speech.

� Provide a discourse semantics for spoken intonation in terms of appro-
priate knowledge representations.

� Perform automatic generation from such semantic representations of
phonological representations of spoken explications, including appropri-
ate intonational markers of contrast and background, for input to a
speech synthesizer, with or without the facial animation program.

7.1.8 Coordinating Multiple Agents

Our principle goal has been getting a single agent to behave plausibly in re-
sponse to multi-clause instruction steps. One goal for the longer term involves
producing sensible behavior on the part of a single virtual agent and plausible
behavior from a group of virtual agents engaged in a multi-agent task.

Coordinated multi-person simulations will be the next [large] step after
an individual agent's actions can be e�ectively determined. Such simula-
tions require physical, task and cognitive coordination among the agents. For

248 CHAPTER 7. EPILOGUE

physical coordination, our particular e�orts will focus on determining timing
coordination, strength and workload distribution, and mutual achievement of
spatial goals. In these multi-agent tasks, the interactive user may or may not
be one of the participating agents.

Task coordination requires augmenting our task knowledge base with in-
formation on multi-agent tasks. This is essential both for understanding the
text of multi-agent task instructions and for interpolating between explicit
instructions, since instructions cannot (by virtue of not knowing the precise
circumstances under which they will be carried out) specify everything.

For cognitive coordination among the agents, communication may be nec-
essary to determine or alter the leadership role, initiate activity, keep it mov-
ing along, interrupt or abort it, or rest on imminent fatigue. Research on
communication for coordinating multi-agent tasks is being carried on at other
institutions [GS89, CL91, Loc91]. In the longer term, we look to importing the
results of this research and incorporating it into the VAST framework. Until
then, we will focus on single virtual agents or centrally-controlled multiple
agents engaged in tasks in which communication is not required for coordina-
tion.

7.2 Conclusion

There are a multitude of other directions for virtual agent work. Some of
these are automatic view control, a perceptual \sense," spatial reasoning for
improved posture planning, recognizing and accommodating task failures, skill
acquisition, exible object interactions, animation presentation techniques,
behaving with commonsense, enriched instruction understanding, and speech-
based agent animation. But all that's for a sequel.

Bibliography

[AAW74] M. A. Ayoub, M. M. Ayoub, and A. Walvekar. A biomechanical model
for the upper extremity using optimization techniques. Human Factors,
16(6):585{594, 1974.

[Abb53] Edwin A. Abbott. Flatland; a romance of many dimensions. Dover,
New York, NY, 1953.

[ABS90] T. Alameldin, N. Badler, and T. Sobh. An adaptive and e�cient system
for computing the 3-D reachable workspace. In Proceedings of IEEE
International Conference on Systems Engineering, pages 503{506, 1990.

[AC87] Phillip Agre and David Chapman. Pengi: An implementation of a
theory of activity. Proceedings of the AAAI-87 Conference, pages 268{
272, June 1987.

[AD90] T.L. Anderson and M. Donath. Animal behavior as a paradigm for
developing robot autonomy. In Pattie Maes, editor, Designing Au-
tonomous Agents, pages 145{168. MIT Press, 1990.

[AG85] W. W. Armstrong and Mark Green. The dynamics of articulated rigid
bodies for purposes of animation. The Visual Computer, 1(4):231{240,
1985.

[AGL87] William Armstrong, Mark Green, and R. Lake. Near-real-time control
of human �gure models. IEEE Computer Graphics and Applications,
7(6):52{61, June 1987.

[AGR+81] M. M. Ayoub, C. F. Gidcumb, M. J. Reeder, M. Y. Beshir, H. A. Hafez,
F. Aghazadeh, and N. J. Bethea. Development of an atlas of strengths
and establishment of an appropriate model structure. Technical Report
(Final Report), Institute for Ergonomics Research, Texas Tech Univ.,
Lubbock, TX, Nov. 1981.

[AGR+82] M. M. Ayoub, C. F. Gidcumb, M. J. Reeder, H. A. Hafez, M. Y. Beshir,
F. Aghazadeh, and N. J. Bethea. Development of a female atlas of
strengths. Technical Report (Final Report), Institute for Ergonomics
Research, Texas Tech Univ., Lubbock, TX, Feb. 1982.

[AHN62] E. Asmussen and K. Heeboll-Nielsen. Isometric muscle strength in re-
lation to age in men and women. Ergonomics, 5(1):167{169, 1962.

[Ala91] Tarek Alameldin. Three Dimensional Workspace Visualization for Re-
dundant Articulated Chains. PhD thesis, Computer and Information
Science, Univ. of Pennsylvania, Philadelphia, PA, 1991.

[Alb81] James S. Albus. Brains, Behavior, and Robotics. BYTE Books,
McGraw-Hill, 1981.

[Ali90] Alias Research, Inc. ALIAS V3.0 Reference Manual, 1990.
[AM71] B. Anson and C. McVay. Surgical Anatomy. Saunders, Philadelphia,

249

250 BIBLIOGRAPHY

PA, 1971.
[And60] E. Anderson. A semigraphical method for the analysis of complex prob-

lems. Technometrics, 2:381{391, 1960.
[And72] D. F. Andrews. Plots of high-dimensional data. Biometrics, 28(125),

1972.
[Ayo91] M. Ayoub. From biomechanical modeling to biomechanical simulation.

In Edward Boyle, John Ianni, Jill Easterly, Susan Harper, and Med-
hat Korna, editors, Human-Centered Technology for Maintainability:
Workshop Proceedings. Wright-Patterson Air Force Base, Armstrong
Laboratory, June 1991.

[Bad75] Norman I. Badler. Temporal scene analysis: Conceptual descriptions
of object movements. PhD thesis, Computer Science, Univ. of Toronto,
Toronto, Canada, 1975. (Univ. of Pennsylvania, Computer and Infor-
mation Science, Tech. Report MS-CIS-76-4).

[Bad76] Norman I. Badler. Conceptual descriptions of physical activities. Amer-
ican Journal of Computational Linguistics, Micro�che 35:70{83, 1976.

[Bad89] Norman I. Badler. A representation for natural human movement. In
J. Gray, editor, Dance Technology I, pages 23{44. AAHPERD Publica-
tions, Reston, VA, 1989.

[Bar89] David Bara�. Analytical methods for dynamic simulation of non-
penetrating rigid bodies. Computer Graphics, 23(3):223{232, 1989.

[BB78] Norman I. Badler and Ruzena Bajcsy. Three-dimensional representa-
tions for computer graphics and computer vision. Computer Graphics,
12(3):153{160, Aug. 1978.

[BB88] Ronen Barzel and Alan H. Barr. A modeling system based on dynamic
constraints. Computer Graphics, 22(4):179{188, 1988.

[BBA88] P. G. Bullough and O. Boachie-Adjei. Atlas of Spinal Diseases. Lippin-
cott, Philadelphia, PA, 1988.

[BBB87] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduc-
tion to Splines for Use in Computer Graphics and Geometric Modeling.
Morgan Kaufmann, Los Altos, CA, 1987.

[BBH+90] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman,
and M. Teitel. Reality built for two: A virtual reality tool. Computer
Graphics, 24(2):35{36, 1990.

[BC68] R. Beckett and K. Chang. An evaluation of the kinematics of gait by
minimum energy. Journal of Biomechanics, 1:147{159, 1968.

[BC89] Armin Bruderlin and Tom W. Calvert. Goal-directed, dynamic anima-
tion of human walking. Computer Graphics, 23(3):233{242, 1989.

[BCS90] R. D. Beer, H. J. Chiel, and L. S. Sterling. A biological perspective
on autonomous agent design. In Pattie Maes, editor, Designing Au-
tonomous Agents, pages 169{186. MIT Press, 1990.

[Bec92] Welton M. Becket. Simulating adaptive autonomous behavior with re-
current neural networks. Technical report, Computer and Information
Science, Univ. of Pennsylvania, Philadelphia, PA, 1992. To appear.

[BEK+81] P. Bapu, S. Evans, P. Kitka, M. Korna, and J. McDaniel. User's
guide for COMBIMAN programs. Technical Report AFAMRL-TR-80-
91, Univ. of Dayton Research Institute, Jan 1981. U.S.A.F. Report.

[Ber83] J. Bertin. Semiology of Graphics, translated by W. J. Berg. The Univ.
of Wisconsin Press, 1983.

[BG86] Norman I. Badler and Je�rey S. Gangel. Natural language input for hu-

BIBLIOGRAPHY 251

man task description. In Proc. ROBEXS '86: The Second International
Workshop on Robotics and Expert Systems, pages 137{148. Instrument
Society of America, June 1986.

[BHJ+83] Michael Brady, John M. Hollerbach, Timothy L. Johnson, Tomas
Lozano-P�erez, and Matthew T. Mason, editors. Robot Motion: Plan-
ning and Control. MIT Press, Cambridge, MA, 1983.

[Bie86] Eric Allan Bier. Snap-dragging. Computer Graphics, 20(3):233{240,
1986.

[Bie87] Eric Allan Bier. Skitters and jacks: Interactive positioning tools. In Pro-
ceedings of 1986 ACM Workshop on Interactive 3D Graphics, Chapel
Hill, NC, Oct. 1987.

[Bie90] Eric Allan Bier. Snap-dragging in three dimensions. Computer Graph-
ics, 24(2):193{204, March 1990.

[BKK+85] Norman I. Badler, Jonathan Korein, James U. Korein, Gerald Radack,
and Lynne Brotman. Positioning and animating human �gures in a
task-oriented environment. The Visual Computer, 1(4):212{220, 1985.

[BKT86] K. Bo�, L Kaufmann, and J Thomas, editors. The Handbook of Percep-
tion and Human Performance. John Wiley and Sons, New York, NY,
1986.

[BL88] Kenneth R. Bo� and Janet E. Lincoln, editors. Engineering Data Com-
pendium. Harry G. Armstrong Aerospace Medical Research Laboratory,
Wright-Patterson Air Force Base, OH, 1988.

[BL89] J. Barraquand and J. Latombe. Robot motion planning: A distributed
representation approach. Technical Report STAN-CS-89-1257, Com-
puter Science, Stanford Univ., Stanford, CA, May 1989.

[Bli82] James F. Blinn. A generalization of algebraic surface drawing. ACM
Transactions on Graphics, 1(3):235{256, July 1982.

[BLL89a] J. Barraquand, B. Langlois, and J. Latombe. Numerical potential �eld
techniques for robot path planning. Technical Report STAN-CS-89-
1285, Computer Science, Stanford Univ., Stanford, CA, 1989.

[BLL89b] J. Barraquand, B. Langlois, and J. Latombe. Robot motion planning
with many degrees of freedom and dynamic constraints. In Fifth Intl.
Sym. on Robotics Research (ISRR), Tokyo, pages 1{10, 1989.

[BLP78] Edward G. Britton, James S. Lipscomb, and Michael E. Pique. Making
nested rotations convenient for the user. Computer Graphics, 12(3):222{
227, August 1978.

[BLP83] Rodney A. Brooks and Tomas Lozano-P�erez. A subdivision algorithm
in con�guration space for �ndpath with rotation. In Proc. 8th Int. Joint
Conf. Arti�cial Intelligence, pages 799{806, 1983.

[BMB86] Norman I. Badler, Kamran H. Manoochehri, and David Bara�. Multi-
dimensional input techniques and articulated �gure positioning by mul-
tiple constraints. In Proc. Workshop on Interactive 3D Graphics, New
York, NY, Oct. 1986. ACM.

[BMTT90] R. Boulic, Nadia Magnenat-Thalmann, and Daniel Thalmann. A global
human walking model with real-time kinematic personi�cation. The
Visual Computer, 6:344{358, 1990.

[BMW87] Norman I. Badler, Kamran Manoochehri, and G. Walters. Articulated
�gure positioning by multiple constraints. IEEE Computer Graphics
and Applications, 7(6):28{38, 1987.

[BN88] L. S. Brotman and A. N. Netravali. Motion interpolation by optimal

252 BIBLIOGRAPHY

control. Computer Graphics, 22(4):309{315, 1988.
[Bob88] J. E. Bobrow. Optimal robot path planning using the minimum-time

criteria. IEEE Journal of Robotics and Automation, 4(4):443{450, Au-
gust 1988.

[Bod77] Margaret Boden. Arti�cial Intelligence and Natural Man. Basic Books,
New York, NY, 1977.

[BOK80] Norman I. Badler, Joseph O'Rourke, and Bruce Kaufman. Special prob-
lems in human movement simulation. Computer Graphics, 14(3):189{
197, July 1980.

[BOT79] Norman I. Badler, Joseph O'Rourke, and Hasida Toltzis. A spheri-
cal representation of a human body for visualizing movement. IEEE
Proceedings, 67(10):1397{1403, Oct. 1979.

[BP88] Alain Berthoz and Thierry Pozzo. Intermittent head stabilization
during postural and locomotory tasks in humans. In B. Amblard,
A. Berthoz, and F. Clarac, editors, Posture and Gait: Development,
Adaptation, and Modulation. Excerpta Medica, 1988.

[Bra84] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology.
The MIT Press, 1984.

[Bre89] David E. Breen. Choreographing goal-oriented motion using cost func-
tions. In N. Magnenat-Thalmann and D. Thalmann, editors, State-of-
the-Art in Computer Animation, pages 141{151. Springer-Verlag, New
York, NY, 1989.

[Bro83a] Rodney A. Brooks. Planning collision-free motions for pick-and-place
operations. Int. Journal of Robotics Research, 2(4):19{44, Winter 1983.

[Bro83b] Rodney A. Brooks. Solving the �nd-path problem by good representa-
tion of free space. IEEE Transactions on Systems, Man and Cybernet-
ics, SMC-13(3):190{197, Mar 1983.

[Bro86] Rodney A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, pages 14{23, April 1986.

[Bro90] Rodney A. Brooks. Elephants don't play chess. In Pattie Maes, editor,
Designing Autonomous Agents, pages 3{18. MIT Press, 1990.

[Bru88] Armin Bruderlin. Goal-directed, dynamic animation of bipedal locomo-
tion. Master's thesis, Simon Fraser Univ., Vancouver, Canada, 1988.

[BS76] Maxine Brown and Stephen W. Smoliar. A graphics editor for Laban-
otation. Computer Graphics, 10(2):60{65, 1976.

[BS79] Norman I. Badler and Stephen W. Smoliar. Digital representations of
human movement. ACM Computing Surveys, 11(1):19{38, March 1979.

[BS91] Jules Bloomenthal and Ken Shoemake. Convolution surfaces. Computer
Graphics, 25(4):251{256, 1991.

[BSOW78] Norman I. Badler, Stephen W. Smoliar, Joseph O'Rourke, and Lynne
Webber. The simulation of human movement. Technical Report MS-
CIS-78-36, Computer and Information Science, Univ. of Pennsylvania,
Philadelphia, PA, 1978.

[BW76] N. Burtnyk and M. Wein. Interactive skeleton techniques for enhancing
motion dynamics in key frame animation. Communications of the ACM,
19(10):564{569, Oct. 1976.

[BW90] Aijaz A. Baloch and Allen M. Waxman. A neural system for behavioral
conditioning of mobile robots. IEEE International Joint Conference on
Neural Networks, 2:723{728, 1990.

[BwDL80] Irmgard Bartenie� and (with Dori Lewis). Body Movement: Coping

BIBLIOGRAPHY 253

with the Environment. Gordon and Breach, New York, NY, 1980.
[BWKE91] Norman I. Badler, Bonnie L. Webber, Jugal K. Kalita, and Je�rey

Esakov. Animation from instructions. In Norman I. Badler, Brian A.
Barsky, and David Zeltzer, editors, Making Them Move: Mechanics,
Control, and Animation of Articulated Figures, pages 51{93. Morgan-
Kaufmann, San Mateo, CA, 1991.

[CA84] D. B. Cha�n and G. B. J. Andersson. Occupational Biomechanics.
John Wiley & Sons, 1984.

[Cal91] Tom Calvert. Composition of realistic animation sequences for multi-
ple human �gures. In Norman I. Badler, Brian A. Barsky, and David
Zeltzer, editors, Making Them Move: Mechanics, Control, and Ani-
mation of Articulated Figures, pages 35{50. Morgan-Kaufmann, San
Mateo, CA, 1991.

[Car72] Sven Carlsoo. How Man Moves. William Heinemann Ltd, 1972.
[Cat72] Edwin Catmull. A system for computer generated movies. In Proceed-

ings of ACM Annual Conference, pages 422{431, August 1972.
[Cat78] E Catmull. The problems of computer-assisted animation. Computer

Graphics, 12(3):348{353, August 1978.
[CB92] Wallace Ching and Norman I Badler. Fast motion planning for anthro-

pometric �gures with many degrees of freedom. In IEEE Intl. Conf. on
Robotics and Automation, May 1992.

[CBR] K. Corker, A. Bejczy, and B. Rappaport. Force/Torque Display For
Space Teleoperation Control Experiments and Evaluation. Cambridge,
MA.

[CCP80] Tom Calvert, J. Chapman, and A. Patla. The integration of subjective
and objective data in the animation of human movement. Computer
Graphics, 14(3):198{203, July 1980.

[CCP82] Tom Calvert, J. Chapman, and A. Patla. Aspects of the kinematic
simulation of human movement. IEEE Computer Graphics and Appli-
cations, 2(9):41{50, Nov. 1982.

[Ceb87] David Cebula. The semantic data model and large information require-
ments. Technical Report MS-CIS-87-72, Computer and Information
Science, Univ. of Pennsylvania, Philadelphia, PA, 1987.

[Cen81] NASA Johnson Space Center. Space Shuttle Flight Data File Prepa-
ration Standards. Flight Operations Directorate, Operations Division,
1981.

[Che73] H. Cherno�. The use of faces to represent points in k-dimensional space
graphically. J. of the American Statistical Assoc., 68(342), 1973.

[CJ71] E. Y. Chao and D. H. Jacobson. Studies of human locomotion via
optimal programming. Mathematical Biosciences, 6:239{306, 1971.

[CL91] P. Cohen and H. Levesque. Teamwork. Nôus, 25, 1991.
[CMS88] Michael Chen, S. Joy Mountford, and Abigail Sellen. A study in in-

teractive 3-D rotation using 2-D control devices. Computer Graphics,
22(4):121{129, August 1988.

[Coo68] G.S. Cooper. A semantic analysis of English locative prepositions. Tech-
nical Report Report No. 1587, BBN: Clearinghouse for Federal Scienti�c
and Technical Information, Spring�eld, VA, 1968.

[Del70] Cecily Dell. A Primer for Movement Description. Dance Notation
Bureau, Inc., New York, NY, 1970.

[DH55] Jacques Denavit and Richard Hartenberg. A kinematic notation for

254 BIBLIOGRAPHY

lower pair mechanisms based on matrices. Journal of Applied Mechan-
ics, 23, 1955.

[Di 92] Barbara Di Eugenio. Goals and actions in Natural Language instruc-
tions. Technical Report MS-CIS-92-07, Computer and Information Sci-
ence, Univ. of Pennsylvania, Philadelphia, PA, 1992.

[DLRG91] Bruce R. Donald, Jed Lengyel, Mark Reichert, and Donald Greenberg.
Real-time robot motion planning using rasterizing computer graphics
hardware. Computer Graphics, 25(4):327{336, July 1991.

[Don84] Bruce Donald. Motion planning with six degrees of freedom. Technical
Report 791, MIT AI Lab, 1984.

[Don87] B. Donald. A search algorithm for motion planning with six degrees of
freedom. Arti�cial Intelligence, 31:295{353, 1987.

[Doo82] Marianne Dooley. Anthropometric modeling programs { A survey.
IEEE Computer Graphics and Applications, 2(9):17{25, Nov. 1982.

[Dru75] C. Drury. Application of Fitts' Law to foot-pedal design. Human Fac-
tors, 17, 1975.

[DW92] B. Di Eugenio and B. Webber. Plan recognition in understanding in-
structions. In Proc. First Int'l Conference on Arti�cial Intelligence
Planning Systems, College Park MD, pages 52{61, June 1992.

[DX89] Bruce Donald and Patrick Xavier. A provably good approximation
algorithm for optimal-time trajectory planning. In IEEE Intl. Conf. on
Robotics and Automation, pages 958{963, 1989.

[EB90] Je�rey Esakov and Norman I. Badler. An architecture for high-level hu-
man task animation control. In P. A. Fishwick and R. S. Modjeski, edi-
tors, Knowledge-Based Simulation: Methodology and Application, pages
162{199. Springer-Verlag, New York, NY, 1990.

[EB91] Je�rey Esakov and Norman I. Badler. Animation from instructions {
video tape. In Norman I. Badler, Brian A. Barsky, and David Zeltzer,
editors, Making Them Move: Mechanics, Control, and Animation of
Articulated Figures. Morgan-Kaufmann, San Mateo, CA, 1991. Video-
tape.

[EBJ89] Je�ery Esakov, Norman I. Badler, and M. Jung. An investigation of
language input and performance timing for task animation. In Graph-
ics Interface '89, pages 86{93, San Mateo, CA, June 1989. Morgan-
Kaufmann.

[EC86] S. M. Evans and D. B. Cha�n. Using interactive visual displays to
present ergonomic information in workspace design. In W. Karwowski,
editor, Trends in Ergonomics/HumanFactors III. Elsevier Science Pub-
lishers B.V. (North-Holland), 1986.

[EI91] Jill Easterly and John D. Ianni. Crew Chief: Present and future.
In Edward Boyle, John Ianni, Jill Easterly, Susan Harper, and Med-
hat Korna, editors, Human-Centered Technology for Maintainability:
Workshop Proceedings. Wright-Patterson Air Force Base, Armstrong
Laboratory, June 1991.

[Emm85] Arielle Emmett. Digital portfolio: Tony de Peltrie. Computer Graphics
World, 8(10):72{77, Oct. 1985.

[EP87] Ali Erkan Engin and Richard D. Peindl. On the biomechanics of human
shoulder complex { I: Kinematics for determination of the shoulder
complex sinus. Journal of Biomechanics, 20(2):103{117, 1987.

[EPE88] S. M. Evans, S. L. Palmiter, and J. Elkerton. The edge system: Er-

BIBLIOGRAPHY 255

gonomic design using graphic evaluation. The Annual Meeting of the
Human Factors Society, Los Angeles, CA, Oct. 1988.

[Esa90] Je�rey Esakov. KB. Technical Report MS-CIS-90-03, Univ. of Penn-
sylvania, Philadelphia, PA, 1990.

[ET89] Ali Erkan Engin and S. T. Tumer. Three-dimensional kinematic mod-
elling of the human shoulder complex { I: Physical model and deter-
mination of joint sinus cones. Journal of Biomechanical Engineering,
111:107{112, May 1989.

[ETW81] Kenneth B. Evans, Peter Tanner, and Marceli Wein. Tablet based
valuators that provide one, two or three degrees of freedom. Computer
Graphics, 15(3):91{97, 1981.

[Eva85] Susan M. R. Evans. Ergonomics in manual workspace design: Current
practices and an alternative computer-assisted approach. PhD thesis,
Center for Ergonomics, Univ. of Michigan, Ann Arbor, MI, 1985.

[Eva88] S. M. Evans. Use of biomechanical static strength models in workspace
design. In Proceedings for NATO Workshop on Human Performance
Models in System Design, Orlando, FL, May 1988.

[EW92] Barbara Di Eugenio and Michael White. On the interpretation of Nat-
ural Language instructions. In Proceedings of 1992 International Con-
ference on Computational Linguistics (COLING-92), Nantes, France,
1992.

[Far88] Gerald Farin. Curves and Surfaces for Computer Aided Geometric De-
sign. Academic Press, San Diego, CA, 1988.

[Fav84] Bernard Faverjon. Obstacle avoidance using an octree in the con�g-
uration space of a manipulator. In IEEE Intl. Conf. on Robotics and
Automation, pages 504{512, 1984.

[FB85] K. Fishkin and B. Barsky. An analysis and algorithm for �lling propa-
gation. In Proceedings Graphics Interface, pages 203{212, 1985.

[Fet82] William Fetter. A progression of human �gures simulated by computer
graphics. IEEE Computer Graphics and Applications, 2(9):9{13, Nov.
1982.

[Fey86] Carl R. Feynman. Modeling the appearance of cloth. Master's thesis,
Massachusetts Institute of Technology, 1986.

[Fis86] Paul A. Fishwick. Hierarchical Reasoning: Simulating Complex Pro-
cesses over Multiple Levels of Abstraction. PhD thesis, Computer and
Information Science, Univ. of Pennsylvania, Philadelphia, PA, 1986.

[Fis88] Paul A. Fishwick. The role of process abstraction in simulation. IEEE
Transactions on Systems, Man and Cybernetics, 18(1):18{39, Jan/Feb.
1988.

[Fis90] K. Fishkin. Filling a region in a frame bu�er. In A. Glassner, editor,
Graphics Gems, pages 278{284. Academic Press, Cambridge, MA, 1990.

[Fit54] P. Fitts. The information capacity of the human motor system in con-
trolling the amplitude of movement. Journal of Experimental Psychol-
ogy, 47:381{391, 1954.

[FKU77] H. Fuchs, Z. Kedem, and S. Uselton. Optimal surface reconstruction
from planar contours. Communications of the ACM, 20(10):693{702,
Oct. 1977.

[Fle70] R. Fletcher. A new approach to variable metric algorithms. Computer
Journal, 13:317{322, 1970.

[FLP89] H. Fuchs, M. Levoy, and M. Pizer. Interactive visualization of 3D medi-

256 BIBLIOGRAPHY

cal data. IEEE Transactions on Computers, pages 46{57, August 1989.
[FMHR87] S.S. Fisher, M. McGreevy, J. Humphries, and W. Robinett. Virtual

environment display system. In Proceedings of 1986 ACM Workshop
on Interactive 3D Graphics, Chapel Hill, NC, Oct. 1987.

[FP64] P. Fitts and J. Peterson. Information capacity of discrete motor re-
sponses. Journal of Experimental Psychology, 67(2), 1964.

[FS91] James A. Freeman and David M. Skapura. Neural Networks: Algo-
rithms, Applications, and Programming Techniques. Addison Wesley,
1991.

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice. Addison-Wesley,
Reading, MA, 1990. Second Edition.

[FW83] T. W. Finin and B. L. Webber. BUP { A Bottom Up Parser. Techni-
cal Report MS-CIS-83-16, Computer and Information Science, Univ. of
Pennsylvania, Philadelphia, PA, 1983.

[FW88] David R. Forsey and Jane Wilhelms. Techniques for interactive manip-
ulation of articulated bodies using dynamic analysis. In Proceedings of
Graphics Interface '88, 1988.

[Gal80] C. R. Gallistel. The Orginization of Action: A New Synthesis. Lawrence
Elerbaum Associates, Publishers, Hillsdale, NJ, 1980. Distributed by
the Halsted Press division of John Wiley & Sons.

[Gan85] Je�rey S. Gangel. A motion verb interface to a task animation system.
Master's thesis, Computer and Information Science, Univ. of Pennsyl-
vania, Philadelphia, PA, August 1985.

[Gei92] Christopher Geib. Intentions in means-end planning. Technical Report
MS-CIS-92-73, Dept. of Computer and Information Science, Univ. of
Pennsylvania, Philadelphia, PA, 1992.

[GFS71] R. M. Goldwyn, H. P. Friedman, and T. H. Siegel. Iteration and interac-
tion in computer data bank analysis. Computer in Biomedical Research,
4:607{622, 1971.

[Gir87] Michael Girard. Interactive design of 3D computer-animated legged
animal motion. IEEE Computer Graphics and Applications, 7(6):39{
51, 1987.

[Gir91] Michael Girard. Constrained optimization of articulated animal move-
ment in computer animation. In Norman I. Badler, Brian A. Barsky,
and David Zeltzer, editors, Making Them Move: Mechanics, Con-
trol, and Animation of Articulated Figures, pages 209{232. Morgan-
Kaufmann, San Mateo, CA, 1991.

[GL90] Michael P. George� and Amy L. Lansky. Reactive reasoning and plan-
ning. In James Allen, James Hendler, and Austin Tate, editors, Read-
ings in Planning, pages 729{734. Morgon Kaufmann Publishers, Inc.,
1990.

[GM85] Michael Girard and A. A. Maciejewski. Computational modeling for the
computer animation of legged �gures. Computer Graphics, 19(3):263{
270, 1985.

[GM86] Carol M. Ginsberg and Delle Maxwell. Graphical marionette. In N. I.
Badler and J. K. Tsotsos, editors, Motion: Representation and Percep-
tion, pages 303{310. Elsevier, North Holland, New York, NY, 1986.

[GMTT89] Jean-Paul Gourret, Nadia Magnenat-Thalmann, and Daniel Thalmann.
Simulation of object and human skin deformations in a grasping task.

BIBLIOGRAPHY 257

Computer Graphics, 23(3):21{30, 1989.
[Gol69] D. Goldfarb. Extension of Davidon's variable metric method to maxi-

mization under linear inequality and equality constraints. SIAM Jour-
nal of Appl. Math., 17:739{764, 1969.

[Gol70] D. Goldfarb. A family of variable metric methods derived by variational
means. Math. Computation, 24:23{26, 1970.

[Gom84] Julian E. Gomez. Twixt: A 3D animation system. In Proc. Eurograph-
ics '84, pages 121{133, New York, NY, July 1984. Elsevier Science
Publishers B.V.

[Gou84] Laurent Gouzenes. Strategies for solving collision-free trajectories prob-
lems for mobile and manipulator robots. Int. Journal of Robotics Re-
search, 3(4):51{65, Winter 1984.

[GP88] Ralph Guggenheim and PIXAR. Tin Toy (excerpt). SIGGRAPH Video
Review, 38, 1988.

[GQB89] Marc Grosso, Richard Quach, and Norman I. Badler. Anthropometry
for computer animated human �gures. In N. Magnenat-Thalmann and
D. Thalmann, editors, State-of-the Art in Computer Animation, pages
83{96. Springer-Verlag, New York, NY, 1989.

[GQO+89] Marc Grosso, Richard Quach, Ernest Otani, Jianmin Zhao, Susanna
Wei, Pei-Hwa Ho, Jiahe Lu, and Norman I. Badler. Anthropometry
for computer graphics human �gures. Technical Report MS-CIS-89-71,
Computer and Information Science, Univ. of Pennsylvania, Philadel-
phia, PA, 1989.

[GR82] K. Gupta and B. Roth. Design considerations for manipulator
workspace. ASME Journal of Mechanical Design, 104:704{711, Oct.
1982.

[GRB+85] S. M. Goldwasser, R. A. Reynolds, T. Bapty, D. Bara�, J. Summers,
D. A. Talton, and E. Walsh. Physician's workstation with real-time
performance. IEEE Computer Graphics and Applications, 5(12):44{57,
Dec. 1985.

[GS89] Barbara Grosz and Candice Sidner. Plans for discourse. In J. Morgan,
P. Cohen, and M. Pollack, editors, Intentions in Communication. MIT
Press, 1989.

[Gup86] K. Gupta. On the nature of robot workspace. Int. Journal of Robotics
Research, 5:112{122, 1986.

[Gup90] Kamal Kant Gupta. Fast collision avoidance for manipulator arms: A
sequential search strategy. IEEE Transactions on Robotics and Au-
tomation, 6(5):522{532, Oct 1990.

[Hac77] R. J. Hackathorn. ANIMA II: A 3-D color animation system. Computer
Graphics, 11(2):54{64, July 1977.

[Hah88] James K. Hahn. Realistic animation of rigid bodies. Computer Graph-
ics, 22(4):299{308, August 1988.

[Har75] J. A. Hartigan. Printer graphics for clustering. Journal of Statistical
Computation and Simulation, 4:187{213, 1975.

[Hau89] Edward J. Haug, editor. Concurrent Engineering of Mechanical Sys-
tems: Volume I. The Univ. of Iowa, Iowa City, IA, 1989.

[HBD80] R. Harris, J. Bennet, and L. Dow. CAR-II { A revised model for crew as-
sesment of reach. Technical Report 1400.06B, Analytics, Willow Grove,
PA, 1980.

[HC90] Adele E. Howe and Paul R. Cohen. Responding to environmental

258 BIBLIOGRAPHY

change. Proceedings of the ARPA Workshop on Planning, Scheduling,
and Control, pages 85{92, Nov. 1990.

[HE78] Don Herbison-Evans. NUDES2: A numeric utility displaying ellipsoid
solids. Computer Graphics, 12(3):354{356, Aug. 1978.

[HE82] Don Herbison-Evans. Real-time animation of human �gure drawings
with hidden lines omitted. IEEE Computer Graphics and Applications,
2(9):27{34, 1982.

[Her86] Annette Herskovits. Language and spatial cognition. In Aravind Joshi,
editor, Studies in Natural Language Processing. Cambridge Univ. Press,
Cambridge, England, 1986.

[HH87] C. Ho�mann and R. Hopcroft. Simulation of physical systems from
geometric models. IEEE Journal of Robotics and Automation, RA-
3(3):194{206, 1987.

[Hir77] Vicki Hirsch. Floorplans in Labanotation. Master's thesis, Computer
and Information Science, Univ. of Pennsylvania, Philadelphia, PA,
1977.

[HJER86] V. H. Heyward, S. M. Johannes-Ellis, and J. F. Romer. Gender di�er-
ences in strength. Research Quarterly for Exercise and Sport, 57(2):154{
159, 1986.

[HKP91] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the
theory of neural computation. Addison Wesley, 1991.

[Hol81] W. H. Hollinshead. Functional Anatomy of the Limbs and Back. Saun-
ders, Philadelphia, PA, 1981.

[Hol82] W. H. Hollinshead. Anatomy for Surgeons. Harper & Row, Philadel-
phia, PA, 1982.

[HP88] David R. Haumann and Richard E. Parent. The behavioral testbed:
Obtaining complex behavior from simple rules. The Visual Computer,
4(6), 1988.

[HS85a] Pat Hanrahan and David Sturman. Interactive animation of parametric
models. The Visual Computer, 1(4):260{266, 1985.

[HS85b] J. M. Hollerbach and K. C. Suh. Redundancy resolution of manipula-
tors through torque optimization. In IEEE Intl. Conf. on Robotics and
Automation, pages 1016{1021, St. Louis, MO, 1985.

[Hut70] Ann Hutchinson. Labanotation. Theatre Arts Books, New York, NY,
1970.

[Hut84] Ann Hutchinson. Dance Notation. Dance Horizons, New York, NY,
1984.

[Ibe87] T. Iberall. The nature of human prehension: Three dextrous hands in
one. In IEEE Intl. Conf. on Robotics and Automation, pages 396{401,
1987.

[IC87] Paul M. Isaacs and Michael F. Cohen. Controlling dynamic simulation
with kinematic constraints. Computer Graphics, 21(4):215{224, 1987.

[Imr83] S. N. Imrhan. Modelling Isokinetic Strength of the Upper Extremity.
PhD thesis, Texas Tech Univ., 1983.

[IRT81] Verne T. Inman, Henry J. Ralston, and Frank Todd. Human Walking.
Williams and Wilkins, Baltimore, MD, 1981.

[Jac90] Ray Jackendo�. Semantic Structures. MIT Press, Cambridge, MA,
1990.

[JCMM73] Reid Joyce, Andrew Chenzo�, Joseph Mulligan, and William Mallory.
Fully proceduralized job performance aids. Technical Report AFHRL-

BIBLIOGRAPHY 259

Tr-73-43(I), Air Force Human Resources Laboratory, Wright-Patterson
AFB, 1973.

[JKBC91] Moon Jung, Jugal Kalita, Norman I. Badler, and Wallace Ching. Simu-
lating human tasks using simple natural language instructions. In Proc.
Winter Simulation Conf., Phoenix, AZ, 1991.

[JM85] R. J. Jagacinski and D. L. Monk. Fitts' Law in two dimensions with
hand and head movements. Journal of Motor Behavior, 17, 1985.

[Joh76] G. Johansson. Spatial-temporal di�erentiation and integration in visual
motion perception. Psychology Research, 38:379{383, 1976.

[Jun92] Moon Jung. Human-Like Agents with Posture Planning Ability. PhD
thesis, Computer and Information Science, Univ. of Pennsylvania,
Philadelphia, PA, 1992.

[Kae90] Leslie P. Kaelbling. An architecture for intelligent reactive systems.
In James Allen, James Hendler, and Austin Tate, editors, Readings in
Planning, pages 713{728. Morgon Kaufmann Publishers, Inc., 1990.

[Kal90] Jugal Kumar Kalita. Natural Language Control of Animation of Task
Performance in a Physical Domain. PhD thesis, Computer and Infor-
mation Science, Univ. of Pennsylvania, Philadelphia, PA, 1990.

[Kar87] Robin Karlin. SEAFACT: A semantic analysis system for task anima-
tion of cooking operations. Master's thesis, Computer and Information
Science, Univ. of Pennsylvania, Philadelphia, PA, Dec. 1987.

[Kar88] Robin Karlin. De�ning the semantics of verbal modi�ers in the domain
of cooking tasks. In Proc. of the 26st Annual Meeting of ACL, pages
61{67, 1988.

[KB82] James U. Korein and Norman I. Badler. Techniques for goal directed
motion. IEEE Computer Graphics and Applications, 2(9):71{81, Nov.
1982.

[KB90] Jugal Kalita and Norman I. Badler. Semantic analysis of a class of
action verbs based on physical primitives. In Proc. 12th Annual Con-
ference of the Cognitive Science Society, pages 412{419, Boston, MA,
July 1990.

[KB91] Jugal Kalita and Norman I. Badler. Interpreting prepositions physically.
In Proc. AAAI-91, pages 105{110, Anaheim, CA, 1991.

[Kee82] Steve W. Keele. Learning and control of coordinated motor patterns:
The programming perspective. In J.A. Scott Kelso, editor, Human
Motor Behavior. Lawrence Erlbaum Associates, 1982.

[KH81] B. Kleiner and J. A. Hartigan. Representating points in many dimen-
sions by trees and castles. Journal of American Statistical Association,
76(374):260{269, 1981.

[KH83] C.A. Klein and C.H. Huang. Review of pseudoinverse control for use
with kinematically redundant manipulators. IEEE Transactions on Sys-
tems, Man and Cybernetics, 13(2), 1983.

[Kha86] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. Journal of Robotics Research, 5(1):90{98, 1986.

[Kha87] O. Khatib. A uni�ed approach for motion and force control of robot
manipulators: The operational space formulation. IEEE Journal of
Robotics and Automation, RA-3(1):43{53, 1987.

[KKB88] Scott Kushnier, Jugal Kalita, and Norman I. Badler. Constraint-based
temporal planning. Technical report, Computer and Information Sci-
ence, Univ. of Pennsylvania, Philadelphia, PA, 1988.

260 BIBLIOGRAPHY

[KN87] K. Kazerounian and A. Nedungadi. An alternative method for mini-
mization of driving forces in redundant manipulators. In IEEE Intl.
Conf. on Robotics and Automation, pages 1701{1706, Raleigh, NC,
1987.

[Kor85] James U. Korein. A Geometric Investigation of Reach. MIT Press,
Cambridge, MA, 1985.

[KR79] M. E. Kahn and B. Roth. The near-minimum time control of open loop
articulated kinematic chains. Transactions of the ASME: Journal of
Dynamic Systems, Measurement, and Control, 93(3):164{172, 1979.

[KSC81] E. Kingsley, N. Scho�eld, and K. Case. SAMMIE { A computer aid
for man-machine modeling. Computer Graphics, 15(3):163{169, Aug.
1981.

[KTV+90] James P. Karlen, Jack M Thompson, Havard I. Vold, James D. Far-
rell, and Paul H. Eismann. A dual-arm dexterous manipulator system
with anthropomorphic kinematics. In IEEE Intl. Conf. on Robotics and
Automation, 1990.

[Kum80] A. Kumar. Characterization of Manipulator Geometry. PhD thesis,
Univ. of Houston, 1980.

[KW81] A. Kumar and K. Waldron. The workspace of a mechanical manipula-
tor. ASME Journal of Mechanical Design, 103:665{672, July 1981.

[KZ86] Kamal Kant and Steven W. Zucker. Toward e�cient trajectory plan-
ning: The path-velocity decomposition. Int. Journal of Robotics Re-
search, 5(3):72{89, Fall 1986.

[Lau76] L. L. Laubach. Comparative muscular strength of men and women: A
review of the literature. Aviation, Space, and Environmental Medicine,
47(5):534{542, 1976.

[LCF76] G. D. Langolf, D. B. Cha�n, and J. A. Foulke. An investigation of
Fitts' Law using a wide range of movement amplitudes. Journal of
Motor Behavior, 8, 1976.

[Lee92] Philip L. Y. Lee. Modeling Articulated Figure Motion with Physically-
and Physiologically-Based Constraints. PhD thesis, Mechanical Engi-
neering and Applied Mechanics, Univ. of Pennsylvania, Philadelphia,
PA, 1992.

[Lev77] Marc Levoy. A color animation system based on the multi-plane tech-
nique. Computer Graphics, 11(2):64{71, July 1977.

[Lev91] Libby Levison. Action composition for the animation of Natural Lan-
guage instructions. Technical Report MS-CIS-91-28, Computer and
Information Science, Univ. of Pennsylvania, Philadelphia, PA, 1991.

[Lif91] Kinetic E�ects, Inc., Seattle, WA. Life Forms User Manual, 1991.
[Loc91] K. Lochbaum. An algorithm for plan recognition in collaborative dis-

course. In Proc. 29th Annual Meeting of the Assoc. for Computational
Linguistics, pages 33{38, Berkeley, CA, June 1991.

[Lou83] R. Louis. Surgery of the Spine. Springer-Verlag, New York, NY, 1983.
[LP81] Tomas Lozano-P�erez. Automatic planning of manipulator transfer

movements. IEEE Transactions on Systems, Man and Cybernetics,
SMC-11(10):681{698, Oct 1981.

[LP83] Tomas Lozano-P�erez. Spatial planning: A con�guration space ap-
proach. IEEE Transactions on Computers, c-32(2):26{37, Feb 1983.

[LP87] Tomas Lozano-P�erez. A simple motion planning algorithm for general
robot manipulators. IEEE Journal of Robotics and Automation, RA-

BIBLIOGRAPHY 261

3(3):224{238, June 1987.
[LPW79] T. Lozano-P�erez and M. A. Wesley. An algorithm for planning collision-

free paths among polyhedral obstacles. Communications of the ACM,
22(10):560{570, Oct. 1979.

[LRM88] Timothy Lohman, Alex Roche, and Reynaldo Martorell. Anthropomet-
ric Standardization Reference Manual. Human Kinetic Books, Cham-
paign, IL, 1988.

[LWZB90] Philip Lee, Susanna Wei, Jianmin Zhao, and Norman I. Badler.
Strength guided motion. Computer Graphics, 24(4):253{262, 1990.

[LY83] T. Lee and D. Yang. On the evaluation of manipulator workspace. Jour-
nal of Mechanisms, Transmissions, and Automation in Design, 105:70{
77, March 1983.

[Mae90] Pattie Maes. Situated agents can have goals. In Pattie Maes, editor,
Designing Autonomous Agents, pages 49{70. MIT Press, 1990.

[Mau91] Ruth A. Maulucci. Personal communication, 1991.
[MB77] M. A. MacConaill and J. V. Basmajian. Muscles and Movements, a

Basic for Human Kinesiology. R. E. Krieger, Huntington, NY, 1977.
[MB91] G. Monheit and N. Badler. A kinematic model of the human spine and

torso. IEEE Computer Graphics and Applications, 11(2):29{38, 1991.
[McD89] J. W. McDaniel. Modeling strength data for CREW CHIEF. In Pro-

ceedings of the SOAR 89 (Space Operations, Automation, and Robotics),
Johnson Space Center, Houston, TX, July 1989.

[Mil88] Gavin S. P. Miller. The motion dynamics of snakes and worms. Com-
puter Graphics, 22(4):169{178, 1988.

[Mil91] Gavin Miller. Goal-directed animation of tubular articulated �gures
or how snakes play golf. In Norman I. Badler, Brian A. Barsky, and
David Zeltzer, editors, Making Them Move: Mechanics, Control, and
Animation of Articulated Figures, pages 209{233. Morgan-Kaufmann,
San Mateo, CA, 1991.

[Min86] Marvin Minsky. The Society of Mind. Simon and Schuster, 1986.
[MK85] A. A. Maciejewski and C. A. Klein. Obstacle avoidance for kinemat-

ically redundant manipulators in dynamically varying environments.
Int. Journal of Robotics Research, 4(3):109{117, 1985.

[MKK+88] J. McDaniel, M. Korna, P. Krauskopf, D. Haddox, S. Hardyal, M. Jones,
and J. Polzinetti. User's Guide for CREW CHIEF: A computer graph-
ics simulation of an aircraft maintenance technician. Technical report,
Armstrong Aerospace Medical Research Laboratory, Human Systems
Division, Air Force System Command, Wright-Patterson Air Force
Base, OH, May 1988.

[MPZ90] Michael McKenna, Steve Pieper, and David Zeltzer. Control of a virtual
actor: The roach. Computer Graphics, 24(2):165{174, 1990.

[MS86] A. Mital and N. Sanghavi. Comparison of maximum volitional torque
exertion capabilities of males and females using common hand tools.
Human Factors, 28(3):283{294, 1986.

[MTT85] Nadia Magnenat-Thalmann and Daniel Thalmann. Computer Anima-
tion: Theory and Practice. Springer-Verlag, New York, NY, 1985.

[MTT90] Nadia Magnenat-Thalmann and Daniel Thalmann. Synthetic Actors in
3-D Computer-Generated Films. Springer-Verlag, New York, NY, 1990.

[MTT91a] Nadia Magnenat-Thalmann and Daniel Thalmann. Complex models for
animating synthetic actors. IEEE Computer Graphics and Applications,

262 BIBLIOGRAPHY

11(5):32{44, Sept. 1991.
[MTT91b] Nadia Magnenat-Thalmann and Daniel Thalmann. Human body de-

formations using joint-dependent local operators and �nite-element the-
ory. In Norman I. Badler, Brian A. Barsky, and David Zeltzer, editors,
Making Them Move: Mechanics, Control, and Animation of Articulated
Figures, pages 243{262. Morgan-Kaufmann, San Mateo, CA, 1991.

[Muj87] C. Mujabbir. Workspaces of serial manipulators. Master's thesis, Me-
chanical Engineering and Applied Mechanics, Univ. of Pennsylvania,
1987.

[NAS78] NASA. The Anthropometry Source Book. NASA Reference Publication
1024, Johnson Space Center, Houston, TX, 1978. (Two volumes).

[NAS87] NASA. Man-System Integration Standards. NASA-STD-3000, March
1987.

[Nel85] Greg Nelson. Juno, a constraint-based graphics system. Computer
Graphics, 19(3):235{243, 1985.

[NHK+85] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, and
K. Omura. Object modeling by distribution function and a method
of image generation. In Proc. Electronics Communication Conf., vol-
ume J68-D(4), 1985. (in Japanese).

[NHK86] NHK. Caron's world. SIGGRAPH Video Review, 24, 1986.
[NO87] Gregory Nielson and Dan Olsen Jr. Direct manipulation techniques

for 3D objects using 2D locator devices. In Proceedings of 1986 ACM
Workshop on Interactive 3D Graphics, Chapel Hill, NC, Oct. 1987.

[OB80] Joseph O'Rourke and Norman I. Badler. Model-based image analysis of
human motion using constraint propagation. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2(6):522{536, Nov. 1980.

[OO81] T. J. O'Donnell and Arthur J. Olson. GRAMPS { A graphics language
interpreter for real-time, interactive, three-dimensional picture editing
and animation. Computer Graphics, 15(3):133{142, 1981.

[Ota89] Ernest Otani. Software tools for dynamic and kinematic modeling of
human motion. Technical Report MS-CIS-89-43, Computer and Infor-
mation Science, Univ. of Pennsylvania, Philadelphia, PA, 1989. (MSE
Thesis, Mechanical Engineering and Applied Mechanics, Univ. of Penn-
sylvania).

[Pau81] Richard Paul. Robot Manipulators: Mathematics, Programming, and
Control. MIT Press, Cambridge, MA, 1981.

[PB88] Cary Phillips and Norman I. Badler. Jack: A toolkit for manipulating
articulated �gures. In Proceedings of ACM SIGGRAPH Symposium on
User Interface Software, pages 221{229, Ban�, Canada, Oct. 1988.

[PB91] Cary B. Phillips and Norman I. Badler. Interactive behaviors for bipedal
articulated �gures. Computer Graphics, 25(4):359{362, 1991.

[PBS91] Catherine Pelachaud, Norman I. Badler, and Mark Steedman. Issues
in facial animation. In Computer Animation '91, Geneva, Switzerland,
1991.

[Pel91] Catherine Pelachaud. Communication and coarticulation in facial ani-
mation. PhD thesis, Computer and Information Science, Univ. of Penn-
sylvania, Philadelphia, PA, 1991. Tech. Report MS-CIS-91-82.

[Pen86] Alex Pentland. Perceptual organization and the representation of nat-
ural form. AI Journal, 28(2):1{38, 1986.

[PMA+91] A. Pandya, J. Maida, A. Aldridge, S. Hasson, and B. Woolford. Devel-

BIBLIOGRAPHY 263

opment of an empirically based dynamic biomechanical strength model.
In Space Operations Applications and Research Conf. Proc., pages 438{
444, 1991. Vol. 2.

[Pot91] Caren Potter. The human factor. Computer Graphics World, pages
61{68, March 1991.

[Pow70] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabi-
nowitz, editor, Numerical Methods for Nonlinear Algebraic Equations.
Gordon and Breach Science, 1970.

[PR90] Martha E. Pollack and Marc Ringuette. Introducing Tileworld: Ex-
perimentally evaluating an agent architecture. Proceedings of the 8th
National Conference on Arti�cial Intelligence, pages 183{189, 1990.

[Pra84] P. Prasad. An overview of major occupant simulation models. In Pro-
ceedings of Society of Automotive Engineers, 1984. Paper No. 840855.

[Pri81] Ellen Prince. Toward a taxonomy of given/new information. In P. Cole,
editor, Radical Pragmatics, pages 223{255. Academic Press, New York,
NY, 1981.

[PW89] A. Pentland and J. Williams. Good vibrations: Modal dynamics for
graphics and animation. Computer Graphics, 23(3):215{222, 1989.

[PZB90] Cary Phillips, Jianmin Zhao, and Norman I. Badler. Interactive real-
time articulated �gure manipulation using multiple kinematic con-
straints. Computer Graphics, 24(2):245{250, 1990.

[RA90] David F. Rogers and J. Alan Adams. Mathematical Elements for Com-
puter Graphics. McGraw-Hill, New York, NY, 1990. Second Ed.

[Ree83] William T. Reeves. Particle systems { A technique for modelling a class
of fuzzy objects. Computer Graphics, 17(3):359{376, July 1983.

[Rey82] Craig W. Reynolds. Computer animation with scripts and actors. Com-
puter Graphics, 16(3):289{296, July 1982.

[Rey87] Craig W. Reynolds. Flocks, herds, and schools: A distributed behav-
ioral model. Computer Graphics, 21(4):25{34, 1987.

[Rey88] Craig W. Reynolds. Not bumping into things. SIGGRAPH course 27
notes: Developements in Physically-Based Modeling, 1988. G1{G13.

[RG91] Hans Rijpkema and Michael Girard. Computer animation of hands and
grasping. Computer Graphics, 25(4):339{348, July 1991.

[RMTT90] Olivier Renault, Nadia Magnenat-Thalmann, and Daniel Thalmann. A
vision-based approach to behavioral animation. The Journal of Visual-
ization and Computer Animation, 1(1):18{21, 1990.

[Ros60] J. B. Rosen. The gradient projection method for nonlinear programming
{ I: Linear constraints. SIAM Journal of Appl. Math., 8:181{217, 1960.

[Ros91] David A. Rosenbaum. Human Motor Control. Academic Press, 1991.
[Rot75] B. Roth. Performance evaluation of manipulators from a kinematics

viewpoint. NBS Special Publication, pages 39{61, 1975.
[SB85] Scott Steketee and Norman I. Badler. Parametric keyframe interpola-

tion incorporating kinetic adjustment and phrasing control. Computer
Graphics, 19(3):255{262, 1985.

[Sch72] F. T. Schanne. Three Dimensional Hand Force Capability Model for a
Seated Person. PhD thesis, Univ. of Michigan, Ann Arbor, MI, 1972.

[Sch82a] Richard Schmidt. More on motor programs. In J.A. Scott Kelso, editor,
Human Motor Behavior. Lawrence Erlbaum Associates, 1982.

[Sch82b] Richard Schmidt. The schema concept. In J.A. Scott Kelso, editor,
Human Motor Behavior. Lawrence Erlbaum Associates, 1982.

264 BIBLIOGRAPHY

[Sch83] Christopher Schmandt. Spatial input/display correspondence in a
stereoscopic computer graphics workstation. Computer Graphics,
17(3):253{261, July 1983.

[Sch90] J. H. Schmidhuber. Making the world di�erentiable: On using su-
pervised learning fully recurrent networks for dynamic reinforcement
learning and planning in non-stationary environments. Technical Re-
port FKI-126-90, Technische Universit�at M�unchen, Febuary 1990.

[SEL84] SELF. The �rst 3-D computer exercises, Sept. 1984.
[SH86] G. Sahar and J. M. Hollerbach. Planning of minimum-time trajactories

for robot arms. Int. Journal of Robotics Research, 5(3):90{100, 1986.
[Sha70] D. F. Shanno. Conditioning of quasi-Newton methods for function min-

imization. Math. Computation, 24:647{664, 1970.
[Sha80] U. Shani. Filling regions in binary raster images: A graph-theoretic

approach. Computer Graphics, 14(3):321{327, 1980.
[Sha88] Lokendra Shastri. A connectionist approach to knowledge representa-

tion and limited inference. Cognitive Science, 12(3):331{392, 1988.
[Sho92] Ken Shoemake. ARCBALL: A user interface for specifying three-

dimensional orientation using a mouse. In Proceedings of SIGCHI '92,
1992.

[Sim81] Herbert A. Simon. The Sciences of the Arti�cial. MIT Press, 2 edition,
1981.

[SL87] S. Singh and M. C. Leu. Optimal trajectory generation for robotic
manipulators using dynamic programming. Transactions of the ASME:
Journal of Dynamic Systems, Measurement, and Control, 109:88{96,
1987.

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of
solid geometric models. Computer Graphics, 20(4):151{160, August
1986.

[SS83a] J. T. Schwartz and M. Sharir. On the piano movers' problem { I: The
case of a two dimensional rigid polygonal body moving amidst polygonal
barriers. Communications on Pure and Applied Mathematics, 36:345{
398, 1983.

[SS83b] J. T. Schwartz and M. Sharir. On the piano movers' problem { II: Gen-
eral techniques for computing topological properties of real algebraic
manifolds. Advances in Applied Mathematics, 4:298{351, 1983.

[SSSN85] D. Schmitt, A. H. Soni, V. Srinivasan, and G. Naganthan. Optimal mo-
tion programming of robot manipulators. Transactions of the ASME:
Journal of Mechanisms, Transmissions, and Automation in Design,
107:239{244, 1985.

[Ste83] G. Stern. BBOP { A program for 3-Dimensional animation. In Nico-
graph '83, Tokyo, Japan, 1983.

[Ste90] Mark Steedman. Gapping as constituent coordination. Linguistics and
Philosophy, 13:207{263, 1990.

[Stu84] David Sturman. Interactive key frame animation of 3-D articulated
models. In Proc. Graphics Interface '84, pages 35{40, Ottawa, Canada,
1984.

[Sug81] D. Sugimoto. Determination of extreme distances of a robot hand.
ASME Journal of Mechanical Design, 103:631{636, July 1981.

[Sun91] Ron Sun. Neural network models for rule-based reasoning. In IEEE In-
ternational Joint Conference on Neural Networks, pages 503{508, Sin-

BIBLIOGRAPHY 265

gapore, 1991.
[TA75] G. J. Torotra and N. P. Anagnostakos. Principles of Anatomy and

Physiology. Can�eld Press, New York, NY, 1975.
[TJ81] Frank Thomas and Ollie Johnson. Disney Animation: The Illusion of

Life. Abbeville Press, New York, NY, 1981.
[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elas-

tically deformable models. Computer Graphics, 21:205{214, 1987.
[TS81] Y. Tsai and A. Soni. Accessible region and synthesis of robot arms.

ASME Journal of Mechanical Design, 103:803{811, Oct. 1981.
[TS83] Y. Tsai and A. Soni. An algorithm for the workspace of a general n-R

robot. ASME Journal of Mechanical Design, 105:52{57, July 1983.
[Tsa86] M. Tsai. Workspace Geometric Characterization and Manipulability of

Industrial Robots. PhD thesis, Ohio State Univ., 1986.
[TST87] Yosuke Takashima, Hideo Shimazu, and Masahiro Tomono. Story

driven animation. In CHI + GI '87 Proceedings, pages 149{153. ACM
SIGCHI, 1987.

[Tur63] A. M. Turing. Computing machinery and intelligence. In E. A. Feigen-
baum and J. Feldman, editors, Computers and Thought, pages 11{35.
McGraw-Hill, New York, NY, 1963.

[VB90] S. A. Vere and T. W. Bickmore. A basic agent. Computational Intelli-
gence, 6:41{60, 1990.

[Vij85] R. Vijaykumar. Robot manipulators { Workspaces and geometrical
dexterity. Master's thesis, Mechanical Engineering, Ohio State Univ.,
Columbus, OH, 1985.

[Wav89] Wavefront Technologies. MODEL User's Manual Version 6.0, 1989.
[WB85] Jane Wilhelms and Brian A. Barsky. Using dynamics for the animation

of articulated bodies such as humans and robots. In Proc. Graphics
Interface '85, pages 97{104, Montreal, Canada, 1985.

[WB92] Susanna Wei and Norman I. Badler. Graphical displays of human
strength data. Visualization and Computer Animation, 3(1):13{22,
1992.

[Wei86] Jerry Weil. The synthesis of cloth objects. Computer Graphics,
20(4):49{54, 1986.

[Wei90] Susanna Wei. Human Strength Database and Multidimensional Data
Display. PhD thesis, Computer and Information Science, Univ. of Penn-
sylvania, Philadelphia, PA, 1990.

[Wel71] K. Wells. Kinesiology, the Scienti�c Basis of Human Action. Saunders,
Philadelphia, PA, 1971.

[Wes73] Barry D. Wessler. Computer-assisted visual communication. PhD thesis,
Univ. of Utah, Salt Lake City, UT, 1973.

[WFB87] Andrew Witkin, Kurt Fleisher, and Alan Barr. Energy constraints on
parameterized models. Computer Graphics, 21(3):225{232, 1987.

[Whi72] D. E. Whitney. The mathematics of coordinated control of prostheses
and manipulators. J. Dynamic Systems, Measurement, and Control,
Transaction ASME, 94:303{309, 1972. Series G.

[Wil75] F. Wilson, editor. The Musculoskeletal System. Lippincott, Philadel-
phia, PA, 1975.

[Wil82] K. D. Willmert. Visualizing human body motion simulations. IEEE
Computer Graphics and Applications, 2(9):35{38, Nov. 1982.

[Wil86] Jane Wilhelms. Virya { A motion editor for kinematic and dynamic

266 BIBLIOGRAPHY

animation. In Proc. Graphics Interface '86, pages 141{146, Vancouver,
Canada, 1986.

[Wil87] Jane Wilhelms. Using dynamic analysis for realistic animation of artic-
ulated bodies. IEEE Computer Graphics and Applications, 7(6):12{27,
1987.

[Wil91] Jane Wilhelms. Dynamic experiences. In Norman I. Badler, Brian A.
Barsky, and David Zeltzer, editors, Making Them Move: Mechanics,
Control, and Animation of Articulated Figures, pages 265{279. Morgan-
Kaufmann, San Mateo, CA, 1991.

[Win90] David A. Winter. Biomechanics and Motor Control of Human Move-
ment. Wiley Interscience, New York, NY, 1990. Second Edition.

[WK88] A. Witkin and M. Kass. Spacetime constraints. Computer Graphics,
22(4):159{168, 1988.

[WMW86] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft ob-
jects. The Visual Computer, 2:227{234, 1986.

[WS90] Jane Wilhelms and Robert Skinner. A `notion' for interactive behav-
ioral animation control. IEEE Computer Graphics and Applications,
10(3):14{22, May 1990.

[WSB78] Lynne Weber, Stephen W. Smoliar, and Norman I. Badler. An archi-
tecture for the simulation of human movement. In Proc. ACM Annual
Conf., pages 737{745, Washington, DC, 1978.

[WW90] Andrew Witkin and William Welch. Fast animation and control of
nonrigid structures. Computer Graphics, 24(4):243{252, 1990.

[Yeo76] B. P. Yeo. Investigations concerning the principle of minimal total
muscular force. Journal of Biomechanics, 9:413{416, 1976.

[YL83] D. Yang and T. Lee. On the workspace of mechanical manipulators.
Journal of Mechanisms, Transmissions, and Automation in Design,
105:62{69, March 1983.

[YN87] V. Yen and M. L. Nagurka. Suboptimal trajectory planning of a �ve-link
human locomotion model. In Biomechanics Proceedings, 1987.

[ZB89] Jianmin Zhao and Norman I. Badler. Real time inverse kinematics with
joint limits and spatial constraints. Technical Report MS-CIS-89-09,
Computer and Information Science, Univ. of Pennsylvania, Philadel-
phia, PA, 1989.

[Zel82] David Zeltzer. Motor control techniques for �gure animation. IEEE
Computer Graphics and Applications, 2(9):53{59, Nov. 1982.

[Zel84] David Zeltzer. Representation and Control of Three Dimensional Com-
puter Animated Figures. PhD thesis, The Ohio State Univ., 1984.

[Zel91] David Zeltzer. Task-level graphical simulation: Abstraction, represen-
tation, and control. In Norman I. Badler, Brian A. Barsky, and David
Zeltzer, editors, Making Them Move: Mechanics, Control, and Anima-
tion of Articulated Figures, pages 3{33. Morgan-Kaufmann, San Mateo,
CA, 1991.

[ZV92] J. Zwarts and H. Verkuyl. An algebra of conceptual structure: An
investigation into Jackendo�'s conceptual semantics. Linguistics and
Philosophy, 1992. To appear.

Index

A* search 181, 183
animal sciences 137, 145
animation window 126, 129
animation 19, 30
anthropometry 14, 49, 209
apertures 190
arti�cial intelligence 1, 233
attachment 132
backtracking 184, 186, 191
balance line 110, 113, 117
balance 13, 78, 79, 103, 108, 110, 115,

117, 123, 129, 135, 170, 192,
197, 221, 231

banking 154, 157
behaviors 13, 16, 101, 102, 116, 127,

129, 135, 137, 139, 148, 154,
208, 214, 240, 245

binocular vision 17
biostereometric bodies 15, 27, 47, 59,

65
body parts

ankle 151
arms 12, 40, 108, 114, 123, 132,

135, 182
calf 152
clavicle 12, 39
elbows 80, 103, 109
eyes 17, 103, 106, 123
face 15, 247
feet 12, 79, 103, 105, 111�., 115,

117, 118, 129�., 135, 151,
196

�ngers 34, 132
forearm 34
hands 12, 13, 107, 114, 126, 132,

133, 135, 196
head 106, 123, 196, 213
heels 103, 130, 131, 151
hips 123, 130, 152, 154
knees 103, 109, 152

legs 123, 135, 192
neck 106, 133
palms 114, 133
pelvis 103, 105, 106, 109, 111,

113, 117, 130, 134, 196
shoulder 12, 39, 123, 184
skeleton 12, 28
skin 15, 24
spine 35, 106, 120, 134
thigh 152
toes 103, 131
torso 12, 28, 35, 79, 103, 105,

109. 112, 122, 130, 132
waist 106, 132, 133, 152, 154
wrists 123

boundary detection 98
center of mass 13, 78, 79, 103, 105,

109, 114, 118, 123, 129, 131,
135, 154, 155

checklists 209
climbing 191
clothing 15, 45, 245
cognition 139
collision avoidance 86, 93, 141, 149,

180, 181, 192, 195, 245
collision detection 15, 17, 46, 132, 143,

146, 195, 221
comfort 13, 161, 163, 164, 173, 189

added joint 169
available torque 167, 189, 190
jerk 169
pull back 168, 190
recoil 169
reducing moment 168, 190

communication 144, 146, 233, 247
complexity 191
compliant motion 132
computer animation 75, 83, 126, 137,

180, 212, 222
computer hardware 243

267

268 INDEX

computer-aided design 15, 94, 246
conceptual structures 233
Concurrent Engineering 4
con�guration space 180
conict resolution 146
connectionism 138, 145
constraints 9, 14, 16, 75, 127, 224
container 218
contour tracing 98
control points 195
control theory 161
control vectors 195
coordinated motion 174
crash simulation 7, 161
Cspace groups 181
curved path 151, 154
damping 143
dance notation 8
direct manipulation 67, 80, 83, 147,

103
discomfort 164, 167
DOF 12
double stance 155, 158
draping 48
dynamics 10, 53, 85, 143, 146, 152,

166
easing 128
e�ectors 137
E�ort-Shape 9
elasticity 144
energy constraints 76, 77, 85
energy 173, 190
Eshkol-Wachmann 9
evolution 145
expert systems 137
external forces 161
fatigue 173, 190
feedback 138, 141
�eld of view 149
Fitts' Law 212, 231
exible �gures 35
force trajectory 163
free space 183
gait 101
gaze 135
geometric models 16

boundary representation 23
constructive solid geometry 26
curved surfaces 24
cylinders 26

ellipsoids 26
oct-trees 25, 181
polygons 24
potential functions 27
soft models 27
spheres 26
superquadrics 26
surface points 23
volumetric representation 23
voxels 25, 97

globographic limits 12, 41
grammar 233
grasping 108, 126, 132
grip 13
handles 246
human factors analysis 3, 4, 16, 46,

49, 60, 207, 228
human motion analysis 7
human performance 10, 163, 208, 212,

214, 245
human population data 14, 49, 58
icons 71, 82, 128
individual database 54, 56
instructions 207, 222, 232, 244, 246,

247
intention 235, 246
interactive modes 70
interactive systems 10, 18, 30, 54, 70,

103, 145
inverse kinematics 9, 17, 32, 75, 80,

83, 101, 108, 166, 170
jacks 69
Jacobian matrix 85, 166
joint angles 34, 83, 187, 189
joint centers 28
joint gaps 46
joint group 34
joint limits 12, 17, 37, 46, 52, 74, 84,

87, 94, 99, 245
joint sti�ness 93
joints 12, 28, 30, 31, 51, 76, 78
key pose 211
kinesthetic feedback 67
knowledge base 210, 224, 235
Labanotation 9, 102, 103, 105, 109,

112�., 117
learning 138, 245
lexicon 219
lifting 161, 170, 189
load 163

INDEX 269

local minima 48, 78, 80, 144
locomotion 146, 150
mass 14, 53, 57
mental simulation 195, 245
message passing 147
minimum disturbance 199
missing information 235
mobile robot 182, 186
moment of inertia 53
motion dependencies 199
motion planning 180
motion postulator 199
motion understanding 8
motion 126, 128, 164, 182, 189, 197
mouse line 72
multi-dimensional displays 61
multiple agents 143, 174, 233, 247
multiple constraints 83, 91, 126, 197,

215
multiple �gures 13
names 210
natural language 8, 10, 207, 209, 214,

222, 246
networking 18
neural nets 138, 148
neuro-ethology 138
nonlinear programming 75, 87, 96
non-monotonic reasoning 145
object references 210
open 217
optimization 75, 78, 161, 165, 184,

189, 192
paint system 211
parallel systems 144
parser 219, 233, 235
path planning 164, 166, 180, 190, 197
path trace 62, 94
perceived exertion 164
perception 137, 139, 149, 238
physically-based models 30, 48, 141,

142, 161
plan expansion 235, 237
plan graph 235
plan inference 235
planning 137�., 144, 163, 214, 221,

233, 237, 245
postural control 75
posture planning 192, 245
potential �eld 180
prepositions 215

across 218
in 218
on 219

pseudo-inverse 84
psychology 145
qualitative reasoning 192
quaternions 69
radiosity 18
randomness 144
rate control 164, 166
ray tracing 18
reachable space 18, 94
reactive planning 137, 142, 146
reasoning 192
reference grounding 235
reference resolution 235, 236
reexive behavior 138
region �lling 97
region graph 184
retinal projection 17
robotics 29, 75, 84, 94, 137, 163, 180,

190
roll 217
root 31, 78, 79, 87, 92, 108, 112, 114,

118, 158
rotation transformation 68, 74
rotation turntable 68
rotoscoping 2, 150
scaling rules 57, 59
script 18, 30, 209, 226, 228
segments 28, 30, 46, 51, 58
semantic representation 214
sensors 132, 137
shelves 190
shoulder complex motion 41
simulation 10, 19, 60, 139, 141, 143,

147, 152, 154, 197, 197, 207,
221, 235

singularities 42
site 13, 17, 31�, 44, 46, 107, 126, 132,

135, 154, 209, 239
base site 196

situated action 137
skill 246
skitters 69
speech 247
splines 147, 155
spreadsheet 14, 54
stance leg 151
stature 14, 57

270 INDEX

step length 152
stepping 103, 115, 115, 118, 131, 135,

150, 182, 192
strength bar display 63
strength box display 62
strength 13, 17, 54, 60, 61, 161, 164,

180, 189, 245
subsumption 137
support polygon 79, 109, 110, 115,

117
support 131, 221
swing leg 151
symbolic reasoning 137, 138
task actions 224, 238
task animation 10
tasks 207, 222
temporal planning 10
texture map 211
time line 127
time 126, 129, 147, 182, 212, 230
torques 17, 60, 62, 63, 65, 66, 153,

161, 164
tracks 126
translation transformation 68, 72
triangulation 98
Turing Test 1
turning 150, 154
turntable 74
verbs 214
view cones 17
view 17
virtual humans 135, 244
virtual reality 246
virtual sphere 69
virtual worlds 18
visibility graph 184
vision 141
volume visualization 96
weight shift 79, 103, 110, 112, 113,

117, 131
work 173, 190
workspace 94, 150
zero gravity 114

Norman I. Badler is the Cecilia Fitler Moore Professor and Chair of Com-
puter and Information Science at the University of Pennsylvania and has
been on that faculty since 1974. Active in computer graphics since 1968,
his research focuses on human �gure modeling, manipulation, and animation.
Badler received the BA degree in Creative Studies Mathematics from the Uni-
versity of California at Santa Barbara in 1970, the MSc in Mathematics in
1971, and the Ph.D. in Computer Science in 1975, both from the University
of Toronto. He is Co-Editor of the Journal Graphical Models and Image Pro-
cessing. He also directs the Computer Graphics Research Laboratory with
two full time sta� members and about 40 students.

Cary B. Phillips received his PhD in Computer and Information Science
from the University of Pennsylvania in 1991, where he was a member of the
Technical Sta� in the Computer Graphics Research Lab from 1988-91. He is
the principal designer and implementor of Jack. He received his BES andMSE
degrees in Electrical Engineering and Computer Science from The Johns Hop-
kins University in 1985. Phillips is currently on the R&D sta� at Paci�c Data
Images, a computer animation production company in Sunnyvale, California.

Bonnie Lynn Webber is a Professor of Computer and Information Science
at the University of Pennsylvania. She is known for her work in Computa-
tional Linguistics { in particular, discourse processing and human-computer
interaction. She did her undergraduate work at MIT and her graduate work
at Harvard, receiving a PhD in 1978. While at Harvard, she was also a
Senior Scientist at Bolt Beranek and Newman Inc, Cambridge MA, where
she contributed to the �rst DARPA Speech Understanding Initiative. She
has co-editted several books, including Readings in Arti�cial Intelligence and
Readings in Natural Language Processing.

PLATES

1. The Jack �gure inside a Deere and Company o�-road vehicle. Vehicle
courtesy Jerry Duncan. Image by Cary Phillips and John Granieri.

2. Apache helicopter cockpit with simulated operator. The helicopter cock-
pit and helmet models were supplied by Barry Smith of the A3I project
at NASA Ames Research Center. Image by Pei-Hwa Ho, Eunyoung
Koh, Jiahe Lu, Welton Becket, Catherine Pelachaud, Soetjianto, and
Cary Phillips.

3. Graduation Day. Clothes modeling by Lauren Bello, Welton Becket,
and Eunyoung Koh.

4. Translucent workspace for left hand reach. Image by Tarek Alameldin.
Apache helicopter model courtesy Barry Smith at NASA Ames Research
Center.

5. What you see is what you can reach with the left hand. Image by Tarek
Alameldin. Apache helicopter model courtesy Barry Smith at NASA
Ames Research Center.

6. \Go into the kitchen and get me the co�ee urn." Scene from the \ani-
mation from instructions" (AnimNL) project. Image by Leanne Hwang,
David Haynes, Brian Stokes, Moon Jung, and Aaron Fuegi.

	University of Pennsylvania
	ScholarlyCommons
	6-1-1993

	Simulating Humans: Computer Graphics, Animation, and Control
	Bonnie L. Webber
	Cary B. Phillips
	Norman I. Badler
	Recommended Citation

	Simulating Humans: Computer Graphics, Animation, and Control
	Abstract
	Comments

	book1.pdf
	book2.pdf
	book3.pdf
	book4.pdf

