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Charge and Spin Ordering in the Mixed-Valence Compound LuFe2O4

Abstract
Landau theory and symmetry considerations lead us to propose an explanation for several seemingly
paradoxical behaviors of charge ordering (CO) and spin ordering (SO) in the mixed valence compound
LuFe2O4. Both SO and CO are highly frustrated. We analyze a lattice gas model of CO within mean-field
theory and determine the magnitude of several of the phenomenological interactions. We show that the
assumption of a continuous phase transitions at which CO or SO develops implies that both CO and SO are
incommensurate. To explain how ferroelectric fluctuations in the charge-disordered phase can be consistent
with an antiferroelectric-ordered phase, we invoke an electron-phonon interaction in which a low-energy (20
meV) zone-center transverse phonon plays a key role. The energies of all the zone center phonons are
calculated from first principles. We give a Landau analysis which explains SO and we discuss a model of
interactions which stabilizes the SO state, if it is assumed commensurate. However, we suggest a high-
resolution experimental determination to see whether this phase is really commensurate, as believed up to
now. The applicability of representation analysis is discussed. A tentative explanation for the sensitivity of the
CO state to an applied magnetic field in field-cooled experiments is given.
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Landau theory and symmetry considerations lead us to propose an explanation for several seemingly para-
doxical behaviors of charge ordering �CO� and spin ordering �SO� in the mixed valence compound LuFe2O4.
Both SO and CO are highly frustrated. We analyze a lattice gas model of CO within mean-field theory and
determine the magnitude of several of the phenomenological interactions. We show that the assumption of a
continuous phase transitions at which CO or SO develops implies that both CO and SO are incommensurate.
To explain how ferroelectric fluctuations in the charge-disordered phase can be consistent with an
antiferroelectric-ordered phase, we invoke an electron-phonon interaction in which a low-energy �20 meV�
zone-center transverse phonon plays a key role. The energies of all the zone center phonons are calculated from
first principles. We give a Landau analysis which explains SO and we discuss a model of interactions which
stabilizes the SO state, if it is assumed commensurate. However, we suggest a high-resolution experimental
determination to see whether this phase is really commensurate, as believed up to now. The applicability of
representation analysis is discussed. A tentative explanation for the sensitivity of the CO state to an applied
magnetic field in field-cooled experiments is given.

DOI: 10.1103/PhysRevB.81.134417 PACS number�s�: 75.25.�j, 75.10.Jm, 75.40.Gb

I. INTRODUCTION

The phenomenon of charge ordering �CO� has been stud-
ied ever since the observation of the Verwey transition1 in
Fe3O4 �in which the average valence of the Fe ions is 8/3�.
An oft-cited paper by Anderson2 proposed a simple and ap-
pealing model to explain the ferroelectric charge ordering.
However, the most recent high-precision neutron-scattering
results3 show that this model does not correctly explain the
CO in Fe3O4 and the explanation of the actual nature of its
CO remains an open question.4 Similarly RFe2O4, where R is
a trivalent rare earth and in which the average valence of the
Fe+2 and Fe3+ ions is 5/2 presents an even more challenging
problem to our understanding of CO. In this paper we will
consider LuFe2O4 �LFO� whose CO and magnetic structure
has been widely studied in recent years.5–13

As an introduction we review the most salient experimen-
tal results relevant to LFO. In Fig. 1 we show the trigonal

lattice structure R3̄m �Refs. 14 and 15� of LFO. The genera-
tors of the point group are �a� inversion about the center of
the unit cell, �b� the x-y mirror plane, and �c� the threefold
axis. Note that the Fe ions form triangular lattice layers
�TLL’s� arranged in bilayers. The bilayers are separated by a
TLL of Lu ions. The stacking of the Fe TLL’s is in the same
order as for an fcc crystal. The rhombohedral unit cell spans
three bilayers and there are two Fe ions per rhombohedral
primitive unit cell, as shown in Fig. 1. At temperatures above
500 K, the valence electrons can thermally hop so that effec-
tively all Fe sites appear to have charge 2.5e.16 Consistent
with this electronic mobility, the dielectric constant at zero
frequency �shown in Fig. 2� is very large for T�200 K.9

As the temperature is reduced from 500 K, CO correla-
tions develop at wave vectors which nearly coincide with
“root 3” �R3� ordering �see Figs. 5 and 6, below� within
each TLL and eventually at the charge-ordering temperature

TCO�320 K three dimensional long range CO develops via
a continuous transition.13 Both the fluctuations and the long-
range order occur at incommensurate values of the wave
vector.6,12 In the paraelectric phase �T�TCO� the dominant
fluctuations are consistent with no enlargement of the unit
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FIG. 1. �Color online� Fe ions in LFO. The brackets indicate a
bilayer consisting of two Fe TLL’s. The presence of a TLL of Lu
ions between adjacent Fe bilayers is indicated. The oxygen ions �not
shown� are almost uniformly distributed over the structure. The
hexagonal �conventional� unit cell contains three bilayers config-
ured so that the TLL’s are stacked in the order ABCABC �A=red,
B=black, and C=blue� with two sites in the rhombohedral unit cell
labeled “1” and “2” which are related by a center of inversion
symmetry. The screened Coulomb interactions Un used below in
our calculations are indicated. d=2.70 Å and d�=5.71 Å.
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cell in the c direction.12 We call such fluctuations “ferroin-
commensurate” �FI� fluctuations to emphasize that their
wave vector has incommensurate in-plane components. �The
incommensurate in-plane components are very close to the
values of the X point of a two-dimensional triangular lattice
gas with repulsive interactions, as we discuss below.� Sur-
prisingly, the CO that occurs for T�TCO involves a doubling
of the unit cell along c.12,17 We call this ordering “antifer-
roincommensurate” �AFI�. These structures are shown in
Fig. 3 where, for simplicity, the small incommensurability of
the wave vectors is neglected. A main objective of the
present paper is to explain why the CO phase is AFI and
does not reflect the dominant FI fluctuations of the paraelec-
tric �P� phase.

We will analyze this unusual CO within the lattice gas
model used by Yamada et al.6 which we refer to as Y. The
most striking result found by Y was that even with in-plane
coupling U1 and interplane couplings U2 and U3, long-range
order is not possible because the maximum of the wave-

vector-dependent susceptibility occurs over an entire “degen-
eration line” in wave-vector space. This result had been
known for similar spin and lattice gas models on a rhombo-
hedral lattice from the work of Rastelli and Tassi18,19 and
later of Reimers and Dahn.20 As Y found, it was necessary to
include an interaction �U4 in Fig. 1� between next-nearest-
neighboring TLL’s in order to remove this degeneracy. We
will analyze this situation in detail and show that there are
two crucial parameters which govern this phenomenon. The
first parameter is the interaction U2 in Fig. 1 which scales the
radius of the cylinder on which the degeneration line is
wrapped. The second parameter is the interaction U4 in Fig.
1 which removes the continuous degeneracy and leads to an
energy variation in amplitude �E as one traverses the degen-
eration line. To elucidate our mean-field results we will
briefly review the results for a single TLL with repulsive
interactions. Repulsive interactions are clearly relevant for
the charge-charge interactions. For magnetic interactions the
presence of many exchange paths through intervening oxy-
gen ions suggests that the magnetic interactions should also
be repulsive �i.e., antiferromagnetic�. The most general result
of our analysis is that the wave vector of the stacked TLL’s
of LFO is unstable at X �the wave vector which characterizes
the R3 structure� if a continuous transition is assumed, in
which case the ordered phase must perforce be incommen-
surate.

This same logic applies to the magnetic phase transition
into the spin-ordering �SO� phase which appears at T
=240 K. We will discuss the ramifications of the fact that
the magnetic transition appears to be a continuous one to a
commensurately ordered spin state. We will give a Landau
analysis of the symmetry of the SO phase and will discuss
microscopic interactions which can explain this ordering. Fi-
nally, we will discuss briefly a possible explanation of recent
field-cooled experiments13 which show that such a protocol
has seems to significantly destabilize the AFI CO state.

Below 170 K the system undergoes another transition in
which the magnetic order parameter sharply decreases.11 The
details of this state are not settled at present13 and we will not
consider it further. Thus the magnetoelectric phase diagram
we are considering is that shown in Fig. 4. A brief summary
of this work appeared some time ago.21

II. MEAN-FIELD TREATMENT OF CO

A. Calculation

We start with a Landau analysis of CO using the lattice
gas model of Y in which one introduces a variable �n�R�,
where n �n=1,2� labels the nth site of the rhombohedral unit
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FIG. 2. The dielectric constant at zero frequency from Subrama-
nian et al. �Ref. 9�.
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FIG. 3. �Color online� From Ref. 12. Fully CO structures when
the incommensurability of the wave vector is neglected. The dipole
moments of each bilayer �in the absence of incommensurability� as
calculated in Ref. 12 are shown. Left: The “antiferroelectric” R3
structure. Right the “ferroelectric” R3 structure.

??Dielectric

Magnetic

320 KT = 170 K

T = 170 K 240 K

Para

Para (F)Antiferro−IC

Ferri??

FIG. 4. The magnetoelectric phase diagram of LFO based on the
results discussed in the text.
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cell at R. which assumes the value +1 �−1� if the site is
occupied by an Fe3+ �Fe+2� ion. Then xn�R����n�R��, where
� � is a thermal average. As shown in Fig. 1, we include an
interaction U1 between nearest neighbors within the same
TLL, an interaction U2 between nearest neighbors in adja-
cent TLL’s within the same bilayer, an interaction U3 be-
tween nearest neighbors in adjacent bilayers, and an interac-
tion U4 between nearest neighbors in second-neighboring
TLL’s. As argued by Y, in view of the large dielectric con-
stant �See Fig. 2� we prefer to use a model in which the
interactions fall off rapidly with separation rather than one
based on a long-ranged Coulomb interaction.22 The free en-
ergy is written in terms of the Fourier-transformed variables

xn�q� = �
R

xn�R�exp�iq · R� . �1�

Then

F =
1

2�
q

�
n,m=1

2

Fnm�q�xn�q��xm�q� + O�x4� , �2�

where Fnm�q�=Fmn�q��. The free energy must be invariant
under spatial inversion I since I is a symmetry of this lat-
tice. Under spatial inversion I, site 1 goes into site 2 so that
IS1�q�=S2�q��, from which we conclude that F11=F22. A
continuous CO transition is signaled by the appearance of a
zero eigenvalue of the quadratic form. This instability will
first occur at a wave vector whose value we wish to deter-
mine.

Before analyzing the model in detail we review some re-
sults for the simpler problem of a lattice gas with repulsive
interactions on a single TLL. In left panel of Fig. 5 we show
the first Brillouin zone for the TLL with the X points which
are the wave vectors of the ordered phase of this system.
Note that the X point �which gives rise to the CO or SO
structure, shown in the right panel of Fig. 5�, is an isolated
point having higher symmetry than that of all surrounding
points. To see this, note that uniquely this point is invariant
under a threefold rotation about the center of zone because
under the threefold rotation such a point is taken into another

X point which is equal �modulo a reciprocal lattice vector� to
the original point. As a consequence of the special symmetry
of the X point, its wave vector, determined by the instability
in the quadratic term of the free energy, is stable with respect
to the addition of small further neighbor interactions.23 Such
structures have been observed many times over the last half
century.24 In contrast, consider the analogous X points in the
rhombohedral reciprocal lattice shown in Fig. 6. �We label
these points as X regardless of the value of qz and refer to
them as an “X line.”� Here, an X point is not invariant under
a threefold rotation because the points before and after such
a rotation are not equal modulo a reciprocal lattice vector.
�The point is that the rhombohedral reciprocal lattice vector
does not connect points before and after a threefold rotation
because the reciprocal lattice vector needed to relate the
components in the plane does not have qz=0.� So if a tran-
sition at this wave vector is continuous, the wave vector must
perforce be incommensurate. Thus, without any calculation,
we have shown that Landau theory explains why the CO
wave vector is incommensurate. �How this conclusion relates
to representation theory is discussed in Appendix A.� Ac-
cordingly, the CO phase should not display a spontaneous
polarization, P. The nonzero value of P may be an artifact of
the small electric field applied during the experiment �as ar-
gued in Ref. 12�. Also, it is possible that the pyroelectric
current �from which the value of P is deduced� might be
confused with currents which develop in the conductive
sample.25 At a recent conference it was reported that P=0 at
low temperature. We will discuss below that a similar analy-
sis of the magnetic phase transition at T=240 K indicates
that if that transition is continuous the ordered phase ought to
be incommensurate.

We now return to the explicit calculation of the incom-
mensurate CO wave vector. As mentioned in the introduc-
tion, from previous work6,18–20 it is known that the minimal
model that gives stable three-dimensional long-range order
requires the interactions shown in Fig. 1. Other interactions
�such as a second-neighbor in-plane interaction or a second-
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X = (1/3, 1/3) X = XR

A
B

FIG. 5. �Color online� Left: the reciprocal lattice of the TLL.
The X points all equivalent to one another under a threefold rotation
R, as discussed in the text. Right: the R3 structure associated with
the wave vector of the X point. The amplitudes Z of the three sites
within the R3 unit cell are given by ZA=Z cos���, ZB=Z cos��
+2� /3�, and ZC=Z cos��+4� /3�. The choice �=0 yields
�ZA ,ZB ,ZC�� �2,−1,−1� and the choice �=� /6 yields
�ZA ,ZB ,ZC�� �1,0 ,−1�.

πz
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X’

X = (1/3, 1/3) R X = X’

G X’ = X + (2 /c) kπ

z πq = 2 /c zq = − 2 /cq = 0

FIG. 6. �Color online� The reciprocal lattice of the rhombohe-
dral lattice.
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neighbor interaction between adjacent TLL’s� only lead to
perturbative corrections. Therefore we simplify the analysis
by only considering the minimal model. To determine the
wave vector of CO within this model, we analyze the appear-
ance of a zero eigenvalue of the quadratic form of Eq. �2�. In
mean-field theory one writes

Fnm�q� = c�kT	nm + �
R

U�0,m;R,n�exp�iq · R� , �3�

where c� is a constant of order unity and U�0,m ;R ,n� is the
interaction between sites m in the rhombohedral unit cell at
the origin and n in the rhombohedral unit cell at R. We set
c�=1, and kB=1, and henceforth, unless stated otherwise, all
energies will be in temperature units. In Cartesian coordi-
nates

F11 = T + U1�2 cos�aqx� + 4 cos�aqx/2�cos�	3aqy/2�


+ U4�eicqz/3
�qx,qy� + e−icqz/3
�qx,qy��
 ,

F21 = U2e−2icqz/3
�qx,qy� + U3e−icqz/3
�qx,qy��, �4�

where


�qx,qy� = 2eiqya	3/6 cos�aqx/2� + e−iaqy	3/3. �5�

To organize the calculation we will consider Un /U1 for n
�1 to be of order the expansion parameter � and we will
work consistently to the lowest sensible order in �, keeping
in mind that for U4=0 we have a line of infinite
degeneration.6,18–20 In any event these works indicate that for
U1�0 the instability in the quadratic form first appears near
the X point, for some discrete values of qz, for U4�0 and for
all qz for U4=0. Accordingly, we set aqx=4� /3+�x and
aqy =�y and determine � to leading order in � for arbitrary qz.

For this purpose we evaluate the matrix Fnm. We find that
up to order U1�2

F11 = T + U1�− 3 + �3/4��2
 − U4
	3� cos�� + ckz/3� , �6�

where � cos �=�x and � sin �=�y, with ��0, and �2=�x
2

+�y
2. As we shall see below, �=O��� and to clarify the situ-

ation it is only necessary to calculate the eigenvalues of the
quadratic form F to order �2U1. We find that


 = − �	3/2��ei�. �7�

Thus the critical eigenvalue, �q� which first approaches
zero as the transition is approached is given by F11− �F12� or,
up to order U1�2

�q� = T + U1�− 3 + �3/4��2
 − U4
	3� cos�� + cqz/3�

−
	3�

2
�U2

2 + U3
2 + 2U2U3 cos�2� − cqz/3�
1/2. �8�

Note that for a single TLL, for which U2=U3=U4=0 the
X point with �=0 is stable and that, in view of the term
linear in �, the X point becomes unstable in the presence of
interlayer interactions.26 One might have expected to have
three-dimensional long-range order when U1, U2, and U3 are
all nonzero because then each TLL’s interacts with ones
above and below it. However, the special symmetry of the

rhombohedral lattice prevents ordering6,18–20 when only
these interactions are present, so we are forced to include a
nonzero value of U4.

We first minimize �q� with respect to �, which is deter-
mined by

0 =
�

��
= − 	3U4 cos�� + cqz/3� +

3

2
U1�

−
	3

2
�U2

2 + U3
2 + 2U2U3 cos�2� − cqz/3�
 . �9�

Thus the value of � which minimizes  and which we denote
�� is given by

�� = �2	3/3��U4/U1�cos�� + cqz/3�

+
	3

3U1
�U2

2 + U3
2 + 2U2U3 cos�2� − cqz/3�
 . �10�

As we mentioned, �� becomes nonzero at order �. Since
� /��=0 at the extremum, corrections to �� at the next order
in � do not affect the result we find for the critical eigenvalue
�qz ,� ,���qz ,��


�qz,�� = T − 3U1 − 	3��U4 cos�� + cqz/3� + �3/4�U1����2

− �	3��/2��U2
2 + U3

2 + 2U2U3 cos�2� − cqz/3�
1/2

= T − 3U1 − �U4
2/U1�cos2��+� − �U4X/U1�cos��+�

− X2/�4U1� , �11�

where �+=�+ckz /3 and

X = �U2
2 + U3

2 + 2U2U3 cos�2� − cqz/3�
1/2. �12�

When U4=0, the critical eigenvalue is a function of the vari-
able 2�−cqz /3 and the eigenvalue is minimal for 2�
−cqz /3=0 or 2� if U2U3�0 and for 2�−cqz /3=� or −� if
U2U3�0, consistent with the results cited for the line of
degeneration.

The values of � and cqz which complete the determina-
tion of the critical wave vector when U4�0 are selected as
those which minimize . If we define

n � U4/�U4�, m � U2U3/�U2U3� �13�

then we see that  is minimized by setting

cos�� + cqz/3� = n, cos�2� − cqz/3� = m �14�

so that

TABLE I. The critical wave vector as a function of the U’s is
given by q� = �� cos � ,� sin � ,qz�, where � is given by Eq. �10� and
� and qz are given below, where p is an integer.

U2U3

�U2U3�
U4

�U4� � cqz

+ + 2p�
3 −2p�

+ − �2p+1��
3 2��−p+1�

− + �2p+1��
3 2��−p−1 /2�

− − 2��p+1�
3 2��−p+1 /2�
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� + cqz/3 = �1 − n��/2 + 2k� , �15�

2� − cqz/3 = �1 − m��/2 + 2l� ,

where the integers k and l are free parameters. We therefore
get the results of Table I, shown in Figs. 7–10.

B. Comparison to experiment

Now we compare these results with experiment and if we
obtain agreement we should be able to identify some of the
parameters. Look at the data shown in Fig. 11. Note that the
diffraction pattern at l=15 �or l=18� can be compared with
that for l=0 in Figs. 7–10. Note that the data indicate that the

diffraction at l=15 occurs for �=� �since it is closer to
�0,0 , l� than is the commensurate location
. So this is the
same as shown in Fig. 8 for U2U3�0 and U4�0 and can
also be confirmed by comparison with that case �for p=1� in
Table I. Furthermore, as one moves in the direction of posi-
tive l=qz, one sees that d� /dl=−2� /3 in both the experi-
ment and in Fig. 8. �Although this line shows a definite sign
of helicity, the system as a whole is not chiral. Of the six
lines equivalent to the one shown in Fig. 11, three of them
have one sign of helicity and three have the other sign of
helicity.� We can also check that our eigenvector of the ma-
trix F of Eq. �2� agrees with that used in Ref. 12. They use
�1,−1
 for FI �l=0� diffraction �see the leading paragraph of
the right column of page 3 of Ref. 12�. For us to obtain that
result F12 must be real positive �to give a minimal eigen-
value�. This implies that �=� which agrees with Table I. It
is more problematic to connect the AFI diffraction to our
analysis because the AFI phase cannot be explained by the
present theory, although the AFI diffraction is that shown in
Fig. 10.

Now we fix the parameters to fit the existing data. In this
connection we will assume that U1�U2�U3�U4, as will
be justified a posteriori. Then the mean-field value of the CO
transition temperature, which we denote TCO,MF is deter-
mined by setting �q�=0. Since we believe that the heavily
screened interactions decay rapidly with distance, this condi-
tion gives

X

z = 1

z = 0

z = − 1

x

y

FIG. 7. �Color online� Scattering for positive U2U3 and positive
U4. The x and y axes of the scattering vector q� are indicated. Its z
component is qz=2�z /c. The X point, which in hexagonal notation
is �1/3,1/3,0�, is indicated. Here we show the diffuse scattering in
the charge-disordered phase �where the colors have no signifi-
cance.� If the system were to order, one would have Bragg scatter-
ing from each of the three domains. The scattering from a single
domain is indicated by a single symbol �open red circle, filled blue
circle, or filled gold circle�. Note that the diffuse scattering exhibits
all the symmetries of the crystal, whereas a single domain has lower
symmetry, since it does not have threefold symmetry. However, if
all domains are equally populated, then the threefold symmetry is
restored. This is the result for the crystal shown in Fig. 1. Note that
the mirror which takes y into −y is not a symmetry of the crystal
and it leads to a slightly different diffraction pattern.

z = − 1

z = 1

z = 0

FIG. 8. �Color online� As Fig. 7 but for positive U2U3 and
negative U4.
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TCO,MF = 3U1. �16�

If we were to identify this with the observed CO transition at
TCO=320 K then we would conclude that U1=110 K. But
since the coupling between bilayers is very weak, the two-
dimensional fluctuations will cause the observed value of
TCO to be very much less than TCO,MF. Accordingly we adopt
the estimate27

U1 = 500 K. �17�

Next, we have to decide whether to take U2U3 to be positive,
as suggested by the fact that the P phase diffraction domi-
nantly occurs at integer values of cqz / �2�� �Ref. 12� or to be
negative, as suggested by the fact that the CO phase diffrac-
tion occurs at half-integer values of cqz / �2��.6,8,12 Since the
corrections to our mean-field theory are smallest in the P
phase, we use the P phase data to fix U2U3�0 and hope to
explain the CO data by some correction to this theory. �Of
course, in addition, if we took U2U3�0, we would have to
explain why screening causes U2 or U3 to be negative.�
Equation �10� gives28

U2 = 	3�U1 = 0.06U1 = 30 K. �18�

In view of the large ratio U1 /U2=15, it seems reasonable to
get U2 under the assumption that U3 /U2�1. We do not have

an unambiguous way to determine U3 and U4. However, con-
sidering that U1 /U2 is about 15, we guess that U2 /U4=15,
which would indicate that �U4�=2 K. Previously we deter-
mined that to fit the diffraction at T=360 K we needed to
assume that U4 was negative, so we set

U4 = − 2 K. �19�

C. FI versus AFI transition temperatures

Now we want to estimate the difference between the
mean-field values of the transition temperatures for FI and
AFI CO which we denote, respectively, as TMF,F and TMF,AF.
�By our choice of parameters �T�TMF,F−TMF,AF is positive,
which does not agree with the experimental value.� We have
that

�T = �cqz/�� − �cqz = 0� , �20�

when these ’s have each been minimized with respect to �
and �. Accordingly we need

z = − 1

z = 1

z = 0

FIG. 9. �Color online� As Fig. 7 but for negative U2U3 and
positive U4.

z = − 1

z = 1

z = 0

FIG. 10. �Color online� As Fig. 7 but for negative U2U3 and
negative U4.
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0 =
���,qz�

��
=

2U4
2

U1
cos��+�sin��+� +

U4X

U1
sin��+�

+
U2U3

XU1
�X + 2U4 cos��+�
sin�2� − cqz/3� . �21�

For cqz=0, this minimization gives �=� so that

�cqz = 0� = T − 3U1 − U4
2/U1 + U4�U2 + U3�/U1

− �U2 + U3�2/�4U1� . �22�

Now we analyze the extremum of  for cqz=�. All terms
in Eq. �21� are of order �2U1. So we assume that U4 /U2 and
U4 /U3 are small and work to first order in those quantities.
We then find that Eq. �21� yields that the extremum occurs
for �=��, where

�� =
�

6
−

U4�U2 + U3�
2U2U3

�
�

6
+ 	� . �23�

Then

�cqz = �� = T − 3U1 −
�U2 + U3�2

4U1
+ O�U4

2� �24�

and

�T =
U4

2

U1
−

U4

U1
�U2 + U3� → −

U2U4

U1
. �25�

Note that the implied negative sign for U4 is crucial to ex-
plain the dominance of FI fluctuations for T�TCO. Using our
admittedly arbitrary estimate of U4 we have

�T = −
U4U2

U1
= −

�− 2��30�
500

= 0.12 K. �26�

In view of the effect of large two-dimensional fluctuations
we estimate that more realistically this model would give

�T = 0.04 K. �27�

Of course, experiment12 tells us that �T�0 �i.e., the first
criticality we encounter as the temperature is lowered is that
toward the AFI phase� and below we will explain how this
can happen, even though U2U3�0.

D. Summary

Note that we used the amplitude � of the incommensurate
wave vector to fix U2, in contrast to the work of Y, who
somehow uses this data to fix U4. As we have said, the effect
of U4 is to scale the amplitude of variation of the free energy
as one traverses what, when U4 is zero, would be the degen-
eration line. In other words, U4 scales �T, the difference in
the critical temperatures for FI and AFI fluctuations and the
negative sign of U4 is crucial. We find that �T is extremely
small because it is scaled by the long-range interaction U4
between second neighboring TLL’s.

III. COMPETITION BETWEEN FI AND AFI STATES

We now analyze the competition between FI ordering �at
qz=0� and AFI ordering �at qz=3� /c�. Although the mean-
field value of the transition temperature depends only very
weakly on qz, it is simplest to invoke a model in which only
FI fluctuations at q̃z=0 and AFI fluctuations at q̃z=1 /2 com-
pete. Therefore we are led to consider the model free energy
of the form29

F0 =
1

2
�T − T0 + �/2�xA

2 +
1

2
�T − T0 − �/2�xF

2

+ u�xA
2 + xF

2
2 + vxA
2xF

2 , �28�

where xA �xF� is the AFI �FI� order parameter. The mean-field
temperature for AFI �FI� ordering is T0−� /2 �T0+� /2� and
� is positive for U4�0. Then if, as is usually the case, � is
temperature independent, one would predict that as the tem-
perature is reduced, one would first enter the FI phase, which
is not what we want. So we propose a mechanism such that
� is temperature dependent so that as the temperature is
decreased, we follow the dashed trajectory on the phase dia-
gram for this model29 shown in Fig. 12. There is no reason to
expect that within the models considered thus far that �
�which arose from the value of U4� should have a relatively
strong temperature dependence.30 It is known31 that the terms
of order x4 in Eq. �28� implement the fixed length constraint
on the variables and lead to a temperature-dependent renor-
malization of the coefficients of the quadratic terms. But
there is no reason to think that such a renormalization will
affect the FI order parameter much more than the AFI order
parameter. It has been suggested32 that this anomalous cross-
over from FI to AFI fluctuations could be explained by “or-
der from disorder.”33 Here this mechanism �of Ref. 22� relies

)
3
1

3
1( l

)012(||

18

17

16

15

)011(||)201(||

l
(r.
l.u
.)

FIG. 11. �Color online� From Ref. 12. Diffraction maxima in the
charge-disordered phase �T=360 K� near an X line. Hexagonal co-
ordinates are used. Different colored shapes correspond to wave
vectors of different domains when CO occurs.
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on orbital fluctuations. However, it would seem that the spin-
orbit interaction would cause the orbital degrees of freedom
to be locked to whatever ordering occurs in the spin degrees
of freedom. So we do not consider this mechanism. While it
is true that at zero-temperature quantum fluctuations exist in
an antiferromagnet34 but are zero for a ferromagnet, we are
too far from that regime to invoke quantum fluctuations.
Similar effects do arise from thermal fluctuations.33 But here
the antiferromagnetic spin-wave energy is linear whereas the
ferromagnetic spin-wave energy is quadratic in wave vector.
Therefore for identical coupling constants, ferromagnetic
fluctuations have lower energy than their antiferromagnetic
counterparts. This argument suggests that FI fluctuations
should be stronger than AFI fluctuations. Therefore we reject
the suggestion32 that the crossover from FI to AFI fluctua-
tions can be attributed to this mechanism, known as order
from disorder.

Instead, to obtain the proposed trajectory shown in Fig. 12
we invoke the coupling of the FI and AFI variables to a
noncritical variable, Y, so that the free energy is now F
=F0+V, where35

V = a�x2�Y + �1/2��Y
−1Y2, �29�

where here x denotes either the FI or AFI order parameter.
Also a is a temperature-independent coupling constant and
�Y is the stiffness associated with Y and is almost tempera-
ture dependent because Y is far from criticality. �As we shall
see, a suitable choice for Y is a zone-center phonon.� Since Y
is a noncritical variable we can eliminate it by minimizing F
with respect to it, in which case we obtain

F = F0 − �1/2��Ya2�x2�2. �30�

To leading order in the fluctuations we replace �x2�2
�x�q��2x�q�2 by 4x�q�x�q���x�q�x�q���, where �Z� is the
thermal expectation value of Z.31 Then, if the coupling con-
stant for FI fluctuations is aFI and that for AFI fluctuations is
aAFI, this mechanism leads to the result

��T� = � − �aAFI
2 − aFI

2 
�Y�x�q�x�q��� , �31�

where we assume the thermal average is the same for FI and
AFI fluctuations. So, if aFI�aAFI then this mechanism leads
to a renormalization of the quadratic term which is stronger
for the AFI fluctuations than for the FI fluctuations. Then the
natural temperature dependence of the thermal average of
��2� can give the trajectory we desire.

If we choose Y to be a zone-center phonon, the interaction
we consider is written schematically as

V =
1

2�
i

M�Dui
2 + �

ij

uji · ��rU�rij�QiQj
 , �32�

where M�D defines the Debye model, u is a phonon dis-
placement, U�rij� is the heavily screened interaction, and Qi
is the charge on site i. The factor in Eq. �32� in square brack-
ets is the force on site i due to the charge on site j.

Since we will need the phonon energies, we implemented
a first-principles calculation of the energies of the zone-
center phonons in LuFe2O4. The calculations were per-
formed within the plane-wave implementation of the local
density approximation to density-functional theory as imple-
mented in the PWSCF package.36 We used Vanderbilt-type
ultrasoft potentials with Perdew-Zunger exchange correla-
tion. A cut-off energy of 408 eV and a 9�9�9 k-point mesh
were found to be enough for the total energy to converge
within 0.5meV/atom. The zone-center phonon energies were
calculated using the supercell method with finite
difference.37 The primitive cell was used and the full dy-
namical matrix was obtained from a total of eight symmetry-
independent atomic displacements ��0.02 Å�.

The primitive cell contains one formula unit of LuFe2O4,
giving rise to a total of 21 phonon branches. The phonon
modes at � are classified as � �q=0�=4A2u�IR�+3A1g�R�
+4Eu�IR�+3Eg�R�, where R and IR correspond to Raman
and infrared active, respectively. The nondegenerate �A� and
doubly degenerate �E� modes correspond to motion along the
c axis and within the ab plane, respectively. In the Raman-
active modes the atoms at �0,0 ,z� and �0,0 ,−z� move out-
of-phase �i.e., opposite� while in the IR modes they move in
phase.

T

ANTIF

FERRO

∆

0

FIG. 12. �Color online� Mean-field phase diagram �Ref. 29� near
the bicritical point of Eq. �28� for v�0. Since the dashed trajectory
in the disordered �P� phase is closer to the FI phase than to the AFI
phase, FI fluctuations dominate AFI fluctuations in the P phase.

TABLE II. List of phonon symmetries and calculated energies �in meV� of LuFe2O4 at the � point of the
primitive cell, as obtained from the first-principles calculations described in the text.

Mode symmetry Eu Eg A2u A1g A2u Eu

Energy �meV� 11.41 19.99 20.02 31.48 38.46 41.20

Mode symmetry A1g Eg A2u Eu Eg A1g

Energy �meV� 53.25 54.73 57.69 58.79 62.62 84.96
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The calculated mode energies and their symmetry labels
are listed in Table II. We hope that our calculations will
initiate more experimental work such as Raman/IR measure-
ments to confirm the � phonon energies that we calculated
here. From this table we see that the characteristic phonon
energies are of the order of 50 or more meV. Since the cou-
pling to the phonons with the lowest energies will be the
most effective, we show the two lowest-energy phonons
schematically in Fig. 13.

The lowest-energy mode with Eu symmetry and 11.4 meV
energy corresponds to displacements in the ab plane in
which the LuO and FeO bilayer move in opposite directions
as rigid units �see Fig. 13�a�
. Hence the energy of this mode
is basically determined by the strength of LuO-Fe-O bond
angle. Even though this mode has the lowest energy, its sym-
metry is not right to create the electrostatic forces needed for
our mechanism. The next mode has the Eg symmetry and it
corresponds to displacements in the ab plane �Fig. 13�b�
 in
which the two TTL’s of each bilayer moves in opposite di-
rections while LuO layer is fixed. Hence this modes involves
twice as much O-Fe-O bond bending as the lowest-energy
mode and interestingly it has about the twice energy �20
meV� of the Eu mode shown in Fig. 13�a�. As we shall see, it
is this mode that creates the electrostatic forces needed for
our mechanism.

Accordingly, we look for charge-phonon interactions
which involve zone-center transverse �to the c-axis�
phonons. We now analyze the force on the Fe charges in a
given TLL, which we denote TLL0, from the nearest-
neighboring Fe TLL’s above and below TLL0. Since we con-
sider coupling to the lowest-energy phonons, which involve
motion transverse to the c axis, we will only consider forces
in the plane of the TLL. Phonon modes which decrease the
distance between TLL’s will involve higher energy. One sees
that a low-energy mode which can couple the way we want
is a zone-center phonon in which alternate TLL’s are dis-
placed transversely relative to one another. For this rhombo-
hedral lattice, such a mode is an Eg mode. As mentioned, this

is the Eg mode at 19.99 meV. To see whether this mode
couples differently to FI and AFI fluctuations, we have only
to analyze the transverse force on one TLL from the TLL’s
above and below it. Since we are near the transition, we
assume the R3 structure of the fluctuations �see Fig. 5, where
we choose �=0� and add up the forces in Fig. 14. Also, we
simplify the argument by neglecting the fact that the inter-
layer separation is different for TLL’s within the same bi-
layer and for TLL’s in adjacent bilayers.

We now estimate quantitatively the effect of this coupling
in Eq. �32�. As in Fig. 1, the Q’s are given in terms of the
order parameter xX, where X indicates either the FI or AFI
configuration of TLL’s. Because the transverse motion of
planes is relatively soft, we consider displacements to lie
within the TLL0 plane. When minimized with respect to ui,
the free energy is

FPh = −
zX

2 �xX�4

2M�D
2 �U

r
2� r�

r
2

�2, �33�

where �= �r /U��dU /dr�, r� is the component of r within the
TLL, and z is the effective number of nearest neighbors. Also
we set U= �U2+U3� /2=16.5 K�1.5 meV. The actual num-
ber of nearest neighbors is 6, but since the forces do not all
add up, we take z=3 for the AF configuration and z=0 for
the F configuration where the forces from adjacent TLL’s
nearly cancel. We set ��D=20 meV, r=5 Å, and r� =2 Å.
The factor � depends on how rapidly the interaction de-
creases with distance. For bare Coulomb interactions �=−1.
But we are far from that regime. We take �=−10, which is a
value often found for exchange interactions in insulators.38

Also the Fe mass is M =60 amu, so its reduced mass is 30
amu. Thus

FPh = − F0�xAF
4 � → −

1

2
�8F0��xAF�2���xAF�2, �34�

where F0�0.004 meV. Then identifying �8F0��xAF�2�� as the
renormalization of TCO we get

(a) Eu 11.41 meV (b) Eg 19.99 meV

Fe
O

Lu

FIG. 13. �Color online� The displacements of the two lowest-
energy modes as discussed in the text. Here O ions are red, Fe ions
are purple, and Lu ions are green. The light blue ovals indicate units
which move approximately rigidly, as indicated by the arrows.

M

0 Ferro:

Antiferro:

+

+

a)

b)

−

−

−

− +
−

+

+

−
− +

−
−

−
−− NL

FIG. 14. �Color online� �a� The in-plane components of forces
on sites L, M, and N in TLL0 �as in Fig. 1� in the F configuration.
The solid line vector forces are from the charges �solid circles� in
the TLL above TLL0 and the dashed line vector forces are from the
charges �dashed circles� in the TLL below TLL0. The charges at L,
M, and N are negative, positive, and positive, respectively. �Red
=positive and blue=negative.� The larger dots and heavier lined
circles are charges of twice the magnitude of the smaller dots and
lighter lined circles. �b� The net force on the sites assuming the
separations between all planes are the same. For the AF configura-
tion the dashed forces are reversed and the resulting total forces are
listed as “Antiferro:.” The forces are nonzero at zero wave vector
only for AF ordering.
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��T� � � − 0.032 meV��xAF
2 �� � 0.04 K − �0.4 K���xAF

2 �� .

�35�

which is enough to shift ordering from F to AF at TCO, where
��xAF

2 ���1 /2.
Finally, we should mention that this frozen phonon occurs

whether or not the CO phase is commensurate because its
origin is in a coupling of the form

V � u�q = 0���q���− q� , �36�

where ��q� is the CO order parameter.

IV. THE MAGNETIC PHASE TRANSITION

A. Phase of the R3 Structure

We now discuss the magnetic phase transition at which
SO appears. At first we neglect the fact that the system is a
mixture of spins of magnitude 2 and spins of magnitude 5/2
and we assume that the uniaxial anisotropy aligns the spins
along the c axis. Then one introduces the local order param-
eter S�r� as the thermal average of Sz�r�, the z component of
spin at the site r. Also, as noted in Ref. 11, if one neglects the
coupling between spin and charge, the symmetry of the SO
free energy is the same that of the CO free energy of Eq. �2�.
Thus, if the transition is assumed to be continuous, the or-
dering wave vector for this transition should be unstable rela-
tive to the X point, just as we argued �in connection with Fig.
6� in the case of the CO transition. In that case the represen-
tation analysis of Ref. 11 for the wave vector �1/3,1/3,0� is
not definitive. However, we temporarily overlook the pos-
sible instability of the X wave vector and apply Landau
theory to the phase transition as if this wave vector were
stable. �In Appendix A we discuss some difficulties in apply-
ing representation analysis to this transition.� Therefore we
write the free energy in terms of S1�q�=S2�q��S�q�, where
the subscript labels the two Fourier components of the unit
cell. We have that21

F = �1/2��T − TSO��S�q��2 + u�S�q��4 + v�S�q��6 + ¯ + wS�q�6

+ w�S�q��6, �37�

where TSO is the magnetic �SO� transition temperature and
we will set

S�q� = �S�q��ei�. �38�

Under inversion symmetry S�q�→S�q��, which implies that
w in Eq. �37� is real. The last term in Eq. �37� is the lowest
order one that fixes the phase � of the order parameter. �It
should be noted that it is not easy to fix this phase using only
scattering data.� There are two cases39

� = n�/3 if w � 0; � = �n + 1/2��/3 if w � 0

�39�

with the results for the amplitudes in the magnetic unit cell
as given in the caption to Fig. 5. To determine the net mo-
ment of these structures it is necessary to analyze the admix-
ture of wave vector �0,0,0�.40 Such an admixture comes
about because q= �1 /3,1 /3,0�, is 1/3 of a reciprocal lattice

vector and this fact allows an additional term, V, in the free
energy, where

V = − S�0,0,0��aS�1/3,1/3,0�3 + a�S�1/3,1/3,0��3


+
1

2
�−1S�0,0,0�2, �40�

where � is a stiffness �which is nearly temperature indepen-
dent� and a is a constant which must be real in view of
inversion symmetry. Minimizing V with respect to S�0,0 ,0�
we find that

S�0,0,0� = a��S�1/3,1/3,0�3 + S�1/3,1/3,0��3
 . �41�

If w�0, then Eq. �39� indicates that S�0,0 ,0� is zero,
whereas for w�0 the system has a nonzero net moment, M.
The early data of Ref. 5 suggests that M is nonzero. How-
ever, recently we have learned41 that the system is more
likely to have M =0, in which case we must choose w�0. In
this case one of the three sublattices is disordered. �See the
caption to Fig. 5 with �=� /6.� In this structure, all spins
within a plane perpendicular to the ordering wave vector
have the same value, a, −a, or 0. This type of partial ordering
was observed in the orientational ordering of solid
methane,42 and, as in that case, we would not expect a phase
with partial disorder to continue to exist to arbitrarily low
temperature. In Appendix B we obtain M�H� for this struc-
ture.

If, instead, the case w�0 is realized, then one would have

S�0,0,0� = 2a�S�1/3,1/3,0�3 �42�

and if

S�1/3,1/3,0� � B � �TSO − T�� �43�

then, within mean-field theory

S�0,0,0� � A � �TSO − T�3�, �44�

which gives an unusually large critical exponent for the mag-
netization. For liquid crystals,43 this effect has been analyzed
in detail within the renormalization group. An effect similar
to this has been seen for CO.44

Next we discuss the magnetic eigenvector which was cho-
sen in Ref. 11 to be �1,1
 �to best fit the experimental data�.
With this choice of eigenvector the spins form planes �per-
pendicular to the wave vector� of spins with amplitudes pro-
portional to 0, −1, and 1. How is this choice to be justified
within Landau theory? In the “minimal” model used for CO,
one sees that for �=0 �the commensurate case� F12=0 and
one has isotropy in S1z, S2,z space so that the eigenvector can
be �cos � , sin �
 with any choice for �. One way to explain
that the eigenvector is �1,1
 is to invoke an interaction which
tends to make the two spins in the rhombohedral unit cell
parallel so that F12 is negative real. Since the spins are
aligned along z, the dipole interaction could accomplish this.
However, the energy V of this interaction is probably too
small
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V = −
2g2B

2S2

r3 = − 0.045 K, �45�

where we set g=2, S=5 /2, and r=2d�+d=14.1 Å and com-
bine with a second term for which r=d�+2d=11.1 Å. Alter-
native mechanisms to stabilize the antiferromagnetic spin
structure involve thermal fluctuations or �as we discuss be-
low� the distortion due to the frozen Eg phonon.

Finally we discuss the diffraction at half integer values of
L which has a magnetic signature and which requires posit-
ing a magnetic unit cell which is doubled along the c direc-
tion. As stated in Ref. 11 one can think of this additional
diffraction as being due to “the charge ordering, which deco-
rates the lattice with differing magnetic moment on the Fe2+

and Fe3+ sites….” This effect can be seen within Landau
theory as follows. We introduce an additional free energy V
of the following form, consistent with symmetry:

V = − a�
r

x�r�Sz�r�2, �46�

where a is a constant. The effect of this term is to increase
�decrease� Sz�r�2 when the site is occupied by an Fe3+ �Fe2+�
ion. In Fourier transform language this is

V = − a �
n;q,k1,k2

xn�q�Sn�k1�Sn�k2���q,k1,k2� , �47�

where � enforces wave-vector conservation modulo a recip-
rocal lattice vector and the subscripts label the Fe sublattices.
The term we focus on here involves charge ordering, so that
q= �1 /3,1 /3,1 /2�+�, where � is the incommensurability.
The magnetic variables then can involve the wave vectors
k1= �1 /3,1 /3,−1 /2�−� and k2= �1 /3,1 /3,0�. Then we see
that this interaction couples S�1 /3,1 /3,0� and S�1 /3,1 /3,
−1 /2��+�. Thus the critical magnetic eigenvector is a mix-
ture of these two variables. This corresponds exactly to the
idea of “decoration” but it is hard to estimate the importance
of this effect.

B. Removal of frustration

To develop further insight into this frustrated spin system,
it is useful to recall the results for the magnetic structure of
the rhombohedral � phase of solid oxygen whose structure
only differs from LFO in that there are no bilayers: all TLL’s
are equally spaced. �For a review see Ref. 45.� A convincing
theoretical analysis based on quantum spin-wave theory was
given in Refs. 18 and 19. However, when various theoretical
results were experimentally tested,46 it was not entirely clear
which theoretical model was most appropriate for � oxygen.
In any event, the magnetic correlation length is so short
�5 Å� �Ref. 46� that is seems unrealistic to speak of any
long-range order.

Accordingly, a central open question is to explain why the
SO in LFO is so different from that of � oxygen. One pos-
sibility is that the small distortion which we invoked to ex-
plain the crossover from FI to AFI might introduce small
addition exchange interactions which remove the frustration
of the rhombohedral antiferromagnet. To explore this possi-
bility we write

Jn = Jn
�0� + 	Jn, �48�

where the Jn
�0�’s are the exchange interactions which are con-

sistent with the R3̄m symmetry and are analogous to the U’s
of CO. In Fig. 15 we show a set of interactions 	Jn which
have the correct symmetry to be induced by the frozen Eg
phonon and which, if they are dominant, resolve the frustra-
tion. Note that even though CO is incommensurate, the fro-
zen phonon is commensurate. So here we are considering a
commensurate effect of incommensurate charge ordering.

To analyze this possibility, we replace the J3 interaction
by J3�1+�� for the dashed bonds in Fig. 15 and the other J3
interactions by J3�1−��. Similarly, we replace the J2 interac-
tion by J2�1−�� for the solid bonds in Fig. 15 and the other
J2 interactions by J2�1+��. Then Eq. �4� remains valid but
now


 = �1 + ��eiaqy	3/6 cos�aqx/2� + �1 − ��e−iaqy	3/3

= − 2� − �	3/2���x + i�y� − ��x
	3/2 + i��y

	3/6 + O��2� .

�49�

To maximize �F21� �for J2J3�0� set exp�icqz /3�=
 /
� so
that

b

B

C

C

A

B

A

x

z
ca

FIG. 15. �Color online� Additional exchange interactions attrib-
uted to the transverse frozen phonon. Dashed �full� lines denote
additional antiferromagnetic �ferromagnetic� interactions. The val-
ues of Sz for all sites in the same y-z plane are a, b, and c as
indicated, where b=−a and c=0, in the notation of Eqs. �42� and
�43�. It is assumed that the in-plane interactions are dominant.
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�F21� = �J2 + J3��
� . �50�

Then the minimal eigenvalue is found by minimizing

��x,�y� = T − 3J1 + �3/4�J1�2 − �J2 + J3�

���2� + �1 + ���	3/2��x
2 + �3/4��1 − �/3�2�y
2�1/2.

�51�

In analogy with Eq. �17� we estimate that J1=375 K. When
�=0, this is a function of �x

2+�y
2 and is consistent with the

existence of a degeneration line. However, when � is non-
zero, then the minimum occurs for �y =0 �so that qz=0� and

�x = �1 + ���J2 + J3�/�	3J1� . �52�

One might wonder where the extrema we found for CO at
cqz=2p�, for p=1 and p=2 have gone. The answer is that
there are three CO domains corresponding to which there are
three distortions, the transverse phonon displacement being
perpendicular to the in-plane projection of the ordering wave
vector. So we have three different SO domains, each one tied
to one of the three possible CO domains.

An important question is: since the wave vector is not at a
special, high-symmetry point �see Fig. 6�, the wave vector
should not be commensurate if the SO transition is a con-
tinuous one. It is not clear that the sensitivity of the neutron-
diffraction experiment of Ref. 11 is sufficient to detect the
very small incommensurability that might attend this mag-
netic transition. It would be of interest to have a high preci-
sion determination of the SO wave vector, to check whether
it is or is not commensurate.

If the SO phase is truly commensurate, then one would
have to entertain a scenario to accommodate such a fact. The
one scenario that is excluded is that the commensurate SO
state is reached via a single continuous phase transition. Pos-
sibly there are two phase transitions, the first, in which there
develops incommensurate order, followed by a second one
into the commensurate antiferromagnetic state.47 The pres-
ence of two nearby transitions in parameter space would
seem to signal a nearby multicritical point at which the two
transitions coincide. To check for that, it would be useful to
have very precise measurements of the specific heat and sus-
ceptibility to get the critical exponents that characterize this
transition. A different scenario is that the magnetic transition
is a first order one to a commensurate SO phase.

C. Field cooling

Finally, we mention the intriguing data of Fig. 3c of Ref.
13, where it is shown that cooling in a field along �1,
−1,0� from T�TCO causes a pronounced reduction in the
CO diffraction at 300K. This data raises a natural unan-
swered question: does this “missing” intensity in the AFI
scattering show up as new FI scattering at �1 /3,1 /3,n� for
integer n. If so, it would mean that the magnetic field could
stabilize the FI state for T�TCO and it would be of interest to
know whether such a state was or was not commensurate.

Here we present a partial explanation for the above field-
cooling scenario. We start by noting that in Ref. 13 it is
shown that application of a magnetic field in the plane of the

TLL’s decreases the AFI correlation length. This suggests
that such a magnetic field tends to destabilize the AFI phase,
possibly making the FI phase relatively more stable. If this is
the case, the one might have a phase diagram like that shown
in Fig. 16. Then in the various scenarios of cooling one
would start in the disordered phase at points like A, B, and C
and cool to points A�, B� and C�. Clearly, if this is done at
zero field and then a field not large enough to go into the FI
phase is applied, no dramatic field dependence will be ob-
served, in agreement with their observations. However, if
one starts from points like A or B, then when the system is
cooled it passes though a region of FI ordering which then
can be supercooled while reaching the final points A� or B�.
Then, as a function of time the system would evolve in some
irregular process into the equilibrium state of AFI order. This
might happen without displaying a dramatic dependence on
the field-cooled value of the magnetic field. Indeed the data
shows that after a sharp decrease for very small field, the
resulting AFI order does not depend strongly on H. This
proposal suggests that it would be useful to monitor the �1/
3,1/3,0� reflection under field-cooled conditions �to see if the
decrease in intensity at �1/3,1/3,3/2� is accompanied by an
increase at �1/3,1/3,0�. It would indeed be interesting if an
in-plane magnetic field could stabilize a nonzero polariza-
tion. Note that an in-plane magnetic field may be more ef-
fective than one parallel to the c axis because the perpen-
dicular susceptibility is usually larger than the parallel
susceptibility.

V. SUMMARY

Here we briefly summarize our conclusions. �a� We show
that the appearance of an incommensurate wave vector for
charge ordering is a result of symmetry �or more accurately
is due to a lack of symmetry�. �b� By comparing our theory
with experiment we have assigned values to several of the
phenomenological charge-charge interactions. In particular,
the signs and magnitude of the incommensuration and the

C

FI

A

H

T
AFI

B

C

B
A

FIG. 16. �Color online� Proposed phase diagram for CO as a
function of magnetic field H and temperature T with various cool-
ing scenarios indicated. Dashed lines represent continuous transi-
tions and the solid line a first-order transition.
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fact that ferroelectric fluctuations dominate in the disordered
phase are explained by simple choice of these interactions.
�c� The crossover, as the temperature is lowered through the
charge-ordering temperature, from ferroelectric to antiferro-
electric incommensurate structure can be explained by the
temperature-dependent renormalization of the transition tem-
perature due to charge-phonon coupling. �d� We have per-
formed a first-principles calculation of the zone-center pho-
non energies �assuming no ordering of charge or spin�. The
phonon with the correct symmetry to couple effectively to
the charge ordering has a rather low �20 meV� energy, cor-
responding to the sliding �transverse to the c axis� of alter-
nate Fe layers with respect to one another. �e� We have de-
veloped a Landau theory which describes the phase of the
recently observed spin-ordered state having zero net mag-
netic moment. �f� In principle, if the spin-ordering transition
is continuous, the spin-ordered phase would be expected to
be incommensurate. This suggests the need for a high preci-
sion determination of the spin-ordering wave vector to check
whether it is or is not commensurate. If the spin-ordered
phase truly is commensurate, then it would be of interest to
investigate the scenario of ordering, which cannot be via a
single continuous transition. One way to pin down the sce-
nario would be to determine the critical indices �, �, and �,
associated, respectively, with the specific heat, the magnetic
order parameter, and the susceptibility. �g� We have also sug-
gested experiments to test our proposal that the sharp de-
crease in intensity of antiferroelectric charge scattering as a
function of magnetic field in the field-cooled scenario might
indicate that the magnetic field tends to stabilize ferroelectric
charge ordering and possibly a consequent polarization.
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APPENDIX A: REPRESENTATION THEORY

In Refs. 11 and 12 representation theory is used to analyze
possible magnetic-ordering patterns and charge-ordering pat-
terns, respectively. In their approach, they implicitly assume
that the wave vector at the appropriate X point is stable with
respect to the addition of further neighbor interactions. As
we have seen in Sec. II, this assumption is not actually valid,
especially for CO. To see this explicitly, consider the struc-
ture of the two by two matrix Fnm of Eq. �4� which deter-
mines the eigenvectors. Exactly at the X point and when
arbitrary interactions are allowed, F21 is scaled by the inter-
actions V1,2 between sites 1 and 2 which are displaced from
one another by a vector along the c axis. This interaction is
extremely small since it connects sites which are not in ad-
jacent bilayers but are in second- �or further� neighboring
bilayers. Representation theory bases the eigenvector equa-
tion on this symmetry and leads to eigenvectors that are ei-
ther even or odd under inversion.

However, as noted in Sec. II, this type of analysis is in-
validated by the fact that for LFO the X point is not actually
stable. For wave vectors near the X point, we explicitly dis-
played in Eq. �7� the term in F12 which is linear in the dis-
placement from the X point. The interactions U2 and U3
which scale this linear term are very much larger than V1,2
whose existence is ignored if representation theory is in-
voked for the commensurate case. The major effect of this
linear term is that the eigenvectors, instead of being even and
odd, as in the analysis of Refs. 11 and 12, are now complex
and are determined by the phase of F21 given by Eqs. �4� and
�7�. Note that this phase will, in general, be different for each
of the three domains, and inclusion of the correct phases,
might affect the determination of the domain populations.

APPENDIX B: EQUATION OF STATE FOR THE
ANTIFERROMAGNET

In this appendix we obtain M�H�, where M is the net
magnetization �along the c axis� for the model of Eq. �37�
and H is the external field applied parallel to the c axis.
Accordingly we add to the free energy the term −HM, where
� is the parallel susceptibility, so that with �S�q����, we
have

F =
1

2
�T − TSO��2 + u�4 + 4w�6 cos2�3�� − 2a�3M cos�3��

+
1

2
�−1M2 − MH , �B1�

where � is the parallel susceptibility and we kept
�-independent terms only up to order �4 because our analy-
sis is not valid when T�TSO. Minimizing with respect to M
yields

M = ��H + 2a�3 cos�3��
 �B2�

so that

M

0M χ H

H c
H

FIG. 17. �Color online� The c component of magnetization M
�solid line� versus the magnetic field H along c for the antiferro-
magnetic phase. Here M0=2a��3 and Hc is given by Eq. �B5�.
Near TSO both M0 and Hc are of order �TSO−T�3/2.
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F =
1

2
�T − TSO��2 + u�4 + 4w�6 cos2�3��

−
1

2
��H + 2a�3 cos�3��
2. �B3�

When this is minimized with respect to � we find two re-
gimes

H � Hc: M = ��H + 2a�3
 ,

H � Hc: M = �H�1 +
2a2�

4w − 2a2�
� , �B4�

where

Hc =
�4w − 2a2���3

a�
, �B5�

which leads to the M versus H curve shown in Fig. 17. The
value of � is approximately ��TSO−T� / �4u�
1/2 for T near
TSO.
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