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Relationship Between Neighbor Number and Vibrational Spectra in
disordered colloidal clusters with attractive interactions

Abstract
We study connections between vibrational spectra and average nearest neighbor number in disordered
clusters of colloidal particles with attractive interactions. Measurements of displacement covariances between
particles in each cluster permit calculation of the stiffness matrix, which contains effective spring constants
linking pairs of particles. From the cluster stiffness matrix, we derive vibrational properties of corresponding
“shadow” glassy clusters, with the same geometric configuration and interactions as the “source” cluster but
without damping. Here, we investigate the stiffness matrix to elucidate the origin of the correlations between
the median frequency of cluster vibrational modes and average number of nearest neighbors in the cluster. We
find that the mean confining stiffness of particles in a cluster, i.e., the ensemble-averaged sum of nearest
neighbor spring constants, correlates strongly with average nearest neighbor number, and even more strongly
with median frequency. Further, we find that the average oscillation frequency of an individual particle is set
by the total stiffness of its nearest neighbor bonds; this average frequency increases as the square root of the
nearest neighbor bond stiffness, in a manner similar to the simple harmonic oscillator.
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Relationship between neighbor number and vibrational spectra
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We study connections between vibrational spectra and average nearest neighbor number in disordered
clusters of colloidal particles with attractive interactions. Measurements of displacement covariances
between particles in each cluster permit calculation of the stiffness matrix, which contains effective
spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational
properties of corresponding “shadow” glassy clusters, with the same geometric configuration and
interactions as the “source” cluster but without damping. Here, we investigate the stiffness matrix to
elucidate the origin of the correlations between the median frequency of cluster vibrational modes
and average number of nearest neighbors in the cluster. We find that the mean confining stiffness of
particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, corre-
lates strongly with average nearest neighbor number, and even more strongly with median frequency.
Further, we find that the average oscillation frequency of an individual particle is set by the total stiff-
ness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest
neighbor bond stiffness, in a manner similar to the simple harmonic oscillator. © 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4774076]

I. INTRODUCTION

Colloidal particles that interact via strong short-range
attractive potentials form disordered clusters,1, 2 and these
clusters often have large local packing fractions and parti-
cle configurations similar to common “space-filling” colloidal
glasses. Recent experiments3 have suggested that the vibra-
tional properties of small clusters of colloidal particles with
attractive interactions are similar to the vibrational properties
of jammed glasses.4, 5 Specifically, the median frequency of
the cluster vibrational spectrum, ωMed, was found to correlate
strongly with the average number of neighbors, NN , in the
cluster. This behavior resembles that in simulations of me-
chanically stable athermal jammed packings, wherein the so-
called Boson peak frequency scales linearly with the average
number of contacts between particles.5 Thus, further explo-
ration of the strong correlation between NN and ωMed holds
potential to distinguish properties universal to disordered sys-
tems (e.g., Refs. 3 and 5) from properties that are system spe-
cific (e.g., Ref. 6).

In this contribution we experimentally investigate the vi-
brational properties of disordered clusters of colloidal par-
ticles with attractive interactions. Disordered clusters are
formed in water-lutidine suspensions wherein wetting ef-
fects induce fluid mediated attraction between micron-sized
polystyrene particles.6–9 Each cluster is characterized by the
number of particles it contains (N) and its average number
of nearest neighbors (NN ). Displacement covariance matrix
techniques employed in recent papers10–13 are then used to

determine phonon spectra of each attractive glassy cluster.
Specifically, video microscopy is employed to measure dis-
placement covariances between each particle pair in each
cluster. Using this information, we calculate the cluster stiff-
ness matrix, Kij, which contains the effective spring constants
that link each pair of particles i and j. From the stiffness
matrix, we derive the phonon density of states of correspond-
ing “shadow” attractive glass clusters with the same geomet-
ric configuration and interactions as the “source” experimen-
tal colloidal system, but absent damping.11 While numerical
simulations can also access the vibrational density of states
of disordered systems (e.g., Ref. 5), the results presented here
are from real clusters that self-assembled via complex inter-
actions or were assembled with laser tweezers. Thus, these
results are relevant for real systems that can easily be made in
the lab, as opposed to idealized model systems.

Previous work has demonstrated that the median cluster
vibrational frequency, ωMed, depends strongly on the average
number of nearest neighbors, NN , but weakly on the number
of particles, N, in the cluster, and weakly on other structural
parameters of the cluster.3 The present experiments reveal that
ωMed has an even stronger correlation with the mean stiffness
felt by individual particles than with NN , i.e., the mean of
the diagonal elements of the stiffness matrix, Kii compared to
NN . Kii , in turn, is shown to be correlated with NN , among
other factors. This experimental observation is further sup-
ported by a simple theoretical argument. In addition, we find
that the average oscillation frequency of any given particle
in the cluster increases as the square root of its total nearest
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neighbor bond stiffness, similar to the behavior of a simple
harmonic oscillator. Thus, while global spectral properties are
controlled, in large part, by network connectivity, local vibra-
tional properties are controlled by local stiffness. Finally, the
work provides microscopic evidence that spectroscopic obser-
vations can be used to probe structural coordination properties
of disordered media.

II. BACKGROUND

A. Experimental system

The experiments employ bidisperse suspensions of
micron-sized polystyrene particles (Invitrogen), with diame-
ters of dS = 1.5 μm and dL = 1.9 μm, and number ratio of 1:2,
respectively. Binary mixtures of particles were used to mini-
mize crystallization. Particles were suspended in a mixture
of water and 2, 6-lutidine (WL) near its critical composition,
i.e., a lutidine mass fraction of 0.28. Colloidal particles in this
near-critical WL binary mixture experience temperature de-
pendent fluid-mediated repulsive or attractive interactions.7, 8

Particles are well dispersed at T = 300.15 K, but at T

= 306.45 K they aggregate and form clusters, because luti-
dine preferentially wets the polystyrene particles.

A plethora of different disordered particle clusters are
created by first suspending particles deep in the repulsive
regime (300.15 K), and then rapidly increasing the sample
temperature (to 306.5) in situ.3 Sample temperature control
was accomplished using an objective heater (Bioptechs) con-
nected to the microscope oil immersion objective.14–16 Parti-
cles are confined between two glass coverslips (Fisher) with a
spacing of ∼1.1 ± 0.05dL; the sample is therefore a quasi-2D
system. The glass cell was treated with hexamethyldisilazane
(HMDS), so the particle-wall interaction potential is repulsive
at relevant temperatures.9 The global area fraction is ∼0.2.

Disordered clusters of various sizes and shapes self-
assemble. Other clusters are created with aid of laser
tweezers,17 either by grabbing particles and adding them to
existing clusters, or by dragging an optical trap across a
cluster and forcing rearrangements. Samples equilibrated for
about six hours before measurements began. Video data were
collected at a rate of 10 frames per second.

The number of particles, N, is only weakly corre-
lated with NN (Fig. 1). For linear clusters (NN < 2),
N and NN have a strong correlation; for more compact clus-
ters (NN ≥ 2), N and NN have a very weak correlation.

(a) (b)

FIG. 1. (a) Plot summarizing the number of particles, N, and average number
of nearest neighbors, NN , in every cluster studied. (b) Experiment snapshots
of five different clusters.

Note, Fig. 1(a) is plotted on a linear-log plot. Thus, while it
appears N and NN may be strongly correlated for N < 20,
this is not the case (for N < 20, R2 = 0.37).

B. Theoretical analysis

The vibrational properties of each cluster are extracted by
measuring displacement correlations of the particles within
each cluster. Specifically, we define u(t) as the 2N-component
vector of the displacements of all particles from their average
positions (x, y), and we extract the time-averaged displace-
ment correlation matrix (covariance matrix), Cij = 〈uiuj〉t,
from experiment, where i, j = 1, . . . , 2N run over all particle
and positional coordinates, and the average runs over time.
Note, the calculation of Cij depends only on particle displace-
ments. In the harmonic approximation, the correlation matrix
is directly related to the cluster stiffness matrix, defined as the
matrix of second derivatives of the effective pair interaction
potential with respect to particle position displacements. In
particular, (C−1)ijkBT = Kij, where Kij is the stiffness matrix.
Experiments that measure C therefore permit us to construct
and derive properties of a “shadow” glassy cluster that has
the same static properties as our colloidal system (e.g., same
correlation matrix, same stiffness matrix, etc.).11–13 Follow-
ing Ref. 18, we expect undamped particles, that repel at very
short-range and attract on longer length scales, due to fluid
mediated effects, to give rise to solid-like vibrational behav-
ior on time scales long compared to particle collision times,
but short compared to the time between particle rearrange-
ment events.10, 13

The stiffness matrix is directly related to the dynami-
cal matrix characterizing system vibrations, Dij = Kij

mij
, where

mij = √
mimj and mi is the mass of particle i. The eigenvec-

tors of the dynamical matrix correspond to particle displace-
ment amplitudes associated with the various phonon modes,
and the eigenvalues of the dynamical matrix are the frequen-
cies/energies of the corresponding modes. Data were col-
lected for 10 000 s so that the number of degrees of freedom,
8 ≤ 2N ≤ 500, is small compared to the number of time
frames (>10 × 2N). Additionally, we find Kij is far above
the noise only for adjacent particles, as expected.

C. Finite-sampling correction

To correct for finite-time effects, we extrapolate to “infi-
nite time” and derive “true” frequencies. To this end, we use
the relationship 1/ω(Nf rames) = 1/ω(inf) + m2N/Nf rames ,
where Nframes is the number of images collected, 2N is the
number of degrees of freedom in the sample, and m is a mul-
tiplicative constant (Fig. 2).19 This correction was found to
have little effect on ωMed; i.e., the coefficient of determina-
tion, R2 = 0.85, was unchanged when comparing corrected
and uncorrected frequencies.

As a side note, the correlation does not depend on par-
ticle size. We plotted the median frequency versus the aver-
age number of neighbors for large particles and the average
number of neighbors for small particles. The correlation per-
sists, but is weaker. The best linear fits for NN > 2 yield
R2 = 0.80 and R2 = 0.67 for small and large particles,
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FIG. 2. The median frequency, ωMed (black squares), and the infinite-time-
extrapolated median frequency (red circles), are plotted versus the average
number of nearest neighbors, NN .

respectively. Thus, the correlation is at its strongest when both
large and small particles are considered.

III. RESULTS

A. Effect of Kii on ωMed

Interestingly, that data reveal that a strong relationship
exists between ωMed and NN , despite the fact that NN does
not directly enter into any calculation of ωMed (Fig. 2). Thus,
information about NN must be implicit in Kij. In fact, the av-
erage of the diagonal elements in the stiffness matrix, Kii , has
a strong correlation with NN too (Fig. 3). This effect might be
expected, since the diagonal elements of the stiffness matrix
typically balance out the springs of neighbors pushing against
the selected particle i, i.e.,

∑
j �= iKij ≈ −Kii. Here, each spring

represents the strength of the harmonic interaction between
particle i and particle j, and Kii is essentially the curvature of
the harmonic potential well that confines particle i. Since the
sum is dominated by the nearest neighbor springs (i.e., non-
nearest neighbor spring constants are approximately zero), Kii

depends strongly on the neighbor number of particle i. Thus,
as NN increases, Kii tends to increase as well, i.e., more
neighbors lead to stronger confinement. Kii can also increase

FIG. 3. The mean of the diagonal value of the stiffness matrix, i.e., Kii ,
plotted versus the average number of nearest neighbors in the cluster, NN .

FIG. 4. The mean of the diagonal value of the stiffness matrix, i.e., Kii ,
plotted versus the total number of particles in the cluster, N.

(or decrease) without changing average NN , for example via
changes of the interparticle separation between neighboring
particles.

Conversely, Kii has relatively little correlation with the
total number of particles in a cluster, N (see Fig. 4). This
weak correlation (R2 = 0.14) is expected, since non-nearest-
neighbor spring constants are ∼0, and the sum

∑
j �= iKij only

depends strongly on NN .
We next investigated the relationship between Kii and

ωMed. The correlation between these two parameters is very
strong; the coefficient of determination is R2 = 0.92 (Fig. 5
inset). In fact, this correlation is even stronger than the one
observed between ωMed and NN (Fig. 2). Finally, we investi-
gated the correlation between

√
Kii and ωMed (Fig. 5), since

Kijei = ω2ei, where ei is the polarization of mode i. The corre-
lation between these two parameters is also very strong, with
a coefficient of determination R2 = 0.93, and the best linear fit
of

√
Kii and ωMed gives ωMed ∝ 1.09(4)

√
Kii . The latter ob-

servation implies that
√

Kii and ωMed increase with a nearly
1-to-1 ratio; note, however, the accessible dynamic range is
not large enough for a power-law fit to unambiguously distin-
guish between ωMed ∝ Kii and ωMed ∝

√
Kii , even though a

very strong correlation exists.

FIG. 5. The median vibrational frequency of cluster mode spectra versus the
square root of the mean of the diagonal value of the cluster stiffness matrix,

i.e.,
√

Kii . Black squares and red circles represent clusters with NN ≥ 2
and NN < 2, respectively. Inset: The median vibrational frequency of cluster
mode spectra versus the mean diagonal value of the cluster stiffness matrix,
i.e., Kii .
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The strong correlation between
√

Kii and ωMed is self-
consistent with the fact that ωMed is largely independent of N;
Kii is strongly correlated with NN (Fig. 3), but only weakly
correlated with N (Fig. 4). Physically, increasing the number
of nearest neighbors increases the number of bonds in a par-
ticle’s confining “cage,” and is a factor that strongly affects
Kii. However, the average number of neighbors in a cluster
is only weakly correlated with the number of particles in a
cluster, N (Fig. 1). A simple theoretical derivation of the cor-
relation between

√
Kii and ωMed is provided in the Appendix.

In essence, Kij can formally be written as the sum of a matrix,
Aij, and the identity matrix multiplied by Kii . The median fre-
quency of Kij is then the median frequency of Aij plus Kii ;
thus, ωMed ∝ Kii .

As a side note, the correlation between ωMed and Kii does
not depend on particle size. We plotted the median frequency
versus the average number of neighbors for large particles and
the average number of neighbors for small particles. The cor-
relation persists, but is weaker. The best linear fits for NN > 2
yield R2 = 0.60 and R2 = 0.82 for small and large particles,
respectively. Thus, the correlation is at its strongest when both
large and small particles are considered.

Finally, we note that the previously observed3 relation-
ship between ωMed and NN had two regimes, suggesting a
clear distinction between the effects of locally rigid struc-
tures (NN > 2) and purely floppy structures (NN < 2). In
the present experiment, however, the observed relationship
between Kii and ωMed, does not clearly separate into two
regimes and thus does not readily distinguish between the ef-
fects of these qualitatively different structures. This scenario
arises partially due to the limitations of calculating a meaning-
ful median vibrational frequency. For clusters with NN < 2,
more than half of the modes are floppy. These modes have
small frequencies, independent of Kii , which are nearly zero.
Thus, the median frequency for these clusters does not depend
on Kii .

B. Vibrational properties of individual particles

To explore local vibrational properties around each
particle, we calculate the polarization vector-weighted
frequency 〈ωiα〉 = ∑

j=1..2N ω(j ) ∗ e(j )2
i /

∑
j=1..2N e(j )2

iα ,
where e(j )2

iα is the polarization vector for mode j, particle i,
direction α (x or y). Essentially, 〈ωiα〉 measures the average
frequency in which particle i participates in direction α. 〈ωiα〉
has a strong correlation with Kii (Fig. 6). Further, the best
power-law fit is 〈ωiα〉 ∝ K

0.47(1)
ii , reminiscent of a simple

harmonic oscillator, for which ω ∝ √
K .

Surprisingly, we find that the location of a particle to have
little effect on 〈ωiα〉, i.e., 〈ωiα〉 is not qualitatively different for
particles on the cluster surface as compared to particles in the
cluster interior. In either case, 〈ωiα〉 simply depends on Kii.

IV. DISCUSSION AND SUMMARY

We have found that the median vibrational frequency,
ωMed, of a disordered cluster is predominantly set by Kii ,
the ensemble-averaged confining stiffness for particles in the

FIG. 6. The eigenvector-weighted frequency, 〈ωiα〉, plotted versus diago-
nal stiffness matrix elements, Kii. Solid red line is the best power-law fit.
The relationship between 〈ωiα〉 and Kii is reminiscent of a simple harmonic
oscillator.

cluster. Kii , in turn, has a strong correlation with NN , the av-
erage number of nearest neighbors; this latter effect produces
the previously observed3 correlations between NN and ωMed.
Thus, the present observations suggest that the fundamental
origin between NN and ωMed is a result of mean confining
stiffness in the cluster. Further, the average frequency of an
individual particle, 〈ωiα〉, increases as a power-law with Kii,
i.e., 〈ωiα〉i ∝ K

0.47(1)
ii , a relationship reminiscent of a simple

harmonic oscillator. Thus, while the total vibrational spectrum
is set by the collective nature of the disordered network, the
average vibrations of individual particles are determined pri-
marily by local stiffness.

While these results explain properties of disordered clus-
ters, it’s natural to consider how they inform other commonly
studied systems. Specifically, since the average number
of nearest neighbors and mean confining stiffness correlate
strongly with the median phonon frequency, our observations
suggest that anytime the average number of nearest neighbors
is increased in a disordered system, it is likely that the me-
dian frequency of the ensemble will increase as well. This ef-
fect should apply to different physical systems ranging from
athermal jammed packings of purely repulsive particles4, 5 to
aging glasses,15 and the observation suggests a spectroscopic
means to probe average coordination and changes thereof.

Finally, the results presented here suggest that the vi-
brational modes can be shifted to lower (higher) energy by
“doping” a glass with particles that are softer (stiffer) than av-
erage; these particles would also have especially low (high)
average frequencies. This could be accomplished in colloids
by mixing hard and soft particles, or by mixing particles with
different amounts of surface charge. For atomic or molecu-
lar glass-formers, this could be accomplished by mixing so-
called “fragile” glasses with “strong” glasses.20 Interestingly,
recent works have suggested that particles in glasses that par-
ticipate more than average in quasi-localized low frequency
modes are more prone to rearrangement.21–24 Based on our
findings, we speculate that regions containing soft “dopant”
particles may be likely to rearrange. Alternatively, doping a
glass with a small number of especially hard particles could
potentially create regions that are unlikely to rearrange. This
could potentially also be accomplished by creating regions

Downloaded 26 Feb 2013 to 130.91.117.41. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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with small NN, perhaps with laser tweezers, as previous stud-
ies found such regions to be associated with enhanced partic-
ipation in quasi-localized modes.25, 26
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APPENDIX: DERIVATION OF RELATIONSHIP
BETWEEN ωMed AND Kii

The strong relationship between Kii and ωMed can be
understood from some simple linear algebra. The eigenval-
ues of the stiffness matrix are obtained from the relation
(Kij − ω2Iij )eωl

= 0, where eωl
is the eigenvector for the lth

mode with frequency ωl and Iij is the identity matrix. If we
define a new matrix, Aij = Kij − cIij, where c is a chosen
scalar, we can then write (Kij − ω2

l Iij )eωl
= (Aij + cIij

− ω2
l Iij )eωl

= (Aij − [ω2
l − c]Iij )eωl

= (Aij − λlIij )eωl
,

where λl is the lth eigenvalue of Aij (just as ω2
l is the lth

eigenvalue of Kij. Thus, λl = ω2
l − c and ωl = √

λl + c. Note
that while ωl must be positive, λl may be positive or negative,
depending on the chosen value of c. However, what value
should be selected for c?

The median of ω is the Nth mode (there are 2N degrees
of freedom), ωN, and ωN = √

λN + c. If c is chosen such
that c ≈ ω2

N , then λN is small and ωN only depends strongly
on c. For example, if we set c = ω2

N , then ωN = √
λN + c

=
√

λN + ω2
N , so λN trivially is 0.

In an attempt to identify an interesting or useful value
for c, we next set c = Kii . We have already seen that Kii

FIG. 7. The eigenvalues, λ, of matrix Aij = Kij − KiiIij , normalized by the
mean of the diagonal value of the stiffness matrix, i.e., Kii , and plotted versus
the number of neighbors NN.

correlates with ωMed, making it a natural choice. Further,
the best linear fit between

√
Kii and ωMed has a slope of

nearly 1 (1.09(4)), implying that λN is likely small compared
to

√
Kii . Placing c = Kii into the formula above gives us

ωMed =
√

λMed + Kii . λMed can be calculated from the ma-
trix Aij = Kij − KiiIij (Fig. 7). There is little correlation be-
tween NN and λ, and λ is smaller in magnitude than ω2

Med

(Fig. 7). This relationship should also be expected as Fig. 5
shows that Kii is typically larger than ω2

Med , which, in turn,
requires that λ is negative.

While we have experimentally demonstrated that λMed is
small compared to Kii , could we have predicted this relation-
ship based on the overall shape of Kij? If Aij were a random
matrix, its median eigenvalue would be 0, according to the
Wigner semi-circle law.27 Of course, Aij is not a truly random
matrix. Thus, further study is required to elucidate the origin
of the relationship between Kii and ωMed.
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