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The decay and annihilation cross sections of dark matter particles may depend on the value of a

chameleonic scalar field that both evolves cosmologically and takes different values depending on the

local matter density. This possibility introduces a separation between the physics relevant for freeze-out

and that responsible for dynamics and detection in the late universe. We investigate how such dark sector

interactions might be implemented in a particle physics Lagrangian and consider how current and

upcoming observations and experiments bound such dark matter candidates. A specific simple model

allows for an increase in the annihilation cross section by a factor of 106 between freeze-out and today,

while more complicated models should also allow for scattering cross sections near the astrophysical

bounds.

DOI: 10.1103/PhysRevD.86.123529 PACS numbers: 95.35.+d

I. INTRODUCTION

The particle physics properties of dark matter are impor-
tant for three distinct aspects of its behavior: they determine
how the initial abundance of dark matter arose, they govern
how the dark matter distribution evolves and influences
structure formation, and they delineate the possible ways
inwhich darkmattermay be detected. Of course, these three
roles are not typically independent, since they all depend on
the prescribed interactions between the dark matter parti-
cles themselves and also between dark matter and the
Standard Model. These connections often provide a power-
ful motivation for particular dark matter candidates—for
example, the freeze-out abundance of weakly interacting
massive particle points to new physics at the weak scale,
which in turn leads to an attractive connection between dark
matter and proposed solutions to the hierarchy problem,
such as weak-scale supersymmetry.

The idea that dark matter could have interactions of
astrophysically interesting magnitude has received a good
amount of attention [1–7], motivated in part by purported
discrepancies between the standard �CDM model and
observations of structure on small scales (as described in
[8], for example). While most approaches of this form
concentrate on giving an appreciable scattering cross-
section to the dark matter, it is also interesting to consider
enhanced annihilation cross sections [9].

One obstacle to simple implementations of this idea is
that the required cross section for a thermal relic to obtain
the right relic abundance is close to the weak scale, far too
small to be relevant to dynamics in the late Universe. In
this paper we explore the idea that the dark matter cross

section might be much larger now than it was at freeze-out,
due to the evolution of a background field.
In a cosmological context, the evolution of background

fields can assert a significant influence on the properties of
dark matter as a function of spatial location or cosmic
epoch [10–19]. A straightforward way to achieve such
effects is to invoke a light scalar field that interacts with
dark matter and/or ordinary matter as well as through its
own potential, and whose expectation value feeds into the
dark-matter properties. A popular scenario along these
lines is the ‘‘chameleon mechanism,’’ which acts to screen
light, cosmologically relevant degrees of freedom to pro-
tect them from precision local tests of gravity [20–24].
In this paper we investigate dark matter that interacts

through a gauge symmetry with a coupling constant that
depends on a chameleonlike scalar field. (The effects of
chameleon vector bosons on laboratory experiments were
considered in [25].) Just as the properties of a cosmologically
relevant scalar can be drastically modified in the presence of
local density inhomogeneities or after evolving over cosmic
time, so the interactions of dark matter may be modified. We
are able to find a model in which the late-time interaction
strength is considerably higher than that at freeze-out—
although admittedly, this behavior does not seem generic.
We begin by reexamining the conventional story of dark

matter freeze-out according to the Boltzmann equation, but
with the additional ingredient that the dark matter proper-
ties are evolving with time. We then look at specific models
featuring a Dirac dark matter particle and a U(1) gauge
symmetry that is spontaneously broken, along with a cha-
meleon scalar field. We study the cosmological evolution
of this coupled system and calculate the dark matter prop-
erties, including annihilation and scattering cross sections.
Finally, we exhibit numerical solutions to a specific model,
showing that the annihilation cross section can increase
substantially during cosmic evolution.
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II. THE GENERAL PICTURE: EVOLVING DARK
MATTER IN THE EARLY UNIVERSE

Before discussing specific models, let us first consider
how the usual story of dark matter freeze-out might be
modified if the annihilation cross section depends on the
dynamics of another field. In the next section, we will
explore Lagrangians that couple the dark matter to a scalar
field that affects its interaction cross sections. For simplic-
ity we work in a flat Friedmann-Robertson-Walker (FRW)
universe, described by the metric ds2 ¼ �dt2 þ a2ðtÞ�
ðdx2 þ dy2 þ dz2Þ, with scale factor aðtÞ.

The decoupling of dark matter takes place in the early
Universe in the radiation-dominated regime, in which par-
ticles with masses m� T are the dominant component of
the cosmic energy budget. To a good approximation, we
may therefore ignore contributions from nonrelativistic
species in thermal equilibrium with the radiation and ap-
proximate the energy density as

�R ¼ �2

30
g�T4 (1)

and the entropy density as

s ¼ 2�2

45
g�ST3; (2)

where, as usual,

g� ¼
X

i¼bosons
gi

�
Ti

T

�
4 þ 7

8

X
i¼fermions

gi

�
Ti

T

�
4

(3)

g�S ¼
X

i¼bosons
gi

�
Ti

T

�
3 þ 7

8

X
i¼fermions

gi

�
Ti

T

�
3

(4)

and gi is the number of internal degrees of freedom for
particle species i.

For T * 300 GeV, g�S ¼ g� ¼ 106:75, which includes
all particles in the Standard Model. When 100 MeV *
T * 1 MeV, the electron and positron are relativistic and
so g�S ¼ g� ¼ 10:75. At the temperature of the CMB
today, T0 ¼ 2:725 K, g�S;0 ¼ 3:91, and g�;0 ¼ 3:36.

Consider a dark sector that was in thermal equilibrium
with the visible sector at some very high temperature scale,
below which they decouple effectively enough to consider
each sector separately to be in equilibrium. The visible
sector is at temperature T with entropy density sðTÞ, while
the dark sector is at temperature Td with entropy density
sdðTdÞ. The expansion of the Universe is governed by both
sectors with

gtot� ðTÞ ¼ g�ðTÞ þ gd�ðTdÞ
�
Td

T

�
4
; (5)

but quantities in the dark sector (for example, the dark
matter annihilation cross section and number density) are
determined by Td [26].

Since the entropy in each sector is conserved indepen-
dently, the assumption that the two sectors were in equi-
librium at some unification scale at time tu allows us to
express the dark bath temperature in terms of the visible
bath temperature at some later time t via

gd�SðtÞ
g�SðtÞ

T3
dðtÞ

T3ðtÞ ¼
gd�SðtuÞ
g�SðtuÞ : (6)

All Standard Model particles contribute at tu to give
g�SðtuÞ ¼ 106:75, and all dark particles contribute to
gd�SðtuÞ. In what follows, we will use the temperature of

the visible sector and convert Td to T as needed. For
convenience we write

�ðtÞ ¼ TdðtÞ
TðtÞ ¼

�
g�SðtÞ
gd�SðtÞ

gd�SðtuÞ
g�SðtuÞ

�
1=3

: (7)

The success of big bang nucleosynthesis (BBN) and the
structure of the cosmic microwave background (CMB)
power spectrum place tight bounds on any new relativistic
degrees of freedom in the dark sector. The limit on the
effective number of light neutrino species is N� ¼ 3:24�
1:2 at the 95% confidence level [27], which gives

gd��4ðtBBNÞ ¼ 7

8
� 2� ðN�� 3Þ � 2:52 ð95% confidenceÞ

(8)

for three light SM neutrino species [28]. The 5-year
WMAP data [29] also bounds the number of neutrino
species by N� ¼ 4:4� 1:5 at the 65% confidence level,
and the 7-year WMAP data [30] places a tighter lower limit
of N� > 2:7 at the 95% confidence level.

A. The Boltzmann equation

Let us assume the dark matter c is a stable particle that
annihilates with a thermalized annihilation cross section
h�vi. The general Boltzmann equation governing the num-
ber density n of a particle of mass m is

_nþ 3Hnþ h�viðn2 � n2EQÞ ¼ 0; (9)

where H is the Hubble parameter

H ¼ _a

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
�G�R

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�3Ggtot�

45

s
T2 (10)

and nEQ is the equilibrium number density

nEQ � g

ð2�Þ3
Z

d3 ~pe�E=Td ¼ g

2�2
m2�TK2

�
m

�T

�
; (11)

where K2 is the modified Bessel function of the second
kind of order two. Generalizing the traditional treatment,
we allow for the possibility that the mass of the dark matter
~mc ð�Þ is a function of a real scalar chameleon field � and

denote �-dependent masses and couplings with a tilde.
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It is convenient to scale out the effects of the expansion
of the universe by defining

Y � nc

s
(12)

(nc ðxÞ and YðxÞ are taken to be independent of �) and to

use a new independent variable, related to the cosmic time
t through

xðtÞ � mT

TðtÞ ; (13)

where mT is some constant mass scale. In the usual deri-
vation,mT is chosen to coincide with the dark matter mass;
however, since our dark matter has varying mass, we use
this constant parameter instead. Defining

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
45

4�3G

s
1

mT

(14)

allows us to write

dx

dt
¼ mT

bx

ffiffiffiffiffiffiffi
gtot�

q
; (15)

which can be used to rewrite the Boltzmann equation for
the dark matter as

Y0ðxÞ þ B

x2
ðY2 � Y2

EQÞ ¼ 0: (16)

Here a prime denotes a derivative with respect to x, and

B ¼ h�vi 2�
2

45

g�Sffiffiffiffiffiffiffi
gtot�

p bm2
T; (17)

which may depend implicitly on � in our model via a �
dependence in the cross section. Note that, in terms of
these new variables, the equilibrium term is

YEQ ¼ 45g

ð2�2Þ2g�S
�
x
~mc ð�Þ
mT

�
2
�K2

�
x

�

~mc ð�Þ
mT

�
; (18)

with g ¼ 2 for Dirac dark matter.
It remains, at this level, to specify YðxiÞ, the initial

condition for Y. We consider � � Y � YEQ, the departure

from equilibrium [31], which obeys

�0 ¼ �Y0EQ �
B

x2
�ð2YEQ þ �Þ: (19)

At early times (1< x� xf), Y tracks YEQ extremely

closely such that � and j�0j are small. Note that in the
nonrelativistic approximation, T � ~mc ð�Þ,

YEQ 	 x3=2e�ðx=�Þð ~mc ð�Þ=mT Þ; (20)

and so Y0EQ=YEQ � � ~mc ð�Þ=�mT and �0 � 0. Thus, the

required initial condition is

YðxiÞ ¼ YEQðxiÞ þ
x2i ~mc ð�iÞ
2B�mT

; (21)

where Bð�iÞ and ~mc ð�iÞ are evaluated at the initial value

�i ¼ �ðxiÞ.
After the freeze-out value xf, YðxÞ will asymptotically

approach a constant value Y1. The energy density of non-
relativistic dark matter today is then

�0 ¼ ~mc ð�0Þnc ðx0Þ ¼ ~mc ð�0ÞY1s0
¼ ~mc ð�0ÞY1 2�2

45
g�S;0T3

0 : (22)

Having generalized the usual treatment of dark matter as
a fluid to the case in which there is a chameleon field
determining the dark matter properties, we now turn to
specific examples of particle physics models in which these
phenomena might arise.

III. GAUGED DARK MATTER

Consider dark matter to consist of a Dirac fermion c ,
charged under a dark U(1) gauge group with gauge boson
A�, and a dark Higgs field� that spontaneously breaks the

U(1). We also introduce a chameleonlike field � that is a
real scalar field with properties that depend on the dark
matter energy density. The chameleon couples to the other
particles in the dark sector by entering into the dark matter

mass ~mc ð�Þ, the U(1) coupling ~fð�Þ, and other couplings

described below. We consider only an isolated dark sector
so that we may investigate the properties of this simple
model without the complications of coupling to the visible
sector.

A. A toy model for varying coupling

As a first step, let us consider the QED Lagrangian with
a real scalar field �, but in which we allow the coupling
constant e to vary as a function of spacetime [32].
Specifically, it can vary as a function of �. Let us write

the new coupling as ~fð�Þ. Thus,

LQED� ¼ � 1

2
@��@��� Vð�Þ � 1

4~f2ð�ÞF
��F��

þ i �c 6@c �mc
�c c � �c��cA�; (23)

where F�� ¼ @�A� � @�A�. Making the redefinition

A� ! ~fð�ÞA�, we obtain

LQED� ¼ � 1

2
@��@��� Vð�Þ þ i �c 6@c

�mc
�c c � ~fð�Þ �c��cA�

� 1

4~f2
½@�ð~fA�Þ � @�ð~fA�Þ
2: (24)

Both Lagrangians are equivalent, but now the gauge trans-
formation reads

~fð�ÞA� ! ~fð�ÞA� þ @�! (25)
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c ! e�i!c (26)

�c ! eþi! �c : (27)

If we can neglect factors of ð@� ~f=~fÞ compared to all other

mass scales in the theory (except the Planck mass), then the
Lagrangian simplifies to the approximately gauge-
invariant form

LQED� � � 1

2
@��@��� Vð�Þ � 1

4
F��F��

þ i �c 6@c �mc
�c c � ~fð�Þ �cAc (28)

with U(1) current

j�ðxÞ ¼ ~fð�Þ �c��c : (29)

B. The cosmological equations of motion

We now include gravity and a complex dark Higgs field
� to break the U(1) symmetry and give the dark gauge field
a mass. We allow for a varying dark matter mass by using
the effective mass parameter ~mc ð�Þ, and in the spirit of

effective field theory, we also allow all couplings [not just

the U(1) coupling ~fð�Þ] to depend on �.

Neglecting factors of ð@� ~f=~fÞ, the action is then

S �
Z

d4x
ffiffiffiffiffiffiffi�gp �

R
16�G

� 1

2
g��r��r��� Vð�Þ

� ðD��ÞyD��� V0ð�Þ � 1

4
F��F�� þ i �c 6Dc

� ~mc ð�Þ �c c � ~	c ð�Þð�þ�yÞ �c c

�
; (30)

where the gauge covariant derivative is D� ¼ r� þ
i~fð�ÞA�. The equations of motion for the fields then

follow as

ði 6D� ~mc ð�Þ � ~	c ð�Þð�þ�yÞÞc ¼ 0 (31)

h�� V 0ð�Þ þ ~m0c ð�Þ �c c � ~f0ð�Þ �c 6Ac
� ~	0c ð�Þð�þ�yÞ �c c ¼ 0; (32)

where a prime denotes differentiation with respect to �.
Let us assume that the universe is dark-charge symmetric,
so the average charge current density is negligible com-
pared to the dark matter number density [see (37) below].

Thus, the term proportional to ~f0=~f should be small com-

pared to the one containing ~m0= ~m, given that ~f0=~f	 ~m0= ~m
to within a few orders of magnitude—a condition we will
enforce later. We may write this last equation as

h�� V 0ð�Þ þ ~m0c ð�Þ �c c � ~	0c ð�Þð�þ�yÞ �c c � 0:

(33)

We will arrange for the dark Higgs to have a sufficiently
large mass that its perturbations are negligible and simply

replace � by h�i in the equations of motion. The vacuum
expectation value (VEV) generates an additional mass term
for c , but we can redefine ~mc ð�Þ to absorb this term. We

then have

ði 6D� ~mc ð�ÞÞc � 0 (34a)

h�� V 0ð�Þ þ ~m0c ð�Þ �c c � 0: (34b)

We calculate the energy-momentum tensor for c by
varying the action with respect to the metric. Taking care
to correctly handle the nontrivial metric dependence of the
covariant derivative [33], we have

Tðc Þ�� ¼ i

2
½ �c�ð�r�Þc � ðrð� �c Þ��Þc 

� ~fð�Þ �c�ð�A�Þc ; (35)

where we have integrated by parts and used the field
equation of motion. Taking the trace, we obtain

g��Tðc Þ�� ¼ i

2
½ �c 6rc � �c 6r

 
c 
 � ~fð�Þ �c 6Ac

¼ 1

2
½ �c ið 6r þ i~fð�Þ6AÞc � �c ið 6r

 
� i~fð�Þ6AÞc 


¼ ~mc ð�Þ �c c ; (36)

where, again, we have used the Dirac equation for c and �c
to obtain the last line. If we model the dark matter as
nonrelativistic dust, its pressure is zero and so the trace
of the stress tensor is approximately given by ��c . Thus,

�c ¼ � ~mc ð�Þ �c c : (37)

As a final step in this section, we use this result to rewrite
the � equation of motion (34b) as

h�� V 0effð�Þ ¼ 0; (38)

where the effective potential is

Veff ¼ Vð�Þ þ ~mc ð�Þnc

¼ Vð�Þ þ ~mc ð�ÞYðxÞ 2�
2

45
g�S

�
mT

x

�
3
: (39)

IV. CHAMELEON BEHAVIOR

With a complete model in place, we now turn to a
detailed investigation of the dynamics. We first examine
the chameleon field, which is central to the effect we seek.
Assuming that � is homogeneous and isotropic, so that we
can neglect spatial derivatives in h�, the equation of
motion becomes

€�þ 3H _�þ V0ð�Þ þ ~m0c ð�Þnc ¼ 0: (40)

It is convenient for seeking numerical solutions to work
with a dimensionless variable,
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P � �

mT

; (41)

and to use x as our independent variable. The equation of
motion becomes

P00ðxÞ þ 2

x
P0ðxÞ þ b2x2

m3
Tg

tot�

dV

d�

���������¼PmT

þ 2�2b2

45x

g�S
gtot�

d ~mc

d�

���������¼PmT

YðxÞ ¼ 0: (42)

We choose the initial conditions for � to begin at the
minimum of its effective potential and to move with the
same initial velocity as the changing minimum. The mini-
mum �min solves the equation V 0effð�minÞ ¼ 0, so one of

the initial conditions for this equation can be obtained by
evaluating this expression at xi, using the relevant value for
YðxiÞ from (21). Furthermore, since�min is a function of x,
the initial velocity is found simply by taking a derivative
and using the Boltzmann equation to obtain the relevant
value for Y0ðxiÞ.

A. Exponential potentials

Our goal here is to work out a single example model that
exhibits the effects we are investigating, while at the same
time remaining compatible with experimental constraints.
For simplicity we will choose exponential functions, which
also have the nice feature that observables approach a fixed
asymptotic value at late times.

With these comments in mind, we therefore choose the
form of the effective potential and U(1) coupling to be

Vð�Þ ¼ �4e��=m1 (43a)

~mc ð�Þ ¼ mc ð1� A2e
��=m2Þ (43b)

~fð�Þ ¼ eð1þ A3e
��=m3Þ�3; (43c)

where � and mc are constants with dimensions of mass,

and e and A2, A3 > 0 are dimensionless. The term with A2

is necessary to incorporate the properties of c into the
equation of motion for �. The possibility for A3 ¼ 0
(constant gauge coupling) is viable, but we are specifically
interested in increasing the cross section for c as the

Universe expands. We choose this form for ~f so that both
the annihilation and scattering cross sections, which we
calculate below, increase with time.

The largest energies of the particles in our theory are of
order mc for nonrelativistic dark matter, since all other

particles should be lighter than the dark matter to allow for
annihilation. We, therefore, require m2, m3 � mc to sup-

press higher-dimensional operators involving derivatives

of ~mc and ~f when we expand the action. Additionally, we

need m1 * � to suppress higher-dimensional operators in
the self-couplings of �.

The effective potential in (39) is now

Veffð�Þ ¼ �4e��=m1 þmc ð1� A2e
��=m2Þ

� YðxÞ 2�
2

45
g�S

�
mT

x

�
3
; (44)

possessing a critical point at

�min ¼ � m1m2

m2 �m1

ln

�
A2

m1

m2

mcm
3
T

�4

Y

x3

�
; (45)

which is real and finite. In order to generate a mass for the
excitations of �, we require this critical point to be a
minimum, which holds for

m2 >m1: (46)

The minimum moves with a speed

d�min

dx
¼ � m1m2

m2 �m1

�
Y
dY

dx
� 3

x

�
; (47)

which is positive (�min increases with x). Finally, we
identify the initial conditions for �,

�ðxiÞ ¼ � m1m2

m2 �m1

ln

�
A2

m1

m2

mcm
3
T

�4

YðxiÞ
x3i

�
; (48)

d�

dx
ðxiÞ¼� m1m2

m2�m1

�
YðxiÞdYdx ðxiÞ�

3

xi

�

¼ m1m2

m2�m1

�
3

xi
þ ~mc

�mT

YEQðxiÞþðx2i ~mc Þ=ð4B�mTÞ
YEQðxiÞþðx2i ~mc Þ=ð2B�mTÞ

�
:

(49)

In order to ensure ~mc > 0, we require

�>m2 lnðA2Þ (50)

for all � relevant for our calculation.

B. An attractor solution

A particularly interesting and simple possible evolution
for the chameleon field is for it to begin at the minimum
of the effective potential and then to adiabatically track
this minimum as it evolves cosmologically. This attractor
solution [34] is achieved if the physical mass of the cha-
meleon satisfies

m�;ph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V00effð�minÞ

q
� H: (51)

If (51) holds during radiation dominance, when

HR ¼ mT

b

ffiffiffiffiffiffiffi
gtot�

q
x�2; (52)

then we can avoid solving the coupled differential
equations (16) and (40) and simply use the expression for
�min for the evolution of �. Similarly, if (51) holds during
matter domination, when
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HM ¼ H0

�
x0
x

�
3=2

; (53)

then we can easily determine �0, the value of � today,
which is needed to calculate the values of the �-dependent
parameters today.

Under the approximation that m2 � m1,

~m�;ph �
�
A2

2�2

45

mcm
3
T

m1m2

�
1=2

Y1=2g1=2�S x�3=2: (54)

It follows that HR decreases more rapidly than ~m�;ph with

time, whereas during matter domination, HM and ~m�;ph

have the same x dependence. We shall verify later that
these attractor solutions exist by numerically solving all
the relevant equations of motion.

V. PARTICLE PHYSICS INTERACTIONS
AND CONSTRAINTS

In the adiabatic regime described above, we now have
all the ingredients necessary to understand the cosmologi-
cal evolutions of the fields. We next turn to the particle
physics phenomenology of the model. To do this, we
rewrite the action (30) without gravity to give the
Lagrangian

L � � 1

2
@��@��� Vð�Þ � ðD��ÞyðD��Þ � V0ð�Þ

� 1

4
F��F�� þ i �c 6@c � ~mc ð�Þ �c c

� ~fð�Þ �c 6Ac � ~	c ð�Þð�þ�yÞ �c c ; (55)

with D� ¼ @� þ i~fð�ÞA�.

A. Breaking the dark Uð1Þ symmetry

The potential of the dark Higgs field� is chosen so that
this field acquires a vacuum expectation value (VEV)

h0j�ðxÞj0i ¼ vffiffiffi
2
p : (56)

Decomposing � into two real scalar fields via

�ðxÞ ¼ 1ffiffiffi
2
p ðvþ hðxÞÞe�i
ðxÞ=v; (57)

we can then use unitary gauge 
ðxÞ ¼ 0 to rewrite the
kinetic term for � as

�ðD��ÞyD�� ¼ � 1

2
@�h@�h� 1

2
~f2ð�Þðvþ hÞ2A�A�:

(58)

Thus, the Goldstone boson is eaten to give the dark Uð1Þ
gauge boson A� a mass ~MAð�Þ ¼ ~fð�Þv. The Yukawa

term generates a contribution to the mass of c , but since
c already has a Dirac mass, we need not rely on the dark
Higgs to be the sole source of the c mass. We, therefore,
absorb the dark Higgs contribution into the definition of
~mc and retain the freedom to choose this mass scale and

the coupling ~	c ð�Þ separately.
A typical choice for the pure dark Higgs potential

V0ð�Þ is

V0ð�Þ ¼ 1

4
~	hð�Þ

�
�y�� 1

2
v2
�
2
; (59)

which, when expanded about the VEV, yields

V0ðhÞ ¼ 1

4
~	hð�Þv2h2 þ 1

4
~	hð�Þvh3 þ 1

16
~	hð�Þh4 (60)

The mass of the physical dark Higgs particle h is therefore

~mhð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~	hð�Þ
2

s
v; (61)

and we see that the masses of the A and h fields are then
related by

~MAð�Þ ¼ ~fð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

~	hð�Þ

s
~mhð�Þ: (62)

Since the relative sizes of ~fð�Þ and ~	hð�Þ are unrestricted,
in principle the relative masses of A and h are not fixed.
However, in order to simplify the analysis, we will impose
the hierarchy ~mhð�Þ> 2 ~MAð�Þ for all relevant� so that h
has a tree-level decay channel to A.
Our Lagrangian at this stage is then

L ¼ � 1

2
@��@��� Vð�Þ � 1

2
@�h@

�h� 1

4
~	hð�Þv2h2

� 1

4
~	hð�Þvh3 1

16
~	hð�Þh4 � 1

4
F�vF�v

� 1

2
~M2
Að�ÞA�A� þ i �c 6@c � ~mc ð�Þ �c c

� ~fð�Þ �c��A�c � 1

4
½2~f2ð�Þ
h2A�A�

� 1

2
½2~fð�Þ ~MAð�Þ
hA�A� �

ffiffiffi
2
p

~	c ð�Þh �c c : (63)

What remains is to incorporate the fact that � is adia-
batically tracking the minimum of its effective potential.
To achieve this, we expand �ðxÞ ¼ �cðtÞ þ �ðxÞ around
its classical value and recall thatm2 andm3 are sufficiently
large to suppress nonrelevant terms ofOð�Þ or higher. The
Lagrangian (63) then becomes
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L ¼ � 1

2
@��@

��� 1

2
@�h@

�h� 1

4
F��F�� þ i �c 6@c �

�
Vð�cÞ þ 1

2
V 00ð�cÞ�2 þOð�3Þ

�
� 1

4
½~	hð�cÞ þOð�Þ
v2h2

� 1

6

�
3

2
~	hð�cÞ þOð�Þ

�
vh3 � 1

24

�
3

2
~	hð�cÞ þOð�Þ

�
h4 � 1

2
½ ~M2

Að�cÞ þOð�Þ
A�A� � ½~fð�cÞ

þOð�Þ
 �c��A�c � ½ ~mc ð�cÞ þ ~m0c ð�cÞ�þOð�2Þ
 �c c � ffiffiffi
2
p ½~	c ð�cÞ þOð�Þ
h �c c

� 1

4
½2~f2ð�cÞ þOð�Þ
h2A�A� � 1

2
½2~fð�cÞ ~MAð�cÞ þOð�Þ
hA�A�: (64)

B. The dark matter annihilation cross section

Our central goal is to understand how the dependence of
dark matter cross sections on the chameleon field changes
the standard dark matter creation, evolution, and detection
story. To this end, we next turn to the calculation of the
dark matter annihilation cross section. The relevant
Feynman rules can be found in the Appendix.

We assume that the dark matter is the heaviest particle in
the dark sector, such that ~mc � ~mh, ~MA. Then, the lowest

order, tree-level processes for 2! 2 dark matter annihila-
tion are shown in Fig. 1, and their amplitudes are

M1 ¼ i��
10�

�
20 �v2½~f2ð�cÞð���c ðp1 � k01Þ��

þ ���c ðp1 � k02Þ��Þ þ
ffiffiffi
2
p

~fð�cÞ~	c ð�cÞ ~MAð�cÞ
� �hðp1 þ p2Þg��
u1 (65)

M2 ¼ i �v2

�
2~	2

c ð�cÞð�c ðp1 � k01Þ þ�c ðp1 � k02ÞÞ

þ 3ffiffiffi
2
p ~	c ð�cÞ~	hð�cÞv�hðp1 þ p2Þ

�
u1 (66)

M3 ¼ i�10� �v2½
ffiffiffi
2
p

~fð�cÞ~	c ð�cÞð�c ðp1 � k01Þ��

þ ���c ðp1 � k01ÞÞ þ ~f2ð�cÞ ~MAð�cÞ
� ���

��
A ðp1 þ p2Þ
u1: (67)

Working in the center-of-mass frame and in the nonrela-
tivistic limit we then obtain

�1v �
~f4ð�cÞ

16� ~m2
c ð�cÞ

(68)

�2v �
15~	4

c ð�cÞ
128� ~m2

c ð�cÞ
v2 (69)

�3v �
~f2ð�cÞ~	2

c ð�cÞ
8� ~M2

Að�cÞ
¼

~	2
c ð�cÞ
8�v2

; (70)

where v is the relative velocity of the incoming particles.
The interaction of main interest is between the dark

matter and the gauge boson mediator. The dark Higgs’s
primary role is to break the U(1) symmetry to give the
mediator a mass, and most of its particle interactions can be
neglected. The contribution �2 is p wave and thus

subdominant to the other processes, which are s wave.
Also, the diagrams involving exchanges of h in M1 and
M2 do not significantly contribute. Thus, the dark Higgs
has the opportunity to influence dark matter annihilations

only via �3. Let us insist that the Yukawa coupling ~	c is

small enough (recall that the dark matter does not rely on
this coupling to obtain a mass) such that �3 can be safely
ignored. In this case only �1 remains and, since it is an
s-wave cross section, it is a simple task to carry out the
thermal averaging required in the Boltzmann equation.
Note, however, that if thermal averaging is needed (follow-
ing Ref. [35]), we must use the dark sector temperature Td

in the expression

h�vi ¼ 1

ðnEQc ðTdÞÞ2
g2

2ð2�Þ4

�
Z 1
4 ~m2

c

ds
ffiffiffi
s
p

TdK1

� ffiffiffi
s
p
Td

�
ðs� 4 ~m2

c Þ�ðsÞ: (71)

FIG. 1. Tree-level c annihilation diagrams. The massive vec-
tor boson A is a wavy line, and the scalar h is a dashed line.
Annihilations to Aþ A and hþ h via � exchange and annihi-
lations to final-state � particles are suppressed by large-mass
factors.
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C. Corrections to the cross section

We are interested in nonrelativistic dark matter, for
which the relative velocities are much less than the speed
of light. It is well known that for sufficiently low velocities,
nonperturbative effects can have a large impact on the
annihilation and scattering cross sections; and ladder dia-
grams, such as the ones shown in Fig. 2, must be included
in the calculation.

1. The annihilation cross section

In the case of annihilation, performing this summation is
equivalent to solving the Schrödinger equation in quantum
mechanical scattering theory [36]. This yields the so-called
‘‘Sommerfeld enhancement’’ [37] of the annihilation cross
section (for detailed reviews in the context of dark matter,
see, for example, [38–40]). We consider the annihilation
cross section �0 for a pointlike interaction near r ¼ 0 in
perturbative field theory. For small velocities, the attractive
Yukawa potential

VðrÞ ¼ � ~

r
e� ~MAr; (72)

where ~ ¼ ~f2ð�cÞ=4�, distorts the wave function at the
origin and cannot be ignored. Including the potential will
enhance the annihilation cross section to � ¼ �0Sk by the
Sommerfeld enhancement factor Sk. Let us define the
dimensionless parameters

�v ¼ v

~
(73)

�A ¼
~MA

~ ~mc

; (74)

where v is the velocity of each annihilating particle in
the center of mass frame. In the case of a massless gauge
boson with a Coulomb potential, it is possible to solve
the Schrödinger equation analytically to obtain the
Sommerfeld enhancement.

For a massive gauge boson, the situation is more com-
plicated, since the attractive potential has a finite range that
limits the enhancement from being arbitrarily large for
very low velocities. In the regime �A � �2v, we recover
the Coulomb case. At the crossover point �v 	 �A (or
equivalently ~mcv	 ~MA), the de Broglie wavelength of

the dark matter becomes comparable to the range of the
interaction. At lower velocities with �A � �2v, the Yukawa
potential cannot be ignored. As v! 0, the de Broglie
wavelength increases to a value larger than the interaction
range, and thus the enhancement saturates at

Sk 	 1

�A
	 ~ ~MA

~mc

: (75)

Furthermore, zero-energy bound states may form for cer-
tain values of �A, giving resonance regions with larger
enhancements	�A=�2v until they are cut off by finite width
effects. In the early Universe, freeze-out typically occurs at
velocities vf 	 0:3, so that �v > 1 and the Sommerfeld

enhancement can be ignored. Note that there are no
enhancements for �A > 1.
To find the thermally averaged cross section, taking into

account the Sommerfeld enhancement, we integrate Sk
using a Maxwellian distribution

FðvÞ ¼ 4

�v3
ffiffiffiffi
�
p v2e�v2= �v2

; (76)

where �v is the characteristic velocity of the astrophysical
system of interest. Thus,

h�vi ¼ ð�vÞs-wavehSki (77)

hSki ¼
Z 1
0

dvFðvÞSk: (78)

For the purposes of this paper, we choose to work in the
�A > 1 regime. This has two consequences. Practically, the
calculation becomes much simpler, since we need not
worry about the Sommerfeld enhancement at all. In addi-
tion, by deemphasizing the Sommerfeld enhancement, we
clarify the extent to which the novel effects developed in
this paper can alone increase the cross section over time in
areas of parameter space that the Sommerfeld enhance-
ment cannot reach.

2. The scattering cross section

To find the scattering cross section, we can use non-
relativistic quantum mechanics and sum over partial
waves. The total cross section is

� ¼ 4�

k2
X1
l¼0
ð2lþ 1Þsin2�l; (79)

although a more useful quantity to compare to observatio-
nal constraints is the transfer cross section

�tr ¼
Z

d�ð1� cos�Þ d�
d�

¼ 4�

k2
X
l

½ð2lþ 1Þsin2�l � 2ðlþ 1Þ

� sin�l sin�lþ1 cosð�lþ1 � �lÞ
; (80)

FIG. 2. Ladder diagrams for dark matter annihilation (left) and
scattering (right).
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which controls the rate at which energy is transferred
between colliding particles. Following [41], analytic esti-
mates for the cross section are

� ¼ 4�

�2v2
rel

ð1þ LÞ2 (81)

�tr ¼ 4�

�2v2
rel

ð1þ LÞ; (82)

where L ¼ �vrelbmax is the largest angular momentum
needed to describe the interaction between two particles
of reduced mass � ¼ ~mc =2 that travel with a relative

velocity vrel and maximum relevant impact parameter
bmax. Note that these estimates are only valid for L * 1.
We estimate the impact parameter by solving

1

2
�v2

rel ¼
~f2=4�

bmax

e� ~MAbmax : (83)

If we work in the �A > 1 regime to avoid Sommerfeld
enhancements, then we will also tend to avoid enhance-
ments to the scattering cross section and can expect to be
working in the Born limit. Simply taking the nonrelativistic
limit of the perturbative cross section gives

� ¼
~f4ð�cÞ ~m2

c ð�cÞ
8� ~M4

Að�cÞ
¼ ~m2

c ð�cÞ
8�v4

: (84)

Assuming that dark matter self-interactions are not needed
to explain the structure of dwarf galaxies [41], we use a
conservative bound [42] (see also [6,7]),

�= ~mc < 0:1 cm2=g; (85)

for characteristic velocities of 10 km=s. As we mention
below, it would not be difficult to find parameters that
violate this bound.

In the usual treatment of dark matter, constraints such as
this one, obtained from present-day observations, can be

directly applied to bounds on physics at freeze-out or
before. It is important to remember here that, in our model,
the evolution of the chameleon field means that such a
connection is far less direct, and such bounds typically do
not apply in the early Universe.

D. Dark decays

The dark Higgs h and the dark gauge boson A are
allowed to decay. As mentioned earlier, we assume
~mhð�cÞ> 2 ~MAð�cÞ so that h has a tree-level decay chan-
nel to A, as shown in Fig. 3. Its decay width is then

�h ¼
~f2ð�cÞ
32�

~m3
hð�cÞ

~M2
Að�cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 ~M2

Að�cÞ
~m2
hð�cÞ

vuut

�
�
1� 4 ~M2

Að�cÞ
~m2
hð�cÞ

þ 12
~M4
Að�cÞ

~m4
hð�cÞ

�
: (86)

Although the A particle is allowed to decay to � parti-
cles, which are substantially smaller in mass, this occurs
through a 1-fermion-loop process, as shown in Fig. 4. The
amplitude is also suppressed by two factors of m2 from the
Oð�2Þ term in the expansion of ~mc ð�Þ. The nonzero

amplitude in the limit of ~m� � ~MA, ~mc is

M ¼ � 4i�2 ~fð ~m0c Þ2
~M2
A

k02 � ��ðpÞ½4 ~mc
~MAC0½p2; ðp� k02Þ2;

k22; ~mc ; ~mc ; ~mc 
 þ ð8 ~m2
c þ ~M2

AÞB0½p2; ~mc ; ~mc 

� 8 ~m2

cB0½k022 ; ~mc ; ~mc 

; (87)

where B0 and C0 are scalar Passarino-Veltman functions
[43–46], defined via

B0½p2; m2; m2
 ¼ 1

i�2

Z
d4l

1

ðl2 þm2Þ½ðlþ pÞ2 þm2

(88)

C0½p2; ðp�p1Þ2;p2
1;m;m;m


¼ � 1

i�2

Z
d4l

1

ðl2þm2Þ½ðlþpÞ2þm2
½ðlþp1Þ2þm2
 :

(89)

The C0 integral is finite and, in the approximation ~mc �
~MA � ~m�, reduces to

FIG. 3. Tree-level h decay.

FIG. 4. 1-loop A decay. Only the first diagram is nonzero.
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C0½p2; ðp� k02Þ2; k022 ; ~mc ; ~mc ; ~mc 
 � � 1

4 ~m2
c

: (90)

The B0 integral diverges, so we cut off the loop-momentum
integral at some large scale. Using m3 for this purpose,
since we will often find it numerically to be the largest
mass-suppression scale in our theory, we have

B0½p2; ~mc ; ~mc 
 � B0½k022 ; ~mc ; ~mc 
 � 2 ln

�
m3

~mc

�
: (91)

Putting everything together, the decay width of A is then
given by

�A � 1

6 ~MA

�2 ~f2
�
mcA2

m2

�
4
e�4�c=m2

�
ln

�
m3

~mc

��
2
: (92)

The A bosons must decay efficiently enough not to con-
tribute significantly to the energy density budget today.
Though the decaying exponential makes meeting this
criterion more difficult, there is still a small sample of
parameter space for which the A energy density does not
pose a problem.

VI. NUMERICAL SOLUTIONS

While we have described a number of ways to under-
stand the evolution of the fields analytically, including, for
example, the adiabatic approximation in which the chame-
leon tracks the minimum of its effective potential, ulti-
mately we are able to numerically solve the relevant
equations of motion completely. To do so, of course,
we must make sensible choices for our parameters to
satisfy the various bounds and simplifying inequalities
we have specified.
We need to implement the correct relationship between

the dark sector temperature Td and that in the photon sector
T, which in turn requires us to correctly enumerate the
massless degrees of freedom at the relevant scales. At
the unification scale, all the dark particles ðc ; A; h; �Þ
are relativistic, so gd�SðtuÞ ¼ 8:5. Around the epoch of

dark matter freeze-out, only c is nonrelativistic, so
gd�SðtfÞ ¼ 5. Thus, at freeze-out, �f ¼ 1:19 for g�SðtfÞ ¼
106:75 or �f ¼ 0:56 for g�SðtfÞ ¼ 10:75. With these num-

bers, the bound on the number of effective neutrino species
in (8) is easily satisfied.
The model is insensitive to ~MAð�Þ and ~mhð�Þ at lowest

order. We choose v such that �c c ! AA is kinematically
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FIG. 5 (color online). Scan of parameter space. Blue points indicate sets of parameters that satisfy all constraints, except (for most
points) for having a negligible A energy density. Red points do not satisfy the scattering cross section bound �= ~mc < 0:1 cm2=g.

Green points do not satisfy the adiabatic condition in (51) and should be solved with the coupled differential equations.
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allowed today, while ensuring �A > 1 and ~< 1. We must
then check that ~MAð�0Þ satisfies scattering cross-section
bounds. It is simplest to assume the attractor solution for�
and then later verify that it is in fact adhered to. The A
gauge bosons need to decay away before BBN so that their
energy density is negligible. Finally, we must ensure that
the evolution ends with the observed density of dark matter

today. For this figure we use the bounds from the 7-year
WMAP data [30], assuming a �CDM cosmology,

�DMh
2 ¼ �0

�c0

¼ 0:1109� 0:0056: (93)

Given these constraints, we numerically solve the
Boltzmann equation and show a sample of parameter
space in Fig. 5, resulting from a random, uniform scan
over mc 2 ½0:1; 500
 GeV; m1 2 ½105; 107
 GeV; m2 2
½5� 105; 5� 108
 GeV; m3 2 ½5� 105; 5� 108
 GeV;
� 2 ½10; 103
 GeV; A2 2 ½0:1; 9:9
; A3 2 ½0:1; 10
; and

e 2 ½0:01; ffiffiffiffiffiffiffi
4�
p 
. The upper-left panel shows the coupling

parameter e vs the dark matter mass parameter mc . The

upper-right panel shows the annihilation cross section �v
vs the scattering cross section �= ~mc , both evaluated at x0
today. The bottom panels show the boost in annihilation
cross section from freeze-out to today and the scattering
cross section today vs the mass parametermc . Again, there

is flexibility when choosing v without affecting the evolu-
tion of � and Y at lowest order, so it is possible to obtain
valid models for a scaled value of �= ~mc . Here, we show

the largest possible scattering cross sections, while staying
within the bound �A > 1. As demonstrated in Fig. 6, only a
small portion of the sampled parameter space fulfills the
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FIG. 6 (color online). The number of A decays per particle
between freeze-out and BBN. Points above the horizontal line at
1 indicate that all A particles should have decayed and thus do
not contribute significantly to the energy budget of the Universe.
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requirement that the A gauge boson energy density is
negligible by the time of BBN. While finding a set of
parameters that satisfies all constraints is certainly pos-
sible, the effect of having very large increases in the
annihilation cross section does not seem to be a general
feature of the model.

As a concrete example, we show a specific model with
the following parameter choices: mc ¼ 123 GeV; mT ¼
mc ; m1 ¼ 38 TeV; m2 ¼ 500 TeV; m3 ¼ 500 TeV; � ¼
18 GeV; A2 ¼ 0:6; A3 ¼ 9:2; e ¼ 0:96; and v ¼ 1 GeV.
This comprises an optimistic set of parameter choices
that satisfies all our bounds and provides a large change
of order 	106 in the annihilation cross section over
the history of the Universe. Our choice for the value of v
gives �A¼1:07 today, and we can ignore the Sommerfeld
enhancement. Larger values of v work equally well;
increasing v increases �A 	 v and decreases �= ~mc	
v� 4. The dark matter relic density is �ch

2 ¼ 0:1097,

within a standard deviation of the observed value. The
scattering cross section today is 4:9� 10�4 cm2=g, well
below the conservative limit in (85). We must also check
that these parameters satisfy the assumptions we have
made in writing down the model. For example, we

neglected terms with @� ~f=~f, and here we note that _~f=~f	
10�9–10�6 GeV, which is much smaller than other mass
terms in the perturbative expansion. The adiabatic approxi-
mation is satisfied with H=m�;ph 	 10�11 throughout the

evolution of �. Finally, we use the decay width of the A
particles to determine that they have decayed away in the
time from freeze-out to BBN, so they do not contribute to
the energy budget we observe from the CMB.

The results for the evolution of �, Y, the dark matter

mass ~mc , and the coupling ~f as a function of T ¼ mT=x

are shown in Fig. 7. We also show the annihilation and
scattering cross sections in Fig. 8. The scattering cross
section quickly approaches its asymptotic value by the
time of dark matter freeze-out, while the annihilation cross
section still grows orders of magnitude from freeze-out to

now. This difference is due to the scattering cross section,

�= ~mc / ~mc =v 4, and the annihilation cross section, �v /
~f4= ~m2

c , depending differently on � via ~mc and ~f. We

choose the form of ~f to force the annihilation cross section
to grow more slowly, whereas the scattering cross section
has no such term countering its growth. With these par-
ticular choice of parameters, the scattering cross section is
too small to have interesting astrophysically observable
consequences.
As shown in Fig. 5, there are other choices of parameters

that will still give a boost to the annihilation cross section
while yielding a larger scattering cross section to match
observational bounds [6,7]; however, again, most of the
plotted parameter space is restricted from the A energy
density requirement. One option for increasing the viable
parameter space is to relax the requirement that �A > 1 and
to work in the regime of Sommerfeld enhancements; our
model would still provide significant increases in the cross
sections, and Sommerfeld enhancements would serve to
further increase the boosts. Another clear option is to open
an alternative decay channel for A.

VII. CONCLUSIONS

In this paper we have investigated the possibility that the
properties of dark matter depend crucially on the dynamics
of a chameleon field—a scalar field whose cosmological
evolution depends not only on its bare potential but also on
the local density of other matter (such as dark matter itself)
in the Universe. We have shown that such a coupling
allows the annihilation cross section (for example) of the
dark matter particles to change by several orders of mag-
nitude between freeze-out and today, while remaining
consistent with all observational constraints. We have pre-
sented a general formalism to describe how this might
happen and have provided a specific particle physics ex-
ample, in which all relevant quantities can be calculated.
While there are significant observational and theoretical
constraints on models of this type, it is nevertheless
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FIG. 8 (color online). The evolution of the annihilation cross section h�vi (left) and the scattering cross section �= ~mc (right) as a
function of T in GeV with mc ¼ 123 GeV. The red, dotted line indicates the approximate dark matter freeze-out temperature.
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possible for the cross section to evolve in such a way that
there may be interesting implications for the detection of
dark matter and for its dynamical effects on late-universe
astrophysics.

There are, of course, other possible complications to this
idea that are beyond the scope of the current paper but that
provide interesting avenues for future study. One natural
step is to couple our model directly to the Standard Model.
One way to achieve this is to directly add the dark U(1) to
the current SM gauge group [47]. Another possibility is to
couple to the Standard Model through Uð1Þ kinetic mixing

[48,49]. This extension of our model should be able to
easily accommodate the relevant particle physics con-
straints [50–53], while easily allowing for decays of the
dark gauge boson to Standard Model particles well before
BBN. The dark matter annihilations would still be domi-
nated by the channel �c c ! AA, since annihilation to
Standard Model particles would be suppressed by the small
coupling parameter for the U(1) mixing. However, it is a
more delicate issue to decide what a natural route would be
to couple the visible and dark scalar sectors, particularly
with regards to coupling the chameleon to normal matter.

FIG. 9. Feynman rules for h (dashed line), c (solid line), A� (wavy line), and � (dotted line). We include the Yukawa interaction
with c and �, which is relevant for the 1-loop A-decay amplitude in (87), but other �-interaction vertices are not shown. All
parameters labeled by a tilde are evaluated at �c.

DARK MATTER WITH DENSITY-DEPENDENT INTERACTIONS PHYSICAL REVIEW D 86, 123529 (2012)

123529-13



Finally, we did not attempt a careful analysis of the
effect of late-universe inhomogeneities on the chameleon
field or the dark matter properties on which it depends. In
the specific models we considered, it seems as if such
effects would be small, but a more careful examination is
warranted.
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APPENDIX: FEYNMAN RULES

The Feynman rules are shown in Fig. 9. All of these
diagrams have higher-order corrections that involve �
particles.
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