
University of Pennsylvania
ScholarlyCommons

Department of Physics Papers Department of Physics

10-8-2012

Higher-Derivative Chiral Superfield Actions
Coupled toN = 1 Supergravity
Michael Koehn
Max Planck Institute for Gravitational Physics

Jean-Luc Lehners
Max Planck Institute for Gravitational Physics

Burt A. Ovrut
University of Pennsylvania, ovrut@elcapitan.hep.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/physics_papers

Part of the Physics Commons

Koehn, M., Lehners, J., & Ovrut, B. A. (2012). Higher-Derivative Chiral Superfield Actions Coupled to N = 1 Supergravity. Physical Review D, 86(8),
085019. doi: 10.1103/PhysRevD.86.085019
© 2012 American Physical Society

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/physics_papers/264
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Koehn, M., Lehners, J., & Ovrut, B. A. (2012). Higher-Derivative Chiral Superfield Actions Coupled to N = 1 Supergravity. Retrieved
from http://repository.upenn.edu/physics_papers/264

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76379075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fphysics_papers%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics?utm_source=repository.upenn.edu%2Fphysics_papers%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=repository.upenn.edu%2Fphysics_papers%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers/264?utm_source=repository.upenn.edu%2Fphysics_papers%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevD.86.085019
http://repository.upenn.edu/physics_papers/264
mailto:repository@pobox.upenn.edu


Higher-Derivative Chiral Superfield Actions Coupled toN = 1
Supergravity

Abstract
We construct N = 1 supergravity extensions of scalar field theories with higher-derivative kinetic terms.
Special attention is paid to the auxiliary fields, whose elimination leads not only to corrections to the kinetic
terms, but to new expressions for the potential energy as well. For example, a potential energy can be
generated even in the absence of a superpotential. Our formalism allows one to write a supergravity extension
of any higher-derivative scalar field theory and therefore has applications to both particle physics and
cosmological model building. As an illustration, we couple the higher-derivative Dirac-Born-Infeld action
describing a 3-brane in six dimensions to N = 1 supergravity. This displays a number of new features including
the fact that in the regime where the higher-derivative kinetic terms become important, the potential tends to
be everywhere negative.
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We construct N ¼ 1 supergravity extensions of scalar field theories with higher-derivative kinetic

terms. Special attention is paid to the auxiliary fields, whose elimination leads not only to corrections to

the kinetic terms, but to new expressions for the potential energy as well. For example, a potential energy

can be generated even in the absence of a superpotential. Our formalism allows one to write a supergravity

extension of any higher-derivative scalar field theory and therefore has applications to both particle

physics and cosmological model building. As an illustration, we couple the higher-derivative Dirac-Born-

Infeld action describing a 3-brane in six dimensions to N ¼ 1 supergravity. This displays a number of

new features including the fact that in the regime where the higher-derivative kinetic terms become

important, the potential tends to be everywhere negative.

DOI: 10.1103/PhysRevD.86.085019 PACS numbers: 04.65.+e, 98.80.Cq

I. INTRODUCTION

Since its discovery [1–3], supersymmetry has been in-
vestigated with enthusiasm by theoretical physicists. If the
supersymmetry algebra is linearly realized, its representa-
tions contain bosonic and fermionic degrees of freedom in
equal numbers. Moreover, particles belonging to the
same representation have equal mass. Since superpartners
with the same mass as conventional particles have not
been observed, four-dimensional supersymmetry cannot
be an unbroken low energy symmetry. Nevertheless,
there are good reasons to take seriously the idea that
supersymmetry—particularly four-dimensional N ¼ 1
supersymmetry—might be relevant at higher energies.
For example, when N ¼ 1 supersymmetry is taken into
account, the gauge couplings of the electroweak and strong
forces unite to good precision at high energies [4], suggest-
ing the existence of supersymmetric grand unification.
Moreover, supersymmetric theories enjoy special finiteness
properties that help to explain the hierarchy between the
electroweak and the unification/gravitational scales [5,6].
Last but not least, N ¼ 1 supersymmetry is a central
feature of phenomenologically realistic string theories—
see, for example Refs. [7,8].

All of this motivates studying early universe cosmology
within the context of N ¼ 1 supersymmetry. Since cos-
mology quintessentially involves gravitation, such theories
must be constructed using ‘‘local’’ supersymmetry—that
is, N ¼ 1 supergravity—and not the ‘‘global’’ supersym-
metry of low energy particle physics models. This has
been done within the context of two-derivative kinetic
theories, both in local quantum field theory and super-
strings. More recently, however, it has become clear that

higher-derivative theories of cosmology are potentially
important. These include so-called Dirac-Born-Infeld
(DBI) inflation [9], ekpyrotic theories with brane collisions
[10,11] and ghost-condensation [12–14], as well as other
cosmologies constructed on the worldvolume of 3-branes
[15,16]. Motivated by this, in this paper we will develop a
framework for constructing higher-derivative kinetic theo-
ries of chiral superfields coupled to N ¼ 1 supergravity.
As a first application of this formalism, we present an
example of supergravitational DBI inflation.
This paper builds on previous work [17,18] on globally

supersymmetric higher-derivative scalar field theories,
extending it to local N ¼ 1 supergravity. We first con-
struct a supergravity version of ð@�Þ4, the square of the
usual kinetic energy of a real scalar field. In the present
work, we neglect fermions because a) they are typically
unimportant in models of early universe cosmology and
b) since their inclusion greatly complicates all equations.
Instead, we focus on the physics of the scalar bosons
and the associated auxiliary fields. We will present the
fermionic terms and discuss their role in forthcoming
publications [19]. When the fermions are set to zero, our
supergravity extension of ð@�Þ4 has a special—perhaps
unique—property; namely, it can be multiplied by an
arbitrary function of the scalar fields and their spacetime
derivatives, while not altering the pure supergravity sector
of the Lagrangian. Because this multiplicative factor is
arbitrary, our formalism allows one to write a supergravity
extension of any higher-derivative Lagrangian built out of
scalar fields and their spacetime derivatives.
As always in supergravity, a special role is played by the

auxiliary fields. In this paper, we devote considerable
attention to their properties. In ordinary two-derivative
chiral supergravity, elimination of the auxiliary fields leads
to a well-known formula for the potential V. In terms of
a Kähler potential K and superpotential W [20], this is
given by
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V ¼ eKðK;AiAj� jDAiWj2 � 3jWj2Þ; (1.1)

where Ai denotes the complex scalar component of a chiral
supermultiplet. In higher-derivative supergravity theories,
we find two generic differences. First, the elimination of
the auxiliary fields leads to corrections to the above for-
mula. When the higher-derivative terms are important,
these corrections can be significant, drastically modifying
the dynamics. The second property is that the equation of
motion for the auxiliary field Fi of a chiral multiplet is now
a cubic equation, whereas previously it was linear. Thus, in
general it admits three distinct solutions, which after sub-
stituting back into the Lagrangian, lead to three inequiva-
lent theories. In this paper, we present the basic properties
of each of these three branches.

The bulk of the paper presents our general formalism. It
is useful, therefore, to give an explicit example, which we
do by constructing the supergravity extension of a particu-
lar DBI action. This allows us to display the specific
corrections to both the kinetic and potential terms induced
by the elimination of the auxiliary fields when higher-
derivative terms are present. We also analyze one of the
new branches of the supergravity DBI theory, commenting
on the implications of our results for models of DBI
inflation. In particular, we find that in the relativistic
regime of the DBI theory, the potential automatically
becomes negative—rendering inflation impossible. These
findings illustrate the significance that the auxiliary fields
can have on the dynamics of a given model.

There are many potential applications of our results,
particularly in early universe cosmology. For example,
cosmological models that are constructed in or inspired
by string theory should admit an effective N ¼ 1 super-
gravity description in four dimensions. These theories
typically have scalar fields arising as the moduli associated
with branes [21], flux [22,23] or the compactification
manifold. For most if not all of these models, whether
they are of DBI inflation [9], k inflation [24], k essence
[24], ekpyrotic/cyclic cosmology[10,12,25,26], effective
theories of Galileons [27] or higher-derivative induced
cosmic bounces [28–30], the proper setting is supergravity,
and all contain phases where the dynamic description
includes scalar higher-derivative terms. We hope to apply
our formalism to these models in the future.

The plan of the paper is the following. We begin in
Sec. II by reviewing the construction of higher-derivative
kinetic terms for chiral multiplets in global supersymme-
try; that is, when gravity is neglected. Then in Sec. III, it is
shown how this construction can be generalized to super-
gravity. We proceed by eliminating the auxiliary fields one
by one, beginning with bm andM of pure supergravity. The
auxiliary fields Fi of the chiral multiplets require special
attention, and Sec. IV is devoted to them. In Sec. V, we
apply our formalism to an example of the DBI action. For
the benefit of the reader, we include short summaries of our
results at the end of each subsection in Secs. IV and V.

After concluding in Sec. VI, we add appendices describing
the difference of our formalism with the framework of
Baumann and Green [31,32], as well as comments on the
Kähler invariance in the present context. The notation and
conventions of the book by J. Wess and J. Bagger [33] are
used throughout the paper.

II. HIGHER-DERIVATIVE CHIRAL SUPERFIELDS
IN FLAT SUPERSPACE

We begin by considering globalN ¼ 1 supersymmetry
in flat four-dimensional spacetime. The associated super-
symmetry algebra is given by

fQ�; �Q _�g ¼ �2�m
� _�Pm; (2.1)

where Q�, �Q _� and Pm ¼ �i@m generate supersymmetry
and translations, respectively. Here �;�; . . . and _�; _�; . . .
are the conjugate indices of two-component Weyl spinors
and m; n . . . are spacetime indices. To construct supersym-
metric Lagrangians in this context, it is useful to work in
flat superspace where, in addition to the four ordinary
spacetime dimensions (with coordinates xm), one adds
four fermionic, Grassmann-valued dimensions (with coor-
dinates ��, �� _�). In terms of these coordinates, the super-
symmetric generators are represented by the superspace
derivatives

D� ¼ @

@��
þ i�m

� _�
�� _�@m; �D _� ¼ � @

@ �� _�
� i���m

� _�@m;

(2.2)

which satisfy the algebra

fD�; �D _�g ¼ �2i�m
� _�@m: (2.3)

Any supermultiplet can be obtained as an expansion of a
superfield, appropriately constrained, in the anticommut-
ing coordinates �, ��. The expansion terminates at order
�� �� �� because of the Grassmann nature of these coordi-
nates. For example, a chiral superfield �, defined by the
constraint

�D� ¼ 0; (2.4)

has the expansion

� ¼ AðxÞ þ ffiffiffi
2

p
��ðxÞ þ ��FðxÞ þ i��m ��@mAðxÞ

� iffiffiffi
2

p ��@m�ðxÞ�m ��þ 1

4
�� �� ��hAðxÞ; (2.5)

where A is a complex scalar, �� is a spin- 12 fermion and F

is a complex auxiliary field, which for Lagrangians with
canonical kinetic energy, is not a dynamical degree of
freedom. ðA;�; FÞ are the component fields of the chiral
supermultiplet. The component expansion (2.5) can be
simplified by using the coordinates ym ¼ xm þ i��m ��, in
terms of which

� ¼ AðyÞ þ ffiffiffi
2

p
��ðyÞ þ ��FðyÞ: (2.6)
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This form of the component expansion has a straightfor-
ward generalization to curved superspace, as we will see
shortly. It also suggests an alternative way of defining
component fields, which turns out to be more useful in
supergravity. Consider, for example, the chiral supermul-
tiplet �. We note that one can also define the components
of � as

A � �j; (2.7)

�� � 1ffiffiffi
2

p D��j; (2.8)

F � � 1

4
D2�j; (2.9)

where j denotes taking the lowest component. It is straight-
forward to check that these fields are identical to those in
the �, �� expansion (2.5).

A general feature of superspace is that the highest com-
ponent (that is, the �� �� �� component) transforms under
supersymmetry into a total spacetime derivative. Thus, the
highest component of a superfield can be used to construct
a supersymmetric Lagrangian. Because of the Grassmann
nature of the fermionic coordinates, one can isolate the top
component by integrating over superspace with d2�d2 ��.
Moreover, one can replace the d2�d2 �� integral over all
superspace by a chiral integral � 1

4 d
2� �D2 using the chiral

projector �D2. This follows from the flat superspace relation
�D3 ¼ 0.
In a previous paper Ref. [17], it was shown how

to construct supersymmetric actions involving higher
derivatives of chiral superfields. The construction is based
on a particular supersymmetric extension of the scalar
field Lagrangian ð@�Þ4 given by D��D�� �D _��

y �D _��y.
Ignoring the fermion �, this superfield contains only the
�� �� �� component

D��D�� �D _��
y �D _��y ¼ �� �� ��ð16ð@AÞ2ð@A�Þ2

� 32j@Aj2jFj2 þ 16jFj4Þ;
(2.10)

where the complex scalar A is composed of two real scalars
�, � as

A ¼ 1ffiffiffi
2

p ð�þ i�Þ; (2.11)

and j@Aj2 � @A � @A�. Thus, the superspace integral of the
superfield (2.10) yields the term

16ð@AÞ2ð@A�Þ2 ¼ 4ð@�Þ4 þ 4ð@�Þ4 � 8ð@�Þ2ð@�Þ2
þ 16ð@� � @�Þ2; (2.12)

plus terms involving the auxiliary field F. Hence,
Eq. (2.10) constitutes a possible supersymmetric extension
of ð@�Þ4. The relationship to a different supersymmetric

extension of ð@�Þ4 is discussed in Appendix A. In this
paper, we concentrate on Eq. (2.10) since this superfield
possesses several particularly useful properties:

(i) It constitutes a supersymmetric extension of the
precise expression ð@�Þ4, and does not contain other
terms involving � alone.

(ii) Despite the higher-derivative nature of the super-
field, the auxiliary field F does not obtain a
kinetic energy. This is nontrivial, as on dimensional
grounds a term such as jAj2j@Fj2 could have arisen,
and implies that F remains truly auxiliary.

(iii) As pointed out in Ref. [17], the auxiliary field now
appears at quartic order in the action, and thus its
equation of motion is cubic. Hence, in contrast to
the usual two-derivative supersymmetric theories,
there exist now up to three different solutions for F.
We will explore this issue much further in Sec. IV.

(iv) Finally, the most crucial property for our present
purposes is the fact that the bosonic part of
D��D�� �D _��

y �D _��y given in Eq. (2.10), only
contains a nonzero top �� �� �� component; all lower
components vanish. It follows that if one multiplies
this superfield with any function T of�,�y and (an
arbitrary number of) their spacetime derivatives,
then the component expansion will be given by
Eq. (2.10) times Tj, where inside Tj the chiral
superfield � is simply replaced by its lowest com-
ponent A. This allows one to easily construct a
supersymmetric extension of any higher-derivative
scalar Lagrangian containing ð@�Þ4 as a factor, sim-

ply by performing the replacement � ! ffiffiffi
2

p
A !ffiffiffi

2
p

� in the cofactor.
This last property was used in Ref. [17] to construct a

supersymmetric extension of theories with Lagrangian
PðX;�Þ, where X � � 1

2 ð@�Þ2. Specifically, for
PðX;�Þ ¼ X

n�1

anð�ÞXn; (2.13)

it was shown that the higher-derivative terms in the super-
symmetric generalization are the d2�d2 �� integral of

1

16
D�D� �D�y �D�yTð�;�y; @m�; @n�

yÞ; (2.14)

where

Tð�;�y; @m�; @n�
yÞ

¼ X
n�2

an

�
1

32
fD; �Dgð�þ�yÞfD; �Dgð�þ�yÞ

�
n�2

¼ X
n�2

an

�
1

4
@mð�þ�yÞ@mð�þ�yÞ

�
n�2

; (2.15)

an ¼ anð�þ�yffiffi
2

p Þ and we have made use of Eq. (2.3) to write

fD; �Dg / @m.
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Particular applications were a supersymmetric form of
the DBI action, as well as a supersymmetric ghost conden-
sate theory, both in flat spacetime. However, the most
interesting phenomenological consequences occur when
these models are coupled to gravity; for example, inflation
driven by the DBI part of the action or cosmic bounces
induced by a ghost condensate. It is therefore of interest to
include gravity in the analysis. In a supersymmetric con-
text, this means extending the above construction to curved
superspace. This will be the topic of the next section.

III. HIGHER-DERIVATIVECHIRAL SUPERFIELDS
IN CURVED SUPERSPACE

We now want to extend the above results to N ¼ 1
supergravity, obtained by ‘‘gauging’’ the supersymmetry
algebra (2.1). Loosely speaking, the gauge field associated
with the translation generators Pm is the vierbein em

a

(where a; b; . . . denote tangent space indices), while the
gauge field associated with Q� is the gravitino c m�. As
with global supersymmetry, supergravity is most easily
expressed in superspace—now, however, with nonvanish-
ing curvature. In this case, one can introduce new fermi-
onic coordinates � which are defined precisely so that the
ðA; �; FÞ components of a chiral superfield � arise as the
coefficients of the expansion

� ¼ Aþ ffiffiffi
2

p
���� þ����F: (3.1)

In curved superspace, supersymmetric Lagrangians can be
constructed from the chiral integrals

Z
d2�ð �D2 � 8RÞL; (3.2)

where L is a scalar, Hermitian function. Note that the chiral

projector in curved superspace is �D2 � 8R, where �D _� is a
spinorial component of the curved superspace covariant

derivative DA ¼ ðDa;D�;
�D _�Þ and R is the curvature

superfield. In its component expansion, R contains the
Ricci scalar R and the gravitino c m, as well as the
auxiliary fields of supergravity; namely, a complex scalar
M and a real vector bm. The purely bosonic components in
the � expansion of R are

R ¼ � 1

6
Mþ�2

�
1

12
R� 1

9
MM�

� 1

18
bmb

m þ 1

6
iemaDmb

a

�
: (3.3)

A second superfield that we will need is the chiral density
E. This contains the determinant of the vierbein e, as well
as M and c m. Its bosonic expansion is

2E ¼ eð1��2M�Þ: (3.4)

For a complete discussion of curved superspace we refer
the reader to Ref. [33], whose notation and formalism
we use.

In this paper, we will construct a supergravitational
extension of a generic higher-derivative scalar field
Lagrangian with, however, all fermions set to zero. We
ignore the fermions for two reasons: first, to reduce the
complexity of the discussion, and second, to emphasize the
important physics occurring in the bosonic sector of this
theory. The more complete Lagrangian, with all fermions
turned on, will be discussed in follow-up papers where the
physics associated with them will be elucidated. As a
warm-up, we construct the theory of chiral superfields
without higher derivatives coupled to supergravity—again
with all fermions set to zero. We start by introducing an
Hermitian Kähler potential Kð�i;�yk�Þ of the chiral
superfields �i (where i ¼ 1; 2; . . . enumerates the fields),
along with a holomorphic superpotential Wð�iÞ. The as-
sociated Lagrangian is given by

L¼
Z
d2�2E

�
3

8
ð �D2�8RÞe�Kð�i;�yk�Þ=3þWð�iÞ

�
þH:c:

¼� 3

32
eD2 �D2e�K=3j�3

8
eM� �D2e�K=3j

�1

8
eMD2e�K=3jþe

�
�1

4
R�1

6
MM� þ1

6
baba

� i

2
ea

mDmb
a

�
e�KðA;A�Þ=3 (3.5)

� eWðAÞM� þ e@WiF
i þ H:c:; (3.6)

where @Wi ¼ @W
@Ai . This Lagrangian is meant to be inte-

grated over spacetime to yield an action. With this in mind,
we integrate by parts1 to obtain

1

e
L ¼ e�K=3

�
� 1

2
R� 1

3
MM� þ 1

3
baba

�

þ 3

�
@2e�K=3

@Ai@Ak�

�
ð@Ai � @Ak� � FiFk�Þ

þ ibm
�
@mA

i @e
�K=3

@Ai � @mA
k� @e

�K=3

@Ak�

�

þMFi @e
�K=3

@Ai þM�Fk� @e
�K=3

@Ak�

�WM� �W�Mþ @WiF
i þ @W�

k�F
k�: (3.7)

We now add the higher-derivative kinetic terms for the
chiral superfields, following the results derived previously
in flat superspace [17]. As reviewed above in Sec. II,

the superspace integral of D�D� �D�y �D�y contains
the term 16ð@AÞ2ð@A�Þ2 in its component expansion.
Hence, we add such a term to the Lagrangian now; how-
ever, in a manifestly diffeomorphism invariant manner.2

Specifically, we introduce

1We only use integration by parts on this part of the action, as
we will not multiply this with any field dependent factor later in
our analysis.

2We thank Ilarion Melnikov for stressing the issue of target
space diffeomorphism invariance to us.
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Lh�d ¼ � 1

8

Z
d2�2Eð �D2 � 8RÞ

�D�iD�j �D�yk� �D�yl�Tijk�l� þ H:c:

¼ 16eð@Ai � @AjÞð@Ak� � @Al�ÞTijk�l�j
� 32eFiFk�ð@Aj � @Al�ÞTijk�l�j
þ 16eFiFjFk�Fl�Tijk�l�j; (3.8)

where Tijk�l�j is the lowest component of the tensor super-

field Tijk�l�. Let us clarify the meaning of Tijk�l�. First, this
superfield transforms as a four-index tensor on the Kähler
manifold in which the scalar fields take their values (we
know that the target space is a Kähler manifold from the
two-derivative part of the action; see Appendix B for
more details on this point), and thus ensures target space
diffeomorphism invariance. Second, Tijk�l� is required to

be Hermitian and symmetric in the pair of indices i, j as
well as in k�, l�. Third, any tensor satisfying these con-
straints can be multiplied by an arbitrary real function of
the chiral superfields and an unlimited number of theirDm

covariant derivatives, as long as all indices stemming
from the covariant derivatives are contracted. Examples
of Tijk�l�j include 1

2 ðgik�gjl� þ gil�gjk�Þ, where gij� is the

Kähler metric, and the Riemann tensor Rik�jl�. However,
more general—nongeometric—choices respecting the re-
quired symmetries are equally possible.3 The fact that one
can multiply this tensor with an arbitrary function of the
chiral superfields and their spacetime derivatives means

that we can obtain a supergravity extension of any term
that involves ð@�Þ4 as a factor and, thus, by dividing out
by ð@�Þ4 if necessary, of any higher-derivative scalar
Lagrangian. An illustrative example of the usefulness of
this property is provided by the DBI action presented in
Sec. V.
The new higher-derivative terms necessarily enter with

at least one new mass scale, which renders the action
dimensionless. In fact, since the T tensor can be composed
of many terms, it can contain a number of such masses. In a
given application, these mass scales will, of course, be
important in determining the significance of the various
terms. However, in the present paper, we have set these
mass scales to unity to simplify our formulas and because
they are easy to reintroduce.
The sum of Eqs. (3.6) and (3.8) does not lead to ordinary

Einstein frame gravity, but rather to a scalar-gravity theory

of the form e�K=3R. One can transform the action into
Einstein frame by performing the Weyl rescaling

en
a ! en

aeK=6: (3.9)

Note that the higher-derivative term does not contribute to
the gravity-scalar coupling, and hence we can perform the
same Weyl rescaling as in ordinary chiral supergravity
without higher derivatives. This is a nontrivial feature of
our framework, which greatly facilitates subsequent calcu-
lations. Adding the two actions above and performing the
Weyl rescaling gives

1

e
LWeyl ¼�1

2
R� 3

4

@mðe�K=3Þ@mðe�K=3Þ
e�2K=3

þ total derivativeþ 3eK=3

�
@2e�K=3

@Ai@Ak�

�
@Ai � @Ak� þ 1

3
baba

þ ieK=3bm
�
@mA

i @e
�K=3

@Ai � @mA
k� @e

�K=3

@Ak�

�
� 3e2K=3

�
@2e�K=3

@Ai@Ak�

�
FiFk� þ e2K=3MFi

�
@e�K=3

@Ai

�

þ e2K=3M�Fk�
�
@e�K=3

@Ak�

�
� 1

3
eK=3MM� � e2K=3WM� � e2K=3W�Mþ e2K=3@WiF

i þ e2K=3@W�
k�F

k�

þ 16ð@Ai � @AjÞð@Ak� � @Al�ÞTijk�l�Weylj � 32eK=3FiFk�ð@Aj � @Al�ÞTijk�l�Weylj þ 16e2K=3FiFjFk�Fl�Tijk�l�Weylj:
(3.10)

The subscript ‘‘Weyl’’ on Tijk�l�Weylj indicates that if this
expression involves the spacetime metric, then it must be
rescaled as gmn ! eK=3gmn. Henceforth, we drop the total
derivative term. To proceed, we want to eliminate the
auxiliary fields. We begin with bm, whose equation of
motion does not involve the higher-derivative terms and
is given by

bm ¼ i

2
ð@mAiK;Ai � @mA

k�K;Ak� Þ: (3.11)

Substituting this back into the action, while also defining

N ¼ Mþ K;Ak�Fk�; (3.12)

yields

3In all examples in this paper, we will, for specificity, choose
Tijk�l�j to be proportional to 1

2 ðgik�gjl� þ gil�gjk�Þ.
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1

e
LWeyl ¼ � 1

2
R� gik�@Ai � @Ak� þ gik�eK=3FiFk� � 1

3
eK=3NN� þ e2K=3ð�WN� �W�N þ FiðDAWÞi

þ Fk�ðDAWÞ�k�Þ þ 16ð@Ai � @AjÞð@Ak� � @Al�ÞTijk�l�Weylj � 32eK=3FiFk�ð@Aj � @Al�ÞTijk�l�Weylj
þ 16e2K=3FiFjFk�Fl�Tijk�l�Weylj; (3.13)

where the Kähler metric is gik� ¼ @2K
@Ai@Ak� and DAWi ¼ @Wi þ K;AiW is the Kähler covariant derivative. The equation of

motion for N is again independent of the higher-derivative terms, and is simply

N ¼ �3eK=3W: (3.14)

Plugging this back into the action gives

1

e
LWeyl ¼ � 1

2
R� gik�@Ai � @Ak� þ gik�eK=3FiFk� þ e2K=3½FiðDAWÞi þ Fk�ðDAWÞ�k�� þ 3eKWW� þ 16ð@Ai � @AjÞ

� ð@Ak� � @Al�ÞTijk�l�Weylj � 32eK=3FiFk�ð@Aj � @Al�ÞTijk�l�Weylj þ 16e2K=3FiFjFk�Fl�Tijk�l�Weylj: (3.15)

In the next section, we will discuss the remaining auxiliary
field, namely F, in great detail. Before doing so, however,
let us write out for completeness the supersymmetry trans-
formations of the above theory. As everywhere in this
paper, we only consider the bosonic contributions, and
hence the fermionic variations only. The original trans-
formations are given by

�	�
i ¼ i

ffiffiffi
2

p
�m �	@mA

i þ ffiffiffi
2

p
	Fi; (3.16)

�	c m ¼ �2Dm	þ iem
a

�
1

3
M�a �	þ ba	þ 1

3
bc	�c ��a

�
;

(3.17)

where the supersymmetry parameter is denoted by 	. Weyl
rescaling is performed via

� ! e�K=12�; (3.18)

c m ! eK=12c m; (3.19)

	 ! eK=12	: (3.20)

As discussed in Ref. [33], the gravitino must also be
shifted as

c m ! c m þ i

ffiffiffi
2

p
6

K;Ak� ��k� (3.21)

in order for the fermionic kinetic terms to be in canonical
form. Plugging in the solutions for M and bm, we obtain

�	�
i ¼ i

ffiffiffi
2

p
�m �	@mA

i þ ffiffiffi
2

p
eK=6	Fi; (3.22)

�	c m ¼ 2

�
Dm þ 1

4
ðK;Ai@mA

i � K;Ak�@mA
k�Þ

�
	

þ ieK=2W�m �	: (3.23)

Note that although M depends on F via its definition in
terms of N, the shift of the gravitino subsequently removes
the F dependence from the gravitino variation. In

Eq. (3.22), however, F will have to be replaced by the
particular solution for F under consideration. It is to these
solutions that we now turn our attention.

IV. THE AUXILIARY FIELD F

We now consider the most interesting of the auxiliary
fields, namely F. Three remarks are in order. First, despite
the fact that we have added higher-derivative terms, F does
not obtain a kinetic term in our formalism. This is non-
trivial in this context, and implies that F remains a truly
auxiliary field. Second, there is some subtlety regarding the
quantum theory associated with this action. For standard
two-derivative actions, where F only appears at quadratic
order, we can do one of two equivalent things: either
eliminate F using its algebraic equation of motion, or, in
the path integral formalism, simply integrate over F. This
second approach leads to a Gaussian integral, and the end
result is the same as eliminating F via its equation of
motion. In the higher-derivative formalism presented in
this paper, since F now appears at fourth order, this
equivalence is no longer preserved. Thus, there is some
ambiguity as to what the correct quantum theory should be.
Since in this paper we are only studying the theory at the
classical level, we will proceed by eliminating F via its
equation of motion. This brings us to our third remark. The
equation of motion for F is easily derived from the action
(3.13) and reads

gik�Fiþ eK=3ðDAWÞ�k�
þ 32FiðeK=3FjFl� �@Aj �@Al�ÞTijk�l�Weylj ¼ 0: (4.1)

This equation is now cubic in F, and thus it can have up to
three inequivalent solutions. As we will see, these different
solutions lead to different theories. From now on, we will
restrict our analysis to a single chiral superfield �1 ¼ �,
the extension to multiple superfields being straightforward
to implement. In this case, the equation of motion for F
becomes

MICHAEL KOEHN, JEAN-LUC LEHNERS, AND BURT A. OVRUT PHYSICAL REVIEW D 86, 085019 (2012)

085019-6



K;AA�Fþ eK=3ðDAWÞ� þ 32FðeK=3jFj2 � j@Aj2ÞT ¼ 0;

(4.2)

where

j@Aj2 ¼ @A � @A� ¼ gmn@mA@nA
�; (4.3)

and where we use the simplified notation

T � T111�1�Weylj: (4.4)

Note that T is effectively an arbitrary real scalar function
of A, A� and their spacetime covariant derivatives
Dm . . .@nA, Dm . . . @nA

�.
To proceed, let us first consider the case where the

superpotential is absent. The effect of turning on a super-
potential will be discussed thereafter.

A. Without a superpotential

We first analyze the case with vanishing superpotential,
W ¼ 0. The equation for F then becomes

FðK;AA� þ 32T ðeK=3jFj2 � j@Aj2ÞÞ ¼ 0: (4.5)

This has two solutions, which we denote by F0 and Fnew,
respectively. The first solution is the trivial one, where
F0 ¼ 0. In this case, the Lagrangian becomes purely ki-
netic, as expected, and is given by

1

e
LW¼0;F0¼0 ¼ � 1

2
R� K;AA� j@Aj2 þ 16ð@AÞ2ð@A�Þ2T :

(4.6)

However, there is a second—nontrivial—solution corre-
sponding to the large bracket in Eq. (4.5) vanishing; that is,

jFnewj2 ¼ � 1

32T
e�K=3K;AA� þ e�K=3j@Aj2: (4.7)

Putting this equation into (3.15), the Lagrangian becomes

1

e
LW¼0;Fnew

¼ � 1

2
Rþ 16T ðð@AÞ2ð@A�Þ2 � ð@A � @A�Þ2Þ

� 1

64T
ðK;AA� Þ2: (4.8)

Note that this theory is not continuously connected to the
ordinary two-derivative supergravity since in the limit
T ! 0 the term proportional to 1=T blows up.
Remarkably, the ordinary kinetic term has vanished, being
replaced by purely higher-derivative terms. In making this
statement, we have discarded one special case: since T is
arbitrary in our formalism, there is the possibility that an
ordinary kinetic term could arise from a particular form of
T , such as T � �j@Aj2=ðð@AÞ2ð@A�Þ2 � ð@A � @A�Þ2Þ.
We will, in fact, examine such a situation in Sec. V.
However, for now let us proceed with the case where T
is a function of the fields A, A� only, without derivatives.

Then, something interesting occurs. Although we have
set the superpotential to zero in the present section, the

elimination of F in this new branch leads to a nonvanishing
potential energy given by

Vnew ¼ 1

64T
ðK;AA� Þ2: (4.9)

This can be positive or negative, depending on the sign of
the tensor T . The form of the potential depends on which
Kähler potential and which T tensor one considers. This
choice is largely unrestricted, but there is one consistency
condition that must be satisfied; that is, the right-hand side
of Eq. (4.7) must be positive. This can be achieved in one of
two ways, which we examine in turn: 1) either K;AA�T < 0
and h@Ai is small, or 2) at least one of the two real scalars
that make up A must have large spatial gradients.
In the first case, where the scalars do not have large

spatial gradients, it is clear that one must take T negative
when the Kähler metric has the usual positive sign. It
follows that the potential (4.9) is negative. The second
case corresponds to the situation where some spatial gra-
dients are large. To explore this, write the complex scalar A
in terms of two real scalars �, � as

A ¼ 1ffiffiffi
2

p ð�þ i�Þ: (4.10)

We will choose the T tensor to be of the canonical form
ðK;AA� Þ2, but allow for an additional real multiplicative

factor vð�; �Þ. That is, take

T ¼ ðK;AA� Þ2vð�; �Þ: (4.11)

Then, in a flat Robertson-Walker background with metric
ds2 ¼ �dt2 þ aðtÞ2dx2, the action becomes

Z
d4xLW¼0;Fnew

¼
Z

d4xa3
�
�3

_a2

a2
þ 16

a2
vð�; �Þ

� ð�2
;i
_�2 þ�2

;i
_�2 � 2�;i�;i

_� _�Þ
þ 16

a4
vð�; �Þð�;i�;i�;j�;j ��2

;i�
2
;jÞ

� 1

64vð�; �Þ
�
: (4.12)

Even though we have a purely higher-derivative theory in
Eq. (4.8), one can now see that via their interactions, the
scalars can generate ‘‘ordinary’’ kinetic terms for each
other. Suppose for example that � develops a nontrivial
spatial profile � ¼ �ðxiÞ.4 Then the theory becomes

4Here, we simply assume that such solutions exist. Of course,
this has to be verified for any given function vð�; �Þ. In the case
where v depends on � alone, for example, there exist solutions
where � is purely time dependent and � ¼ aix

i for some
constants ai.

HIGHER-DERIVATIVE CHIRAL SUPERFIELD ACTIONS . . . PHYSICAL REVIEW D 86, 085019 (2012)

085019-7



Z
d4xLW¼0;Fnew

¼
Z

d4xa3
�
�3

_a2

a2
þ 16

a2
vð�;�Þ

�
�
�2
;i

�
_�2 � 1

a2
�2

;j

�
þ 1

a2
�;i�;i�;j�;j

�

� Vnewð�;�Þ
�
; (4.13)

where

Vnew ¼ 1

64vð�; �Þ : (4.14)

Because of the additional �;i�;i�;j�;j, term, the dispersion

relation for � will be slightly unusual in this background,
and one may expect that � will develop gradient instabil-
ities over sufficiently long time scales. Be that as it may,
the theory does have a very interesting feature; namely, if
we require that the kinetic term for � be ghost free, then
one must impose the condition that vð�; �Þ> 0. This then
leads to a positive potential Vnew. In other words, having
one of the scalars develop large spatial gradients leads to
both a two-derivative kinetic term for the other scalar and a
positive potential. In a supergravity context, this property
is most unusual and deserves further attention.

Summary: In the absence of a superpotential, there are
two types of solutions for the auxiliary field F. The first
is the trivial solution F ¼ 0. Its substitution leads to a
purely kinetic Lagrangian including higher-derivative
kinetic terms. However, there exist new solutions Fnew

as well. These generate a ‘‘potential without a superpoten-
tial.’’ When the scalar fields develop large spatial gra-
dients, this potential can be positive.

B. With a superpotential

Now introduce a nonvanishing superpotential, and con-
sider the solutions for F in its presence. Multiplying (4.2)
with F� shows that ðDAWÞ�F� must be real. Thus, one can
relate F and F� via

F� ¼ DAW

ðDAWÞ� F; (4.15)

as long as DAW � 0, which we now assume. One can use
this relation to obtain a cubic equation for F alone. This is
given by

K;AA�Fþ eK=3ðDAWÞ� þ 32

�
eK=3

DAW

ðDAWÞ�F
3 � j@Aj2F

�
T

¼ 0: (4.16)

In general, this equation admits three distinct solutions—
which we denote by F1, F2, F3—leading to three different
theories. One can find these solutions using Cardano’s
formula. Define

p ¼ e�K=3 ðDAWÞ�
DAW

�
K;AA�

32T
� j@Aj2

�
; (4.17)

q ¼ 1

32T

ðDAWÞ�2
DAW

; (4.18)

D¼
�
q

2

�
2 þ

�
p

3

�
3

¼ 1

ð64T Þ2
ðDAWÞ�4
ðDAWÞ2 þ 1

27eK
ðDAWÞ�3
ðDAWÞ3

�
K;AA�

32T
� j@Aj2

�
3
:

(4.19)

Then the solutions are given by

Fkþ1 ¼ !kFþ þ!�kF�; (4.20)

where k ¼ 0, 1, 2, ! ¼ e2
i=3 ¼ � 1
2 þ i

ffiffi
3

p
2 is a cube root

of unity and

Fþ ¼
�
� q

2
þD1=2

�
1=3

; F� ¼
�
� q

2
�D1=2

�
1=3

:

(4.21)

The three solutions can also be written as

F1 ¼ Fþ þ F�; (4.22)

F2 ¼ � 1

2
ðFþ þ F�Þ þ i

ffiffiffi
3

p
2

ðFþ � F�Þ; (4.23)

F3 ¼ � 1

2
ðFþ þ F�Þ � i

ffiffiffi
3

p
2

ðFþ � F�Þ: (4.24)

Substituting these back into the action generates three
different branches of the theory. We call the theory that
results from substituting F1 the ordinary branch, and the
ones associated with F2 and F3 the new branches, for
reasons that will become clear. In general, the solutions
presented above are rather complicated. However, to get
some insight one can analyze them in different simplifying
limits.
Summary: When a superpotential is present, the auxil-

iary field F admits three distinct solutions, which lead to
three distinct theories. One of these solutions, which we
call the ordinary branch, is related to the usual solution for
F that one obtains in two-derivative chiral supergravity,
while the other two solutions correspond to new branches
of the theory.

1. Small higher-derivative terms

The higher-derivative terms are all proportional to theT
tensor. Therefore, by assuming that T contains a factor
that can be tuned to be small, one can treat such terms as

subleading. The T ! 0 limit then corresponds to q 	
p3=2, and gives rise to the approximate expressions
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F3
 ¼ 
D1=2 � q

2

¼
�
p

3

�
3=2

�

1� q

2

�
3

p

�
3=2 
 27q2

8p3
þO

�
q4

p6

��
: (4.25)

For the ordinary branch, this implies that

F1 ¼ � q

p
þ q3

p4
þO

�
q4

p9=2

�
; (4.26)

or more explicitly,

F1 ¼ �K;AA�
eK=3ðDAWÞ� þ 32T e4K=3ðK;AA� Þ4

� ðDAWÞ�2DAW � 32T eK=3ðK;AA� Þ2
� ðDAWÞ�j@Aj2 þOðT 2Þ: (4.27)

Note that this corresponds to a small correction to the usual
solution for the auxiliary field F in the presence of a
superpotential. Correspondingly, we obtain small correc-
tions in the Lagrangian by substituting this solution for F.
To first order in the higher-derivative terms, the Lagrangian
becomes

1

e
Lordinary;T!0 ¼ � 1

2
R� K;AA� j@Aj2

� eKðK;AA� jDAWj2 � 3jWj2Þ
� 32eKK;AA� jDAWj2K;AA� j@Aj2T
þ 16ð@AÞ2ð@A�Þ2T
þ 16e2KðK;AA� jDAWj2Þ2ðK;AA� Þ2T :

(4.28)

An interesting feature is that both the kinetic terms and the
potential get corrected. The potential now becomes

V ¼ eKðK;AA� jDAWj2 � 3jWj2Þ
� 16ðeKK;AA� jDAWj2Þ2ðK;AA� Þ2T no der; (4.29)

where T no der stands for the part of T that does not
contain spacetime derivatives. Note that all the correction
terms in the Lagrangian above are invariant under Kähler
transformations.

As an example, consider the case where K ¼ ��y,
T ¼ �ðK;AA� Þ2 is of canonical form with � a small parame-

ter and W ¼ �n, for some positive integer n. Then the
potential, to first order in �, is given by V ¼ �V þ �V where

�V ¼ eAA
� ðjAj2nþ2 þ ð2n� 3ÞjAj2n þ n2jAj2n�2Þ; (4.30)

while

�V ¼ �16�e2AA
� jAj4n�4ðjAj2 þ nÞ4: (4.31)

At sufficiently large values of jAj, the correction term
always becomes larger than the original potential, indicat-
ing that our approximation breaks down. However, for
small values of jAj the corrections can be trusted. They
are typically small, but in certain cases can lead to novel

effects. In particular, consider the case where n ¼ 1; that
is,W ¼ �. Then, near the minimum at A ¼ 0 the potential
can be approximated by

�V n¼1 � 1þ 1

2
jAj4 þ � � � : (4.32)

Note that the jAj2 ¼ �2 þ �2 term cancels in the expan-
sion. Therefore, this potential is very flat near the origin,
rising only quartically as ð�2 þ �2Þ2. The leading order
correction to this potential is given by

�Vn¼1 � �16�ð1þ 6jAj2 þ 16jAj4 þ � � �Þ: (4.33)

For 1
128 > �> 0, the minimum at A ¼ 0 becomes a local

maximum. The potential is now minimized along a circle
defined by jAj2 ¼ 12�=ð1� 128�Þ. In other words, the
potential changes from a slowly rising quartic potential
with a minimum at the origin to a ‘‘Mexican hat.’’
In the limit where the higher-derivative terms are small,

the new branches behave very differently. Using the same
approximations as above, the F2;3 solutions to the auxiliary

field equation of motion can be approximated by

F2 ¼ i

4
ffiffiffi
2

p e�K=6

�ðDAWÞ�K;AA�

ðDAWÞT
�
1=2

þ 1

2
K;AA�

eK=3ðDAWÞ� þOðT 1=2Þ; (4.34)

F3 ¼ � i

4
ffiffiffi
2

p e�K=6

�ðDAWÞ�K;AA�

ðDAWÞT
�
1=2

þ 1

2
K;AA�

eK=3ðDAWÞ� þOðT 1=2Þ: (4.35)

When substituted into the Lagrangian they give, to sub-
leading order in T ,

1

e
Lnew;T!0 ¼ � 1

2
R� 2K;AA� j@Aj2

� eK
�
� 3

2
K;AA� jDAWj2 � 3jWj2

�

þ 3

64T
ðK;AA� Þ2: (4.36)

Not only do the ordinary kinetic term and the ordinary part
of the potential come out with unusual coefficients, but
the last term, which is the dominant term in the T ! 0
limit, blows up as the higher-derivative terms are made
small. This term, which includes the new contribution to
the potential

Vnew ¼ � 3

64T no der

ðK;AA� Þ2; (4.37)

shows explicitly that the new branches are separated
from the ordinary supergravity theory by an infinite poten-
tial barrier (and implies, incidentally, that the scale of
supersymmetry breaking will tend to be large in the new
branches). The implication is that these new theories
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cannot be reached dynamically from the ordinary, two-
derivative supergravity in the perturbative regime. In other
words, one cannot start gradually turning on the higher-
derivative terms and end up in one of the new branches.
This leaves open the possibility that these branches might
be connected to each other when the higher-derivative
terms are large. We will explore this limit next.

Summary: When our higher-derivative chiral supergrav-
ity terms are small, then, in the ordinary branch they lead to
correspondingly small corrections to the two-derivative
and potential terms via substitution of the auxiliary field
F. The new potential is given by

V ¼ eKðK;AA� jDAWj2 � 3jWj2Þ
� 16ðeKK;AA� jDAWj2Þ2ðK;AA� Þ2T no der; (4.38)

whereT no der stands for the part ofT that does not contain
spacetime derivatives. In the new branches, even small
higher-derivative terms lead to drastic changes in the
Lagrangian via substitution of the auxiliary field. In this
case, the kinetic and potential terms have unusual coeffi-
cients, and a large additional (positive or negative) potential

Vnew ¼ � 3

64T no der

ðK;AA� Þ2 (4.39)

is generated.

2. Large higher-derivative terms

We now consider the opposite limit, where the higher-
derivative terms are large compared to the ordinary kinetic
terms. We can use the approximate expressions

Fþ þ F� ¼ � q

p
þO

�
q3

p4

�
; (4.40)

Fþ � F� ¼ 2

�
p

3

�
1=2 þ

ffiffiffi
3

p
4

q2

p5=2
þO

�
q4

p9=2

�
: (4.41)

In the large T limit, the ordinary branch solution then
becomes

F1 ¼ 0þ eK=3ðDAWÞ� 1

32T j@Aj2 þO
�
1

T 2

�
: (4.42)

Substituting this solution into the Lagrangian, we find to
subleading order that

1

e
Lordinary;T!1 ¼ � 1

2
R� K;AA� j@Aj2 þ 3eKjWj2

þ 16ð@AÞ2ð@A�Þ2T : (4.43)

The higher-derivative kinetic term, of course, dominates in
this limit. Interestingly, the associated potential given by

VT!1 ¼ �3eKjWj2 (4.44)

is always negative. This is because in the ordinary branch
the auxiliary field F is essentially irrelevant in the limit of
large kinetic terms.

For the new branches, the solutions are slightly more
involved. They are given by

F2 ¼ �e�K=6

�
DAW

�

DAW

�
1=2j@Aj

þ 1

64T
e�K=6K;AA�

�
DAW

�

DAW

�
1=2 1

j@Aj
� 1

64T
eK=3ðDAWÞ� 1

j@Aj2 þO
�
1

T 2

�
; (4.45)

F3 ¼ e�K=6

�
DAW

�

DAW

�
1=2j@Aj

� 1

64T
e�K=6K;AA�

�
DAW

�

DAW

�
1=2 1

j@Aj
� 1

64T
eK=3ðDAWÞ� 1

j@Aj2 þO
�
1

T 2

�
: (4.46)

For the two new branches, to subleading order, the
Lagrangian approaches the same large T limit

1

e
Lnew;T!1 ¼ � 1

2
R� 4K;AA� j@Aj2 þ 3eKjWj2

þ 16½ð@AÞ2ð@A�Þ2 � j@Aj4�T : (4.47)

The elimination of the auxiliary fields leads to the presence
of additional higher-derivative terms, which are of the
same order in derivatives as the original ones considered.
Furthermore, the normalization of the ordinary kinetic
term is changed, while the potential energy, just as for
the ordinary branch, has become equal to (4.44), and thus
is also always negative.
Note that in this large T limit, the ordinary and new

branches are still different. This leads us to conclude that
these branches really correspond to entirely separate and
different theories. It will be interesting to further explore
the physical relevance of the new branches. We leave this
topic for future work, and only add one comment. The
equation of motion for F (4.2) implies that for the new
branches one must have @A � @A� > 0 in the large T limit.
Then, loosely speaking, the sum of spatial gradients in the
scalar fields must be larger than their time gradients. It
would be interesting to see how this constraint gets imple-
mented by the dynamics in a situation where the higher-
derivative terms come to dominate progressively.
Summary: When the higher-derivative terms are large,

then in both the ordinary and the new branches the poten-
tial is given by

VT!1 ¼ �3eKjWj2; (4.48)

and hence is always negative. This result is of particular
significance for cosmological applications. Furthermore, in
the new branches, additional higher-derivative terms are
generated via substitution of the auxiliary field. Both in the
limit of small and large higher-derivative terms, the new
branches are considerably different than the ordinary
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branch and represent new theories that are not continuously
related to it.

V. AN EXAMPLE: DBI IN SUPERGRAVITY

One can use our formalism to construct a minimal
supergravity version of the DBI brane action, whose gen-
eral form includes the bosonic term

S ¼ �
Z

ddx
ffiffiffiffiffiffiffi�g

p 1

fð�kÞ
�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgmn þ fð�kÞ@m�i@n�

jgij þF mnÞ
q

� 1

�
:

(5.1)

Here F mn represents the field strengths of 1-form fields,
which we ignore in the present paper. The�i are real scalar
fields specifying the position of the brane in the transverse
dimensions. The field space metric gij as well as the (real

and positive) function fð�iÞ arise from both the higher-
dimensional metric and the dilaton. DBI actions are well
motivated from string theory, where they arise as the
effective actions of D-branes [34]. Since these branes are
of central importance in string theory, it is of interest to
study their realizations in supergravity. Moreover, bosonic
DBI actions have been used to construct models of inflation
with unusual, but interesting, properties. Specifically,
because of their higher-derivative terms, they can lead to
inflation on potentials that would otherwise be too steep.

Additionally, they have characteristic observational pre-
dictions, such as equilateral non-Gaussianity in the spec-
trum of fluctuations, see Refs. [9,35].
The detailed form of the supergravity DBI action will

depend on the context. In particular, the dimensional
reduction of higher-dimensional D-brane actions with
(nonlinearly realized) extended supersymmetries, such as
those presented in Ref. [36], to four-dimensional (linearly
realized) minimal supergravity is in general rather in-
volved, and the resulting action will depend on many
details of the compactification. In the present paper, we
are not interested in examining such dimensional reduc-
tions. Rather, we will construct the supergravity version of
one specific, but illustrative, example; namely, the DBI
action derived by Rocek and Tseytlin as the (gauge-fixed)
flat superspace effective action of a D3-brane in six
dimensions [37]. This action contains two scalars �,�
describing the position of the brane in the two dimensions
transverse to the four-dimensional worldvolume. The
Lagrangian is given by

1

e
Lbrane¼�1

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgmnþf@m�@n�þf@m�@n�Þ

q
�1

�
;

(5.2)

where f ¼ fð�; �Þ is a real, positive function. It is useful to
combine the two real scalars into a complex scalar A ¼
1ffiffi
2

p ð�þ i�Þ and to rewrite the Lagrangian as

1

e
Lbrane ¼ � 1

fðA; A�Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgmn þ fðA; A�Þ@mA@nA�Þ
q

� 1

�
¼ � 1

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2fj@Aj2 þ f2j@Aj4 � f2ð@AÞ2ð@A�Þ2p � 1

�

¼ �j@Aj2 þ fð@AÞ2ð@A�Þ2
1þ fj@Aj2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ fj@Aj2Þ2 � f2ð@AÞ2ð@A�Þ2p : (5.3)

This action is in a form perfectly suited to our framework. Comparing with Eqs. (3.15) and (4.4), we can see that one should
take K ¼ ��y and choose

16T111�1�Weylj � 16T DBI ¼ f

1þ fj@Aj2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ fj@Aj2Þ2 � f2ð@AÞ2ð@A�Þ2p : (5.4)

It is then straightforward to write out the curved superspace version of this DBI Lagrangian. It is given by

L DBI ¼
Z

d2�2E
�
3

8
ð �D2 � 8RÞe���y=3 þWð�Þ

�
þ H:c:� 1

8

Z
d2�2Eð �D2 � 8RÞD�D� �D�y �D�yTDBI þ H:c:;

(5.5)

where we have added a superpotential W and let

16TDBI ¼ fð�;�yÞ
1þ f@� � @�yeK=3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f@� � @�yeK=3Þ2 � f2ð@�Þ2ð@�yÞ2e2K=3

q : (5.6)

Here, factors of eK=3 ¼ e��y=3 have been introduced so as to compensate for the Weyl rescaling that must be performed to
go to Einstein frame. In components fields, action (5.5) becomes

1

e
LDBI ¼ � 1

2
R� 1

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgmn þ f@mA@nA

�Þ
q

� 1

�
þ eAA

�=3jFj2 þ e2AA
�=3½FðDAWÞ þ F�ðDAWÞ��

þ 3eAA
� jWj2 � 32eAA

�=3jFj2j@Aj2T DBI þ 16e2AA
�=3jFj4T DBI: (5.7)
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The auxiliary field F now obeys the equation of motion

Fþ eAA
�=3ðDAWÞ� þ 32FT DBIðeAA�=3jFj2 � j@Aj2Þ ¼ 0: (5.8)

Wewill consider three regimes of interest here, leaving a more detailed study to future work. When f is small, that is, when
the higher-derivative terms are subdominant, one can apply the results of Sec. IVB1. Then the ordinary branch solution for
F leads to small correction terms, the resulting Lagrangian being

1

e
LDBI;ordinary;T!0 ¼ � 1

2
R� 1

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgmn þ f@mA@nA

�Þ
q

� 1

�
� 2feKjDAWj2

1þ fj@Aj2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ fj@Aj2Þ2 � f2ð@AÞ2ð@A�Þ2p j@Aj2

(5.9)

� eKðjDAWj2 � 3jWj2Þ þ fe2KjDAWj4
1þ fj@Aj2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ fj@Aj2Þ2 � f2ð@AÞ2ð@A�Þ2p ; (5.10)

with K ¼ AA�. Both the kinetic and the potential terms
receive corrections, which are, however, necessarily small
in the limit under consideration. Nevertheless, it will be
important to include such terms when working out the
detailed predictions of phenomenological or cosmological
models based on DBI actions.

From the point of view of the present paper, as well as
for applications to models of DBI inflation, the regime
where f is large is the most interesting one. Indeed, a
special feature of the DBI action is that for large f—and
restricting to fields that depend only on time—the scalars
get slowed down and obey a stringent upper speed limit. By
inspection of the Lagrangian, one can see that this upper
limit corresponds to

fj _Aj2 � 1

2
: (5.11)

The ‘‘relativistic’’ limit, where this bound is (approxi-
mately) saturated, is clearly of particular importance to
models of DBI inflation, as it can ensure slow roll even
in relatively steep potentials. However, precisely because
the kinetic term becomes small as f becomes large, the
relativistic limit does not immediately correspond to the
large T limit of Sec. IVB 2. Indeed, T DBI becomes large,
but the higher-derivative terms nevertheless do not become
completely dominant. For this reason, one cannot blindly
apply the formulas of Sec. IVB2. Instead, one must start
again from the equation of motion (4.16) for the auxiliary
field F. For simplicity, we restrict our analysis to a single

real scalar � ¼ ffiffiffi
2

p
ReðAÞ. Then K ¼ �2=2. In the present

context, the auxiliary field equation of motion reduces to

F3 þ 3

4f
e�K=3 ðDAWÞ�

DAW
Fþ 1

4f

ðDAWÞ�2
DAW

¼ 0; (5.12)

where we have used

16T DBI ¼ f

1þ 1
2 fð@�Þ2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fð@�Þ2p � 2f (5.13)

for the relativistic limit fð@�Þ2 � �1. In the limit that

ðfeKjDAWj2Þ1=3 is large, the solution to Eq. (5.12) is given by

F � �
�ðDAWÞ�2
4fDAW

�
1=3

: (5.14)

Substituting this solution back into the Lagrangian gives

1

e
LDBI;relativistic ¼ � 1

2
R� 1

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fð@�Þ2

q
� 1

�

� 3

2

eKjDAWj2
½4feKjDAWj2�1=3 þ 3eKjWj2;

(5.15)

where the higher corrections are of order

OððfeKjDAWj2Þ�2=3Þ. Remarkably, the first part of the po-
tential is subleading, and the dominant contribution to the
potential, namely �3eKjWj2, is negative. Thus, for this
simple, single-field supergravity realization of the DBI ac-
tion, inflation cannot occur in the relativistic regime. As the
higher-derivative terms become increasingly important, the
potential becomes correspondingly more negative. A ques-
tion, whichwe leave to futurework, iswhether this limitation
can be overcome by considering either more fields or differ-
ent supergravity extensions of the DBI model.5

Finally, an interesting theory can arise in the absence of
a superpotential. In that case, as discussed in detail in
Sec. IVA, apart from the trivial solution F0 ¼ 0, which
leads to the standard DBI theory, there exists a new solu-
tion satisfying

5In Ref. [38], a study of supersymmetric DBI inflation was
undertaken, where the authors also highlighted the importance of
the cubic equation of motion for F, and where they considered
similar limits to those considered here. It was claimed that in the
small f limit (large T in their notation) inflation cannot occur,
but that in the large f limit with very small _�2, it could. They
also excluded relativistic DBI inflation, but for reasons different
than ours. Our results differ rather significantly, which can in
part be traced back to the fact that we are performing the analysis
in supergravity, whereas the authors of Ref. [38] considered a
hybrid approach where the formulas of global supersymmetry
were simply added to an Einstein-Hilbert term.
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jFnewj2 ¼ e�AA�=3
�
1

2
j@Aj2 � 1

2f

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ fj@Aj2Þ2 � f2ð@AÞ2ð@A�Þ2

q ��
: (5.16)

When substituted into the action, we obtain the Lagrangian

1

e
LDBI;new ¼ � 1

2
R� 1

4
j@Aj2 � 1

4f
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgmn þ f@mA@nA

�Þ
q

� 1Þ

� 1

2f
þ fðð@AÞ2ð@A�Þ2 � j@Aj4Þ

1þ fj@Aj2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ fj@Aj2Þ2 � f2ð@AÞ2ð@A�Þ2p : (5.17)

Although the ordinary kinetic term has disappeared,
a new kinetic term, as well as a new potential, have
regrown via the higher-derivative interactions. In the
purely time-dependent case, where A¼ð�ðtÞþ�ðtÞÞ= ffiffiffi

2
p

,
the theory reduces to

1

e
LDBI;new ¼ � 1

2
Rþ 1

4
X� 1

4f
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2fX

p � 1Þ � 1

2f
;

(5.18)

where X ¼ 1
2 ð _�2 þ _�2Þ. For the type IIB string theory case

of a D3-brane moving in a warped throat Calabi-Yau
geometry, one has f / ð�2 þ �2Þ�2. Hence, in this setting
our new theory, which has both an ordinary kinetic term
and an additional DBI term, would contain a nonvanishing
potential proportional to ð�2 þ �2Þ2. Thus, even in the
absence of a superpotential, an effective potential is gen-
erated. One must remember, however, that for consistency
the right-hand side of Eq. (5.16) must be positive. It is
straightforward to convince oneself that for scalar fields
which depend only on time, this requires that we take
f < 0, and hence the potential is required to be negative.
If we allow the fields to depend on space as well, then the
right-hand side of Eq. (5.16) can be positive when the fields
develop large spatial gradients, even when f is positive.
Either way, however, this new branch of the theory does
not allow for a phase of inflation to occur. An interesting
question iswhat prevents the theory fromdynamically reach-
ing the ‘‘forbidden’’ field values, where jFj2 would become
negative. We leave this open question for future work.

Summary: Our formalism allows one to construct a
supergravity version of the DBI action. When the higher-
derivative terms are small, we obtain correspondingly
small corrections to the DBI Lagrangian and to the poten-
tial. In the most interesting case, where the higher-
derivative terms significantly influence the dynamics, we
find that the potential again becomes

VT!1 ¼ �3eKjWj2; (5.19)

which is everywhere negative. This result represents a
serious challenge to models of DBI inflation where the
relativistic regime of the theory is exploited. In the absence
of a superpotential, the new branch of the supergravity DBI
theory generates a potential, but curiously this theory either
requires the potential to be negative (without restricting the
types of solutions that the scalars can admit), or if the

potential is positive, it requires the scalars to develop large
spatial gradients.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we presented a formalism that allows one
to obtain an N ¼ 1 supergravity extension of any scalar
field theory with higher-derivative kinetic terms. This was
accomplished by constructing a superfield—quartic in chi-
ral scalars—which contains the term ð@�Þ4, and when the
fermions are set to zero, consists entirely of its top compo-
nent. Thus, when multiplied by any other superfield, the
resulting Lagrangian contains only the lowest component
of the multiplicative factor. This property enables one to
directly construct a supergravity extension of any higher-
derivative scalar field term of interest. Moreover, as dis-
cussed in the Appendix, our supergravity extension of
ð@�Þ4 is likely to be the unique one that does not modify
the gravitational sector of the theory, thus rendering our
construction particularly pertinent. For this reason, study-
ing the properties of the auxiliary fields in this context,
which are crucial to the structure of supergravity, is
important. This was carried out in detail in this paper.
In our formalism, despite the inclusion of an arbitrarily

high number of spacetime derivatives, the auxiliary fields
do not have kinetic terms, and therefore continue to satisfy
algebraic equations of motion. We point out that this is a
highly nontrivial property, which renders the treatment of
the auxiliary fields straightforward. Be this as it may, there
is one new and important property of our formalism. That
is, although the auxiliary fields F satisfy an algebraic
equation of motion, that equation is now cubic as opposed
to the linear equation in the usual second order kinetic
theory. Hence, this equation admits up to three distinct
solutions.We have shown that these solutions lead to differ-
ent theories that cannot dynamically transition from one to
another. One solution is directly related to the one ordinarily
obtained in the absence of higher-derivative terms. This
leads to corrections to both the kinetic and potential terms
when substituted into the action. We have examined these
corrections in different limits. When the higher-derivative
terms are small, the corrections are correspondingly small,
but need to be taken into account when making precise
predictions in phenomenology and cosmology. In the limit
that the higher-derivative terms become large, the effect of
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eliminating the auxiliary field is to suppress certain contri-
butions to the potential. The result is that the negative term
�3eKjWj2 becomes the dominant contribution to the po-
tential energy. Thus, in the large higher-derivative limit,
supergravity manifests once more its predilection for nega-
tive potentials. This feature implies that the supergravity
implementation of inflationary and k-essence models—
such as DBI inflation—that rely on higher-derivative ki-
netic terms in an essential way become more challenging.

In addition to this ‘‘usual’’ solution for F, there exist up
to two new solutions. These lead to theories with very
unusual properties, which we have only started exploring
in the present paper. For example, these new branches seem
to prefer solutions with substantial spatial gradients in the
scalar fields, and can lead to positive potentials. Moreover,
they can do this even in the absence of a superpotential.
These curious theories, whose physical relevance is not
clear yet, form an interesting topic for further research.

This work has many foreseeable applications.
Most importantly, we hope that our results can be used to
bridge the gap between standard model building in cos-
mology and full-blown string compactifications, leading to
well-motivated effective theories of early universe dynam-
ics. In this context, it will be interesting to investigate in
more detail models of DBI inflation and k inflation, as well
as other models of brane dynamics such as the Galileons
and their extensions. Furthermore, it will be enlightening
to find out whether null energy violating models, such as
the ghost condensate, can be realized in a supergravity
context. We hope to explore these topics in the near future.
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APPENDIX A: RELATIONSHIP TO THE WORK
OF BAUMANN AND GREEN

An initial study of an effective supergravity theory
of higher-derivative scalar fields was performed by D.
Baumann and D. Green in Ref. [32] (other earlier works
of interest include Refs. [39–44]), and applied to certain
cosmological questions in Ref. [31]. These authors based
their formalism on a different supergravity extension of
ð@�Þ4, given by

LBG ¼ � 1

32

Z
d2�2Eð �D2 � 8RÞð���yÞ2Da�Da�y:

(A1)

The component expansion of this Lagrangian contains
ð@�Þ4, as desired. It also contains terms that are of a rather
different character than those considered in our work. For
example, the above superfield generates derivative cou-
plings to the Ricci tensor of the form

�2ð@�Þ2R; �2Rmn@m�@n�: (A2)

Such couplings modify the gravitational part of the theory
in a nontrivial manner. This is both interesting for phe-
nomenology and difficult for calculations, as one cannot
Weyl rescale such terms away. For this reason, it becomes
more difficult to interpret the resulting theory. The compo-
nent expansion of Eq. (A1) also contains a term

�2j@Fj2; (A3)

which makes the ‘‘auxiliary’’ field become propagating.
This implies that the field F cannot be eliminated as usual,
but must be retained as a dynamical, propagating degree of
freedom. For these reasons, the term (A1) takes us outside
the class of theories we want to consider in the present
work. However, in a general supersymmetric effective field
theory, such a term could also be present. Consequently, a
study of its properties and phenomenological consequen-
ces is certainly of interest.
A final remark. In Ref. [17], arguments were given that

in global supersymmetry, the two superfield expressions
D�D� �D�y �D�y and ð���yÞ2Da�Da�y are the only
‘‘clean’’ supersymmetric extensions of ð@�Þ4. By this we
mean that they generate ð@�Þ4, but no additional terms
containing only �. We now see that in supergravity these
two superfield expressions differ in their coupling to grav-

ity, with D�D� �D�y �D�y leading to minimal coupling
while ð���yÞ2Da�Da�y gives additional derivative
couplings.

APPENDIX B: COMMENT ON
KÄHLER INVARIANCE

In the usual theory of chiral superfields coupled to
supergravity, invariance under Kähler transformations
plays an important role. Thus, one may wonder if this
symmetry also restricts higher-derivative terms. Since the
same question arises in chiral models with global super-
symmetry, we will analyze the question in that simpler
context. Super-Kähler transformations correspond to a
shift of the vector Kähler superfield

Kð�i;�yi�Þ ! Kð�i;�yi�Þ þ Cð�iÞ þ C�ð�yi�Þ; (B1)

where C is an arbitrary holomorphic function of chiral
superfields and C� is its conjugate. Since the usual two-
derivative chiral superfield Lagrangian is

L ¼
Z

d2�d2 ��K; (B2)
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invariance under super-Kähler transformations is almost a
trivial statement, following from the fact that the top
component of any chiral superfield is a total spacetime
derivative given by 1

4h of its lowest component.

Less trivial, however, is the following. Note that the
supershift (B1) induces the scalar Kähler transformation

KðAi; Ai�Þ ! KðAi; Ai�Þ þ CðAiÞ þ C�ðAi�Þ (B3)

in the lowest component of Kð�i;�yi�Þ. Furthermore, the
�2 ��2 component of Kð�i;�yi�Þ, which gives the two-
derivative component field Lagrangian, contains the non-
linear sigma modelK;AiAj�DmAiDmA

j� for the scalar fields
Ai. Under the Kähler transformation (B3), this is invariant
since K appears with mixed second derivatives. This in-
variance, unlike the total divergence terms, is very non-
trivial and corresponds geometrically to the target space of
the scalar fields being a complex Kähler manifold with
Kähler metric gij� ¼ K;AiAj� .

Now consider higher-derivative contributions to the
Lagrangian. As discussed in the text, in flat superspace
these take the form

L h-d ¼
Z

d2�d2 ��D�iD�j �D�yk� �D�yl�Tijk�l�: (B4)

To maintain sigma-model diffeomorphism invariance, it is
necessary that Tijk�l� transform as a tensor on the complex

scalar manifold. Furthermore, consistency with the Kähler
manifold required by the two-derivative Lagrangian implies
that this tensor be chosen invariant under Kähler transforma-
tions (B1). An example of this is to take Tijk�l� / ðK;�i�yj� Þ2
times a Kähler invariant scalar superfield, as was done in
the text for the case where all fermions are set to zero. Thus,
the requirement that the action be Kähler invariant does
restrict the higher-derivative terms. Finally, these arguments
carry over directly to curved superspace, and hence higher-
derivative chiral superfield Lagrangians coupled toN ¼ 1
supergravity.
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