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Abstract
A recent experiment located the lowest 2+ state in 20Mg and discovered that the corresponding 2+, T = 2 state
in 20F does not fit expectations of the isobaric multiplet mass equation without a d term.We have calculated
the energies of the ground and 2+ states in 20Mg and the 2+ in 20F in a potential model, using shell-model
spectroscopic factors. We conclude that this important 20F state has likely never been observed, and suggest a
reaction to find it.
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A recent experiment located the lowest 2+ state in 20Mg and discovered that the corresponding 2+, T = 2
state in 20F does not fit expectations of the isobaric multiplet mass equation without a d term. We have calculated
the energies of the ground and 2+ states in 20Mg and the 2+ in 20F in a potential model, using shell-model
spectroscopic factors. We conclude that this important 20F state has likely never been observed, and suggest a
reaction to find it.
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The A = 20 isospin quintet of nuclei has the distinction of
being the lightest quintet that is wholly within the sd shell.
As such, it is an important testing ground for investigating
refinements to the shell model, including the calculation of
Coulomb energies, possible breaking of isospin symmetry,
etc. In 20O some core-excited states are present, but results of
the 18O(t ,p) reaction [1] demonstrated that the ground state
(g.s.) and first-excited 2+ state are very well described totally
as (sd)4 states. This conclusion was supported for the g.s. by a
calculation [2] of the mass of 20Mg(g.s.) and by a fit [3] of the
A = 20, T = 2 g.s. masses to the quadratic isobaric multiplet
mass equation (IMME). However, a problem arose for the 2+
states.

A calculation [2] of the mass of the ground state (g.s.)
of 20Mg missed the known value [4] by only calc–exp =
−21(27) keV, even though this calculation was quite simple.
It included only the g.s. of 19O (and 19Na) coupled to a
1d5/2 nucleon. (Throughout the paper, whenever we quote
an experimental energy and its uncertainty, the energy and
uncertainty are both from the cited reference. We believe
these are all 1σ uncertainties, unless stated otherwise. We
have not attached an uncertainty to the calculated energies, but
the reliability of the calculations is addressed along the way.)
The same calculation missed the energy of 20F(0+, T = 2) by
+ 41(3) keV. Using the quadratic IMME, a best fit [3] missed
the 20Mg(g.s.) mass by −18(27) keV, but got the lowest 0+,
T = 2 state of 20F approximately correctly with a resulting
χ2 of 0.69. Those workers [3] were the first to observe the 2+
in 20Mg and measure its excitation energy as 1.598(10) MeV.
Fitting the 2+ in three of the nuclei (20O, 20Ne, and 20Mg)
(an exact fit) missed the 2+ energy in 20F [5] by calc–exp =
161(100) keV. Including all four known energies (the state is
not known in 20Na) with the addition of a cubic term gave a d

coefficient of 55(33) keV, quite a large value. This discrepancy

*fortune@dept.physics.upenn.edu

prompted us to revisit our earlier calculation and to include the
2+ states in 20F and 20Mg.

The present calculation uses spectroscopic factors for
20O→19O from a full (sd)4 shell-model (sm) calculation, with
the USD interaction [6]. However, as we shall see below, it
turns out that a severely truncated calculation (using only the
three lowest states of 19O) works very well.

A standard shell-model calculation contains no Coulomb
interaction. Thus, if the isospin is not zero, the sm calculation
provides relative energies for states of the nucleus with
Tz = T . Here T is isospin and Tz = (N–Z)/2, where N and Z

are neutron and proton number, respectively. If energies in the
Tz �= T nuclei are desired, then the Coulomb interaction must
be inserted. Attempts have been made [7] to include it directly
in the sm calculations by modifying the nucleon-nucleon
interaction (single-particle energies and two-body residual
interaction matrix elements). They usually falter on questions
of energy, orbital, and A dependence, on the question of how
much isospin nonconservation to include, and the relative
importance of one- and two-body (and possibly three-body)
terms. Another difficulty is with the radial wave functions. The
potential-model wave functions have the correct asymptotic
behavior (tail determined by binding energy), but the sm
ones do not (because they are eigenfunctions of a harmonic
oscillator). One sm + Coulomb approach [8] has been applied
to 20Mg.

Our approach is different and relies on the completeness
of a one-nucleon expansion in basic quantum mechanics. For
any state in nucleus A, its wave function can be written as a
sum of terms, each of which is the product of an expansion
coefficient, the wave function of a state in nucleus A-1, and a
nucleon wave function of relative motion:

�i(A, Ji) = �aik�k(A − 1, Jk)uj (n),

where total angular momentum Ji is the vector sum of Jk and
j (the latter being 1/2, 3/2, and 5/2 in the sd shell). The sum
is over all terms consistent with angular-momentum coupling.
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TABLE I. Spectroscopic factors for 20O(g.s.)→19O. (Energies are
in MeV.)

2J (19O) n S Ex (19O) Ep (19Na)

1 1 0.3217 1.47 1.066
2 0.0134
3 0.0003
4 0.0011
5 0.0001

Sum 0.3366
3 1 0.0687 0.096 0.44

2 0.0009
3 0.1118 (5.54) (5.67)
4 0.0172
5 0.0006

Sum 0.1992
5 1 3.4014 0.00 0.32

2 0.0045
3 0.0141
4 0.0009
5 0.0246
6 0.0137

Sum 3.4592
Total 3.995

A sm calculation provides numerical values for the expansion
coefficients, which are in one-to-one correspondence with
the spectroscopic factors. This procedure is exact, but it is
convenient only when the total number of important core
states is small. (For this reason we frequently check to see
if a truncated basis might work.) In the present case of A = 20,
T = 2, the total number is manageable, but (as we shall see) a
rather severe truncation works extremely well.

In our procedure, we assume that the expansion coefficients
are equal for a given state and its analog, and that the effects
of the Coulomb interaction are limited to changes in the
radial wave function. We did not invent this technique, but
we have frequently used it to compute mass excesses of
proton-rich nuclei and/or energies of excited states in those
nuclei, including 8C [9], 9B [10,11], 10C [11], 11N [12],
12O [13,14], 14F [15], 15F [16–18], 16Ne [9], 17Ne [19,20],
18Ne [21–23], 18Na [20,24], 19Ne [25], 19Mg [26,27], 20Na
[28], 20Mg [2], 22Mg [29], 17Na [30], and 40Sc [31]. Perhaps

the most striking example of the success of this approach
was the prediction [26] of the g.s. energy of 19Mg: E2p =
0.87(7) MeV. We assigned an uncertainty of 70 keV to those
calculations, because the energies of the relevant core states in
18Na were not known, and it was necessary to also compute
them. A later experiment [32] found E2p = 0.75(5) MeV, just
at the limit of our uncertainty.

Our procedure employs a Woods-Saxon nuclear potential
for the calculation of a single-particle (sp) wave function.
Geometric parameters are r0 = 1.26 fm, a = 0.60 fm. For each
term in the one-nucleon expansion of the total wave function
mentioned above, we vary the potential well depth to fit the
known energy of the state. We then use this potential plus the
Coulomb potential of a uniformly charged sphere to calculate
the energy of the core+proton sp state. After this has been
done for all the components being included, we weight these
energies with the relevant spectroscopic factors to obtain our
predicted energy for the analog state. In the present case, the
first step involves 19O + n, the second has 19Na + p. As for
19Mg, some of the needed core-state energies in 19Na are not
known [33], and we had to calculate them. However (unlike
19Mg), it will turn out that their contributions are small.

An alternative method might be to use the neutron radial
wave function to compute the expectation value of the
Coulomb interaction. That is not our procedure. We solve the
one-nucleon Schrödinger equation twice—once for a neutron,
then for a proton, using the same nuclear potential. The first
calculation provides the well depth that reproduces the neutron
binding energy. The second one gives the proton energy for
that well depth.

We start with the ground state, for which the spectroscopic
factors are listed in Table I. To compute the energy of the g.s.
of 20Mg we first calculate the g.s. of 20O for its various 19O + n

components, using a Woods-Saxon potential well having r0 =
1.26 fm, a = 0.60 fm. For each component, the well depth is
varied to fit the known n binding energy. Then this potential,
plus the Coulomb potential of a uniformly charged sphere
with r0c = 1.40 fm, is used to compute the energy of 20Mg as
19Na+p.

For the individual configurations, the results depend
primarily on the neutron binding energy for the relevant core,
and on whether the neutron is s or d, with s states coming
lower in the proton-rich member of a mirror pair. This effect
is well known, and is sometimes called the Thomas-Ehrman

TABLE II. Spectroscopic factors for 20O(2+)→19O. (Energies are in MeV.)

2J (19O) n 2s1/2 1d3/2 1d5/2 Ex (19O) Ep (19Na)

1 1 – 0.0189 0.1005 1.47 1.066
2 – 0.0067 0.0259

3 1 0.0345 0.0141 1.4304 0.096 0.44
2 0.0779 0.0043 0.0258 3.067 (3.09)

5 1 0.1491 0.0420 0.7176 0 0.32
2 0.0304 0.0002 0.0114 3.154 (2.78)

7 1 – 0.0186 0.1277 2.779 (2.785)
9 1 – – 1.0084 2.372 (2.606)

2 – – 0.0283
Sum 0.2919 0.1048 3.4760

054304-2



LOWEST 2+, T = 2 STATES IN 20Mg AND 20F PHYSICAL REVIEW C 85, 054304 (2012)

TABLE III. Calculated and experimental 2p energies (MeV) in 20Mg.

Core states g.s. 2+ Ex (2+) Reference

Calculated All –2.341 –0.749 1.592 Present work
First three –2.339 –0.736 1.603 Present work

Experimental –2.325(27) 1.598(10) Ref. [3]

effect. For the g.s., the difference is larger because to make a 0+
state with an s1/2 nucleon requires the core state to also have
Jπ = 1/2+. Additionally the excitation energy of the 1/2+
state in 19Na [34] is about 0.7 MeV lower than in 19O. In fact,
we find here that most of the effect comes from the core energy,
not from the energy of the last neutron, because, in the present
case, the binding energies are large—En = −9.077 MeV for
20O(g.s.) = 19O(1.472, 1/2+) + n. However, the overall effect
for the g.s. is much smaller than the single-particle value,
because (as can be seen in Table I) the s1/2 content of 20O(g.s.)
is less than 10% of the total strength.

For each configuration of 19O + n→19Na + p, we weight
the calculated energy by the relevant spectroscopic factor. We
need the energy in 19Na of the second 5/2+ and third 3/2+
states. Reference [35] observed the second 3/2+ and 5/2+
states as resonances in 18Ne + p, at Ep = 2.78 and 3.09 MeV,
but could not determine which was which. We assume the
lower is 5/2+. The third 3/2+ (sd)3 state of 19O occurs in
a region in which 3/2+ core-excited states are also present.
We take as (sd)3 the one with a large d3/2 spectroscopic
factor—Ex = 5.54 MeV. We estimate its energy in 19Na to be
Ep = 5.67 MeV (Ex = 5.35 MeV). The g.s. calculation does
not depend very much on this value. A shift of 300 keV in
its energy in 19Na causes only a 7-keV shift in 20Mg(g.s.).
Using all the 19O states for which the spectroscopic factor
is larger than 0.02, the prediction for 20Mg(g.s.) is E2p =
−2.341 MeV. This is the total energy for 20Mg = 18Ne + 2p.
Because 19Na(g.s.) is unbound by 0.32 MeV [8], the 1p

energy is then −2.66 MeV. Repeating the calculation with
only the three lowest states, with Jπ = 5/2+, 3/2+, and 1/2+,
the result is E2p = −2.339 MeV—only a 2-keV difference.
The experimental value [36] is −2.325(27) MeV. So, in the
full calculation we have calc–exp = −16(27) keV. Recall that
for only one component [19O(g.s.) + d5/2], the result [2] was
calc–exp = −21(27) keV. With satisfactory agreement for the
g.s., we now turn to the 2+ state of 20Mg.

For the 2+ calculations, we have again used all the
components with spectroscopic factors larger than 0.02. These
are listed in Table II. Note that for core states with Jπ =
3/2+ or 5/2+, both � = 0 and 2 are allowed. Also, as for the
g.s., we have performed a truncated calculation using only
the lowest three states for A = 19. For the full calculation for
the 2+ state we need the excitation energies of the second 3/2+
and 5/2+ states of 19Na, as well as the first 7/2+ and 9/2+.
For the first two, we take the energies mentioned above for
the resonances in 18Ne + p. The results are insensitive to this
choice. Interchanging them produces only a 4-keV shift in the
predicted 2+ energy. For 7/2+ and 9/2+, we have computed
their energies in 19Na, using spectroscopic factors from a
simplified (sd)3 sm calculation, in the spirit of Lawson [37],

with s1/2 and d5/2 only. Results are Ep = 2.61 and 2.78 MeV
for Jπ = 9/2+ and 7/2+, respectively.

Again, results for the full and truncated computations
are similar (Table III). The full calculation gives E2p =
−0.749 MeV, and the truncated one E2p =−0.736 MeV. These
correspond to 2+ excitation energies in 20Mg of 1.592 and
1.603 MeV, respectively, to be compared with the experimental
value [3] of 1.598(10) MeV. Therefore, we miss the excitation
energy by −6 or +5 keV, less than the experimental uncer-
tainty. This result provides some confidence that we should be
able to make a reliable estimate of the 2+, T = 2 energy in 20F.

In 20F, the T = 2 states are composed of (3/4) (19F∗ + n) and
(1/4) (19O + p), so we compute the two separately and weight
with these factors. The lowest 5/2+, 3/2+, and 1/2+, T =
3/2 states in 19F [33] are at excitation energies of 7.540(1),
7.661(1), and 8.793(2) MeV, respectively. We note that the
uncertainties in these energies are small enough that they
will not contribute significantly to any uncertainty in the 20F
calculation. In this case, the higher-lying T = 3/2 states in 19F
are not known, so we can do only the truncated calculation, but
we include both � = 0 and 2 for the 3/2+ and 5/2+ cores of the
2+ state. The result is a predicted excitation energy of 8.194
MeV for the lowest 2+, T = 2 state of 20F (Table IV). Because
the truncated 20Mg calculation missed the 2+ excitation energy
by only 5 keV, we expect it to be as reliable in 20F. (The proton
configuration contributes only 25% here.)

The prediction [3] of the IMME without a d term was
Ex = 8.211 MeV. The experimental excitation energy [5,38]
of the supposed 2+, T = 2 state is 8.05(10) MeV. Our value
is 17 keV closer to the experimental energy, but still misses
it by 144(100) keV. We expect that a new measurement of
this excitation energy will produce a different number. In a
core+single-particle picture, the 2+–0+ energy difference is
smaller in 20Mg than in 20O because the 2+ state has a larger
s1/2 parentage and because the 2+ state is less bound. But, with
the compiled energies in 20F, the 2+–0+ splitting is less than
in 20Mg, an unlikely scenario.

It is possible that isospin mixing plays a role here, and
shifts the energy somewhat. The density of 2+, T = 1 states
in the vicinity of the 2+, T = 2 state is undoubtedly quite
high, especially considering the large number of core-excited

TABLE IV. Excitation energies (MeV) of lowest 2+, T = 2 state
in 20F.

Source Result Reference

Coulomb energy 8.194 Present work
IMME 8.211 Ref. [3]
Experimental 8.05(10) Refs. [5,38]
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configurations that can exist in this region [39]. The predicted
2+ energy is unbound to neutron decay by about 1.6 MeV,
but in the absence of isospin mixing that decay is isospin
forbidden. If T mixing is present, then the decay from the
T = 1 component would be expected. A state at 8.15 MeV
has been seen [5] with a width of 180 keV in (n,γ ) and
209 keV in (n,n). If this is the g.s. width, it would correspond to
� = 2, for which the isospin-allowed single-particle width is
about 440 keV.

The master list in the compilation [5] for 20F lists states at
8.113(4), 8.147(6), and 8.268(12) MeV, with widths of 195,
15 keV, and unknown, respectively. But all three of these states
were observed [40] in the 14N(7Li,p) reaction—which should
not populate a T = 2 state. Of course, if the isospin is mixed,
they could be populated. The first of these may be the same
state as the one mentioned above that was observed as a neutron
resonance, but its width is far too large for a predominantly
T = 2 state.

It is possible that the supposed 2+, T = 2 state has been
misidentified. The only reaction to populate it is 22Ne(p,3He)
[38]. Inspection of spectra for this reaction and for 22Ne(p,t)
reveals that the 0+, T = 2 state is strong and sharp in
both, but the supposed 2+, T = 2 peak is weak and poorly
defined. Also, nothing prohibits the formation of T = 1
states in these reactions. Perhaps the 22Ne(p,3He) experiment
should be repeated. It is possible that this important state has
never been observed. Or, given the strength of 20O(2+) in
the 18O(t ,p) reaction [1], it might be easier to identify the
2+, T = 2 state of 20F with the 18O(3He,p) reaction. Earlier
investigations [41,42] of this reaction did not reach this high in
excitation.

To summarize: We find that the earlier disagreement of
the 20F 2+, T = 2 state with the IMME is true also for our
potential-model calculations. This state may never have been
observed. The reaction 18O(3He,p) probably offers the best
method to find it.
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