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Abstract
The purpose of this research is to identify an optimal methodology for determining whether a given brick dust
will produce a pozzolanic reaction when combined with lime. This property will be referred to as
pozzolanicity. The research required a review of the properties of pozzolanic materials, the nature of the
pozzolanic reaction, and a review of existing methods for determining pozzolanicity. A testing program
performed at the Architectural Conservation Laboratory at the University of Pennsylvania was designed and
executed to evaluate methods for testing pozzolanicity of brick dust to determine their efficacy. An evaluation
of the tests was the final result of the research, along with recommendations for ways in which this immensely
valuable resource can be tested and utilized economically and sustainably for conservation work in the future.
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CHAPTER 1 INTRODUCTION 

1.1 LIME-BASED REPAIR MORTARS FOR ARCHITECTURAL 
CONSERVATION 

In architectural conservation, adherence to original materials in treatments 

and repair is highly advantageous for the sake of material compatibility as well as 

authenticity and aesthetics. However, the service life of repairs is also an 

undeniably critical consideration for practicality and sustainability. This is 

particularly relevant in the formulation of repair mortars for the bedding and 

pointing of masonry work. A conflict exists between the ideal of using lime 

mortars for repair and the insufficient long-term performance associated with 

these materials. As a result, lime mortars have frequently been gauged with, or 

entirely replaced with Portland cement in the repair of historic masonry 

structures. Time has revealed the negative consequences of this practice 

through extensive damage to historic brick and stone structures, evident in the 

deterioration of the masonry systems because of incompatibility between soft, 

permeable masonry unit and mortar systems and hard, impervious Portland 

cement.  

Lime-based mortars are optimal for conservation for several material-

related reasons. Mortars are meant to be sacrificial materials that are softer and 

more permeable than adjacent masonry units. Lime mortars are permeable and 

porous, allowing the movement and evaporation of water in the liquid and vapor 

form, whereas Portland cement is rigid and less permeable with a very tight pore 
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structure. Water cannot easily evaporate through Portland cement mortar joints 

and is retained within the masonry unit instead. This causes weathering and 

mechanical damage through freeze-thaw cycling, as freezing water expands 

within the pores and causes stresses and the breaking up of a masonry unit over 

time. Mechanical damage is also inflicted on the stone as a result of 

crystallization of soluble salts trapped in the stone by impermeable cement 

through wetting and drying cycles. Portland cement can aggravate mechanical 

damage from salts because it introduces salts itself, particularly gypsum. Freeze-

thaw and salt damage can be avoided with the use of a permeable mortar that 

allows evaporation through the sacrificial joints as opposed to the masonry unit 

itself. In addition to freeze-thaw and salt crystallization damage, the high bond 

strength of Portland cement mortars negatively impacts soft masonry units 

because it doesn’t allow movement (structural or thermal) and it also causes 

damage to the stone when it is removed.1 Finally, Portland cement has a lot of 

inherent problems that should not be introduced into an historic masonry system 

if it can be avoided. For example, ettrignite is a harmful compound that is formed 

from the hydration of Portland cement. The crystal growth of ettrignite can cause 

stresses and cracking in mortar joints.2  

The recognition of the negative consequences of the use of Portland 

cement mortars for repair of historic structures became apparent and, to some 

                                                           
1 Pat Gibbons, Technical Advice Note: Preparation and Use of Lime Mortars, Revised edition 
2003, The Scottish Lime Centre. Edinburgh, Scotland: Crown Copyright, 2003, pp. 1-4. 
2 Jochen Stark and Katrin Bollmann, “Delayed Ettrignite Formation in Concrete,” (paper) Bauhaus 
University, Germany. 
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extent, initiated interest in the return to traditional practices of lime mortar 

pointing for conservation projects in the last decades of the twentieth century. 

While lime mortars are ideal in terms of material compatibility, their less-than-

optimal durability (resistance to extreme weathering) requires a maintenance 

program that is often too intensive to be economically viable for the custodians of 

cultural heritage. Their curing time also affects their viability, as lime mortars, 

particularly when deprived of carbon dioxide within a wall or between masonry 

units, can take many years to fully cure. Recent investigations into the properties 

of lime mortars have broadened the understanding of these materials and sought 

to make them more practical. One study that has been particularly insightful is 

the Smeaton Project, initiated by English Heritage in response to inappropriate 

Portland cement repointing of Hadrian’s Wall in northern England. An important 

finding was the confirmation that the addition of brick dust to pure lime mortars 

greatly enhanced their performance because it acted as a pozzolan.3  

 

1.2 POZZOLANS: THEIR ROLE IN LIME MORTARS 

A pozzolan can be simply defined as a material that contains reactive 

silica and/or alumina that, when combined with lime, will react to form new 

compounds (calcium silicate hydrates and calcium aluminum hydrates) that have 

the ability to modify the properties of a lime mortar. Specifically, the addition of a 

                                                           
3 Jeanne Marie Teutonico, Iain McCaig, Colin Burns, John Ashurst, “The Smeaton Project: 
Factors Affecting the Properties of Lime-based Mortars,” APT Bulletin, Vol. 25, No. 3/4. (1993), 
pp. 32-49. 
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pozzolan enhances the properties of lime mortar by speeding setting time, 

increasing strength and long-term durability, and allowing a hydraulic set; the 

property of a mortar to cure under water without the action of carbon dioxide. 

Essentially, the addition of a pozzolan to pure lime is a way of artificially creating 

a material akin to hydraulic lime. Hydraulic lime is a material that naturally 

possesses the ability to set quickly in the presence of high moisture because of 

reactive silicates contained in the mineralogical clays of the limestone from which 

it is derived. 

Sources of pozzolans include a diverse range of materials, some 

naturally-occurring and some artificial. The use of pozzolans in lime mortars can 

be traced back to Ancient Rome and earlier. A volcanic sand known as 

pozzolana was employed by Roman engineers in their mortars to form Roman 

concrete centuries before the invention of Portland cement-based concrete. The 

construction of some of the most monumental and iconic ancient structures, 

including the Collosseum and the Pantheon in Rome, were made possible by the 

strength and durability imparted to lime mortars by pozzolans. The longevity of 

these monuments is a testament to the quality of the materials employed in their 

construction. 

While (volcanic) pozzolana was the primary additive to lime mortars in 

ancient Rome, crushed brick was used as an alternative when pozzolana was 

not available. This is cited in Vitruvius’s Ten Books on Architecture and has been 

evidenced in analysis of samples of ancient mortar found throughout the Roman 
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Empire.4 This building technology was not only utilized by the Romans, but is 

known to have been used in many different parts of the world. In India and Egypt, 

the practice of adding burnt clay to lime mortars goes back centuries and is 

known in these countries as Surkhi and Horma, respectively.5 In the 1750s, 

Englishman John Smeaton famously experimented with fired clay mortars but 

ultimately used Italian pozzolana in combination with lime in the construction of 

the Eddystone lighthouse off the coast of Devon, England. With increased use of 

hydraulic limes and the eventual invention of Portland cement in the early 

nineteenth century, the use of pozzolans saw a rapid decline.6 

 

1.3 IMPLICATIONS OF POZZOLANIC LIME MORTARS IN CONSERVATION 

A renaissance in the use of pozzolanic lime mortars, particularly brick dust 

mortars, could be very valuable in conservation practice, not only for reasons of 

material compatibility and authenticity but for economy and sustainability as well. 

While true Italian pozzolana and other natural pozzolans are only available in 

certain regions, brick produced from fired clay is a material that has been used 

almost everywhere for construction throughout history in the majority of the 

civilized world. Through the recycling of unused brick or brick from demolished 

                                                           
4 G. Binda, L. Baronio, and N. Lombardini, The Role of Brick Pebbles and Dust in Conglomerates 
Based on Hydrated Lime and Crushed Brick, Seventh North American Masonry Conference, 
University of Notre Dame, Indiana, 1996.  
5 F. M. Lea, The Chemistry of Cement and Concrete, 3rd edition. NY: Chemical Publishing 
Company, 1971, p. 419. 
6Jeanne Marie Teutonico, Iain McCaig, Colin Burns, John Ashurst, “The Smeaton Project: 
Factors Affecting the Properties of Lime-based Mortars,” APT Bulletin, Vol. 25, No. 3/4. (1993), 
pp. 32-49. 
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structures, this abundant material can be put to a new use in lime mortars.  This 

is a true demonstration of the concept of sustainability. Existing bricks contain 

embodied energy, i.e. the energy that was consumed to create each individual 

brick and build the structure for which they were conceived. When the bricks are 

no longer needed for whatever purpose they were created, their useful life can be 

extended by repurposing them in pozzolanic lime mortars.7 Another aspect of the 

sustainability of this practice is the environmental benefit that comes from using 

pozzolanic lime mortars over Portland cement mortars. The process of firing 

Portland cement is extremely energy-consumptive and generates a huge amount 

of carbon dioxide. Creation of pozzolanic limes consumes significantly less 

energy than industrial quality limes and Portland cement.8 

Brick dust mortars are not only sustainable, but they are also an 

economical option for conservation as compared to the alternatives. Natural 

hydraulic lime is it not economical because it is very expensive as a result of its 

scarcity, as it is only produced in certain parts of the world that contain sources of 

silica-rich limestone. In some countries, if the material is even available, the cost 

of purchasing and shipping it to job sites can be exorbitant. Portland cement is 

also scarce and expensive in some countries, in addition to being inappropriate 

for conservation for reasons previously mentioned. Pure lime, however, is much 

                                                           
7 The idea of recycling construction waste, specifically structural and facing bricks, has been 
explored to some extent in a paper by Igor Pinheiro et. al: Igor S.Pinhero, Luiz C. Montenegro, 
and Adriana G. Gumieri. Pozzolanic Activity of Red Recycled Bricks. Second International 
Conference of Sustainable Construction Materials and Technologies, Ancona, Italy, June, 2010. 
8 Pat Gibbons, Technical Advice Note: Preparation and Use of Lime Mortars, Revised edition 
2003, The Scottish Lime Centre, Edinburgh, Scotland: Crown Copyright, 2003, p.4. 
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less expensive and much more accessible. With the addition of brick dust, pure 

lime can obtain ideal properties in repair mortars using materials that are readily 

available and inexpensive.  

 

1.4 RESEARCH PROBLEM 

The fines of crushed brick have great potential for use as a pozzolanic 

additive to lime-based repair mortars. There are obstacles, however, to the 

successful implementation of this technology in the field. While it is firmly 

established that brick dust has the ability to have a pozzolanic reaction with lime, 

this does not apply universally to all bricks. Brick dust’s ability to react with lime 

depends on a number of variables which will be discussed at length in this study. 

The impediment that exists to practically employing brick dust is the lack of 

standardized methods for assessing its pozzolanicity, or ability to react with lime.  

While testing methodologies for assessing pozzolanicity do exist and can 

be found in literature as early as the 1830s, contemporary standards for 

pozzolanicity determination are impractical in this capacity because they are 

typically very complex, time-consuming, and require expensive equipment that is 

not available for average low-tech and small-scale conservation project, or in the 

field. Also, test methods for pozzolanicity determination generally are not 

formulated for composites of brick dust and lime but, rather, for different types of 

artificial and commercially-produced pozzolans used with a Portland cement 

binder. As is becoming increasingly evident, there is a dire need for specialty 
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testing standards that are written specifically for architectural conservation and 

traditional building materials. 

There is a need for a simple method of determining a given brick’s 

suitability as a pozzolan in lime mortars that can be performed in the field with 

relative ease, while yielding reasonably accurate and reliable results. Criteria for 

the ideal field test would include the ability to be performed with limited 

equipment, limited technical proficiency requirement, and would yield results in a 

relatively short amount of time. This is particularly important for projects or 

locales that may not possess the resources or technology that is required to 

make a thorough study to inform the use of materials. 

 

1.5 RESEARCH GOALS 

The purpose of this research is to identify an optimal methodology for 

determining whether a given brick dust will produce a pozzolanic reaction when 

combined with lime. This property will be referred to as pozzolanicity. The 

research required a review of the properties of pozzolanic materials, the nature of 

the pozzolanic reaction, and a review of existing methods for determining 

pozzolanicity. A testing program performed at the Architectural Conservation 

Laboratory at the University of Pennsylvania was designed and executed to 

evaluate methods for testing pozzolanicity of brick dust to determine their 

efficacy. An evaluation of the tests was the final result of the research, along with 

recommendations for ways in which this immensely valuable resource can be 
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tested and utilized economically and sustainably for conservation work in the 

future.  
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CHAPTER 2 POZZOLANICITY 

2.1 INTRODUCTION 

The American Society for Testing and Materials (ASTM) defines a 

pozzolan as: 

a siliceous or alumino-siliceous material that in itself possesses little or no 
cementitious value but that in finely divided form and in the presence of 
moisture will chemically react with alkali and alkaline earth hydroxides at 
ordinary temperatures to form or assist in forming compounds possessing 
cementitious properties.9 

 
In this case, the ASTM defines a cementitious material as one that sets and 

develops strength through a chemical reaction with water in which hydrates are 

formed in a reaction that is capable of occurring underwater.10 Pozzolanic 

additives in lime-based mortar enable them to set without the presence of 

atmospheric carbon dioxide and improve performance properties of strength and 

durability. In order to understand the nature of the pozzolanic reaction and how it 

intervenes in the setting of lime mortar, it is necessary to first explore the lime 

cycle; the sequence of chemical changes in which limestone is calcined, slaked, 

and set. 

 

 

 

                                                           
9 American Society for Testing and Materials, “C 593-95 Standard Specification for Fly Ash and 
Other Pozzolans for Use with Lime,” Annual Book of ASTM Standards Vol .04.01, (West 
Conshohocken, PA, ASTM 2000), p. 1. 
10 American Society for Testing and Materials, “C 219-01 Standard Terminology Related to 
Hydraulic Cement,” Annual Book of ASTM Standards Vol .04.01, (West Conshohocken, PA, 
ASTM 2000), p. 2. 
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2.2 NON-HYDRAULIC LIME 

In the United States, limestone provides the raw material for lime. 

Limestone can contain up to 99% pure calcium carbonate (CaCO3), but many 

contain impurities. Much of the limestone used for lime in the United States is a 

magnesium, or dolomitic, limestone that contains magnesium carbonate 

(MgCO3). Limestone with less than 5% magnesium carbonate is considered pure 

or high calcium lime.11 

 When limestone is burned at a temperature between 900º and 1200º C, 

carbon dioxide and water are driven off to form calcium oxide (CaO) or 

magnesium oxide (MgO), a product known as quicklime. The next step in the 

lime cycle is slaking of quicklime. Slaking is the process of combining quicklime 

with water to produce calcium hydroxide (CaOH2) or magnesium hydroxide 

(MgOH2) in an exothermic, or heat-generating reaction. Slaked lime, in the form 

of lime putty or hydrated lime, is the medium that is mixed with aggregate and 

other additives to form mortars, plasters, and grouts. Hydrated lime is a dry 

hydrate powder while lime putty is a wet, plastic material. Putty results from 

excess water during slaking. Lime putty is traditionally left to mature for a period 

of time before it is used in mortars.12 

                                                           
11 Kerstin Elert, Carlos Rodriguez-Navarro, Eduardo Sebastian Pardo, Eric Hansen, Olga Cazalla, 
“Lime Mortars for the Conservation of Historic Buildings,” Studies in Conservation, Vol. 47, No. 1 
(2002), pp. 62-75. 
12 John Ashurst. Mortars, Plasters and Renders in Conservation. 2nd ed., Ecclesiastical Architects’ 
and Surveyors’ Association, 2002, pp. 10-14. 
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 It is the process of carbonation that induces the setting and hardening of 

the plastic calcium hydroxide. Exposure to air promotes the loss of water and the 

slow reaction of atmospheric carbon dioxide converts calcium or magnesium 

hydroxide into crystalline calcium or magnesium carbonate. This reaction 

requires the correct balance of moisture and temperature. Carbonation can occur 

over a very long period of time, and it will not occur if the material is not 

accessible to air. Without the optimal curing conditions, it can take many years 

for a non-hydraulic lime to develop its full strength.13 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Lime Cycle (Rogers) 

                                                           
13 John Ashurst. Mortars, Plasters and Renders in Conservation. 2nd ed., Ecclesiastical Architects’ 
and Surveyors’ Association, 2002, pp. 10-14. 
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2.3 HYDRAULIC LIME 

The term “hydraulic” is used internationally to describe limes or cements 

that set through chemical reaction with water and are capable of setting under 

water.14 The ASTM defines hydraulic lime as:  

the hydrated dry cementitious product obtained by calcining a limestone 
containing silica and alumina, or a synthetic mixture of similar composition, 
to a temperature short of incipient fusion so as to form sufficient free lime 
(CaO) to permit hydration and at the same time leaving unhydrated 
sufficient calcium silicates to give the dry powder, meeting the 
requirements herein prescribed, its hydraulic properties.15 

 
Hydraulic lime differs from pure lime because it does not set entirely through 

carbonation but through a chemical process that allows it to set under water and 

without access to carbon dioxide, and it is generally faster to set and result in 

higher strength mortars. The raw material of hydraulic lime is different from that 

of non-hydraulic lime because of the presence of reactive silica, alumina, and/or 

clay, in addition to calcium and magnesium carbonate, in the limestone from 

which it is derived.16 

  When silica and clay-containing limestone is burned at a high 

temperature, around 1200ºC, the clay decomposes and combines with calcium to 

form calcium silicate (2CaO · SiO2) and calcium aluminate (3CaO · Al2O3) and 

the carbon dioxide is driven off from the calcium or magnesium carbonate to 

leave some uncombined calcium oxide (CaO) or magnesium oxide (MgO). After 
                                                           
14 American Society for Testing and Materials, “C 219-01 Standard Terminology Related to 
Hydraulic Cement,” Annual Book of ASTM Standards Vol .04.01, (West Conshohocken, PA, 
ASTM 2000), p. 2. 
15 American Society for Testing and Materials, “C 141-97 Standard Specification for Hydraulic 
Hydrated Lime for Structural Purposes,” Annual Book of ASTM Standards Vol .04.01, (West 
Conshohocken, PA, ASTM 1997), p. 1. 
16 John Ashurst. Mortars, Plasters and Renders in Conservation. 2nd ed., Ecclesiastical Architects’ 
and Surveyors’ Association, 2002, pp. 10-14. 
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burning, hydraulic lime is composed of two distinct compounds: calcium silicate 

and calcium oxide, which will react differently when combined with water. Slaking 

of hydraulic lime is different from that of non-hydraulic lime because care must be 

taken to use the appropriate amount of water to ensure that only the calcium 

oxide is slaked (to form calcium hydroxide). Calcium silicates must not slake, or 

they will begin chemical set prematurely. If just the right amount of water is used, 

the free lime will slake and expand enough to break the hydraulic lime up into a 

fine powder that contains about 1/4 to 1/3 of its composition calcium hydroxide 

(CaOH2) and the remainder calcium silicate (2CaO · SiO2). The calcium silicate 

may form hard clumps, known as grappiers, which must be ground and are 

sometimes added back into the mix to increase hydraulicity.17  

After the hydraulic lime is mixed with water and sand to form mortars, 

grouts, or plasters, slaked calcium hydroxide will form hardened, crystalline 

calcium carbonate upon curing by carbonation in the same manner as pure lime. 

Hardening of hydraulic lime is achieved in part through this carbonation of free 

lime but primarily through the chemical reaction of calcium silicates and 

aluminates with water that results in the formation of calcium silicate hydrates 

and calcium aluminum hydrates. These cementing compounds, referred to in the 

cement industry simply as C-S-H, are responsible for what is known as the 

hydraulic set; the ability to set under water and without carbon dioxide. C-S-H 

                                                           
17 Edwin Clarence Eckel, Cements, Limes, and Plasters: Their Materials, Manufacture, and 
Properties, 2nd ed, NY: John Wiley and Sons, 1922, pp. 179-180. 
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generically denotes a variety of calcium silicate hydrate reaction products hydrate 

that form fibrous networks of crystals or gels. 18 

While the term “hydraulic lime” is usually associated with lime that is 

naturally hydraulic, artificially hydraulic lime is another variation. During the early 

nineteenth century, L. J. Vicat wrote about a method of creating artificial 

hydraulic lime by mixing slaked pure lime with clay and calcining the mixture. 

Vicat called this “twice kilned,” lime referring to the process of firing the lime 

twice.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
18 Isobel Griffin, Grouts for the Conservation of Architectural Surfaces, Literature Review, 
prepared for the Getty Conservation Institute, May 2005, pp.5-6. 
19 L. J Vicat, Mortars and Cements, Shaftsbury, UK: Donhead Publishing Co., 1837 (republished 
1997), p. 21. 
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Figure 2.2 Hydraulic Lime Cycle (Rogers) 

 

Hydraulicity is defined as the ability of a binder to harden in contact with 

water. The degree of hydraulicity of a hydraulic lime varies according to the 

chemical composition and the processing of the limestone. Generally, limes 

characterized as more hydraulic will cure to form harder and more impervious 

mortars than those of less hydraulic lime.20 There have been several systems for 

classifying the hydraulicity of lime since it first began to be studied scientifically in 

the 19th century. Since the 19th century, the subcategories of feebly hydraulic, 

moderately hydraulic, and eminently hydraulic have been used to describe 
                                                           
20 Technical Advice Note: Preparation and Use of Lime Mortars. Revised edition 2003, The 
Scottish Lime Centre, Edinburgh, Scotland: Crown Copyright, 2003, p. 15. 
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hydraulic limes. This classification system was first proposed by L. J. Vicat in 

1818 and is based on clay content present in the limestone from which the lime is 

derived. Vicat’s hydraulicity index is a ratio of the total amount of silica, alumina, 

and iron oxides to calcium oxide expressed as a percent. According to Vicat’s 

theory, a higher percentage of reactive clay minerals results in a higher degree of 

hydraulicity. Feebly hydraulic lime has less than 12% active clay minerals. 

Moderately hydraulic lime has 12-18% active clay minerals. Eminently hydraulic 

lime contains 18-25% active clay minerals.21  

A modern classification system developed by European Standards (BS 

EN 459) expresses hydraulicity based on compressive strength at 28 days. In 

this system, what was known as “feebly hydraulic” lime in Vicat’s classification is 

the equivalent of NHL 2, NHL being an acronym for “natural hydraulic lime.” 

Moderately hydraulic lime is NHL 3.5 and eminently hydraulic lime is NHL 5. 

Based on this classification, NHL 2 is a natural hydraulic lime that reaches a 

compressive strength of 2 N/mm2 at 28 days.22  NHL-Z is the notation for any 

hydraulic lime in which additional hydraulic or pozzolanic materials (up to 20% of 

mass) have been added. The standard also specifies the minimum amount of 

free lime in each classification: 3%, 9%, and 15% for NHL 2, NHL3.5, and NHL 5, 

respectively. NHL 2 has high elasticity, relatively low strength, and high vapor 

exchange. NHL 3.5 has moderate strength and is recommended when freeze-

                                                           
21 John Ashurst. Mortars, Plasters and Renders in Conservation. 2nd ed., Ecclesiastical Architects’ 
and Surveyors’ Association, 2002, pp. 17-20. 
22 John Ashurst. Mortars, Plasters and Renders in Conservation. 2nd ed., Ecclesiastical Architects’ 
and Surveyors’ Association, 2002, pp. 17-20. 
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thaw resistance is necessary. NHL 5 has high strength and high freeze-thaw 

resistance.23    

Other less commonly used classifications exist for the characterization of 

natural hydraulic limes. The cementation index is a quantitative measurement 

that classifies hydraulic limes according to their chemical composition. This was 

developed upon the realization that Vicat’s hydraulicity index had inherent flaws 

in giving the same weight to silica and alumina and, therefore, assuming that 

they had the same effect in producing hydraulicity. Vicat’s index was also 

considered flawed for not taking into account the effects of iron oxides and 

magnesia in the hydraulic action. The cementation index is a ratio of silica, 

alumina, and iron oxide to lime and magnesium with a weighted value for each.24 

25  

According to St. Astier, producers of natural hydraulic lime, the most 

reliable classification for hydraulicity is the theory of soluble silica. This principle 

relates to the amount of soluble silica available in the limestone; soluble silica is 

silica that can combine with calcium oxide to form calcium silicate. Silica 

combines with calcium oxide at a ratio of approximately 1:3 at temperatures 

ranging between 900º and 1000º C to form calcium silicates that are responsible 

for hydraulicity. A limestone containing less than 4% silica is not hydraulic, but 

                                                           
23 “About Natural Hydraulic Limes,” St. Astier Natural Hydraulic Lime website: 
http://www.limes.us/products.php, accessed April 1, 2011. 
24 Cementation index = (2.8 x % silica) + (1.1 x % alumina) + (.7 x % iron oxide)/ % lime + (1.4 x 
% magnesium)  
25 Edwin Clarence Eckel. Cements, Limes, and Plasters: Their Materials, Manufacture, and 
Properties, 2nd ed., NY: John Wiley and Sons, 1922, pp. 172-174. 
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those containing above 4% silica will be hydraulic, and hydraulicity will increase 

proportionately with the combined amount of silica and calcium oxide.26  

 

2.4 POZZOLANS 

In summary, hydraulic lime mortars develop higher strength in a shorter 

time period than mortars made with pure lime. They also have the property of 

setting under water or in locations in which they are not exposed to sufficient 

carbon dioxide for carbonation to occur. Pure limes that do not naturally contain 

reactive clay minerals may be enhanced to obtain hydraulic properties in a 

mortar mix through the addition of natural or artificial pozzolans. A pozzolan is a 

material that contains silica and/or alumina that will react with lime to form 

hydraulic compounds similar to those found in natural hydraulic limes. By adding 

pozzolans to lime mortar, the setting of the mortar will mimic that of natural 

hydraulic lime in that it will obtain the ability to set under water and without 

carbon dioxide.27  

 

 

 

 

 
                                                           
26 “Hydraulicity and Properties of St. Astier Natural Hydraulic Lime,” 2006, St. Astier Natural 
Hydraulic Lime website: 
http://www.stastier.co.uk/nhl/info/pdfs/Hydraulicity_and_Properties_of_NHL.pdf, accessed April 1, 
2011. 
27 Geoffrey Boffey and Elizabeth Hirst, “The Use of Pozzolans in Lime Mortar,” Journal of 
Architectural Conservation, Vol. 5 No. 3. 1999, pp. 34-36. 
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Figure 2.3 Pozzolanic Lime Cycle (Rogers) 
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than having a significant hydraulic reaction.28 Pozzolans are also used with 

natural hydraulic limes to supplement strength and setting by combining with the 

free lime. Pozzolans exhibit a more prominent reaction when added to feebly 

hydraulic limes than moderately or eminently hydraulic limes. The European 

standard for natural hydraulic lime requires the designation “NHL-Z” for natural 

hydraulic limes enhanced with pozzolanic additives. Pozzolans are also used in 

the Portland cement concrete to increase long-term strength and combat 

aggregate-alkali reactions.29 

Because pozzolanic and hydraulic lime mixes have similar properties that 

result from the reaction between silica and alumina with lime, pure lime 

enhanced with pozzolan is often referred to as hydraulic lime. Pozzolans are 

sometimes called “latent hydraulic” because they are not hydraulic in themselves 

but impart hydraulic properties and, in effect, artificially convert non-hydraulic 

lime to hydraulic lime.30 According to Isobel Griffin, however, it is incorrect to use 

the terms “pozzolanic” and “hydraulic” interchangeably, as hydraulic materials 

have the ability to react with water only while pozzolans require both water and 

calcium hydroxide.31  

 

                                                           
28 G. Ashall, R. N. Butlin, J. M. Teutonico, and W. Martin, Development of Lime Mortar 
Formulations for Use in Historic Buildings (Smeaton Project), Proceedings of the Seventh 
International Conference on Durability of Building Materials and Components, 1996, p. 353. 
29 Geoffrey Boffey and Elizabeth Hirst. “The Use of Pozzolans in Lime Mortar.” Journal of 
Architectural Conservation, Vol. 5 No. 3. 1999, pp. 34-36. 
30 Paul Livezy. “Hydraulicity.” The Building Conservation Directory. Online at 
http://www.buildingconservation.com/articles/hydraulicity/hydraulicity.htm. 2003. 
31 Isobel Griffin. “Pozzolanas as Additives for Grouts: An Investigation of their Working Properties 
and Performance Characteristics”. Studies in Conservation Vol. 49 No. 1, 2004, p. 24. 
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2.4.2 TYPES OF POZZOLANS 

There are a number of different silica-containing materials that can be 

classified as pozzolans. Pozzolans are divided into two classes: natural and 

artificial. Natural pozzolans are those that occur in nature and may or may not 

require calcination to become active as pozzolans.32 Artificial pozzolans are 

those that are manufactured and/or must be calcined in order to become 

pozzolanic. Pozzolans can be further divided into the following categories based 

on their origin and composition.  

1. Naturally-occurring volcanic ash was the first known pozzolan discovered 

in Italy, named for the site of Puzzuoli were they were discovered. 

Sometimes referred to as “true pozzolana,” they are highly reactive. These 

materials, which are ejected from volcanoes, have high silica and alumina 

contents and occur in a vitreous, finely-divided form.  

2. Some types of clayey soils and crushed rock with appropriate mineral 

content to bring about a mild pozzolanic reaction.  

3. Calcined clay products such as ceramic bricks or tiles that have been 

crushed into a fine powder are known to have a pozzolanic reaction with 

lime because of the presence of aluminates and silicates in clay. These 

products must be fired at a low temperature and finely ground to have a 

large surface area in order to be reactive. Because modern bricks are 

usually fired at high temperature, they normally are not pozzolanic.  

                                                           
32 Geoffrey Boffey and Elizabeth Hirst. The Use of Pozzolans in Lime Mortar. Journal of 
Architectural Conservation, Vol. 5 No. 3. 1999, p. 36. 
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4. Fired clay products are sometimes manufactured specifically for use as 

pozzolans in mortars and cements. These contain highly reactive alumino-

silicates that readily combine with calcium hydroxide. Metakaolin and high 

temperature insulation (HTI) are examples.  

5. Vitreous mineral slag formed as a by-product of processes such as 

smelting can act as a pozzolan. Furnace slag, for example, contains 

reactive silica, alumina, lime, and other minerals that will produce a 

pozzolanic reaction with lime.  

6. Organic ash materials of industrial nature are known pozzolans as well. 

Pulverized fuel ash (PFA) from the combustion chambers of power 

stations and rice husk ash are artificial and natural examples, 

respectively.33  

 

2.4.3 CHEMISTRY OF POZZOLANS 

The two primary characteristics of a pozzolan are its ability to react with 

lime and its ability to form reaction products with binding properties upon 

combing with lime.34 Silica and alumina are the reactive components that are 

responsible for the combination with calcium hydroxide and formation of 

                                                           
33 Pat Gibbons, “Pozzolans for Lime Mortars,” The Building Conservation Directory, 1997, online 
at www.buildingconservation.com. 
34 Guilia Baronio and Luiga Binda, “Study of the Pozzolanicity of Some Bricks and Clays,” 
Construction and Building Materials, Vol. 11 No. 1, 1997, p. 41. 
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cementitous compounds, specifically the calcium silicate hydrates (C-S-H) and 

calcium aluminum hydrates.35  

The chemistry of pozzolans has long been somewhat elusive. There are a 

number of reaction products that can be formed as a result of the diversity of 

pozzolanic materials. Not all siliceous materials are pozzolanic, and there is not a 

clearly-defined limit for which siliceous materials will and which will not produce a 

pozzolanic reaction. As with hydraulic lime, the amount of silica that is soluble, or 

combinable, is important in predicting the formation of C-S-H. Materials with a 

high percentage of silica that is amorphous tend to be more pozzolanic because 

amorphous silica is more soluble than crystalline silica. Crystalline silica is slower 

or does not have a pozzolanic reaction at all and, as a general rule, the larger the 

crystals the less rapid the reaction. Also, calcium hydroxide and silica combine at 

different rates for different materials and can the reaction can sometimes be very 

slow.36  

The difficulty of identifying the reaction products is exacerbated by the 

abundance of secondary compounds that are formed in addition to hydraulic 

reaction products. Chemical reactions involving alumina, iron, and alkali can 

result in complex compounds.37 In 1930, G. Malquori identified 3CaO ·Al2O3 · 

                                                           
35 Igor S. Pinheiro, Luiz C. Montenegro, and Adriana G. Gumieri, Pozzolanic Activity of Red 
Recycled Bricks, Second International Conference of Sustainable Construction Materials and 
Technologies, Ancona, Italy, June, 2010. 
36Raymond E. Davis, A Review of Pozzolanic Materials and their Use in Concrete, Symposium on 
Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical Publication No. 
99, 1950, pp. 3-4. 
37 Raymond E. Davis, A Review of Pozzolanic Materials and their Use in Concrete, Symposium 
on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical Publication 
No. 99, 1950, pp. 3-4. 
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6H2O as a reaction product of the combination of lime and burnt clay. A cement 

symposium in 1938 asserted that a hydrated silicate with the composition of 

3CaO · 2SiO2.aq was the reaction product in lime-pozzolan pastes. In 1940, 

Strätling identified a previously unknown hydrated calcium alumino-silicate that 

was formed by the combination of burnt kaolin and lime-water: 2CaO Al2O3 SiO2 . 

aq. (gehlenite). Strätling concluded that the reaction between burnt kaolin and 

calcium hydroxide was: 

 2(Al2O3.2SiO2) + 7Ca(OH)2 → 3CaO.2SiO2.aq + 2(2CaO.Al2O3.SiO2.aq) 

The gehlenite compound has failed to be consistently identified in lime-pozzolan 

mixes apart from burnt kaolinite. Another reaction product of burnt kaolin and 

lime was discovered by Turriziani and Schippa: 4CaO ·Al2O3 · aq .Other 

pozzolans, such as trass and true pozzolana, form a hydrated calcium silicate 

similar to C-S-H (I) and tetracalcium aluminate hydrate when combined with 

lime.38 The simplified equation for the reaction of the reactive silica (SiO2) and 

alumina (Al2O3) with calcium hydroxide is as follows, according to Isobel Griffin: 

 

SiO2 + 4Al2O3 + 5Ca(OH)2 + (x-4)H20 → CaO.SiO2.H2O + 

4CaO.Al2O3.xH2O  

 

                                                           
38 F. M. Lea, The Chemistry of Cement and Concrete, 3rd edition. NY: Chemical Publishing 
Company, 1971, p. 428. 
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with x being an integer between 9 and 13 inclusive. This reaction results in 

calcium silicate hydrates and calcium aluminum hydrates, and in practice some 

amount of calcium carbonate from carbonation of free lime as well.39 

 

2.5 BRICK DUST AS A POZZOLAN 

Ground bricks and other ceramic materials have been used in mortar 

mixes since ancient times. Although the chemistry of the pozzolanic reaction may 

not have been understood before the 19th century, experience had proven that 

the addition of powdered bricks and tiles to mortars can impart hydraulic 

properties. Not all bricks, however, have pozzolanic potential. The Smeaton 

project and other studies have been instrumental in establishing the parameters 

for pozzolanicity of brick regarding firing temperature and particle size. The 

Smeaton project proved that brick dust with a particle size below 75 microns had 

a greater impact on accelerating setting time and creating a higher strength 

hydraulic mortar. Also, the Smeaton project determined that bricks fired below 

950ºC had the most positive effect on strength and durability, but was not 

conclusive in whether this was related to firing temperature alone or associated 

with the mineralogical composition of the brick.40 In fact, the composition of clay 

from which brick is manufactured is a major determinant of whether it will react 

with lime. 

                                                           
39 Isobel Griffin, “Pozzolanas as Additives for Grouts: An Investigation of Their Working Properties 
and Performance Characteristics,” Studies in Conservation, Vol. 49 No. 1, 2004, p. 24. 
40 G. Ashall, R. N. Butlin, J. M. Tuetonico, and W. Martin. Development of Lime Mortar 
Formulations for Use in Historic Buildings (Smeaton Project), Proceedings of the Seventh 
International Conference on Durability of Building Materials and Components, 1996, p. 353. 
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2.5.1 BRICK PRODUCTION 

Brick is composed of various types of clay and additives such as sand and 

secondary minerals. Brickmaking involves a seven step process in which raw 

clay is converted into structural ceramic units. The clay is first mined from open 

pits. It is then stored in sheds with open sides to allow air drying. It is then 

crushed, pugged (worked with water), and extruded or hand-molded to form the 

shape of the brick. The clay is finally air dried before being fired in a kiln to form a 

hardened structural unit.41 The composition of the brickclay will determine the 

quality and characteristics of the brick, as well as its potential to act as a 

pozzolan. As a general rule, clays containing 20-30% alumina and 50-60 % silica 

and the remainder consisting of magnesia carbonate, calcium carbonate and iron 

oxide are considered ideal for brickmaking. Clay composition is highly variable 

among different sources, and composition can vary significantly even among the 

same beds.42 

 

2.5.2 CLAY MINERALOGY 

There are a variety of clay types that are commonly used in brick 

production, and not all will have the correct mineralogy to produce a pozzolanic 

reaction. Clay is a fine-grained, earthy material composed of extremely small 

particles of clay minerals and non-clay minerals. Clay minerals are hydrous 

aluminum silicates, although some contain iron and magnesium rather than 
                                                           
41 H. H. Murray, Applied Clay Mineralogy: Occurrences, Processing, and Application of Kaolins, 
Bentonites, Palygorskite-sepiolite, and Common Clays, Amsterdam: Elsevier publications, 2007, 
p. 142. 
42 Alfred B. Searle, Modern Brickmaking, London: Scott, Greenwood & Son, 1911. 
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aluminum. Some clay minerals contain alkaline and alkaline earth elements as 

well. Clay minerals can be classified into six groups: kaolin, smectite, 

palygorskite-sepiolite, illite, chlorite, and mixed-layered clays. All have different 

crystalline structures and chemical compositions. Each of these groups include a 

number different clay minerals. Most clays are composed of a variety of minerals 

from different groups in addition to non-clay minerals such as quartz, feldspar, 

mica, calcite, dolomite, opal, and others.43 

Table 2.1 Composition of clay minerals 
Clay Mineral Theoretical formula 

Kaolin Al4Si4O10(OH)8 

Smectite (OH)4Si8Al4O20 · NH2O 

Illite Variable- contains 
potassium 

Chlorite (OH)4(SiAl)8(MgFe)6O20 

Palygorskite   (OH2)4(OH2)Mg5Si8O20 · 
4H20 

Sepiolite (OH2)4(OH)4Mg8Si12O30 · 
8H2O 

 

Kaolinitic clay (kaolin) is a type of clay formed from kaolinite clay minerals 

and is the most pure of all clays; in fact it is often referred to simply as pure clay. 

                                                           
43 H. H. Murray, Applied Clay Mineralogy, Occurrences, Processing, and Application of Kaolins, 
Bentonites, Palygorskite-sepiolite, and Common Clays, Amsterdam: Elsevier publications, 2007, 
pp. 1-4. 
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It is a well-defined hydrous aluminum silicate.44 Fired kaolin (metakaolinite) has 

proven to be very successful in bringing about a pozzolanic reaction with lime. 

Many modern bricks have a low content of kaolnite and are composed, instead, 

primarily of minerals such as calcite, feldspar, quartz, and sodic plagioclase with 

small quantities of mica and clay minerals.45 These types of bricks are unlikely to 

display significant pozzolanic activity when combined with lime. The most 

widespread clay used for production of bricks and other ceramic materials today 

is known as common clay. The term “common clay” is used to describe clays, 

shales, soil clays, and glacial clays that are used primarily for structural clay 

products. Common clays are fine-grained and usually plastic when wet, and they 

are highly varied mineralogically. Illite is the most predominant clay mineral found 

in common clays, but chlorite, kaolinite, smectite, and mixed-layer clay minerals 

are also common. Non-clay minerals including feldspar, calcite, dolomite, 

goethite, and hematite may be present as well.46 Regarding composition, the 

ASTM and the Brazilian standards for the specification of pozzolans both require 

that pozzolans contain no less than 70% by weight of silica (SiO2), aluminum 

oxide (Al2O3), and iron oxide (Fe2O3). The majority of clays that are used in brick 

production do meet this requirement.47  

                                                           
44 Henry J. Cowan, The Science and Technology of Building Materials, NY: Van Nostrand 
Reihnold Company, 1988, p. 140. 
45 Guilia Baronio and Luiga Binda, “Study of the Pozzolanicity of Some Bricks and Clays,” 
Construction and Building Materials, Vol. 11 No. 1, 1997, p. 45. 
46 H. H. Murray, Applied Clay Mineralogy: Occurrences, Processing, and Application of Kaolins, 
Bentonites, Palygorskite-sepiolite, and Common Clays, Amsterdam: Elsevier publications, 2007, 
pp. 141-143. 
47Changling He, Bjarne Osbeack, Emil Macovicky, “Pozzolanic Reactions of Six Principle Clay 
Minerals: Activation, Reactivity Measures, and Technological Effects,” Cement and Concrete 
Research, Vol. 25, No. 8, 1995, p. 1692. 
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2.5.3 POZZOLANIC REACTION OF FIRED CLAY PRODUCTS 

Raw clay has no pozzolanic value in itself, but when fired during the brick-

making process it obtains the potential to undergo a pozzolanic reaction when 

combined with lime in the presence of water. When heated to temperatures 

between 600-950ºC, the structure of clay minerals undergoes a transformation 

that allows them to combine with calcium hydroxide. This is not possible, 

however, in clays that are mixed with high proportions of very crystalline minerals 

like quartz and feldspar.48 Upon burning, the loss of combined water in clay 

causes the breakdown of the crystalline structure of alumino-silicates, leaving 

alumina and silica in an amorphous state. It is in this disordered, amorphous 

state that silica and alumina have the potential to combine with (and fix) calcium 

hydroxide. However, if calcination temperature exceeds a certain limit (generally 

agreed to be about 950ºC), silica and alumina will transcend the amorphous 

phase, recrystallize, and form other stable compounds like mullite (A3S2)49 that 

will not combine with lime.50 In cement chemistry, there are several abbreviations 

commonly used for compounds. The common abbreviations that apply to 

pozzolanic reactions are found in Table 2.2. 

 

 

                                                           
48 Igor S. Pinheiro, Luiz C. Montenegro, and Adriana G. Gumieri, Pozzolanic Activity of Red 
Recycled Bricks, Second International Conference of Sustainable Construction Materials and 
Technologies, Ancona, Italy, June, 2010. 
49 In cement chemistry, the following abbreviations are used: C=CaO; A=Al2O3; S=SiO2; H=H2O 
50 Guilia Baronio and Luiga Binda, “Study of the Pozzolanicity of Some Bricks and Clays,” 
Construction and Building Materials, Vol. 11, No. 1, 1997, p. 41. 
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Table 2.2 Cement Chemistry Abbreviations 
Abbreviation Compound 

C Calcium oxide (CaO) 

A Aluminum oxide (Al2O3) 

S Silicon dioxide, silica (SiO2) 

H Water (H2O) 

 

Transformation into the amorphous phase follows dehydration in which the 

water, usually 10-15%, of the clay is burned off. This occurs at different 

temperatures for different clay types. One study has shown that the optimal 

calcination range for kaolin is between 550-950ºC, 740-920ºC for Na-

montmorillonite, 650-940ºC for illite. Some clays, such as kaolin, show a sharp, 

sudden increase of the amorphous phase with temperature increase followed by 

a sharp drop in the amorphous phase at a certain temperature in which 

recrystallization occurs. In other clays, the increase and decline of the 

amorphous phase is much less abrupt. Increases in the amorphous phase can 

be correlated to increases in the amounts of alkali-soluble (or combinable with 

lime) silica and alumina. After the range of optimal calcination temperature is 

surpassed, the amount of alkali-soluble silica and alumina will decrease. Most 

clay species see a decrease in soluble alumina before soluble silica because of 
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the formation (with high temperature) of alumina-rich phases, like mullite, that 

precede the formation of silica-rich phases.51 

Upon combination with lime, most calcined clays will form a variety of 

reaction products. The composition of the clay will determine the type of reaction 

products formed. The type and amount of reaction products are an indicator of 

the intensity of the pozzolanic reaction. The dominant reaction product formed 

from calcined clay products and lime is calcium silicate hydrate (C-S-H) and 

tetracalcium aluminate hydrate (C4AHx) in various concentrations. Alumina and 

silica are both present in the reaction products, but alumina tends to be less 

prominent in than silica. However, gehlenite hydrate (C2ASH8) and hydrogarnet 

(C3AH6) are other reaction products found in clays with a higher alumina 

content.52 

The reaction of metakaolinite with lime can result in several different 

compounds which have been clearly defined. Metakaolinite is the amorphous 

and highly-pozzolanic product that is formed when kaolin is heated to about 

600ºC during firing of brick. The following equation represents the calcination of 

kaolinite: 

 Al2Si2O5(OH)4 (kaolinite) →Al2Si2O7 (metakaolinite) + 2H2O 

                                                           
51 Changling He, Bjarne Osbeack, Emil Macovicky, “Pozzolanic Reactions of Six Principle Clay 
Minerals: Activation, Reactivity Measures, and Technological Effects,” Cement and Concrete 
Research, Vol. 25 No. 8, 1995, pp. 1692-1700. 
52 Changling He, Bjarne Osbeack, Emil Macovicky, “Pozzolanic Reactions of Six Principle Clay 
Minerals: Activation, Reactivity Measures, and Technological Effects,” Cement and Concrete 
Research, Vol. 25 No. 8, 1995, p. 1700. 
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When metkaolinite is combined with lime, amorphous silica and alumina can 

react with calcium hydrate in the following hypothetical reactions, represented in 

cement chemistry shorthand: 

AS2 (metakaolinite) + 6CH (lime) + 9H (water) → C4AH13 (tetracalcium 

aluminate hydrate) + 2 C-S-H (tobermorite) 

AS2 + 5CH + 3H  → C3AH6 (tricalcium aluminate hydrate) + 2 C-S-H 

AS2 + 3CH + 6H  → C2ASH8 (hydrated gehlenite)+ C-S-H53 

The type of C-S-H in the above reaction can be more specifically classified as C-

S-H (I), which consists of poorly crystallized foils or platelets with a tobermorite-

like structure. The exact chemical composition of the calcium silicate hydrates 

formed in the pozzolanic reaction varies with the water: solid ratio of the mix and 

the temperature; the composition also changes over the course of the reaction.54 

In conclusion, bricks that are fired at a temperature below 950°C and are 

finely ground into a powder can bring about a pozzolanic reaction when 

combined with lime given that they are composed of a type of clay that has a 

sufficient amount of soluble silica and alumina. Soluble silica and alumina react 

with calcium hydroxide and water to form a variety of calcium silicate hydrates, or 

C-S-H, that are responsible for the hydraulic properties in pozzolanic mortars. 

There are many variables in determining whether or not a particular material will 
                                                           
53 Guilia Baronio and Luiga Binda, “Study of the Pozzolanicity of Some Bricks and Clays,” 
Construction and Building Materials, Vol. 11 No. 1, 1997, p. 45. 
54 F. M. Lea. The Chemistry of Cement and Concrete, 3rd edition. NY: Chemical Publishing 
Company, 1971, p. 179. 
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have the potential to have a pozzolanic reaction with lime. The following chapters 

explore methods of evaluating materials to determine whether and to what extent 

they will have a pozzolanic reaction with lime.   
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CHAPTER 3 LITERATURE REVIEW 

3.1 INTRODUCTION 

Pozzolans have been used in mortars since ancient times and appear in 

texts as early as the 1st century BC with Vitruvius’ Ten Books on Architecture 

which recommended the use of burned, pounded, and sifted brick in mortar for a 

better composition.55 Ancient sources of literature on the use of pozzolans in 

mortar are abundant, but it was not extensively examined for this research. 

Rather, more current literature on pozzolans and, specifically testing of 

pozzolans, was the focus of the literature review. 

 

3.2 EARLY RESEARCH 

L. J. Vicat was one of the earliest researchers to take on the issue of 

characterizing pozzolans, and much of his work on pozzolans is still relevant 

today. In 1837, Vicat’s treatise on mortars and cements addressed the use and 

classification of pozzolans. His classification system divided pozzolans, and other 

additives, into the categories of “very energetic,” “energetic,” “feebly energetic,” 

and “inert.” These classifications were based upon the setting time when 

combined with lime, hardness upon set, and the pozzolan’s consistency. Vicat 

acknowledged the difficulty of predicting a pozzolan’s reaction with lime based 

only on its physical characteristics. Regarding chemical composition, he noted 

that “those who possess chemical knowledge may apply it usefully in this case; 

                                                           
55 Marcus Vitruvius, Ten Books on Architecture, Book II, translated by Morris Hickey Morgan, 
New York :Dover Publications Inc, 1960, p. 45. 
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for without making a rigorously exact measurement of the qualities of the above-

mentioned substances [pozzolans], these agents assist us in classing them in an 

approximate manner…”56 He also noted pozzolans’ reaction when combined with 

limewater and decomposition when treated with acid. Calcined clay pozzolans, 

Vicat noted, would form a “very energetic” pozzolan if the clay was principally 

composed of silica and alumina and was of a fine consistency. Prior to Vicat’s 

work, the hydraulic properties of pozzolans had been attributed to the presence 

of iron. Vicat’s experiments with pozzolans disproved this theory.57 

In 1927, a special report of the Building Research Establishment (BRE) 

was published on lime and lime mortars. Lime and Lime Mortars, (Special Report 

No. 9) was written by A. D. Cowper and provided a state-of-the-art review of lime 

materials and concretes, including the use of pozzolans. Cowper acknowledged 

that when a pozzolan was added to lime, the lime “will show marked hydraulic 

properties and a development of considerable strength on setting independent of 

any slow and uncertain process of carbonation, seen though a fat, non-hydraulic 

lime had been used.”58 Cowper also introduced a simple field test for evaluating 

pozzolanic materials through the visual observation of calcium silicate hydrates 

formed by the combination of lime and pozzolan. 

Extensive investigations into pozzolans were undertaken in the United 

States in the middle of the twentieth century when their benefits for use in 

                                                           
56 L. J Vicat, Mortars and Cements, Shaftsbury, UK: Donhead Publishing Co., 1997  (originally 
published  1837),  p. 54. 
57 L. J Vicat, Mortars and Cements, Shaftsbury, UK: Donhead Publishing Co., 1997  (originally 
published  1837),  p. 183. 
58 A.D. Cowper, Lime and Lime Mortars, Shaftsbury, UK: Donhead Publishing Co., 1927, p. 47. 
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Portland cement concrete as a combatant of sulfate attack and expansion due to 

alkali-aggregate reaction were discovered.  In Europe, pozzolans had already 

begun being used as an additive in Portland cements.  A symposium on 

pozzolanic materials, sponsored by the ASTM, was held in 1949 and explored 

many aspects of Portland pozzolan cements.  At this early stage of research, the 

difficulty of analyzing and testing pozzolans was acknowledged. Raymond Davis 

noted the inability of the chemical composition of a pozzolan alone to determine 

its reactivity, and the lack of appropriate methods of evaluating pozzolans:  

…one of the problems which has long been under discussion and which is 
not completely solved is the development of a satisfactory method of test 
which may be employed reliably to evaluate a pozzolan within a 
reasonably short period of time. Our inability to judge a pozzolan except 
by long-time performance has perhaps been one of the reasons why 
pozzolanic materials have not been more widely used in this country.59  

 
 A paper by Moran and Gilliand, included in the symposium literature, cited 

various approaches for evaluating the activity of pozzolanic materials including 

composition, solubility, strength, uncombined lime, and insoluble residue. The 

authors noted that the majority of testing of pozzolans had previously been based 

on strength values alone, but that strength contribution was only one of the 

qualities desired in a pozzolan and not always the most important one. The 

authors were of the opinion that “…a single, short-time test will not evaluate 

                                                           
59 Raymond E. Davis, A Review of Pozzolanic Materials and their Use in Concrete, Symposium 
on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical Publication 
No. 99, 1950, p 4. 
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pozzolanic activity, particularly when any one of several properties may be 

desired of a given material.”60 

 

3.3 RECENT RESEARCH 

 The most current research on pozzolans has addressed both the historical 

use of pozzolans in mortars and has studied the properties of pozzolans and 

their potential for use in architectural conservation.  

 

3.3.1 HISTORICAL USE OF POZZOLANS 

Because crushed low-fired clay products (bricks and tile) have been used 

in mortars since Roman times, there have been several studies that have 

analyzed ancient brick dust mortars in order to characterize them and understand 

their usage from an historical perspective. In 1993, R. Bugini and A. Salvatori 

investigated the use patterns of cocciopesto, Italian mortars and plasters made 

with hydrated lime and powdered brick. The study aimed to provide insight into 

the differences in composition of this material that was observed in different 

regions and use applications. Analysis of samples from various types of sites in 

different regions concluded that the typological diversity of cocciopesto was 

                                                           
60 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, p. 120. 
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intended to fulfill specific performance requirements for given purpose and was 

probably also influenced by practical and economic factors.61  

Considerable efforts have been extended by Guilia Baronio and Luigia 

Binda to further understand both pozzolans’ use in ancient mortars and the 

phenomenon of pozzolanic reaction between brick dust and lime. In 1988, 

Baronio and Binda undertook a study to analyze the composition of cocciopesto 

and to characterize the adhesion between brick and binder in brick dust mortars. 

The study analyzed samples taken from the Basilica di San Lorenzo in Milan. 

Samples were characterized through physical tests and optical examination in 

order to analyze the interface between brick and binder.  Examinations of thin 

sections revealed the presence of thin, irregular layers of material of a lighter 

color at the interface between brick fragments and the lime binder. Analysis with 

electron dispersive spectrometry revealed that this reaction layer consisted 

mostly of silica and calcium. Binda and Baronio called these layers “reaction 

layers” and attributed them to a pozzolanic reaction.  The study concluded that 

the adhesion between brick and binder is not simply physical, but due to 

chemical reaction as well. These chemical reactions were deduced to bring about 

the formation of silicates at the brick/binder interface due to silica in brick and 

calcium hydroxide in the binder, resulting in the bond between lime and brick 

dust that is responsible for the strengthening of pozzolanic mortars62  

                                                           
61 R. Bugini and A. Salvatori, “Investigation of the Characteristics and Properties of Cocciopesto 
from the Ancient Roman Period,” Conservation of Stone and Other Materials, Proceedings of the 
International RILEM/UNESCO Conference, Paris, 1993, pp. 386-393. 
62 Guilia Baronio and Luigia Binda, “Characterization of Mortars and Plasters of Ancient 
Monuments of Milan,” The Masonry Journal, Vol. 7 No. 1, 1988, pp. 48-54. 
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  Another study by Binda and Baronio analyzed the role of brick dust 

beyond the capacity in which it strengthened mortar through pozzolanic 

reactions. Specifically, it examined the role of pebble-sized crushed brick in 

improving physical and mechanical performance in the unusually thick mortar 

joints (greater than 40 mm) found in some Byzantine buildings. The study 

involved analysis of samples taken from Byzantine buildings as well as an 

experimental program in which mortars were recreated and subjected to 

mechanical and other tests. The study concluded that, in large masonry joints, 

hydraulic reaction layers between brick pebbles and binder can be detected 

around the perimeter of the pebble where it is in contact with the binder, but this 

was the extent of the pozzolanic reaction and would not have served to greatly 

influence the strength of mortars. This suggested that there was another role for 

brick particles in ancient mortars besides that of pozzolanic reaction.  It was 

hypothesized that this role might have included influence on deformability and 

weight.63  

 

3.3.2 TESTING AND EVALUATION OF POZZOLANS 

Half a century after the ASTM symposium on pozzolans, there continued 

to be difficulty in analyzing pozzolans and there remained a lack of standardized 

testing procedures.  This relates to the huge variability in the reactivity of 

pozzolans even among the same classes of materials, but research has 
                                                           
63 Luigia Baronio and Guilia Binda, “Byzantine Concretes: The Role of Thick Mortar Joints 
Containing Crushed Brick,” Concrete: From Material to Structure, Proceedings of the RILEM 
International Conference, Arles, France, 1996, pp. 442-460. 
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indicated that the most influential factors include the fineness of the pozzolan and 

the amount of reactive silica it contains. Boffey and Hirst, in 1999, recognized the 

lack of testing standards for classifying and specifying pozzolans, particularly for 

use in architectural conservation.  They noted that existing standards, ASTM for 

example, were appropriate for manufacture of pozzolanic mixes for new 

construction purposes but not aptly suited for conservation which tends to seek 

solutions to specific problems. They recognized the usefulness of pozzolans in 

conservation, but that the inexistence of pozzolans with clearly defined properties 

and a predictable and repeatable pozzolanic reaction inhibited their practical use 

in conservation projects.64  

 

3.3.3 POZZOLANICITY OF BRICK DUST 

Specific investigations into the pozzolanicity of brick dust for architectural 

conservation mortars was undertaken by ICCROM, English Heritage, and 

Bournemouth University in a joint  research effort known as the Smeaton Project, 

the first phase beginning in 1993.  The broad goal of the Smeaton project was to 

contribute to the understanding of lime-based mortars for architectural 

conservation.  It was specifically initiated for the purpose of finding an 

appropriate mortar for repair of Hadrian’s Wall, which had previously been 

repointed with a Portland cement mortar with negative consequences.  In terms 

of brick dust, the study sought to facilitate an understanding of the effects of firing 

                                                           
64Geoffrey Boffey and Elizabeth Hirst, “The Use of Pozzolans in Lime Mortar,” Journal of 
Architectural Conservation, Vol. 5 No. 3, 1999, pp. 34-40. 
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temperature, particle size, and proportion of binder to brick dust. The testing 

program included several tests on both fresh and hardened mortar in order to 

characterize the different mixes. These included moisture content and stiffening 

rate on fresh mortar and compressive strength, water vapor permeability, depth 

of carbonation, porosity, and sodium sulfate crystallization resistance. The testing 

resulted in the following conclusions relating to brick dust: 

1. The addition of brick dust affects the properties of lime-based mortars, 

particularly in the proportion 1:3:1 lime:sand:brick dust.  

2. Low-fired brick dust has the most positive effect on strength and durability 

of cured mortars, particularly when brick dust is a larger portion of the mix. 

Firing temperatures below 950˚ C are ideal.  

3.   Brick dust of a lower particle size range (<75 microns) reacts with lime to 

speed setting time and create a higher-strength cured mortar. Brick dust of 

a higher particle size range (>300 microns) acts as a porous particulate 

air-entraining additive that aids in carbonation and improves salt 

crystallization resistance.65  

The Smeaton project formed the basis for future research into 

pozzolanicity of crushed brick. Binda and Baronio returned to their work on 

pozzolanicity of bricks in 1997 in response to increased interest in brick dust 

mortars’ use in architectural conservation. The study analyzed the pozzolanicity 

of old and new production bricks using a pozzolanicity test for cement developed 
                                                           
65 Jeanne Marie Teutonico, Iain McCaig, Colin Burns, John Ashurst, “The Smeaton Project: 
Factors Affecting the Properties of Lime-based Mortars,” APT Bulletin, Vol. 25, No. 3/4. (1993), 
pp. 32-49. 
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by the British Standards Institute that determines pozzolanicity by saturating 

pozzolan with calcium hydrate to determine if the pozzolan has the capability of 

fixing the calcium hydroxide through reaction with the silica inherent in the 

material. The old bricks were sampled from two ancient buildings in Italy and the 

new bricks were all produced at the same plant but with varying firing 

temperatures above and below 900˚ C.  The results of the pozzolanicity test 

showed that no bricks fired above 900˚ C were pozzolanic but, also, that not all 

bricks fired below 900˚ C were pozzolanic. The study explored the influence of 

clay type on pozzolanicity by performing the same pozzolanicity test on calcined 

kaolinitic clay and common clay that is used for ordinary brick production. 

Kaolinitic clay contains a large amount of kaolin and is known to be highly 

reactive. The common clay used in the study, however, was found to contain a 

very small portion of true clay minerals and was mostly composed of other 

minerals. The common clay showed negative results for the pozzolanicity test 

and the kaolintic clay showed positive results when calcined at 650˚ C. The most 

important conclusions of this study were that modern bricks are seldom 

pozzolanic because of firing temperatures above 900˚ C and that bricks made 

from clay that has a low content of true clay minerals do not produce a 

pozzolanic reaction.66  

Another study in 1999 further explored the principles set forth in the Smeaton 

project. The aim of the study was to determine what factors affected the 

pozzolanicity of brick dust and to what extent. Using bricks produced from a 
                                                           
66 Guilia Baronio and Luigia Binda, “Study of the Pozzolanicity of Some Bricks and Clays,” 
Construction and Building Materials, Vol. 11, No. 1, 1997, pp. 41-46. 
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single clay source and a single hydraulic lime binder, the properties of particle 

size, firing temperature, and curing conditions (water curing and 90 % relative 

humidity curing) were varied in the experimental program. The compressive 

strength test was used to quantify the pozzolanic reaction indirectly through 

strength enhancement.  

The study concluded that strength enhancement from brick dust was a 

complex function of grading, curing conditions, and the age of the sample at the 

time that the compressive strength test was performed. While firing temperature 

was found to influence pozzolanicity, fineness and curing conditions were found 

to be more influential on the resulting strength and optimal firing temperature was 

found to be a function of the brickclay’s mineralogy. Also, the study found that the 

dependency of strength on calcination temperatures decreased over longer 

curing times and that those mortars made with brick dusts fired at higher 

temperatures (950°C) could yield optimum performance after longer periods of 

curing.67   

A study was undertaken in 2004 that used scanning electron microscopy 

and thermal analysis to evaluate the composition and microstructure of lime 

mortars containing pozzolans. A variety of pozzolans were studied including 

Italian pozzolana, fired clay materials, kaolin, and fly ash, all combined with lime 

and sand in standard proportions and cured in dry and humid conditions. Both 

analytical techniques were carried out on both the raw materials themselves and 

                                                           
67 D.B Hughes and D.C. Sugden, “The Use of Brick Dust as a Pozzolanic Additive to Hydraulic 
Lime Mortars,” Historic Mortars: Characterization and Tests, Proceedings of the International 
RILEM Workshop, 2000, pp. 351-367. 
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on mortar samples cured between one and two years. Thermal analysis results 

yielded similar thermal curves for all pozzolanic mortars, showing a curve 

corresponding to weight loss from the dehydration of the calcium silicate 

hydrates formed around 600º C. Scanning electron microscopy differentiated the 

pozzolanic materials by revealing different crystal formations whose size and 

structure could be correlated with the mechanical strength of the mortar. This 

study revealed the usefulness of tools like thermal analysis and scanning 

electron microscopy on cured samples. It also confirmed that humid curing 

conditions of lime-pozzolan mortars could be correlated with improved 

performance. Improved mechanical strength was observed in samples cured at 

high humidities and could be correlated with scanning electron microscopy 

images depicting the growth of calcium silicate hydrates in the microstructure as 

well as hydraulic reaction products detected through differential thermal 

analysis.68 

  

 

 

 

 

 

 

                                                           
68 A. Elena Charola, Paulina Faria Rodrigues, Andrew R.McGhie and Fernando M.A.Henriques, 
Pozzolanic Components in Lime Mortars: Correlating Behaviour, Composition and Microstructure, 
6th International Symposium on the Conservation of Monuments in the Mediterranean Basin, 
Lisbon, 2004. 
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CHAPTER 4 MEASURING POZZOLANICITY 

4.1 INTRODUCTION 

The degree to which a pozzolan reacts with lime is known as its 

pozzolanicity. The pozzolanicity of a material can vary significantly, even among 

the same class of materials. Pozzolanicity in general is largely dependent upon 

the chemical composition of the pozzolan (particularly reactive silica content), the 

fineness of the pozzolan, and the reactivity and purity of the lime with which it is 

combined. The speed of the reaction is dependent upon the amount of water and 

the temperature.  

While the classification of hydraulicity is standardized for easy comparison 

through quantitative hydraulicity indices, pozzolans have no universal 

quantitative system for classification, partially due to the diversity of sources for 

pozzolanic materials. Testing of pozzolans is complicated because they have no 

cementitious value in themselves, but only become cementitious when activated 

with a binder. Some tests attempt to characterize the raw material alone to 

determine pozzolanicity while others require the formulation of specimens in 

which the pozzolan is combined with a lime or cement binder. Some tests 

analyze the chemical properties of the pozzolan while others focus on physical 

and performance.69  

 

                                                           
69 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, p. 109. 
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4.2 TESTS FOR RAW MATERIALS 

Tests on raw materials analyze the pozzolanic material alone or when 

exposed to lime in solution rather than as a mortar specimen.   

 

4.2.1 CHEMICAL ANALYSIS 

Analysis of chemical composition is one method of assessing a pozzolan. 

Because it is known that silica and alumina are the reactive components that 

contribute to pozzolanicity, and that pozzolanicity tends to increase with 

increasing content of these two components, it is logical that the degree of 

pozzolanicity could be assessed by determining the relative amounts of these 

two materials present in a pozzolan. However, because of the widely variable 

nature of pozzolans, it is impossible to universally classify or rate pozzolans of 

different classes using this method. Standards often list proportions for the 

minimum amount of each component, but this is more for the purpose of 

uniformity in specification. There are no quantitative indices based upon chemical 

analysis of pozzolans as there are for hydraulicity. While it is certainly useful for 

characterizing and ensuring uniformity in pozzolans, determination of chemical 

composition alone is not a conclusive test for pozzolanicity, as it has been shown 

to offer no definite correlation with field and laboratory behavior. Chemical 

composition can be determined in the laboratory through a number of chemical 
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tests to determine the amount of each element or compound in question, or 

through more sophisticated methods such as x-ray fluorescence. 70 

 

4.2.2 SOLUBILITY TESTS 

Another chemical method of analyzing raw materials for pozzolanicity is 

through solubility tests. Solubility tests measure the amount of a material soluble 

in some medium using gravimetric methods. There are several variations that 

employ different reagents and test procedures, but they all are designed primarily 

to determine the amount of soluble silica as a measure of pozzolanicity. The 

method proposed by Feret in 1933 was based on the theory that a raw pozzolan 

is relatively insoluble, but the reaction products formed when that pozzolan is 

combined with lime are much more soluble. The test recommends first 

determining the amount of silica, alumina, and iron oxide dissolved by cold 

hydrochloric acid on a raw sample of pozzolan, using loss on ignition. Next, using 

the same amount of pozzolan, a lime-pozzolan paste is created and cured. After 

it is dried, it is ground to the same fineness as the original raw pozzolan and 

treated with hydrochloric acid to determine the amount of silica, alumina, and iron 

oxide rendered soluble during the hydration process. Data from these tests 

typically show a progressive increase in the amount of soluble silica and alumina 

in the lime-pozzolan mix as the reaction takes place over time. While solubility 

tests can be useful for comparing materials of the same class and determining 
                                                           
70 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes,  ASTM Special Technical 
Publication No. 99, 1950, p. 110. 
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has pozzolanic potential, they lack the ability to determine the quality of a 

pozzolan or its degree of pozzolanicity across categories.71 

 

4.2.3 LIME COMBINATION TEST 

Lime combination tests measure the ability of a raw pozzolan to combine 

with lime as an indication of its reactivity. The test is grounded in the theory that 

the more reactive the pozzolan, the more it will combine with and fix lime during 

the reaction between silica and alumina with calcium hydroxide. This method was 

first proposed by Vicat in 1837. A measured sample of the raw material is placed 

in contact with a saturated solution of lime water (calcium hydroxide). At various 

time intervals, a portion of the solution is extracted and the strength of the lime is 

determined by titration. If the solution is highly unsaturated at the end of the test 

period, it can be assumed that the lime has combined with the pozzolan. In other 

words, the calcium hydrate has been fixed by the silica in the pozzolan, indicating 

a positive pozzolanicity. Volume increase in the test tube is also noted as an 

indication of the reaction between lime and pozzolan.72 The most commonly 

accepted modern version of this test is known as the Chapelle test and appears 

in a French standard, NF-P 18-513: 2009 Pozzolanic Addition for Concrete. 

                                                           
71 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, p. 110. 
72 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, pp. 109-120. 
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Using the Chapelle method, free lime content is determined by sucrose 

extraction and titration with hydrochloric acid.73   

A similar but simplified test for determining pozzolanicity involves placing a 

sample of the ground pozzolan in a test tube in contact with slaked lime and 

water. The test tube is periodically shaken over the course of seven days. This 

test determines pozzolanicity not by measuring the amount of free lime remaining 

after the hydraulic reaction has occurred, but by visually observing the formation 

of calcium silicate hydrate that results from the reaction. The formation of 

hydrated calcium-alumino silicate compounds, which are bulkier than the 

pozzolan and lime themselves, and will increase the volume of solid matter and 

cause a retardation in the rate of settlement after shaking the test tube. These 

reaction products are said to have a flocculent appearance and, as a result, this 

test has sometimes been referred to as the “flocculation test.” The simple 

observation of the increase in solid matter and slowed settlement rate indicates 

positive pozzolanicity and is also useful for comparing relative pozzolanicity of 

different materials.74 This field test was suggested in a building research report of 

the Department of Scientific and Industrial Research in 1927 specifically for use 

with burnt clay pozzolan.75 A variation of this test calls for the lime and pozzolan 

                                                           
73 E. Badogiannis, G. Kakali, and S. Tsivilis, “Metakaolin as Supplementary Cementitious 
Material, Optimization of Kaolin to Metakaolin Conversion,” Journal of Thermal Analysis and 
Calorimetry, Vol. 81, 2005, pp. 457-462. 
74 A.D. Cowper, Lime and Lime Mortars, Shaftsbury, UK: Donhead Publishing Co., 1927, pp. 48-
49. 
75 John Ashurst. Mortars, Plasters and Renders in Conservation. 2nd ed., Ecclesiastical Architects’ 
and Surveyors’ Association, 2002, p. 24. 
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to be boiled together and then allowed to settle. The result is obtained by 

measuring the volume of the suspension 24 hours after the solution is boiled.76 

 

4.2.4 ELECTRIC CONDUCTIVITY TEST 

  Electric conductivity tests exist as a time-efficient method of monitoring 

pozzolanic activity. As early as 1940, Frederick Lea proposed determining 

pozzolanicity using electrical conductivity to measure the depletion of lime from a 

lime-pozzolan solution as result of pozzolan fixing calcium hydroxide.77 More 

recent work by McCarter and Tran has striven to produce a pozzolanicity index 

based upon conductivity measurements. In these tests, raw pozzolanic material 

is activated by dispersing it into a solution of calcium hydroxide and monitoring 

the chemical reaction through electric conductivity for a given interval of time 

while heating. Electric conductivity decreases as ion concentration of the solution 

decreases due to the reaction between calcium hydroxide and pozzolan and the 

formation of the calcium alumino silicates. A large difference in the initial electric 

conductivity and the stabilized conductivity indicates high pozzolanicity, and a 

quick stabilization of conductivity also indicates that the material is highly 

reactive. The rate of change in conductivity can be used as a means of 

quantifying pozzolanicity. The proposed pozzolanicity index is based on the 

                                                           
76 Robert Day, Pozzolans for Use in Low Income Housing: A State of the Art Report Prepared for 
the International Development Research Centre, Ottawa, Canada, 1990, p. 58. 
77 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic 
Activity, Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM 
Special Technical Publication No. 99, 1950, p. 113. 
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difference between initial conductivity and the conductivity of the solution two 

minutes after mixing.78   

 

4.2.5 X-RAY DIFFRACTION AND SEM 

X-ray diffraction (XRD) and scanning electron microscopy (SEM) have 

also been used in characterizing pozzolans. These methods allow the 

determination of whether the silica in the pozzolan is amorphous or crystalline to 

predict whether it will react with lime, as well as determining chemical 

composition in order to estimate reactivity according to proportions of silica and 

alumina.79 

 

4.2.6 MICROSCOPY 

Another method for assessing pozzolans in raw form is the use of optical 

microscopy. These kinds of studies can be useful in identifying and estimating 

the amounts of reactive constituents in a raw pozzolan, identifying mineralogical 

composition, and characterizing the material based on particle size and 

distribution, etc. When reactive constituents are amorphous and not identifiable 

through x-ray diffraction, they can sometimes be identified through microscopy. 

For example, some clay minerals and volcanic glass yield no characteristic x-ray 

pattern because of their amorphous structure, but can be identified visually by 

observation under magnification.  Unless combined with other methods, optical 
                                                           
78 W. J. McCarter and D. Tran, “Monitoring Pozzolanic Activity by Direct Activation with Calcium 
Hydroxide,” Construction and Building Materials, Vol. 10 No. 3, 1996, pp. 179-184. 
79 Technical Brief, Testing Methods for Pozzolans, Practical Action: Schumacher Center for 
Technology and Development, online at www.practicalaction.org. 
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analysis cannot conclusively determine pozzolanicity. It is a useful tool, however, 

for supplementing other types of analyses and characterizing pozzolans.80 

Optical microscopy may be more useful in identifying reaction products in 

combined lime-pozzolan specimens. 

 

4.3 TESTS FOR POZZOLAN-LIME SPECIMENS 

Tests on pozzolan-lime specimens characterize pozzolans by evaluating 

the properties they impart to mortar mixes as an indirect measure of their 

pozzolanicity. Because pozzolans are only reactive when combined with lime, it 

is logical that their performance should be assessed in this combined form.  

 

4.3.1 STRENGTH TEST 

The most common and accepted pozzolanicity test is the strength test in 

which a test specimen is created using a set ratio of pozzolan to binder and the 

cube is subjected to compressive and/or tensile strength tests to measure 

pozzolanicity based on strength enhancement. The theory is that a test specimen 

containing pozzolanic material will have higher strength than a test specimen that 

does not, and that the more reactive the pozzolan, the higher the strength it will 

produce and the greater the discrepancy between strength of pozzolanic 

                                                           
80 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, pp. 109-120. 
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specimen and control specimen.81 Strength tests appear in many specifications 

for pozzolans and form the basis for the ASTM’s Pozzolanicity Index. The 

pozzolanicity index is simply a ratio of the compressive strength of a pozzolan 

mortar mix to that of a control made without pozzolan, expressed as a percent. 

Lime or Portland cement can be used as the binder for this test. The Test for 

Pozzolanic Materials in the Indian standard uses the Lime Reactivity test, which 

is simply a measure of the compressive strength of a lime: pozzolan: sand 

mixture cured for 8 days.82  Strength development varies with different ratios of 

lime to pozzolan and also with temperature and humidity during curing. Higher 

temperatures and moist curing conditions have the effect of higher ultimate 

strength, and a long period of moist curing is essential to the development of high 

strength in pozzolans.83  

 

4.3.2 SETTING TIME TEST 

Analyzing the amount of time required for a fresh lime-pozzolan mortar 

sample to set is another way of indirectly measuring pozzolanicity. Because 

pozzolans are known to speed initial and final set in a lime mortar, set time is a 

logical basis on which to determine pozzolanicity. A Vicat apparatus is used to 

test the speed at which the mortar reaches initial and final set, measuring the 

penetration of a needle over a period of time as the sample cures. The rapidity of 
                                                           
81 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, pp. 109-120. 
82 Technical Brief, Testing Methods for Pozzolans, Practical Action: Schumacher Center for 
Technology and Development, online at www.practicalaction.org. 
83 F. M. Lea. The Chemistry of Cement and Concrete, 3rd edition. NY: Chemical Publishing 
Company, 1971, pp. 434-435. 
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the set times are a measure of pozzolanicity. According to Lea, the setting time 

of lime-pozzolan mixes is variable. Initial set may occur in 1-3 hours but final set 

is usually 10-12 hours or longer.84  

 

4.3.3 UNDERWATER SET TEST 

A variation to the standard set time test, proposed by the French cement 

chemist Feret, suggests performing the setting time test on a lime-pozzolan 

specimen that is submerged in water. One of the properties that pozzolans 

impart to lime mortars is the ability to set under water and without access to 

carbon dioxide. Therefore, an active pozzolan should cause a set in a lime 

mortar under water while a non-pozzolanic control will show no set, and this is a 

relatively reliable indicator of pozzolanicity. The procedure recommended by 

Feret involves creating a lime-pozzolan paste, storing it in a glass jar covered 

with a layer of saturated lime water and a film of oil in order to prevent 

carbonation or evaporation, and measuring penetration via Vicat needle until final 

set is achieved. Active pozzolans will reach initial set in less than 50 hours and 

final set in less than 100 hours. Poor or mildly pozzolanic materials will eventually 

set after 100 hours, and non-pozzolanic materials will not set under these 

conditions.85 

 

                                                           
84 F. M. Lea. The Chemistry of Cement and Concrete, 3rd edition. NY: Chemical Publishing 
Company, 1971, p. 433. 
85 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, p. 116. 
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4.3.4 MEASUREMENT OF UNCOMBINED LIME 

Another method of analyzing pozzolanic activity in a lime-pozzolan mix is 

to determine the amount of calcium hydroxide that remains uncombined after 

lime has reacted with the pozzolan in a mortar mix. This is a means of measuring 

the extent to which the reactive components of the pozzolan have combined with 

lime to form stable cementing compounds. Free lime content can be determined 

using a calorimetric method in which the heat of hydration is measured in order 

to determine free calcium hydroxide present based on the known heat of 

hydration of calcium hydroxide. This method has inherent errors that require 

correction. Another method for measuring free lime content involves an 

extraction of a lime-pozzolan specimen with a half-saturated lime solution. The 

free lime will be dissolved while calcium silicate remains.86  

Differential thermal analysis (DTA) can also be used to determine free 

lime content. Observing the thermal curves of cured pozzolan-lime specimens as 

they are subjected to a controlled temperature program can be very useful in 

characterizing cured samples. Free lime content can be estimated by measuring 

the area under the peak caused by the dehydration of calcium hydroxide at 500-

650º C. This technique can also be used to determine the presence of hydraulic 

components or reaction products (C-S-H). Phase changes, such as dehydration 

                                                           
86 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity. 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, p. 117-118. 
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of calcium alumino-silicate hydrates, are used to identify reaction products and 

indicators that a pozzolanic reaction has occurred. 87 

 

4.3.5 MICROSCOPY 

Optical methods can be used for analyzing pozzolan-lime specimens as 

well as raw pozzolan. Petrographic-mineralogical observation of thin sections of 

cured mortar specimens in polarized light can provide the opportunity to visually 

observe reaction products formed by the interaction between calcium hydroxide 

and pozzolan. Reaction products appear as a thin rim of neo-formation products 

along the boundary between the pozzolan particles and the binder. Scanning 

electron microscopy can detect the composition of reaction layers. If calcium 

silicate hydrates are present in reaction layers, it can be concluded that the 

material in question has facilitated a pozzolanic reaction.88  

 

4.4 STANDARDS 

  There are several standards produced by different organizations around 

the world that assess pozzolanicity by thoroughly characterizing a material 

through a number of different physical and chemical tests. Standards also 

provide guidelines and limits for chemical content, water content, and other 

properties. Most of these standards are more relevant for the manufacture and 

                                                           
87 F. M. Lea. The Chemistry of Cement and Concrete, 3rd edition. NY: Chemical Publishing 
Company, 1971. pp. 430-431. 
88 G. Baronio, L. Binda, C. Tedeschi, Microscopy Study of Byzantine Mortars: Observation of 
Reaction Layers Between Lima and Brick Dust, Seventh Euroseminar on Microscopy Applied to 
Building Materials, Milan, 1999. 
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specification of pozzolanic material in new construction than for conservation 

work where a mortar is formulated for a specific project or building.89 Existing 

standards are also typically written with a focus on pozzolan use with Portland 

cement rather than lime.90 

 

4.4.1 ASTM 

The ASTM has developed several standards addressing the use of 

pozzolans in concrete, but ASTM C 593 Standard Specification for Fly Ash and 

Other Pozzolans for Use with Lime, developed in 1995, addresses the use of 

pozzolans with lime. This standard was written primarily for the use of pozzolanic 

fly ash in lime mortars, but can also be applied to fired ceramic materials such as 

brick dust. The standard provides a set of requirements and tests to determine a 

material’s suitability to act as a pozzolan in lime mortars. First, the material must 

meet the following physical requirements: 

1.  No more than 10% of the material can be water soluble. 

2. The pozzolan must meet a fineness requirement. A maximum of 2% can 

be retained on No. 30 (600 micron) sieve and maximum of 30 % retained 

on No. 200 (75 micron) sieve. 

                                                           
89 Geoffrey Boffey and Elizabeth Hirst. The Use of Pozzolans in Lime Mortar. Journal of 
Architectural Conservation, Vol. 5 No. 3. 1999, pp. 36-37. 
90 ASTM C618 - 08a Standard Specification for Coal Fly Ash and Raw or Calcined Natural 
Pozzolan for Use in Concrete ; ASTM C311 - 07 Standard Test Methods for Sampling and 
Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete ; ASTM C446 
Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in 
Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction 
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3. The pozzolan must meet a minimum strength requirement when combined 

in a lime mortar. The minimum compressive strength is 600 psi cured at 7 

days and 54 +/- 2º C and the same strength minimum at 21 days cured at 

23 +/- 2 degrees C. 

 

ASTM C 311 Standard Test Methods for Sampling and Testing Fly Ash or 

Natural Pozzolans for Use as a Mineral Admixture in Portland-Cement Concrete 

provides methods of determining pozzolanicity of fly ash and natural pozzolans 

for use in Portland cement, but some of its methods are also applicable for other 

pozzolans with a lime binder. The standard requires testing of the raw material 

for moisture content, fineness, loss on ignition, and determination of the 

presence of a number of different oxides through testing with specified reagents. 

On lime-pozzolan specimens, it analyses drying shrinkage and soundness. It 

measures strength through the pozzolanic activity index, a compressive strength 

test that compares the strength of a control with a sample containing pozzolan. 

Other tests are included in the specification but they apply to Portland cement but 

not to lime-pozzolan mixes.91 

 

4.4.2 INDIAN AND BRITISH STANDARDS 

The Indian standard, Methods of Tests for Pozzolanic Materials (IS 1727-

1967), is nearly identical to the ASTM 311 Standard Test Methods for Sampling 

                                                           
91 American Society for Testing and Materials, “C311 - 07 Standard Test Methods for Sampling 
and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete,” Annual Book of 
ASTM Standards. Vol.04-02. West Conshohocken, PA, ASTM 2007. 
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and Testing Fly Ash or Natural Pozzolans for Use as a Mineral Admixture in 

Portland-Cement Concrete except that it also measures initial and final setting 

time, transverse strength, and permeability. The British Standards Institute has 

no specific standard for testing pozzolans, but BS EN 196-5 Pozzolanicity Test 

for Pozzolanic Cements is a procedure that is designed for pozzolanic cements, 

but has successfully been used in some studies on brick dust pozzolan.92 The 

test is measures pozzolanicity through a lime combination test using the following 

method: The pozzolan is finely ground and placed in contact with a 

supersaturated solution of calcium hydroxide at 40˚ C for 8 days. If the lime 

solution is highly unsaturated at end of period, part of calcium hydroxide has 

been fixed by amorphous silica and test is positive. The test determines 

pozzolanicity by measuring the amount of lime fixed by pozzolan.93 

 

4.4.3 BRAZILIAN STANDARD 

 The Brazilian standard ABNT NBR 12653 specifies certain chemical and 

physical requirements for pozzolans of three different defined classes: natural 

and artificial pozzolans, fly ash, and pozzolans that do not qualify as either of the 

other two classes. The requirements are different for each class and include a 

minimum combined percentage of silica, alumina, and iron oxides as well as a 

maximum sulfur trioxide and moisture content. It also offers specifications for 

                                                           
92 L. Binda and G. Baronio have employed this pozzolanicity test in their work on analyzing brick 
dust pozzolan 
93 Technical Brief, Testing Methods for Pozzolans, Practical Action: Schumacher Center for 
Technology and Development, online at www.practicalaction.org. 
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fineness, maximum loss on ignition, maximum water content required for mixing, 

and strength requirements.94 

 

4.5 TEST EVALUATION 

The existing tests for pozzolanicity determination are varied in their 

complexity, expense, and method of assessment. Some testing methods could 

potentially be used alone to determine whether and to what extent a material is 

pozzolanic while others are more a means of characterization but not conclusive 

in themselves for determining pozzolanicity. Some tests require a considerable 

amount of expertise, equipment, and expense and are too complex or cost-

prohibitive for a simple determination of pozzolanicity for the specification of 

conservation mortars. A successful field test is one that would be relatively 

simple to perform, inexpensive, and would yield rapid yet reasonably accurate 

and repeatable results. In order to design a testing program to determine the 

efficacy of existing methods and their potential for field analysis, the existing 

methods were evaluated and rated according to multiple criteria. The methods 

that were discussed above were examined individually to determine their 

suitability for a field test. They were assessed based on the following criteria: 

1. Cost: Test does not require external expertise or expensive equipment or 

materials that would make it expensive to perform. 

                                                           
94 Igor S. Pinheiro, Luiz C. Montenegro, and Adriana G. Gumieri, Pozzolanic Activity of Red 
Recycled Bricks, Second International Conference of Sustainable Construction Materials and 
Technologies, June, 2010. 
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2. Complexity: Test requires minimal steps, and is relatively simple to 

perform. 

3. Technical proficiency: Test can be performed without extensive training 

and without an outside consultant.  

4. Time: Results can be obtained in a relatively short period of time (i.e. less 

than one month).  

5. Minimal equipment requirement: The test does not require extensive 

equipment. 

6. Controlled environment: The test does not require specified temperature 

or humidity levels that would require that it be performed in a laboratory or 

other controlled environment.  

For each criterion that was met, the test received one point. Tests were also 

evaluated based on the property measured and whether they were performed on 

raw pozzolan or mortar specimens, but these two categories were given no point 

value. 

 



63
 

 

 T
ab

le
 4

.1
 E

va
lu

at
io

n 
of

 T
es

tin
g 

M
et

ho
ds

Te
st

 
M

et
ho

d 
M

ea
su

re
m

en
t 

Sa
m

pl
e 

Ty
pe

 
Lo

w
 

C
os

t 
Lo

w
 

C
om

pl
ex

ity
 

Lo
w

 T
ec

h 
Pr

of
ic

ie
nc

y 
R

ap
id

 
R

es
ul

ts
 

M
in

im
al

 
Eq

ui
pm

en
t  

C
on

tr
ol

le
d 

En
vi

ro
nm

en
t 

R
at

in
g 

C
he

m
ic

al
 

an
al

ys
is

 
(la

b 
m

et
ho

d)
 

C
he

m
ic

al
 

co
m

po
si

tio
n 

ra
w

 
m

at
er

ia
l 

1 
0 

1 
1 

1 
0 

4 

So
lu

bi
lit

y 
te

st
 

A
m

ou
nt

 o
f 

so
lu

bl
e 

si
lic

a 
ra

w
 

m
at

er
ia

l 
1 

0 
1 

1 
1 

0 
4 

Li
m

e 
co

m
bi

na
tio

n 
Ab

ilit
y 

to
 

co
m

bi
ne

 w
ith

 
lim

e 

ra
w

 
m

at
er

ia
l 

1 
1 

1 
1 

1 
1 

6 

El
ec

tri
c 

co
nd

uc
tiv

ity
 

R
at

e 
of

 
ch

an
ge

 in
 

co
nd

uc
tiv

ity
  

ra
w

 
m

at
er

ia
l 

0 
0 

0 
1 

0 
0 

1 

O
pt

ic
al

 
m

et
ho

ds
 

Ph
ys

ic
al

 
pr

op
er

tie
s 

ra
w

 
m

at
er

ia
l 

0 
0 

0 
1 

0 
1 

2 

St
re

ng
th

 
te

st
 

C
om

pr
es

si
ve

 
or

 te
ns

ile
 

st
re

ng
th

 

co
m

po
si

te
 

0 
1 

0 
1 

0 
0 

2 

Ti
m

e 
of

 s
et

 
te

st
 

S
et

 ti
m

e 
co

m
po

si
te

 
1 

1 
1 

1 
1 

0 
5 

U
nd

er
w

at
er

 
Se

t 
Ab

ilit
y 

to
 s

et
 

un
de

rw
at

er
 

co
m

po
si

te
 

1 
1 

1 
1 

1 
1 

6 

Fr
ee

 li
m

e 
co

nt
en

t 
Ab

ilit
y 

to
 fi

x 
lim

e 
co

m
po

si
te

 
1 

0 
1 

1 
1 

0 
4 



 64   
 

While the test matrix is insightful for evaluating the tests for suitability for 

use in the field, it cannot be used alone to judge tests, as some of the criteria 

have different levels of importance that cannot be weighed in the context of this 

simple rating system. Also, some of the tests, although they met many of the 

criteria for field tests, are not as practical as others because they lack the ability 

to yield conclusive results when used alone. For example, while chemical 

analysis met four of the six criteria, it is not ideal for field testing because, while it 

may be useful for comparing and characterizing pozzolans of the same class, 

chemical composition alone cannot predict pozzolanicity or quality.95 

 

4.6 SELECTION OF TESTS FOR TESTING PROGRAM 

Testing methods for this study’s testing program were selected based on 

this evaluation in addition to other considerations. It was important to select tests 

that could potentially stand alone as a predictor of pozzolanicity and would yield 

conclusive results. For the purpose of comparison, it was also important to select 

tests that were diverse in method of assessment; to include tests that evaluated 

chemical and physical properties as well as tests on both raw material and 

mortar specimens. The following tests were selected for the testing program: 

                                                           
95 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, p. 110. 
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1. Setting time test: The Time of setting test using the Vicat needle met five 

of six criteria for a successful field test. The only unmet criterion is “no 

controlled environment,” as the test requires certain temperature and 

humidity conditions for curing. This test measures the time required for 

initial and final set of a mortar specimen consisting of pozzolan combined 

with a binder, with the rapidity of set as an indicator of pozzolanicity. 

Because set time is both a practical consideration when specifying 

mortars and an accepted means of measuring pozzolanicity, this test is 

ideal in that it relates directly to a necessary performance property for lime 

mortar.  

2. Underwater Set Test: The underwater set test met all six criteria for a 

successful field test. This test is very similar to setting time, but it 

measures an essential property of a pozzolan: its ability to bring about a 

hydraulic set when combined with lime. This is both an important 

performance characteristic and a clear indicator of pozzolanicity. 

3. Lime combination test: The lime combination test met all six criteria for a 

successful field test. While various methods for performing the lime 

combination test exist, this study will employ the simple test for burnt clay 

pozzolan proposed by Cowper in 1927. It is quick, easy to perform, and 

measures the ability of raw pozzolan to fix lime and produce cementing 

compounds, a clear indicator of pozzolanicity. This chemical test is 
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practical and measures an essential property of a pozzolan: the ability to 

react with lime to form calcium silicate hydrates. 

4. Strength test: The strength test met two of the six criteria for a successful 

field test. The lower rating reflects the fact that it requires outside 

equipment and expertise in order to perform the strength tests, as well 

requiring a controlled environment for curing. However, as it is the most 

widely-accepted and standardized method of assessing pozzolans, it is an 

essential component of this testing program. Also, because it offers very 

precisely quantifiable results, it is critical for the purpose of comparison 

with results of other tests. As a measure of an important performance 

property (strength), it is a practical and logical method of measuring 

pozzolanicity. 
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CHAPTER 5 MATERIALS AND METHODOLOGY 

5.1 CURRENT RESEARCH 

There have been several projects performed within the Architectural 

Conservation Laboratory at the University of Pennsylvania that have studied 

brick dust mortars and grouts, either for the purpose of formulating a mortar for a 

specific project or site, to replicate an historic mortar, or to investigate the effects 

of brick dust on the properties of lime mortars. The purpose of the current 

research differs from past research because, rather than to formulate a site-

specific mortar or to characterize brick dust mortars, it instead aims to establish a 

method for determining pozzolanicity of a given brick. The tests selected for the 

testing program are by no means comprehensive in characterizing brick dust 

mortars or evaluating the effects of brick dust on a lime mortar, but they were 

selected based on their ability to predict pozzolanic activity in a reasonably 

accurate and straightforward manner.  

Because of time constraints and material availability, the variables in the 

current testing program are limited to only the type of brick dust. Particle size and 

proportions of various components will remain constant while mineralogical 

composition and firing temperature will vary inherently with the different brick 

dust samples. An inert control of marble dust will be used for comparison. The 

tests are based upon the properties of lime mortar that pozzolans are known to 

effect. The efficacy of determining pozzolanic potential through the selected tests 

is central question of this testing program. By performing identical tests on the 
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three different samples, the sensitivity of the test and its ability to predict 

pozzolanicity will be assessed. Inversely, by comparing the results from all tests 

for each individual formulation, consistency of tests and their ability to yield 

accurate results can be assessed. In addition to evaluating the tests themselves, 

the research should provide insight about the effect of mineralogy and firing 

temperature on pozzolanicity, as these are the only variables among the brick 

dusts. 

 

5.2 MATERIALS 

 The following materials were utilized in the testing program. Data sheets, 

where available, are located in Appendix J. 

 

5.2.1 HYDRATED HIGH CALCIUM LIME 

The lime selected for the experimental program is a high calcium hydrated 

lime donated by Coyne Chemical Company in Croydon, Pennsylvania in 

February, 2011 and produced by Carmeuse Lime, Inc. in Pennsylvania. The lime 

was produced from pure limestone containing over 98% calcium carbonate and 

fired in a limekiln at 900°C. During firing, the limestone was converted to 

quicklime. Hydrated lime was created from quicklime by adding just enough 

water to form calcium hydroxide. Hydrated lime is a dry, powdery product with 

97% passing a 325 mesh sieve. Carmeuse hydrated high calcium lime is, on 

average, 76.2% calcium oxide with 24% combined water and less than 2% 
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magnesium oxide or silica. Although dolomitic lime is more accessible in the 

United States, high calcium lime was chosen as the binder for this experimental 

program because of its purity. The powder was stored at room temperature in a 

cylindrical drum. Because of the presence of clumps in the powder, the lime was 

sifted with a flour sifter for a more homogenous powder and for easier mixing. 

 

5.2.2 SAND 

The sand used in the mortar formulations is a bar sand purchased from 

CAVA Building Supply in Philadelphia in February 2011 and supplied by Dun-

Rite Sand and Gravel Company in New Jersey. The sand was certified to comply 

with ASTM C-144 Standard Specification for Aggregate for Masonry Mortar. It is 

a high silica bar sand is graded predominantly between the No. 30 and No. 100 

sieve. Sieve analysis was performed according to ASTM C136-01 Standard Test 

Method for Sieve Analysis of Fine and Coarse Aggregates on a 100 g sample of 

sand to produce a particle size distribution.  
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Graph 5.1 Particle Size Distribution of CAVA Bar Sand 

 

5.2.3 MARBLE DUST 

Marble dust was used as a non-pozzolanic material in order to serve as a 

control against which to compare the test results of the samples containing brick 

dust. The marble dust was purchased from Kremer Pigmente in a finely ground 

form with a particle size less than 32 microns. It is very pure and is composed of 

95.5% calcium carbonate and about 3% magnesium carbonate and trace 

amounts of iron oxide, but it is void of aluminates or silicates. The purpose of the 

marble dust is to act as a porous particulate in the mortar formulations and as an 

inert control material in the other tests, because it is known not to have any 

chemical reaction with lime but still functions in mortar formulations as a 

particulate to fulfill the same mechanical function as the brick dust.  
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5.2.3 BRICK DUST 

Two different brick dusts were used for the experimental program. Bricks 

were chosen based on their conformity to the parameters for pozzolanicity 

established in the Smeaton Project. It was essential for the selected bricks to be 

fired at a low temperature, within the range of 600- 950°C, as it has been proven 

that bricks fired above this temperature lose their ability to react with lime. While 

bricks were historically fired at temperatures this low, modern kilns reach much 

higher temperatures in order to produce harder bricks used in modern 

construction. It is difficult to find commercial brick producers that produce under-

fired bricks. It was necessary that newly-produced bricks were used rather than 

recycled historic bricks in order to ascertain the approximate firing temperature. 

Ultimately, bricks were selected from the brickyard of Colonial Williamsburg and 

Belden Brick Company in Ohio. 

Both sets of bricks were sent to the University of Pennsylvania in 

November, 2011 in whole form. They were then shipped to Puerto Rico to be 

crushed at San Juan National Historic Site. The bricks were crushed to varying 

particle sizes, ranging from large pieces 1-2 inches long to powder less than 75 

microns. The crushed brick was sorted, sieved, and then the particles that did not 

pass the 200 (75  micron) sieve were ground with a ball mill using steel balls of 

various diameters until they were fine enough to pass the 200 sieve.  

It was important to determine the mineralogical composition of the brick 

dusts in order to compare the two and attempt to correlate mineralogy and 

pozzolanicity, if possible. In order to identify minerals present in the dusts, x-ray 



 72   
 

diffraction (XRD) was performed on the powdered Williamsburg and Belden brick 

dusts at the Laboratory for the Research on the Structure of Matter at University 

of Pennsylvania. A Rigaker D-Max B model with a copper sealed x-ray tube was 

used for analysis of samples. XRD determines mineralogy by identifying the 

crystalline structures of multiphase materials. 

To further characterize the materials, the brick dusts were analyzed using 

simple laboratory tests to determine water absorption, presence and of salts (with 

semiquantitative commercial salt strips), acid soluble portion (through gravimetric 

acid digestion), pH, and color.  Water absorption is expressed as amount of 

water absorbed by brick dust after being immersed in water as a percentage of 

the mass of the dry brick dust. Water absorption influences workability of the 

mortar mix to which the brick dust will be added as well as the water requirement. 

Presence of salts was determined semiquantitatively using EM Quant brand 

commercial salt test strips. Determination of salts is important because 

introducing salts into a mortar mix could cause mechanical damage to the mortar 

through the crystallization of salts as they go in and out of solution with wetting 

and drying cycles. pH was also determined for each brick dust using pH strips. A 

simple gravimetric laboratory test was used to determine acid solubility. The brick 

dusts were subjected to treatment with hydrochloric acid and the percentage 

digested by the acid was calculated. The color of the brick dusts was classified 

using the Munsell Soil Color Chart. The addition of brick dust to a mortar will 

obviously impact its color. Color is an important consideration when mortars are 
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used for pointing and patching in areas that will be visible, but for deep repair 

mortars that are not exposed, color is not usually a concern.  

 

5.2.3.1 COLONIAL WILLIAMSBURG BRICK DUST 
Colonial Williamsburg, Virginia operates a traditional brickyard in which 

bricks are fired in a wood kiln as they would have been historically. The Colonial 

Williamsburg Foundation uses these bricks for restoration and reconstruction 

projects on buildings within the park in an effort to utilize historically accurate 

building materials. They also have reported using ground brick in mortar 

formulations, along with lime, sand, and clay in varying proportions. Williamsburg 

bricks are not available for purchase commercially, but were donated for the 

purpose of this research. Because of their traditional method of firing, they are 

typical of bricks from previous centuries that might be recycled from historic 

buildings.  

Williamsburg bricks are made from native Virginia clays. First, water is 

worked into the clay to form a smooth consistency. Next, the clay is cleaned and 

shaped into a wooden mold. The soft, unfired bricks are allowed to dry in air for 

about seven weeks, first on raised beds of sand then in drying sheds, before 

being placed in the kiln. About 20,000 bricks are stacked in the kiln. Bricks are 

used to build four fire tunnels. The exterior of the structure is sealed with clay and 

four wood fires are lit within the fire tunnels. The fire burns continuously for six 

days and nights, reaching temperatures around 1000°C at the end of the burning 
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period. After firing, the bricks cool in the kiln for about one week. About half of the 

bricks will be fired to the ideal hardness, and the remaining half will be either 

underfired or clinkers, depending on their proximity to the fires.96  

The bricks utilized in this research were placed far away from the fire in 

the kiln and, as a result, did not reach the maximum temperature. These bricks 

were fired at approximately 950°C, which is the upper limit of what has been 

established to be the ideal temperature for pozzolanic reactions to occur. XRD 

showed that the minerals were quartz (SiO2) and microline, a type of feldspar 

with the chemical formula KAlSi3O8. XRD did not yield conclusive results for the 

mineralogy of the bricks because of the difficulties associated with identifying 

clay minerals. Because clay minerals tend to be poorly-crystallized, they do not 

have typical patterns resulting from crystalline structures that are used to identify 

minerals in XRD. As discussed previously, at the temperature range at which 

these bricks were fired causes silica and alumina in the clays to lose their 

crystalline structures and become amorphous. XRD does not identify amorphous 

materials. XRD spectra can be found in Appendix C. The results of the other 

characterizations are displayed in the table 5.1. 

 

 

 

                                                           
96 “Brickmakers,” Colonial Williamsburg website, 
http://www.history.org/almanack/life/trades/tradebri.cfm, accessed March 23, 2011. 
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Table 5.1 Characterization of Williamsburg Brick Dust 

Water 
Absorption 

Acid 
Soluble 
Portion 

pH Nitrates Chlorides Sulfates Munsell 

49.3% 0.26% 7 none none 0.5% 5 YR 
6/6 

   

5.2.3.2 BELDEN BRICK DUST  
The second brick dust is from Belden Brick Company in Canton, Ohio. 

The bricks were produced in November, 2011. Belden Brick Company uses a 

modern shuttle kiln, but they were able to create a low-fired brick custom made 

for this research by controlling the temperature that the bricks reached in the kiln. 

The clay was first fully dried and then fired in a shuttle kiln. The bricks were 

removed from the kiln before reaching the temperature of 815°C. The fireclay is 

known as Brookville Clay and is considered to be a coal formation clay. X-Ray 

fluorescence oxide analysis provided by Belden Brick Company shows that the 

major components are silica (about 26-27%) and alumina (58-59%). XRD 

identified quartz, microline, and dehydroxylated muscovite. Dehydroxylated 

muscovite is a silicate mineral also known as common mica that has undergone 

deyhyroxylation through the firing of clay. Its chemical formula is KAl3Si3O11. 

Again, clay minerals were not identified because of their poorly-crystallized or 

amorphous structure. The Belden brick dust contained less feldspar than the 

Williamsburg brick dust. XRD spectra can be found in Appendix C. The 

characterization of the Belden brick dust is displayed in Table 5.2. 
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Table 5.2 Characterization of Belden Brick Dust 
Water 
Absorption 

Acid 
Soluble 
Portion 

pH Nitrates Chlorides Sulfates Munsell 

54.1% 0% 7 none none 0.5% 10 YR 
8/1 

 

5.3 FORMULATIONS 

Two of the tests in the testing program (lime-pozzolan strength 

development and set time) required mortar formulations with established 

proportions of lime, sand, and additive (brick dust and marble dust). The 

proportions used in these formulations were derived from past research. The 

Smeaton project found that “in mortars based on non-hydraulic limes, the best 

performers were lime:sand:brick dust in proportions 1:3:1.”97 These proportions 

were used for the three formulations. Table 5.3 lists the formulations used in the 

current research. The amount of mixing water varied among the mixes 

depending upon the type of additive used. Approximate water requirements were 

determined before the mixing of formulations through preliminary tests in which 

mortars were mixed by hand to the appropriate consistency to which they could 

remain on an inverted trowel, a common test used in the field. Each mortar 

formulation was also subjected to the slump test using a flow table to ensure that 

                                                           
97 Jean Marie Teutonico, Colin Burns, John Ashurst, and Iaian McCaig, The Smeaton Project: 
Factors Affecting Lime-based Mortars, APT Bulletin, Vol. 25, No. 3/4. (1993), p. 35. 
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the flow was reasonably consistent among all three mortars. One batch was 

made of each formulation which provided all specimens for lime-pozzolan 

strength development and set time tests.  

 

 Table 5.3 Proportions of Components by Volume 

 

5.4 PREPARATION OF SAMPLES 

 All samples were prepared in the Architectural Conservation Laboratory 

during the months of March and April, 2011. 

 

5.4.1 MIXING 

Specimens used in lime-pozzolan strength development and set time tests 

were mixed according to ASTM C 305 Standard Practice for Mechanical Mixing 

of Hydraulic Cement Pastes and Mortars of Plastic Consistency. Slight 

modifications were made because of the differences in consistency and mixing 

requirements for lime mortar and hydraulic cement. The mechanical mixer used 

for mixing was a Hobart C-100 mixer with three speeds. The temperature of the 

laboratory at the time of mixing was 22°C and the relative humidity was 25%. The 

dry paddle and dry bowl were first placed in the mixing position in the mixer. 

Formulation Hydrated 
High 

Calcium  
Lime 

Bar 
Sand 

Williamsburg 
brick dust 

Belden brick 
dust 

Marble dust 

A 1 3 1 -- -- 
B 1 3 -- 1 -- 
C 1 3 -- -- 1 
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Approximately half of the deionized mixing water was added to the bowl. The 

hydrated lime and pozzolan, previously proportioned, blended together by hand, 

and stored in a closed container, were then added to the water in the mixing bowl 

and allowed to stand for one minute. The mixer was started at a slow speed for 

30 seconds. After 30 seconds, the entire quantity of sand was slowly added while 

maintaining a slow speed of mixing. After four minutes of mixing, the remainder 

of the water was added to the mix. At five minutes, the mixer was stopped and 

the sides of the bowl were scraped down using a plastic spatula for 1 ½ minutes. 

Mixing was then resumed on medium speed for 2 ½ minutes, stopping to scrape 

the sides once again before completing mixing on medium for an additional 

minute. After mixing, the mortar was emptied into a mortar mixing pan where it 

continued to be mixed by hand using trowels for an additional 20 minutes before 

molding. While hand-mixing, additional water was incorporated into the mix as 

needed using a spray bottle with a premeasured amount of deionized water. 

Hand mixing was necessary because the mechanical mixing was not sufficient to 

fully integrate the binder, aggregate, and water to reach an appropriate mortar 

consistency. 

 

5.4.2 MOLDING 

Specimens for lime-pozzolan strength development and set time tests 

required the use of two different sample shapes. The compressive strength test 

required 2 inch cube molds that complied with ASTM 109 Standard Test Method 
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for Compressive Strength of Hydraulic Cement Mortars. These molds were 

custom-made, built of wood with three tightly-fitted cube compartments per mold, 

fitted together with wood screws, and plane surfaces on interior faces. The set 

time test required a ring mold with a base diameter of 70 mm, top diameter of 60 

mm, and height of 40 mm and made of noncorroding, nonabsorbent material. 

The wooden molds were cleaned and coated with mineral oil while the set time 

cylinders were coated with petroleum jelly. 

Wood molds overfilled with fresh mortar and continuously compacted with 

a putty knife to minimize voids. The tops of the overfilled molds were smoothed 

with a trowel and then the excess was sliced off with a metal putty knife in one 

fluid motion. Conical molds for set time tests were filled by hand by pressing a 

ball of mortar with the palm of the hand into the larger end of the mold and then 

slicing the top of the mold off in one fluid motion with a metal putty knife. 

Although not included in this testing program, molds for water vapor transmission 

were filled for potential future phases of this project. These molds are small 

cylinders ½ inch high and 1 ½ inches in diameter constructed of PVC pipe. They 

were overfilled by hand and the tops were cut off using a small putty knife.  
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Table 5.4 Sample Mold Schedule 
Test Standard Mold Shape Mold Size Samples 

per 
Formulation 

Total 

Lime-pozzolan 
strength 
development 

ASTM 
109 

Cube 2 in. 15 45 

Set Time ASTM 
191 

Truncated 
cone 

70 mm base 
diameter, 60 
mm top 
diameter, 40 
mm height 

3 9 

Water vapor 
transmission 

ASTM E 
96 

Cylinder 1 ½ in. 
diameter ½ 
in. height 

6 18 

 

5.4.3 CURING 

The lime-pozzolan strength development test and the set time test both 

required specified curing conditions. According to ASTM 593 Standard 

Specification for Fly Ash and Other Pozzolans for Use with Lime, lime-pozzolan 

mortars should be cured in high temperatures and high relative humidity. The 

standard requires the use of a vapor oven at 130ºF for 7 days followed by curing 

at 73ºF at 95-100% relative humidity. This was not possible because the lab was 

not equipped with a vapor oven. Instead, the specifications in ASTM 109 

Standard Test Method for Compressive Strength of Hydraulic Cement Mortars 

were used for curing of compressive strength cubes and water vapor 

transmission cylinders. A moist cabinet was created using a bakers’ rack 
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equipped with a plastic tent cover with a zipper. The only point of air entry was at 

the bottom of the rack where it was open. Five trays of water were set on the top, 

bottom, and various racks between sample trays. A dial hygrometer was hung 

with wire at the top of the bakers’ rack to monitor temperature and relative 

humidity. Temperature ranged from 62°F to 71°F and relative humidity from 65% 

to 98% during curing. The samples were removed from the wooden molds at 8 

days then returned to the moist cabinet until the time of compressive strength 

testing at 30 days.   

ASTM 191 Standard Test Method for Time of Setting of Hydraulic Cement 

by Vicat Needle requires that samples be stored in a moist cabinet with a 

temperature of 73.4ºF and a relative humidity no less than 90% in between 

readings. A moist chamber was created using a plastic container with a tightly-

fitting lid measuring about 1 ½ feet by 2 feet. Four Petri dishes of water were 

placed inside amongst the samples. A digital hygrometer was placed inside to 

measure temperature and relative humidity over the duration of the testing and 

the lid was tightly closed. Temperature ranged from 17.5°C to 22.5°C and relative 

humidity ranged from 73% to 94%. 



Figure 5.2: ASTM No. 200 sieve (Rogers)

Figure 5.1: Reducing particle size of brick using ball mill (Rogers)
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Figure 5.3: Williamsburg brick dust (Rogers)

Figure 5.4: Belden brick dust (Rogers)
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Figure 5.5: Molds and tools prepared for mixing and molding of 
mortar samples (Rogers)
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Figure 5.6: Mixing Formulation B using Hobart C-100 mixer (Rogers)

Figure 5.7: Molding Formulation B for slump test (Rogers)

85



Figure 5.8: Moist cabinet for curing of mortar samples (Rogers)
86
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CHAPTER 6 TESTING PROGRAM 
 

6.1 INTRODUCTION 

The testing program includes a variety of tests that address pozzolanicity 

indirectly through examination of physical properties (mechanical strength and 

set time) and chemical properties (lime absorption). The testing program was 

designed after a literature review of current and historic literature about 

pozzolans. The tests that were selected are from various sources and, while 

some have current standards (ASTM), others were derived from historical 

literature with only brief descriptions of the test procedure, which often varied 

from source to source. For the tests that do have modern standards, these were 

followed as closely as possible and adapted where necessary to be more 

applicable to lime mortars. For tests that were derived for historic literature, the 

test procedures were ultimately designed by interpreting the original sources and 

some trial and error preliminary tests to determine the most effective way to 

perform the test.  

 

6.2 DETERMINATION OF FLOW 

The flow of mortar formulations was determined not as a measure of 

pozzolanicity but, rather, to ensure a uniform consistency among samples 

dependent on the water requirement. Flow was determined according to ASTM 

C1437 Standard Test Method for Flow of Hydraulic Cement Mortar with one 
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slight modification in accordance with ASTM 593 Standard Specification for Fly 

Ash and Other Pozzolans for Use with Lime. It was performed immediately after 

the conclusion of hand-mixing and before the molding of specimens for set time 

tests. For this test, a flow table was used that was built for the Architectural 

Conservation Lab to conform with ASTM C230 Standard Specification for Flow 

Table for Use in Tests of Hydraulic Cement. The flow table is constructed of a 

plywood table top covered with a ¼ inch thick piece of plexiglass. The base is 

constructed of plywood as well. Underneath the plexiglass is a piece of paper 

with eight equidistant lines drawn across the top for taking flow measurements. A 

pipe is screwed into a 1 inch flange that is attached to the bottom of the plywood 

table top. A pipe 1¼ inches in diameter by 5 inches in length is screwed into a 

1¼ inch flange attached to the base of the table. The smaller pipe fits inside the 

larger pipe allowing the table to be moved up and down.   

The flow table was mounted securely to the laboratory table top using two 

clamps. The top of the flow table was wiped clean and dry and a flow mold was 

placed at the center. The flow mold conformed to ASTM 230 Standard 

Specification for Flow Table for Use in Tests of Hydraulic Cement: a conical, 

bronze mold with a base diameter of 4 inches, a top diameter of 2 ¾ inches, and 

a height of 2 inches. The mold was placed in the center of the flow table and 

filled with freshly-mixed mortar. The mortar was cut to a plane surface flush with 

the top of the mold by drawing the straight edge of a trowel with a sawing motion 

across the top of the mold. The table top was wiped dry and clean and any water 

around the edge of the flow mold was removed. After one minute, the mold was 
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lifted away and the table was immediately dropped a height of ½ inch 10 times in 

6 seconds. While the flow test for hydraulic cement specifies that the flow table 

be dropped 25 times in 15 seconds, ASTM 593 Standard Specification for Fly 

Ash and Other Pozzolans for Use with Lime specifies, instead, 10 drops in 6 

seconds because of differences in the consistency of lime mortars and hydraulic 

cement. The flow was determined by measuring the diameter of the mortar along 

the lines drawn on the table using digital calipers. This allowed the calculation of 

the percent increase of the original diameter of the mortar. The flow test was 

performed on two samples from each formulation 

 

6.3 SETTING TIME TEST 

The purpose of the setting time test is to measure initial and final set of 

mortar specimens as an indication of pozzolanicity in the relative rapidity of set. 

ASTM C191 Standard Test Methods for Time of Setting of Hydraulic Cement by 

Vicat Needle was followed for the testing procedure. By means of a Vicat 

apparatus, the measurement of the penetration of the needle at various time 

intervals indicates the time of initial and final set, and the effects of the two brick 

dusts on set time are compared to each other and to the control. 

 This test was performed using mortar from the same batch as that used 

for lime-pozzolan strength development tests. After the completion of mixing and 

the flow test, the mortar was quickly molded into a ball with gloved hands and 
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tossed back and forth six times, maintaining the hands about 6 inches apart. The 

ball was then pressed into the larger end of the conical ring, completely filling the 

ring with mortar. The excess mortar was then removed from the bottom of the 

cone with a single movement of the palm of the hand. The filled mold was then 

placed, large end down, on a Plexiglass plate. The excess paste at the smaller 

top of the ring was removed by a single oblique stroke of a sharp-edged trowel 

held at a slight angle with the top of the ring. The top was smoothed with one or 

two light touches of the pointed end of the trowel. The specimen, sitting atop the 

plexiglass plate, was immediately placed in the 90% relative humidity chamber 

where it remained for the duration of the test with the exception of taking 

readings.  

 The time intervals for taking readings were established previously through 

preliminary tests, and each formulation had a different interval based on the 

amount of time predetermined for cure. The procedure for taking penetration 

readings was to lower the rod of the 1 mm Vicat needle until it rested on the 

surface of the mortar specimen. The set screw was tightened and the indicator 

was set to zero at the upper end of the scale. The rod was quickly released by 

releasing the set screw and the needle was allowed to settle for 30 seconds 

before the reading was taken to determine penetration. Initial set is considered to 

have occurred when the needle does not penetrate more than 25 mm into the 

mortar. The final setting is considered to have occurred when the needle does 

not visibly sink into the paste. Care was taken to ensure that no penetration test 
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was made closer than 3/8 inches from the inside of the mold and no closer than 

1/4 inch to a previous test. 

 

6.4 SET UNDER WATER TEST 

The purpose of this test is to determine ability of a mortar paste to set 

under water as an indication of pozzolanic activity, as pozzolans are known to 

impart hydraulic properties to lime mortars allowing them to set under water 

without access to carbon dioxide. To the author’s knowledge, there is no modern 

standard that exists for the test. It was developed by the French chemist Feret in 

1925 and recommended in a paper by Moran and Gillian in the 1949 ASTM 

publication Symposium on Pozzolanic Materials in Mortars and Concretes. Using 

this source, along with ASTM C191 Standard Test Methods for Time of Setting of 

Hydraulic Cement by Vicat Needle, the following procedure was developed for 

this testing program. 

 The Feret method described in Symposium on Pozzolanic Materials in 

Mortars and Concretes requires that the test be performed on a paste of 4:1 

pozzolan: hydrated lime “gauged with sufficient water and mixed by hand to 

produce a paste of normal consistency.” The 4:1 ratio is by weight rather than 

volume. The correct proportions of dry ingredients were weighed and combined 

in a bucket. The lime and brick dust were simply mixed by hand in a bucket with 

a trowel using enough water to form a paste consistency, recording the amount 
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of water used and ensuring comparable consistencies amongst the different 

formulations visually. The paste was then placed in a cylindrical glass jar and 

compacted by hand to ensure that there were no air bubbles and that the surface 

was relatively flat. The paste was then covered with 100 mL of limewater 

followed by a film of mineral oil to prevent the ingress of carbon dioxide or 

evaporation. Lime water was created by covering hydrated lime with about three 

inches of deionized water and allowing it to sit for one month. Glass jars were 

sealed with their plastic lids and the samples were stored in the laboratory at 

room temperature.  

 Following mixing and molding, ASTM 191 Standard Test Method for Time 

of Setting of Hydraulic Cement by Vicat Needle was followed for performing the 

Vicat set time test. Samples were left in the lab with the lid of the jar sealed 

except during readings. The penetration of the 1 millimeter needle was 

determined every 24 hours until initial and final set was reached. According to 

Feret, the degree of activity of a pozzolan can be generally assessed based on 

the following: Active pozzolans show initial set in less than 50 hours and final set 

in less than 100. Poor or intermediate materials range from these values to no 

set. Inactive materials will not set. This test was performed on 3 samples for each 

additive. 

 

6.5 LIME COMBINATION TEST 



 93   
 

 The purpose of the lime combination test is to determine if a material 

possesses pozzolanic potential and to measure its relative activity through a 

simple chemical field test. If a material is pozzolanic, it will form hydrated calcium 

alumino-silicates when mixed with lime and water. These C-S-H compounds are 

the reaction products that are responsible for the hydraulic properties of 

pozzolanic mortars. The formation of these compounds will result in an increase 

in solid matter that can be visually observed and approximately measured in a 

test tube or another container. Another indication of the formation of hydrated 

calcium alumino-silicates will be the slowed rate of settlement of solid matter. To 

the author’s knowledge, there is no modern standard that exists for this test. It 

appears in A. D. Cowper’s Lime and Lime Mortars in 1927. He refers to the test 

as a “Practical Test for Pozzolanic Properties.”98  

 Hydrated lime, brick dust, and distilled water were added to a 50 mL 

graduated cylinder in the following proportions: 0.5 g brick dust, 0.3 g hydrated 

lime, and 20 mL distilled water. The graduated cylinders were stoppered with 

rubber stoppers then sealed further with the application of parafilm, a paraffin 

film, and wrapped with electrical tape around the mouth of the graduated 

cylinder. Specimens were stored in the laboratory in room temperature. After 12 

hours, each graduated cylinder was shaken vigorously for 10 seconds. At the 

time of shaking, the volume of solid matter was noted and recorded every 2 and 

                                                           
98 A.D. Cowper, Lime and Lime Mortars, Shaftsbury, UK: Donhead Publishing Co., 1927, pp. 48-
49. 
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4 minutes by observing the level of solid particles in the cylinder as they settled. 

This procedure was repeated every 12 hours for seven days. Five tests were 

performed for each brick dust.  Five tests were also performed using marble dust 

as a control. 

 

6.6 LIME-POZZOLAN STRENGTH DEVELOPMENT 

 The purpose of the lime-pozzolan strength development test was to 

measure the strength enhancement imparted to a lime mortar by the addition of 

crushed brick, as compared to a control specimen. The test used a combination 

of two ASTM standards. Section 9 (Lime-Pozzolan Strength Development) of 

ASTM 593 Standard Specification for Fly Ash and Other Pozzolans for Use with 

Lime establishes the  procedure of using compressive strength testing to assess 

pozzolans and gives a minimum compressive strength of 600 psi at 28 days for  

pozzolans. This number, however, should not be used as a lower limit for 

pozzolanicity. ASTM 593 is a specification for uniformity in construction materials 

and may not be appropriate for conservation mortars which may not require such 

great strength. Therefore, any lime mortar that does not reach 600 psi at 28 days 

with the addition of brick dust should not be classified as non-pozzolanic. ASTM 

593 includes compressive strength testing as one of six test methods for 

assessing pozzolans. It specifies adherence to another standard, ASTM 109 

Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, 

for mixing, molding, and testing mortar formulations in compression.  
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 After the mixing of specimens in accordance with ASTM 305 Standard 

Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of 

Plastic Consistency and measuring the flow using a flow table, the samples were 

molded into two inch wooden cube molds.  Following molding, samples were 

placed in a moist cabinet for curing at around 90% relative humidity. They were 

removed from their molds after seven days then returned to the moist cabinet 

until the time of the compressive strength test at 30 days. In preparation for the 

test, each specimen was brushed and wiped clean to remove any loose sand 

grains or incrustations from the faces. The faces were checked for levelness  and 

the surface area of the testing face was calculated by measuring with digital 

calipers.  

 While the standard on which this test was based (ASTM 593 Standard 

Specification for Fly Ash and Other Pozzolans for Use with Lime) requires testing 

of compressive strength at exactly 28 days to establish compressive strength of 

lime-pozzolan mortars, these samples were tested at 30 days instead for 

convenience. This small variation of time was inconsequential because all 

samples were tested after exactly 30 days of cure. Samples were tested in 

compression at the Laboratory for Research on the Structure of Matter at the 

University of Pennsylvania using an Instron Model 4206 static testing machine 

with the assistance of Dr. Alex Radin. The mortar cubes were placed with only 

true plane surfaces in contact with the bearing blocks of the machine, as 

specified by ASTM 109 Standard Test Method for Compressive Strength of 
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Hydraulic Cement Mortars. Constant force was applied from above until the 

mortar cube reached its point of failure due to stresses. The amount of force and 

displacement over time were recorded, as well as the point at which the mortar 

sample failed. This data was used to calculate compressive strength.  

 

 

 

 

 

 

 

 

 

 

 

 



Figure 6.1: Setting time test samples in (uncovered) humidity 
chamber (Rogers)
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Figure 6.2: Setting time measurement using Vicat apparatus
 (Rogers)
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Figure 6.3: Handmixing lime and Williamsburg brick dust for underwater set test 
(Rogers)

Figure 6.4: Formulation A pastes molded into glass jars before submerging in
 water for underwater set test (Rogers)
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Figure 6.5: Underwater set test, Formulation A (Rogers)
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Figure 6.6: 50 mL graduated cylinders for Lime Combination Test (Rogers)

Figure 6.7: Preparation for Lime Combination Test (Rogers)
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Figure 6.8: Mixing of lime and brick dust for Lime 
Combination Test (Rogers)
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Figure 6.9: 

Figure 6.10:Lime Combination Test samples (Rogers)
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Figure 6.11: Compressive strength sample mold (Rogers)

Figure 6.12: Compressive strength test samples (Rogers)

104
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CHAPTER 7 TEST RESULTS 
 

7.1 INTRODUCTION 

All tests prescribed in the Testing Program chapter were performed in the 

Architectural Conservation Laboratory and the Laboratory for Research on the 

Structure of Matter at University of Pennsylvania during the months of March and 

April, 2011. The tests results are generally described below and corresponding 

appendices provide complete data resulting from the tests. The analysis of the 

efficacy of the tests the implications for field testing will be discussed in the 

following chapter. 

 

7.2 DETERMINATION OF FLOW 

The flow test was performed on each mortar formulation to be used for the 

lime-pozzolan strength development and setting time tests for the purpose of 

ensuring a similar consistency among the different formulations dependent upon 

the water requirement. It should be classified separately from those tests 

performed for pozzolanicity evaluation, as it is only used in this testing program 

as a measure of consistency among batches.  ASTM C1437 Standard Test 

Method for Flow of Hydraulic Cement Mortar was followed as guide for 

determining flow with the flow table method. Flow is the increase in the average 

base diameter of a mortar mass expressed as a percentage of the original base 

diameter. It is calculated from the following equation: 
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F= A-B / B x 100 

where: 

F= percent flow 

A= average of four readings in millimeters,  

B= original inside base diameter in millimeters 

 

The results of flow tests are presented in Table 7.1 and complete data is 

recorded in Appendix E. ASTM C1437 Standard Test Method for Flow of 

Hydraulic Cement Mortar specifies a standard deviation of 4 and a difference of 

no more than 11% flow between two tests for each batch performed by a single 

operator in a single laboratory. The flow measurements do meet those 

requirements for precision. 

 

Table 7.1 Flow Test Results 

Formulation 

Average 
Base 

Diameter 
(mm)  % Flow 

Average % 
Flow 

A1 112.5 10.7 
10.7 A2 112.3 10.6 

B1 108.2 6.5 
5.7 B2 106.5 4.9 

C1 107.2 5.6 
5.6 C2 107.2 5.5 
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7.3 SETTING TIME 

The setting time of mortar specimens was determined according to ASTM 

C191 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat 

Needle in order to examine the effects of brick dust on rate of curing and assess 

the test’s ability to predict pozzolanicity. Both initial and final set were recorded. 

Formulation B, containing the Belden brick dust, set the fastest reaching final set 

at 22 hours. Formulation A, containing the Williamsburg brick dust, followed 

reaching final set at 52 hours. Formulation C, the control, was the slowest to set 

requiring nearly 4 days (90 hours) to reach final set. Complete data from setting 

time tests can be found in Appendix F. Table 7.2 and Graph 7.1 display average 

results from setting time tests. 

 

Table 7.2 Setting Time Test Results 
 

 

 

 

 

Formulation 

Average 
Initial Set 
(hours) 

Average 
Final Set 
(hours) 

A 33.5 52 

B 7 22 

C 33 90 
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Graph 7.1 Setting Time Test Results 

 

Sample Key 

Formulation A 

 

Williamsburg Brick Dust 

Formulation B Belden Brick Dust 

Formulation C Marble Dust Control 

Samples for this test contain 1:3:1 lime: sand: additive 

 

7.4 SET UNDER WATER TEST 

The ability of lime and brick dust pastes to set under water was tested in 

order to measure pozzolanicity based on the property of lime-pozzolan 

composites to set in water without access to carbon dioxide. The paste 

formulations were created according to a method proposed by Feret99 and setting 

                                                           
99 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, p. 116. 



 109   
 

time was measured using ASTM C191 Standard Test Methods for Time of 

Setting of Hydraulic Cement by Vicat Needle. The test demonstrated that both 

Brick Dust A and Brick dust B had the property of setting underwater. The 

control, however, showed no set at all, even after one week at which point the 

test was discontinued. Brick Dust B set the most rapidly, as it did in the setting 

time test. However, Brick Dust A began to set before Brick Dust B, and reached 

initial set several hours before Brick Dust B. Brick Dust A had a very rapid setting 

period between 48 and 60 hours, after which its rate of setting slowed. Brick Dust 

A and Brick Dust B set within only two hours of each other, reaching final set at 

76 and 74 hours, respectively. According to Feret, both are within the range of 

active pozzolans, which show initial set in less than 50 hours and final set in less 

than 100 hours. Complete data from underwater set tests can be found in 

Appendix G. Table 7.3 and Graph 7.2 display average results from underwater 

set tests. 

 
Table 7.3 Underwater Set Test Results 

 

Formulation 

Average 
Initial Set 
(hours) 

Average 
Final Set 
(hours) 

A 47 76 

B 52 74 

C No set No set 
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Graph 7.2 Underwater Set Results 

 

 

Graph 7.3 Set Time in Air vs. Underwater Set Time 
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Sample Key 

Formulation A 

 

Williamsburg Brick Dust 

Formulation B Belden Brick Dust 

Formulation C Marble Dust Control 

Samples for this test contain 1:4 lime: additive 

 

7.5 LIME COMBINATION TEST 

The lime combination test measures the ability of a pozzolan to combine 

with lime to form calcium silicate hydrates. Data is obtained through visual 

observation of the volume of solid mass in a solution of lime and pozzolan. This 

is meant to be a simple field test that measures pozzolanicity on a comparative 

basis. Although the results were not very quantifiable, comparisons were made 

through measurements that can be found in Appendix H.  

This test resulted in the reaction described by A.D. Cowper in his 1927 

treatise on lime mortars. The formation of calcium silicate hydrates led to an 

increase in solid matter in the test tube that appeared as a flocculent substance 

of a consistency very different from the control sample. Over the course of seven 

days, the volume of solid material increased as the rate of settling after shaking 

slowed. The results were recorded by noting the height of solid matter based on 

1 mL graduations on a 50 mL graduated cylinder as the suspension settled post- 

agitation. 
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The reaction was immediately noticeable in Brick Dust B (Belden) after the 

initial agitation. At the end of the 7-day testing period, the solid matter observed 

in this solution was nearly 5 times greater (80%) than it been at the initiation of 

the test. Brick Dust A (Williamsburg) had much less dramatic results. While an 

increase in solid matter was observed, it was slower and was not observed 

significantly until several days after the initiation of the test. The solid matter of 

Brick Dust A increased by 43 percent at the end of the 7 day testing period. The 

control sample experienced none of the changes observed in the pozzolan 

samples. At the end of the 7 day testing period, the amount of solid material was 

the same as it was at the beginning, and the consistency remained the same 

throughout (the material was not flocculent in appearance.) Upon shaking, the 

control samples formed a homogenous, milky solution that settled slowly 

preventing the reading of the level of solid matter at 2 minutes.   

 

Table 7.4 Increase in Solid Volume due to Lime Combination 

Formulation 
 
 

Average 
Vol. Day 
1 (mL) 

Average 
Final 
Vol. 
(mL) 

Increase 
(%) 

A 2.0 3.5 42.9 
B 1.8 8.9 79.8 
C 1.0 1.0 0.0 
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Graph 7.4 Increase in Solid Volume due to Lime Combination 

 

Sample Key 

Formulation A 

 

Williamsburg Brick Dust 

Formulation B Belden Brick Dust 

Formulation C Marble Dust Control 

*Samples for this test contain 1: 0.6 additive to lime. 

 

 

7.6 LIME-POZZOLAN STRENGTH DEVELOPMENT  

The lime-pozzolan strength development test measures compressive 

strength enhancement imparted to a mortar mix through the addition of a 

pozzolan. The equation for compressive strength is  
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fm = P/A 

where: 

fm = compressive strength in psi 

P = total maximum load in lbs 

A= area of loaded surface in in2 

Formulation B, the mortar containing Belden brick dust, had significantly 

higher compressive strength than Formulations A or C. Formulation A, the 

Williamsburg brick dust, performed slightly better than the non-pozzolanic 

control. The strength of Formulation B was 523.8% higher than the non-

pozzolanic control and the strength of Formulation A was 75% higher than the 

control. Table 7.4 provides the compressive strength, calculated as an average 

of the 5 samples. 
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Table 7.5 Compressive Strength 

 

 

 

 

 

 

 

 

Formulation 
Compressive 

Strength 
(psi) 

Average 
Compressive 

Strength 
(psi) 

A 

223.57 

197.56 181.27 
243.10 
155.05 
184.79 

B 

-- 
756.72 

 

497.30 
817.22 
827.99 
894.38 

C 

63.15 
112.92 

 

117.64 
132.54 
111.72 
139.56 
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Graph 7.5 Compressive Strength 

 

 

Sample Key 

Formulation A 

 

Williamsburg Brick Dust 

Formulation B Belden Brick Dust 

Formulation C Marble Dust Control 

Samples for this test contain 1:3:1 lime: sand: additive 

 

It should be noted that an oversight in testing procedure led to incomplete 

data in the results of Formulation B. The unexpectedly high strength displayed by 

Formulation B was not accounted for in the initial load range for which the data 

collector function was preset. It was set at a 2,000 pound limit, as was sufficient 

for Formulation A, and this limit was surpassed by sample B1 and the point of 
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failure was not recorded. As a result, sample B1 was omitted from the calculation 

of the average compressive strength. Because of the vastly different strengths of 

the three formulations, ranging from 112 psi to over 700 psi, the load parameters 

had to be changed for each formulation. Complete compressive strength data 

and graphs can be found in Appendix I. 

 

 

 



Figure 7.1: Sample A1, day 1, before agitating (Rogers)

Figure 7.2: Sample A1, day 1, after agitating (Rogers)
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Figure 7.3: Sample B1, day 1, before agitating (Rogers)

Figure 7.4: Sample B1, day 1, after agitating Rogers)
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Figure 7.5: Sample C1, day 1, before agitating (Rogers)

Figure 7.6: Sample C1, day 1, after agitating (Rogers)
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Figure 7.7 Sample A3, day 7, before agitating (Rogers)

Figure 7.8: Sample A3, day 7, after agitating (Rogers)
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Figure 7.9: Sample B1, day 7, before agitating (Rogers)

Figure 7.10: Sample B1, day 7, after agitating (Rogers)
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Figure 7.11: Sample C1, day 7, before agitating (Rogers)

Figure 7.12: Sample C1, day 7, after agitating (Rogers)
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Figure 7.13: Compressive Strength Test using Instron Model 4206 
at LRSM  (Rogers)
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Figure 7.14: Compressive Strength Test, Formulation A mortar cube before 
crushing (Rogers)

Figure 7.15: Compressive Strength Test, Formulation A mortar cube after 
crushing (Rogers)
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Figure 7.16: Compressive Strength Test, Formulation B mortar cube before 
crushing (Rogers)

Figure 7.17: Compressive Strength Test, Formulation B mortar cube after
 crushing (Rogers)
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Figure 7.18: Compressive Strength Test, Formulation C mortar cube after 
crushing (Rogers)

Figure 7.19: Compressive Strength Test, Formulation C mortar cube after 
crushing (Rogers)

127
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CHAPTER 8 DISCUSSION OF RESULTS 
 

8.1 INTRODUCTION 

 The pozzolanicity tests performed for this testing program provided 

different types of data pertaining to the effect of two different brick dusts on the 

properties of lime mortars. These results were interpreted to determine 

pozzolanicity. The test results will be discussed below, and conclusions about the 

efficacy of the tests will be drawn. 

 

8.2 SETTING TIME TEST 

The setting time test proved to be an effective method of evaluating 

pozzolanicity. The test measured pozzolanicity indirectly by examining the effects 

of brick dust on the amount of time it takes for a given formulation to achieve set. 

Pozzolans decrease set time in lime-based mortars because the reactive silica 

and alumina in the pozzolan fix calcium hydroxide in the formation of 

cementitious calcium silicate hydrates. The setting and curing action in 

pozzolanic mortars is accomplished through a combination of carbonation from 

carbon dioxide in the air and the formation of calcium silicate hydrates. These 

two reactions in concurrence will cause the mortar to set much faster than a 

mortar that sets through the single process of carbonation. This is consistent with 

the results of this test, as Formulation A, made with Williamsburg brick dust, set 
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42% faster than the non-pozzolanic control and Formulation B, made with Belden 

brick dust, set 76% faster than the control and twice as fast as Formulation A.  

In addition to indicating positive pozzolanicity as compared to a non-

pozzolanic control, this test also has the ability to measure relative degrees of 

pozzolanicity through the comparison of the results of different formulations of 

pozzolanic mortars. The difference between the setting times of Formulation A 

and Formulation B would suggest that Formulation A is less pozzolanic than 

Formulation B, meaning that it formed less calcium silicate hydrate resulting in a 

slower set. Without more in-depth material analysis of the samples, it cannot be 

confirmed that this decreased setting time directly correlates to the quantity of 

calcium silicate hydrate formed, but it is a reasonable assumption given that the 

only variable in the experiment was the brick dust itself. This difference between 

samples is valuable because it indicates a certain degree of precision with the 

test in differentiating between two brick sources and determining relative degrees 

of pozzolanicity  

It should be noted that the curing conditions had a major influence on the 

results of this test. The samples were cured in a humidity chamber at 90% 

relative humidity, as per ASTM 191 Standard Test Methods for Time of Setting of 

Hydraulic Cement by Vicat Needle, in order to eliminate variables of air 

temperature and humidity. When mortars are used in the field, humidity and 

temperature during curing would be very different, and would fluctuate over the 

course of curing time. 
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 A preliminary set time test was performed on the same mortar 

formulations in open air, at room temperature and relative humidity around 35-

40%. The results of these tests are not reported because they were not 

performed to laboratory standards, but it can be stated that both brick dust 

mortars cured up to twice as fast as they did in the high humidity chamber. The 

results, however, were consistent with the results of the controlled cure in terms 

of the relative speeds at which the two mortars set, as compared to a control and 

to each other. Therefore, this test could reasonably be performed without 

controlling temperature and humidity, and would also be much faster, as high 

humidity slows curing time especially in non-pozzolanic control mortars. 

 

8.3 SET UNDER WATER TEST 

. The set under water set test is an effective method for determining 

pozzolanicity in the respect that, if performed correctly, it cannot possibly give a 

false positive. The test measures pozzolanicity indirectly by examining a property 

that brick dust is known to impart to mortar: hydraulicity, or the ability to set under 

water.  A pure lime mortar with no pozzolanic additives will not, under any 

circumstances, set when submerged in water. A pure lime mortar that does 

contain a sufficient amount of pozzolanic additives will, theoretically, eventually 

set under water. As a caveat, using a pure lime is very important in this test 

because lime that has hydraulic properties will cause under water set and could 

potentially give a false positive for a non-pozzolanic material. The amount of time 
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required for the set to occur should provide some indication of the relative degree 

of pozzolanicity as a result of the amount of calcium silicate hydrate formed. 

According to Feret’s classification, pozzolans can be broadly categorized based 

on the amount of time they require to set under water.100  

 

Table 8.1 Pozzolanicity Classification of Sample Mortars Based on Feret’s 
System for Set Time Under Water 

 Active (final set in  
< 100 hours) 

Poor (final set in 
>100 hours) 

Inactive (no set) 

Formulation A 76 hours   
Formulation B 74 hours   
Formulation C   No set 
 

Sample Key 

Formulation A 

 

Williamsburg Brick Dust 

Formulation B Belden Brick Dust 

Formulation C Marble Dust Control 

Samples for this test contain 1:4 lime: additive 

 

The results of the test clearly confirm that the Williamsburg and Belden brick 

dusts are both active pozzolans because they set under water within 100 hours.  

An unexpected outcome of this test, however, was the relationship 

between set time in air and set time under water. Because Formulation B set 

                                                           
100 W. T. Moran and J. L. Gilliand, Summary of Methods for Determining Pozzolanic Activity, 
Symposium on Use of Pozzolanic Materials in Mortars and Concretes, ASTM Special Technical 
Publication No. 99, 1950, p. 116. 
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58% faster than Formulation A in humid air curing, it was hypothesized that 

Formulation B was more pozzolanic and would set significantly faster under 

water as well. However, Formulation B only set two hours faster under water than 

Formulation A (as opposed to 30 hours in air), and actually reached initial set 5 

hours after Formulation A.  

The narrow variation in final setting time between the two pozzolanic 

formulations suggests that this test is accurate but not particularly sensitive. In 

other words, it is accurate in providing a positive/negative indication of 

pozzolanicity but not precise in detecting the differences between the brick dust 

formulations that would make it capable of comparing pozzolanicity of different 

materials. However, for a simple determination of whether a material is 

pozzolanic, this test may be sufficient. The degree of sensitivity required for field 

testing is dependent upon the specifics of the project. This test may be 

suggested as a preliminary method of “weeding out” sources of brick dust that 

are clearly feeble inert. Then, should the project require more precise 

characterization of the material, other tests could be performed on brick dusts 

that passed the set under water test to determine its effects on other properties 

and its relative degree of pozzolanicity.  

 

8.4 LIME COMBINATION TEST 

 The lime combination test was successful in identifying pozzolanic brick 

dust by visual observation of the formation of calcium silicate hydrate reaction 
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products through a simple chemical method. As Cowper suggested, this test was 

intended to serve as a quick field test. It did not result any kind of quantitative 

measurement that can be used to precisely establish a degree of pozzolanicity or 

compare pozzolans according to quantitative measurements as can be done with 

timed setting tests or strength tests.  It did, however, provide some degree of 

differentiation between different brick dusts that was consistent with the results of 

the other tests. Because Brick Dust A formed less solid matter, it presumably 

formed less calcium silicate hydrate and was, as a result, less pozzolanic. 

 It is particularly important to use a control in this test, as most of the 

determinations are made through visual observations. Using a non-pozzolanic 

control allows one to detect differences in material consistency, such the 

flocculent nature of the calcium silicate hydrate, and to note different rates of 

settlement between a non-pozzolanic material and a pozzolan. It is also 

important to monitor the specimens for seven days or more to allow enough time 

for the pozzolanic reaction to occur. Formation of reaction products was not 

immediately apparent in Brick Dust A, but an increase in solid matter, although 

subtle, was observed at the end of the testing period. 

 This test is different from the others because it does not relate to any 

specific property that brick dust imparts to mortar. The results are not particularly 

useful for anything other than a simple determination of whether the material will 

react. The results of this test do not necessarily offer an indication as to how a 

pozzolan will affect a mortar’s strength, setting rate, or hydraulic properties. More 

testing with a number of different pozzolanic materials would be necessary to 
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make correlations between these properties and the ability of a material to react 

with lime visually. However, for this particular test, degree of reactivity as 

indicated by formation of calcium silicate hydrates was directly proportional to 

setting time and compressive strength. 

8.5 LIME-POZZOLAN STRENGTH DEVELOPMENT  

 The most commonly used and accepted method of testing pozzolanicity is 

by measuring the strength that a pozzolan imparts to a mortar. Strength 

enhancement is derived from the cementing calcium silicate hydrates formed in 

the reaction between pozzolan and lime. More reactive pozzolans result in higher 

strength mortars. Performance-based mechanical testing is often used because it 

is practical and the results are more easily interpreted than quantitative chemical 

testing.  

Because strength is a property that is easily measured, strength testing 

yields very specific data (compressive strength = maximum load/surface area of 

test specimen) that can be compared to a non-pozzolanic control and can also 

differentiate between pozzolans to determine degrees of pozzolanicity. The 

distinction between the pozzolanic activity of Formulation A and B was made 

very clear in this test. Formulation B tested 8.3 times stronger in compression 

than Formulation A, indicating that the Belden brick dust is a significantly more 

reactive pozzolan than the Williamsburg brick dust. These results are consistent 

with the results of the other three pozzolanicity tests performed for this testing 
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program, but the compressive strength test makes the huge distinction between 

the pozzolanicity of the two materials (at 30 days of curing) very apparent.  

ASTM C 593 Standard Specification for Fly Ash and Other Pozzolans for 

Use with Lime gives a compressive strength requirement of 600 psi at 28 days 

for pozzolans to be used with lime. However, the standard also requires very 

specific curing conditions at high temperatures that were not possible for this 

testing program. Also, the strength requirement of the ASTM may not be relevant 

for conservation mortars that often do not necessarily need to reach high 

compressive strengths. If the samples were to be judged based on ASTM 593, 

Formulation B would pass at 756 psi and Formulation A would fail at 113 psi..    

 While Formulation A had a relatively low compressive strength, this does 

not necessarily indicate that it is not pozzolanic or is a poor pozzolan. In fact, 

because of the results of other tests, it is clear that Brick Dust A is pozzolanic; it 

would not set under water if it was not. The speed of the pozzolanic reaction is 

dependent upon a number of factors including the mineralogy of the pozzolan as 

well as the firing temperature. Pozzolanic reactions can be very slow to occur, 

especially for brick dusts (e.g. Williamsburg brick dust) fired at higher 

temperatures. It is likely that, if allowed to cure for a longer period before testing, 

the pozzolanic reaction would eventually result in a substantial increase in 

compressive strength. It is recommended that compressive strength testing be 

performed on the mortar cubes again in at least 90 days. 

 Overall, the lime-pozzolan strength development test was successful in 

determining and quantifying pozzolanicity. When performing this test at 30 days, 
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however, it must be remembered that this may not be a sufficient amount of time 

for a pozzolanic reaction to develop to its highest potential, and the test could 

give low compressive strength results that may not necessarily be indicative of 

reactivity. Brick dusts that do not yield extremely high compressive strength 

results after 30 days should not be labeled non-pozzolanic or eliminated unless 

high early strength development is a necessary property for a given project for 

which the brick dust is being tested. In conservation work, high compressive 

strength is not always a necessary property, and other properties such as setting 

time and ability to set without carbon dioxide may be more important.  

 

8.6 SYNTHESIS 

 The results of all tests indicated that Brick Dust B (Belden) was more 

pozzolanic based on its effects on the tested properties. The degree of sensitivity 

varied among different tests, but each test was able to confirm pozzolanicity 

either through the absence or presence of a particular reaction (i.e. set under 

water and lime combination) or comparison with a control (i.e. set time and 

compressive strength). The difference in pozzolanicity of Brick Dust A and Brick 

Dust B is probably due to the difference between the firing temperatures of the 

two bricks (Brick Dust B was fired about 130°C lower than Brick Dust A). The 

difference in pozzolanicity could also be affected by the chemical and 

mineralogical differences between the two. 
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8.7 STATISTICAL ANALYSIS 

 Statistical analysis is important in experimental programs to determine the 

reliability of data. Two forms of statistical analysis were employed in this study: 

standard deviation and the f-test. Standard deviation represents the typical 

distance from any point in a single set of data to the average of that data set. For 

the setting time test, set under water test, and lime combination test, standard 

deviation was calculated for each data reading of each formulation. Because the 

lime combination test was based on qualitative visual observation and had no 

true or variable unit data measurements, it was not subjected to statistical 

analysis.  

 The standard deviation calculations for the setting time and set under 

water tests show that the data is within a reasonable range, with no more than 10 

standard deviations for any reading. This indicates that the measurements were 

reliable and consistent with little variation from the mean. The standard deviation 

for the lime-pozzolan strength development tests showed a greater standard 

deviation. Formulation A had a standard deviation of 35.51 when tested in 

compression (measured in psi) at 30 days. Formulation B had a standard 

deviation of 182.83. Formulation C had a standard deviation of 29.98. Wide 

ranges of compressive strength measurements can be explained by 

imperfections in the test specimens themselves. Imperfect molding and the 

creation of striations or air pockets in the packing method of the molds could lead 

to vulnerable areas within the structure of the samples, causing points of failure 
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upon compressive loading. The high standard deviation of Formulation B reflects 

the early failure of Sample B2 when compared to the others; its compressive 

strength was found to be only about half of the others. Standard deviation 

calculations for each test are found in their respective appendices. 

 The F-test is another type of statistical analysis that is used to determine 

whether two different data sets have significantly different variances. The F-test 

yields a two-tailed probability that the variances of two different data sets are not 

significantly different. The value is a comparison of the variances from the two 

different data sets, and the closer the value is to 1, the less significantly different 

the variances are. This test was used to compare the data from the different 

formulations for compressive strength and set time tests. Set under water was 

not subjected to the F-test because of the absence of variation in setting time for 

Formulation B and the lack of data for Formulation C because it did not set. The 

lime combination test, again, was not subjected to statistical analysis because of 

lack of quantitative data. The following F values were calculated using data from 

these tests: 

Table 8.2 F-Test Results 

Compared 
Groups 

Compressive 
Strength 

Set 
Time 

A/B 0.01 0.86 
A/C 0.76 0.04 
B/C 0.00 0.03 

 

The low F-test values indicate that the variances of the data sets are significantly 

different. The only groups that were not significantly different were Formulation A/ 
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Formulation C in Compressive Strength and Formulation A/ Formulation B in set 

time. In compressive strength, the low values can be attributed to the low value 

due to the early failure of sample B2, explained above. In Set time, the low value 

is owing to the control sample rather than the pozzolanic samples. Because 

Formulation C was so slow to set, set time was measured every 5 hours at the 

end of the testing period rather than every 1 or 2, as Formulation A and B were. 

This led to a higher variation in final set time and a large variance compared to 

the other formulations. 
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CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS 
 

9.1 SUMMARY OF RESEARCH 

The purpose of this study was to determine if brick dust-enhanced lime 

mortars typically used in architectural conservation could be practically evaluated 

using field determinations for pozzolanicity. The testing program yielded valuable 

insights into the efficacy of existing testing methods for measuring the 

pozzolanicity of brick dust. The goal of the testing program was to evaluate the 

least complex of the existing tests reported in technical literature to determine 

their capacity to easily predict the ability of a given brick dust to produce a 

pozzolanic reaction when combined with lime. The following conclusions can be 

made regarding the efficacy of the pozzolanicity tests explored in this research: 

1. The time of setting test is an effective method of measuring pozzolanicity. 

It allows a positive/negative determination of pozzolanicity when 

compared to a non-pozzolanic control, but is also sensitive enough to 

differentiate between pozzolanic materials in order to assign relative 

degrees of pozzolanicity. It meets most of the criteria for a practical field 

test, including low cost, low complexity, low technical proficiency, little 

time, and low equipment requirement. 

2. The underwater set test is an effective method of determining 

pozzolanicity. While it allows a simple positive/negative determination with 

great accuracy, it is not sensitive enough determine differences among 
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pozzolans to rank them according to degree of pozzolanicity. It does meet 

all requirements for a practical field test including low cost, low complexity, 

low technical proficiency, little time, no controlled environment, and low 

equipment requirement. 

3. The lime combination test is an effective method of determining 

pozzolanicity quickly in the field, but it does not yield reliably quantifiable 

results and is not very conclusive for pozzolans that are not highly reactive 

and exhibit more subtle reactions. It does allow some differentiation 

between pozzolans based on level of reactivity. It meets all criteria for a 

practical field test including low cost, low complexity, low technical 

proficiency, little time, no controlled environment, and low equipment 

requirement. 

4. The lime-pozzolan strength development test is an effective method of 

determining pozzolanicity and differentiating between brick dusts based on 

strength enhancement. It may not be conclusive at only 30 days, however, 

for all varieties of brick dust, as the pozzolanic reaction is slow to occur in 

some brick dusts depending on mineralogy and firing temperature. 

Compressive strength testing meets the following criteria for a practical 

field test: low complexity and rapid results. 

Pozzolanicity of brick dust is a complex function of firing temperature, 

mineralogy, chemical composition, and particle size. Particle size is easily 

determined and controlled, but firing temperature and mineralogy of recycled 
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bricks is difficult, if not impossible, to determine. The pozzolanicity tests 

evaluated in this research were all successful to some extent in determining the 

pozzolanicity of brick dust, especially in situations in which the clay mineralogy 

and firing temperature of the brick is unknown. Any of these tests could be 

utilized for field testing alone or in combination, but the selection of tests for 

determination of pozzolanicity will ultimately depend on the requirements of a 

particular project in terms of the necessary degree of precision and quantifiable 

results and the desired properties of the pozzolanic mortar.  

When evaluating brick dust for its suitability to act as a pozzolan in 

conservation mortars, it is critical to perform a series of salt tests to determine the 

presence of nitrates, sulfates, and chlorides that may be present in the brick. Salt 

tests should be a complement to any pozzolanicity testing program, and no brick 

dust determined to have excessive salts should be mixed into a mortar. 

Introduction of salts into a masonry system via the mortar will cause salt 

crystallization and resulting mechanical damage to masonry as well as 

efflorescence on the face of stone or brick walls. Testing for salts is a simple 

process that can be done in the field with the use of semi-quantitative 

commercial salt test strips. The strips are simply saturated with a solution of brick 

dust and deionized water and determinations of relative quantity of salts are 

made immediately by observing color change on the strip similar to pH strip 

testing.  
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9.2 RECOMMENDATIONS FOR FUTURE WORK 

Because of time constraints, this study did not explore the issue of 

pozzolanicity testing of brick dust to its fullest extent. There are still many 

opportunities for further investigation that could be accomplished in the future. 

The recommendations for future work were divided into two categories: 

characterization and testing. 

 

9.2.1 CHARACTERIZATION 

It was the original intent of this study to provide a precise chemical 

analysis of the cured pozzolanic mortars in order to identify the type and quantity 

of reaction product resulting from pozzolanic reactions of Formulation A and 

Formulation B. This would have provided the opportunity to identify exactly what 

compounds were being formed and how they affected the properties of the 

mortars. Identifying the reaction products and their relative quantities would allow 

one to more accurately assess the pozzolanicity tests by correlating results with 

known hydraulic compounds.    

It was not possible to perform this analysis because of time constraints. It 

would be very beneficial, however, to perform material analysis of the pozzolanic 

mortars in the future after they have cured for a year or more, and to correlate 

these results with the results of the testing program. The best method for this 

determination is differential thermal analysis (DTA). DTA was briefly discussed 

as a testing method in Chapter 4 Evaluation and Testing of Pozzolans. By 
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heating the crushed composite sample at a constant known temperature, in 

comparison with an inert reference material, DTA results in a thermogram that 

displays exotherms and endotherms (peaks and valleys) that correspond to the 

phase changes in the material at different temperatures. These characteristic 

patterns provide a “fingerprint” for identifying the reaction products.101    

Another recommendation for characterization of cured pozzolanic mortars 

is through the use of optical microscopy. Through scanning electron microscopy 

or examination of thin sections, hydraulic reaction products could be visually 

identified  and their relative quantities estimated by observing microstructure and 

new crystal growth as well as the “reaction layers” noted in the work of Baronio 

and Binda.102 This type of characterization is most promising after a longer period 

of curing when the reaction products have had the opportunity to fully form. 

 

9.2.2 FUTURE TESTING  

 Another test for lime combination that was not incorporated into this study 

because of time constraints can be recommended for future study. This test 

could potentially correlate the reactions observed in this testing program with the 

brick dusts’ ability to fix lime, but in a more quantitative and standardized manner 

                                                           
101 V.S. Ramachandran, Ralph M. Paroli, James J. Beaudoin, and Ana H. Delgado, Handbook of 
Thermal Analysis of Construction Materials, Norwich, NY: Noyes Publications, 2002, pp. 323-327. 
102 G. Binda, L. Baronio, and N. Lombardini, The Role of Brick Pebbles and Dust in 
Conglomerates Based on Hydrated Lime and Crushed Brick, Seventh North American Masonry 
Conference, University of Notre Dame, Indiana, 1996. 
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than the lime combination test that was selected for this testing program. A 

standardized method for assessing lime combination is the Chapelle method 

described in Chapter 4 Evaluation and Testing of Pozzolans. The test procedure 

involves placing the pozzolan in a saturated solution of calcium hydroxide 

(limewater) and then measuring the decrease in saturation of the solution 

through titration. A highly unsaturated solution at the end of the testing period 

indicates that calcium hydroxide has been fixed by pozzolan. Rather than 

measuring saturation of the solution through complicated titration procedures, it 

is recommended that commercial calcium test strips be used to measure the 

amount of calcium in the solution. Instructions provided with commercial calcium 

test strips should be followed for measuring calcium content, and the limewater 

solution may need to be diluted prior to testing depending on the parameters of 

the test strips. Assuming that the test strips have adequate sensitivity to 

distinguish between different saturation levels of the two brick dust solutions, this 

test could help explain the differences in the pozzolanicities of the two brick dusts 

found in this testing program based on their ability to combine with lime. 

An extension of this study could also include further testing of cured 

pozzolanic mortars to determine long-term effects of the brick dusts on the 

properties of lime mortars and correlate them to the results obtained in the 

pozzolanicity tests. This would be very pertinent to the research, as it is known 

that the pozzolanic reaction can sometimes be slow to develop. This would have 

the most significant implications for strength development, as the ultimate 

strength obtained by a pozzolanic mortar is undoubtedly higher than it is at 30 
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days. Furthermore, it has been suggested that bricks fired at the higher 

temperature range for pozzolanicity (around 950° C) can develop higher 

strengths over time although their initial strength may not be as high.103 If 

strength testing could be repeated at a later date, it may indicate that Formulation 

A would develop higher strength after a longer curing period, as the Williamsburg 

brick is known to have been fired around 950° C. It is recommended that another 

phase of compressive strength testing be performed in no less than 180 days 

and, preferably, samples be allowed to continue curing in humid conditions, as 

the pozzolanic reaction is known to develop to its greatest potential when allowed 

a long, humid cure.104  

For a more comprehensive evaluation of the tests selected for this testing 

program, more variables could be introduced in a second phase of testing. 

Formulations with different variables could allow a more definite determination of 

the tests’ degrees of sensitivity. For example, performing the pozzolanicity tests 

on samples with varying amounts of brick dust in the mix could determine 

whether a given test is adequate in detecting the differences in proportions, as 

the Smeaton project demonstrated that higher proportions of brick dust create 

                                                           
103 D.B Hughes and D.C. Sugden, “The Use of Brick Dust as a Pozzolanic Additive to Hydraulic 
Lime Mortars,” Historic Mortars: Characterization and Tests, Proceedings of the International 
RILEM Workshop, 2000, pp. 351-367. 
104 A. Elena Charola, Paulina Faria Rodrigues, Andrew R.McGhie and Fernando M.A.Henriques, 
Pozzolanic Components in Lime Mortars: Correlating Behaviour, Composition and Microstructure, 
6th International Symposium on the Conservation of Monuments in the Mediterranean Basin, 
Lisbon, 2004. 
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more pronounced effects in the properties of mortars.105 If more phases of this 

study are to be undertaken, tests should employ both a non-pozzolanic control 

and a highly pozzolanic control, such as pure metakaolin produced specifically 

for construction purposes. This could establish an upper limit for pozzolanicity in 

terms of reactivity and effect on strength and setting time for comparison and 

would allow more sound judgments on the efficacy of the tests.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
105 Jeanne Marie Teutonico, Iain McCaig, Colin Burns, John Ashurst, “The Smeaton Project: 
Factors Affecting the Properties of Lime-based Mortars,” APT Bulletin, Vol. 25, No. 3/4. (1993), 
pp. 32-49. 
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APPENDIX B: PARTICLE SIZE DISTRIBUTION OF CAVA BUILDING SUPPLY 
BAR SAND 
 
 
 

Sieve 
Number 

Screen 
Size 
(μm) 

Mass of 
Container 
(g) 

Mass of 
sample + 
container 
(g)  

Mass 
retained 
(g) 

Percent 
mass 
retained 

Percent 
on or 
above 

Percent 
passing 

8 2360 2.60 2.80 0.20 0.20 0.20 99.80 
16 1180 2.76 4.50 1.74 1.74 1.94 98.06 
30 600 2.70 12.48 9.78 9.78 11.72 88.28 
50 300 2.76 56.96 54.20 54.18 65.89 34.11 

100 150 2.66 34.04 31.38 31.37 97.26 2.74 
200 75 2.79 4.61 1.82 1.82 99.08 0.92 
Pan 0 2.76 2.78 0.02 0.02 99.10 0.90 
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APPENDIX D: PROPORTIONS AND QUANTITIES OF COMPONENTS FOR 
FLOW, SETTING TIME, AND COMPRESSIVE STRENGTH SAMPLES 
 
 
 

PROPORTIONS BY VOLUME  

 
 
 

 
MEASURED QUANTITIES OF COMPONENTS 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Formulation Hydrated 
High 

Calcium  
Lime 

Bar 
Sand 

Williamsburg 
brick dust 

Belden brick 
dust 

Marble dust 

A 1 3 1 -- -- 
B 1 3 -- 1 -- 
C 1 3 -- -- 1 

Formulation High 
Calcium  
Lime (g) 

Bar 
Sand 

(g) 

Williamsburg 
brick dust 

(g) 

Belden 
brick 

dust (g) 

Marble 
dust (g) 

Water 
(mL) 

A 749.95 7149.37 1234.17 -- -- 1750 
B 751.56 7150.56 -- 1152.23 -- 1550 
C 751.63 7150.56 -- -- 1152.08 1360 
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APPENDIX E: FLOW TEST DATA 
 
 
 

FLOW MEASUREMENTS 
 
Sample L1 (mm) L2 (mm) L3 (mm) L4 (mm) % flow average 

A1 108.38 112.83 114.45 114.26 10.7% 10.65% 
A2 110.51 113.77 113.63 111.38 10.6% 
B1 109.0 107.62 108.49 107.64 6.48% 5.67% 
B2 105.20 106.51 106.67 107.74 4.85% 
C1 106.14 107.47 107.79 107.55 5.55% 5.52% 
C2 106.02 107.72 107.45 107.51 5.49% 
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APPENDIX F: SETTING TIME DATA 
 
 
 

PENETRATION MEASUREMENTS OF FORMULATION A (WILLIAMSBURG 
BRICK DUST) 

 

Time 
(hr) 

A1 
(mm) 

A2 
(mm) 

A3 
(mm) 

Average 
(mm) 

Standard 
Deviation 
(mm) 

10 39 39 39 39.00 0.00 
20 39 39 39 39.00 0.00 
30 39 39 39 39.00 0.00 
32 35 14 39 29.33 10.96 
34 12 30 30 24.00 8.49 
36 12 25 29 22.00 7.26 
38 16 12 12 13.33 1.89 
40 15 8 8 10.33 3.30 
42 8 5 10 7.67 2.05 
44 10 4 3 5.67 3.09 
46 1 4 2 2.33 1.25 
48 1 5 1 2.33 1.89 
50 0 2 0 0.67 0.94 
52 0 0 0 0.00 0.00 

 
 
 

SETTING TIME OF FORMULATION A (WILLIAMSBURG BRICK DUST) 
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APPENDIX F: SETTING TIME DATA 
 
 
 

PENETRATION MEASUREMENTS OF FORMULATION B (BELDEN BRICK 
DUST) 

 

Time  
(hr) 

B1 
(mm) 

B2 
(mm) 

B3 
(mm) 

Average 
(mm) 

Standard 
Deviation 
(mm) 

6 38 22 29 29.67 8.02 
9 8 17 25 16.67 8.50 

11 11 17 16 14.67 3.21 
13 11 7 11 9.67 2.31 
15 2 6 6 4.67 2.31 
17 3 3 9 5.00 3.46 
18 1 3 5 3.00 2.00 
19 5 3 4 4.00 1.00 
20 1 2 4 2.33 1.53 
21 0 1 0 0.33 0.58 
22 0 0 0 0.00 0.00 

 
 
 

SETTING TIME OF FORMULATION B (BELDEN BRICK DUST) 
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APPENDIX F: SETTING TIME DATA 
 
 

PENETRATION MEASUREMENTS OF FORMULATION C (MARBLE DUST) 
 

Time (hr) 
C1 
(mm) 

C2 
(mm) 

C3 
(mm) 

Average 
(mm) 

Standard 
Deviation 
(mm) 

10 39 39 39 39.00 0.00 
20 39 39 39 39.00 0.00 
30 38 27 35 33.33 5.69 
35 27 21 20 22.67 3.79 
40 13 7 10 10.00 3.00 
45 8 14 7 9.67 3.79 
50 2 18 8 9.33 8.08 
55 4 11 1 5.33 5.13 
60 3 3 3 3.00 0.00 
65 3 7 19 9.67 8.33 
70 2 9 1 4.00 4.36 
75 0 2 2 1.33 1.15 
80 0 0 2 0.67 1.15 
85 0 0 1 0.33 0.58 
90 0 0 0 0.00 0.00 
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APPENDIX F: SETTING TIME DATA 
 

 
 

SETTING TIME OF FORMULATION C (MARBLE DUST) 
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APPENDIX G: SET UNDER WATER DATA 
 
 
 

UNDERWATER PENETRATION MEASUREMENTS OF FORMULATION A 
(WILLIAMSBURG BRICK DUST) 

 

Time 
(hr) 

A1 
(mm) 

A2 
(mm) 

A3 
(mm) 

Average 
(mm) 

Standard 
Deviation 
(mm) 

24 45 45 45 45.00 0.00 
36 31 34 35 33.33 2.08 
48 20 23 27 23.33 3.51 
60 3 5 3 3.67 1.15 
66 3 2 0 1.67 1.53 
70 2 2 0 1.33 1.15 
74 0 1 0 0.33 0.58 
76 0 0 0 0.00 0.00 

 
 
 

UNDERWATER SETTING TIME OF FORMULATION A (WILLIAMSBURG 
BRICK DUST) 
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APPENDIX G: SET UNDER WATER DATA 
 
 
 

UNDERWATER PENETRATION MEASUREMENTS OF FORMULATION B 
(BELDEN BRICK DUST) 

 

Time 
(hr) 

B1 
(mm) 

B2 
(mm) 

B3 
(mm) 

Average 
(mm) 

Standard 
Deviation 
(mm) 

24 45 45 45 45.00 0.00 
36 36 41 38 38.33 2.52 
48 26 30 30 28.67 2.31 
60 14 14 12 13.33 1.15 
66 10 10 10 10.00 0.00 
70 1 1 1 1.00 0.00 
74 0 0 0 0.00 0.00 

 
 

UNDERWATER SETTING TIME OF FORMULATION B (BELDEN BRICK DUST) 
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APPENDIX G: SET UNDER WATER DATA 
 
 
 

UNDERWATER PENETRATION MEASUREMENTS OF FORMULATION C 
(MARBLE DUST) 

 

Time 
(hr) 

C1 
(mm) 

C2 
(mm) 

C3 
(mm) 

Average 
(mm) 

Standard 
Deviation 
(mm) 

24 45 45 45 45.00 0.00 
36 45 45 45 45.00 0.00 
48 45 45 45 45.00 0.00 
60 45 45 45 45.00 0.00 
66 45 45 45 45.00 0.00 
70 45 45 45 45.00 0.00 
74 45 45 45 45.00 0.00 

100 45 45 45 45.00 0.00 
150 45 45 45 45.00 0.00 
200 45 45 45 45.00 0.00 

 
 
 

(Underwater setting time curve not included for Formulation C because there was 
no set.) 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
 
 

RESULTS OF COMPRESSION TESTING 
 

Sample 

Length 
average 
(in) 

Width 
average 
(in) 

Surface 
Area 
(in2) 

Max 
load 
(lbs) 

Comp. 
Strength 
(psi) 

Standard 
Deviation 
(psi) 

Average 
comp. 
strength 
(psi) 

A1 1.99 2.01 4.01 896.48 223.57 
  
  

35.31 
  
  

  
  

197.56 
  
  

A2 2.00 1.96 3.92 710.94 181.27 
A3 1.97 1.98 3.90 949.22 243.1 
A4 1.97 2.01 3.95 612.4 155.05 
A5 2.01 2.02 4.05 748.04 184.79 
B1 2.02 2.01 4.04 -- -- 

  
  

182.83 
  
  

  
  

756.72 
  
  

B2 2.03 2.03 4.11 2003.17 487.3 
B3 2.00 2.03 4.05 3312.99 817.22 
B4 2.01 2.00 4.02 3325.20 827.99 
B5 2.01 2.03 4.09 3654.79 894.38 
C1 2.03 2.04 4.13 260.74 63.15 

  
  

29.98 
  
  

  
  

112.92 
  
  

C2 2.03 2.01 4.08 480.47 117.64 
C3 2.03 1.99 4.04 535.16 132.54 
C4 2.03 2.04 4.14 462.89 111.72 
C5 2.03 1.98 4.01 559.57 139.56 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

Lo
ad

 (1
v=

50
0 

lb
s)

Displacement (1v= .01 in)

Sample B3, speed= .02 in/min



 
 

176 
 

APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX I: COMPRESSIVE STRENGTH DATA 
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APPENDIX J: MATERIAL DATA SHEETS

CAVA Building Supply Bar Sand
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APPENDIX J: MATERIAL DATA SHEETS

The National Brick Research Center
100 Clemson Research Blvd.

Anderson,  SC  29625
(864)656-1094

www.brickandtile.org

X-Ray Fluorescence Oxide Analysis

2/8/2006

Submitter: Belden
Date:

Major
Elements Unit MO3 Top MO3 Middle MO3 Bottom MO6 Top MO6 Middle MO6 Bottom

Al2O3 % 31.11 25.06 24.77 32.65 27.03 24.93
SiO2 % 52.71 61.72 62.35 51.01 62.16 63.48
Na2O % 0.33 <0.3 0.31 0.30 0.32 0.31
K2O % 1.51 2.03 3.45 1.65 3.31 2.65
MgO % <0.10 <0.10 0.32 <0.10 0.36 <0.10
CaO % 0.40 0.22 0.18 0.31 0.18 0.10
TiO2 % 2.15 1.51 1.38 2.08 1.35 1.38
MnO % 0.00 0.00 0.00 0.00 0.01 0

Fe2O3 % 1.70 1.47 1.55 1.51 1.65 0.94
P2O5 % 0.09 0.07 0.08 0.08 0.09 0.07

S % 0.03 0.03 0.05 0.10 0.03 0.03

Minor
Elements Unit MO3 Top MO3 Middle MO3 Bottom MO6 Top MO6 Middle MO6 Bottom

Cl ppm <50 <50 <50 <50 <50 <50
V ppm 170 102 81 122 106 60
Cr ppm 183 153 66 186 87 60
Ni ppm 130 58 39 157 47 24
Cu ppm 162 46 26 59 16 15
Zn ppm 86 49 38 32 21 16
As ppm <4 <4 <4 <4 <4 <4
Rb ppm 113 114 143 92 136 76
Sr ppm 253 216 170 115 112 141
Y ppm 170 163 153 175 141 116
Zr ppm 347 250 322 361 342 390
Ba ppm 801 545 786 456 740 464
Pb ppm <7 <7 <7 <7 <7 <7

LOI % 9.73 7.42 5.36 10.12 3.34 5.97

08-Feb-06

Improved sulfur measurement is available by LECO SC-144 DR.
Analyses performed at The National Brick Research Center using a Noran QuanX EC Energy Dispersive Spectrometer provided by a gift from Ceric USA

Bedlen Brick Oxide Analysis
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APPENDIX J: MATERIAL DATA SHEETS

Marble Dust Data (Italian, x-white)

Page 1 von 2 
Dr. Georg Kremer, Dipl.-Chemiker, Farbmühle, D-88317 Aichstetten/Allgäu, Telefon +49-7565-91120, Telefax +49-7565-1606 
kremer-pigmente@t-online.de, www.kremer-pigmente.com 

58500 – 58580    Marble dust 

58500 Marble dust, Italian, x-white, less than 32 μ  
58520 Marble dust, extra fine grind, less than 32 μ  
58540 Marble dust, medium grind, less than 90 μ  
58560 Marble dust, coarse grind, less than 200 μ  
58580 Marble dust, very coarse grind, 150 - 300 μ  

Mineral Analysis

58500 58520 58540 58560 58580 58585 

CaCO3  [%] 95.5  99.2   99.2  99.2  99.2  99.2 
MgCO3  [%] 3.0  0.4 0.4  0.4  0.4  0.4  
FeO3  [%] 0.08 0.035  0.035 0.035 0.035  0.035  
Al2O3  [%] - 0.1  0.1  0.1  0.1  0.1  
SiO2 (Silicates)  [%] - 0.25  0.25 0.25  0.25  0.25 

Volatile content at 105°C 
DIN EN ISO 787-2  [%] 

< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 

Ignition loss    DIN EN 459-2  [%] 43.6  43.8 43.8  43.8  43.8  43.8  
HCl-unsoluble  DIN 55 918  [%] 1.4  0.3 0.3  0.3 0.3  0.3  

Physical Data

58500 58520 58540 58560 58580 58585 

Bulk density   [g/cm3] 0.76 0.75 0.73 1.0 1.2  1.35 

Ramming density [g/cm3] 
   (DIN EN ISO 787-11) 

1.4 1.4 1.35  1.7  1.6  1.65  

Oil absorption  [g/100g] 
   (DIN EN ISO 787-5) 

15 16  15 12 < 10  < 5  

DOP-Value  [g/100g] 
   (nach DIN ISO 787-5) 

25 28  27  17  12  10  

Electr. conductivity (10%) [μS/cm] 
   (DIN ISO 787-14) 

62 43  40 43  46  38 

pH-Value  
   (DIN EN ISO 787-9) 

9.4 9.6 9.6 9.6 9.6 9.6 

Density  [g/cm3] 
   (DIN EN ISO 787-10) 

2.7  2.7 2.7  2.7  2.7  2.7  

Hardness accor. To Mohs 3 3 3 3 3 3 
Refraction index 1.59  1.59 1.59  1.59 1.59  1.59  
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APPENDIX J: MATERIAL DATA SHEETS

Page 2 von 2 
Dr. Georg Kremer, Dipl.-Chemiker, Farbmühle, D-88317 Aichstetten/Allgäu, Telefon +49-7565-91120, Telefax +49-7565-1606 
kremer-pigmente@t-online.de, www.kremer-pigmente.com 

Optical Properties 

58500 58520 58540 58560 

�uminosity   (C/2°. DIN 53 163) 93.5 90.5   88  83.5  

�ellow value  (DIN 6167) 3.5 7.6 10  13 

Color index CIE�AB  
(DIN 6174)                           �� 
                                              a� 
                                              b� 

97.4 
0.1 
1.8 

96.2 
0.6 
3.7  

95.2 
0.4 
5.2 

93.3 
-0.3 
7.2 

Screen Analysis (DIN 53 734)

58500 58520 58540 58560 58580 58585 

Content of particles less than 630 μm 
                                               500 μm 
                                               315 μm 
                                               180 μm 
                                                 90 μm 
                                                 40 μm 
                                                 32 μm 
                                                 

99.9 % 
99.6 % 

99.8 % 
99.6 %   

99.7 % 
97 % 

99.6 % 
88 % 
59 % 

99.5 % 
88 % 
21 % 
9 %  

99.5 % 
94 % 
69 % 
30 % 
8 % 

Particle Size Distribution (Laser-Granulometer)

58500 58520 58540 58560 58580 58585 

Content of particles less than  24 μm 
                                                16 μm 
                                                  8 μm 
                                                  4 μm 
                                                  2 μm 
                                                                    

97 % 
88 % 
66 % 
45 % 
26 % 

98 % 
91 % 
70 % 
44 % 
25 % 
  

91 % 
83 % 
64 % 
42 % 
21 % 
  

47 % 
43 % 
34 % 
22 % 
13 % 

   

Mean particle diameter 4.5 μm 4.6 μm 5.1 μm  31 μ 130 μm  260 μm 

Marble Dust Data (Italian, x-white)
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APPENDIX J: MATERIAL DATA SHEETS

High Calcium Hydrated Lime
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High Calcium Hydrated Lime
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High Calcium Hydrated Lime
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High Calcium Hydrated Lime
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High Calcium Hydrated Lime
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GLOSSARY OF TERMS 

 

Calcination: the firing of materials at high temperatures (Torraca, 2009, p. 50) 

Carbonation: process by which lime mortar reabsorbs carbon dioxide and reverts 
to calcium carbonate, leaving mortar harder, more stable, and less soluble 
(Gibbons, 2003, p.61) 

Cementitious: property of a material that sets and develops strength through a 
chemical reaction with water in which hydrates are formed in a reaction that is 
capable of occurring under water (ASTM C219, 2001, p.2) 

Cocciopesto: Italian mortars and plasters made with hydrated lime and powdered 
brick (Bugini, 1993, p. 386) 

Hydrated calcium aluminate: product of pozzolanic reaction resulting from 
reaction of amorphous alumina with lime that contributes to hydraulic set 
(Torraca, 2009, p. 55) 

Hydrated calcium silicate: product of pozzolanic reaction resulting from reaction 
of amorphous silica with lime that contributes to hydraulic set (Torraca, 2009, p. 
55) 

Hydrated Lime: type of lime in which the quicklime has been slaked with just 
enough water to form calcium hydroxide in the form of dry powder (Gibbons, 
2003, p. 62) 

Hydraulic Lime: the hydrated dry cementitious product obtained by calcining a 
limestone containing silica and alumina, or a synthetic mixture of similar 
composition, to a temperature short of incipient fusion so as to form sufficient 
free lime (CaO) to permit hydration and at the same time leaving unhydrated 
calcium silicates to give the dry powder its hydraulic properties (ASTM C219, 
2001, p. 2) 
 
Lime putty: hydrated lime which has been slaked from quicklime using sufficient 
water to form a thick liquid and subsequently settled out to a putty during storage 
(Gibbons, 2003, p. 62) 
 
Lime water: a saturated solution of calcium hydroxide in water left when lime 
putty settles out of slaked lime (Gibbons, 2003, p. 62) 
 
Pozzolan: a siliceous or alumino-siliceous material that in itself possesses little or 
no cementitious value but that in finely divided form and in the presence of 
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moisture will chemically react with alkali and alkaline earth hydroxides at ordinary 
temperatures to form or assist in forming compounds possessing cementitious 
properties (ASTM C593, 2000, p. 1) 

Pozzolana: a soil found near the Roman town of Pozzouli formed by the 
deposition of volcanic ash and containing silica and alumina that, upon rapid 
cooling, forms some crystalline silica-aluminates as well as amorphous glassy 
particles (Torraca, 2009, p.54) 

Pure Lime (high calcium lime): Lime derived from limestone with less than 5% 
magnesium carbonate (Elert, 2002, p. 62) 

Slaking: the controlled process of combining quicklime with water to form lime 
putty or hydrated lime (Gibbons, 2002, p. 63) 
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INDEX 
 

calcium aluminum hydrate, 3 

calcium silicate hydrate, 15, 32, 50, 
129, 131, 132, 133 

carbonation, 12, 13, 14, 19, 26, 36, 
42, 55, 128 

cementation index, 18 

Chapelle method, 50, 145 

clay minerals, 27 

cocciopesto, 38, 39 

common clay, 29, 43 

Cowper, 36, 50, 65, 93, 111, 133 

C-S-H, 14, 24, 25, 32, 33, 56, 93 

differential thermal analysis, 45, 56, 
143 

electric conductivity test, iv, 51 

Feret, 48, 55, 91, 92, 108, 131 

flow, 87, 88, 105, 106 

gehlenite, 25, 32, 33 

high calcium lime, 11, 68 

Horma, 5 

hydrated lime, 11, 68, 93 

hydraulic lime, 4, 6, 12, 13, 14, 15, 
16, 17, 18, 19, 20, 21, 24, 36, 44 

 

 

 

hydraulicity, 14, 16, 17, 18, 21, 46, 
47, 130 

hydraulicity index, 17 

kaolin, 25, 28, 31, 32, 43, 44 

lime combination test, iv, v, vi, 49, 
92, 111, 132 

lime cycle, 10, 11 

lime putty, 11 

lime-pozzolan strength development, 
v, vi, 94, 113, 134 

metakaolinite, 29, 32, 33 

Portland cement, 1, 2, 4, 5, 6, 7, 21, 
37, 41, 54, 58, 59 

pozzolana, 4, 5, 22, 25, 44 

pozzolanic reaction, 7, 8, 10, 22, 23, 
24, 26, 27, 29, 30, 32, 33, 39, 40, 
41, 43, 44, 57, 133, 135, 136, 140, 
141, 145 

pozzolanicity, 7, 8, 26, 41, 42, 43, 
46, 47, 48, 49, 50, 51, 53, 54, 55, 
57, 59, 60, 61, 64, 65, 66, 67, 68, 
71, 87, 89, 94, 105, 107, 108, 111, 
128, 129, 130, 132, 133, 134, 135, 
136, 140, 141, 142, 143, 145, 146 

pozzolanicity index, 51, 54 

quicklime, 11, 68 
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reaction layers, 39, 40, 57, 144 

repair mortar, 1 

setting time, 4, 26, 35, 42, 55, 60, 
65, 89, 105, 107, 109, 128, 129, 
132, 134, 136, 137, 138, 147 

Smeaton project, 3, 26, 41, 42, 43, 
76, 146 

solubility test, 48 

soluble silica, 18, 31, 33, 48, 63 

strength test, iv, 53 

Surkhi, 5 

sustainability, 1, 5, 6 

uncombined lime, iv, 56 

underwater set test, iv, 55 

Vicat, 15, 17, 18, 35, 36, 49, 54, 55, 
65, 81, 89, 90, 91, 92, 107, 109, 
129 
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