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Packet-Level Diversity - From Theory to Practice: An 802.11-based
Experimental Investigation

Abstract
Packet-level diversity, or the ability to distribute packet transmissions over multiple, diverse channels, offers a
number of benefits in improving communication performance and robustness to variations in channel quality.
There have been a number of works that have analyzed and quantified those benefits, and developed
transmission policies to realize them. However, translating those potential benefits into practice still faces
numerous challenges. These range from uncertainty regarding the adequacy of the channel models on which
the development of policies was predicated, to the many implementation constraints one faces when
attempting to realize the precise transmission schedules that these policies mandate. This work is an initial step
in assessing how much of the benefit that packet-level diversity promises actually remains once confronted
with the many practical challenges we have just alluded to. Our investigation is carried out in the context of an
802.11 testbed, where diversity is realized through the different frequency bands available for transmissions
between hosts and access points. We use our testbed to evaluate the impact of various parameters, including
transmission policies, channel characteristics, channel correlation, and various end-system constraints that
affect our ability to precisely control the timing of transmissions. Our investigation reveals that in spite of the
many gaps that exist between theory and practice, packet-level diversity still provides a simple solution to
improving transmission performance and robustness across a broad range of configurations.
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ABSTRACT
Packet-level diversity, or distributing packet transmissions
over multiple, diverse channels, offers benefits in improv-
ing communication performance and robustness to channel
variations. Previous works have analyzed and quantified
those benefits, and developed transmission policies to realize
them. However, translating those benefits into practice still
faces numerous challenges from uncertainty in the adequacy
of the channel models used to develop policies, to implemen-
tation difficulties in realizing the precise transmission sched-
ules they mandate. This work is a first step in assessing what
remains of those benefits once confronted with such practical
challenges. Our investigation is carried out over an 802.11
testbed, where diversity is realized through the different fre-
quency bands available for transmissions between hosts and
access points. We use the testbed to evaluate the impact of
transmission policies, channel characteristics, channel cor-
relation, and various end-system constraints that affect our
ability to precisely control transmissions timing. Our inves-
tigation reveals that in spite of the many gaps that exist
between theory and practice, packet-level diversity still pro-
vides a simple solution to improve transmission performance
and robustness across a broad range of configurations.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

General Terms
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1. INTRODUCTION
The recent past has seen a rise in the transmission op-

tions available to end-users1. This trend is present in both
wired, e.g., multi-homing and overlays, and wireless, e.g.,
Bluetooth, 3GPP, multiple WiFi bands, WiMax, etc., set-
tings. This diversity offers opportunities when it comes to
improving transmission performance, because in most cases
not all channels experience degradations at the same time.
As a result, it is possible to improve performance by “intel-
ligently” distributing transmissions across channels.

In Section 6, we review recent proposals that explore ap-
proaches for taking advantage of channel diversity. This
paper focuses on solutions that share two key characteris-
tics, namely, channel selection decisions are at the packet-
level and open-loop. Such solutions are attractive because of
their “portability” and relatively low overhead. Because of
their open-loop nature, they only require cursory knowledge
of channel characteristics, and their reliance on packet-level
decisions lets them operate across many different physical
layers.These advantages notwithstanding, a natural question
is how such simple policies compare to more sophisticated
schemes, e.g., closed-loop solutions that sense the different
channels in an attempt to always transmit on the best one.

Clearly, access to more (channel) information can only im-
prove performance, but it comes at the cost of added over-
head and greater dependency on the characteristics of in-
dividual physical layers (sensing mechanisms often need to
be adapted to each channel type). In addition, a number
of recent works that focused on packet-level, open-loop so-
lutions, [1,8,17,19,20], have demonstrated that they indeed
have the potential to offer meaningful performance improve-
ments. This makes them attractive candidates for provid-
ing simple solutions capable of delivering benefits across a
broad range of environments. In particular, [20] identified
numerous channel combinations, where a simple round-robin
transmission policy cycling through the available channels
afforded throughput increases ranging from 25% to 80%.

This is the starting point for this paper, which focuses
on assessing what remains of these benefits once implemen-
tation constraints and actual channel conditions are fac-
tored in. For example, when different channels are accessi-
ble through distinct Network Interface Cards (NICs), precise
control of transmission timings, something that is important
to even the simplest round-robin, open-loop transmission
policy, may not always be feasible. Understanding the im-

1In this paper, “user” and “sender” are synonymous.
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pact this may have on performance, and whether it can be
mitigated while preserving implementation simplicity is of
interest. Conversely, when all channels are accessed through
a single frequency-agile NIC, understanding the effect of the
channel switching overhead is also of importance. Further-
more, even when reasonably accurate channel models ex-
ist, significant differences between these models and actual
channel characteristics are not uncommon. For instance, as
noted by various authors, there are no “typical” character-
istics for an 802.11 channel, and error rates can fluctuate
between 0.1% and 70%, e.g., [22]. Assessing how differences
between reality and models affect the performance benefits
of diversity is another of our goals.

An exhaustive investigation of all these issues is clearly
beyond the scope of a single paper. In this paper, we con-
centrate on evaluating the benefits of diversity in an 802.11b
setting, where senders can distribute their packet transmis-
sions across multiple frequency bands. Our focus is primar-
ily on real-time applications that need a minimum guarantee
of successful message delivery, and for which retransmissions
are undesirable, e.g., because of latency. In that context,
we are interested in several performance metrics. The first
assumes that the user is targeting a certain level of trans-
mission reliability, i.e., probability of successful message de-
livery, and we want to identify whether and by how much
can diversity help reduce the overhead required to achieve
this level of reliability. Conversely, another metric of interest
is whether, given a certain level of overhead, diversity can
help an application improve how often it meets its reliability
target. We explore these issues in settings that involve mul-
tiple NICs, one per channel, and where a major challenge is
controlling the timing of transmissions across channels. We
also consider environments where a single NIC is used, and
where the overhead of switching from one channel to an-
other affects the potential benefits of diversity. Our general
findings are that while system constraints and discrepancies
between channel models and actual channel characteristics
do affect the benefits of diversity, its use remains largely
beneficial and can help improve transmission performance
and robustness across a wide range of channel conditions.

The rest of the paper is organized as follows. Section 2
describes the system model, transmission policy, and perfor-
mance metrics we assume. Section 3 discusses various im-
plementation issues and their possible solutions. Section 4
gives a detailed description of our experimental setup. Sec-
tion 5 presents the results of our experiments and comments
on their implications. Section 6 reviews related works, while
Section 7 concludes the paper.

2. SYSTEM MODEL
In this section, we introduce system parameters of interest

including the simple transmission policy we rely on, and de-
fine the metrics we use to evaluate and compare approaches.

We consider an 802.11 system consisting of a sender within
reach of several access points operating over distinct fre-
quency bands. The sender can associate with more than
one access point as well as determine on a packet-by-packet
basis which channel (to which access point) to transmit an
individual packet on. In all our experiments, transmissions
on different channels are realized by means of separate NICs,
with each NIC associated with a given access point. How-
ever, we also “emulate” scenarios where all transmissions
would take place over a single NIC whose frequency could

be tuned to different bands. In such configurations, the
overhead (switching time) involved in tuning the transmit-
ter from one band to another and possibly associating with
a new access point are likely to affect the benefits achievable
from diversity, and exploring this is also of interest.

2.1 Performance Metrics
As far as performance is concerned, our metric is the mes-

sage transmission rate, where a message corresponds to an
application data unit that maps into k network/link layer
packets. Because of the possibility of packet losses, redun-
dancy is added by the sender to ensure a probability of suc-
cessful message delivery greater than a target value Pmin.
For each message, redundancy is in the form of additional
packets using an (N, k) diversity code [3,4,13,16] that guar-
antees successful message delivery if at least k out of N
packets are correctly received. Diversity codes are attrac-
tive as they offer simple (packet-level) implementations and
reasonable performance. The sender chooses a code length
N based on channel characteristics and its target Pmin.

We now formally define the message transmission rate or
Effective Rate (ER), through which we quantify the benefits
of the open-loop, packet-level diversity solutions we inves-
tigate in this paper. The ER of a given (N, k) code under
transmission policy S is the amount of user information suc-
cessfully delivered per unit of time, where the “unit of time,”
is the time required to send one packet. A user message
consists of k packets, so that with an (N, k) code, k units
of information are sent in N units of time. A message be-
ing successfully delivered with probability P S

succ(N, k) under
policy S, the corresponding ER is defined as

ERS (N, k) =
k

N
· P S

succ(N, k). (1)

Given channel models and the specification of the trans-
mission policy S, i.e., which channel to use for each packet
of a message, it is possible, e.g, see [1, 8, 17, 19, 20], to ex-
plicitly compute P S

succ(N, k) for any (N, k) code. However,
because one of our goals is to assess the impact of potential
discrepancies between “modeled” and real channels, rather
than rely on such expressions, we use traces collected in our
experiments to compute actual values for P S

succ(N, k) for dif-
ferent code lengths N , with and without diversity.

Note that the “Effective Rate” metric can be easily con-
verted to “throughput,” measured in Mbps, simply by mul-
tiplying the maximum channel transmission rate Ts by ER.
For example, if Ts = 7 Mbps2 and ER=0.4, the throughput
of the system is 2.8 Mbps. In the rest of this paper we use
ER as our performance metric, and use the terms “Effective
Rate” and “throughput” interchangeably.

There are two options for comparing the performance of
diversity to what is achievable with only one channel. The
first compares diversity to the performance achievable us-
ing the best single channel. This is, however, somewhat
unrealistic, as it requires the sender to know in advance
the statistics of all channels. A fairer comparison is to as-
sume that the sender has no advance knowledge of channel
statistics, and picks (or get assigned to) one of the available

2In 802.11b, possible transmission speeds are 1, 2, 5.5, and
11 Mbps. However, because of protocol overhead, the max-
imum feasible throughput Ts is smaller. For example, when
an 11 Mbps transmission speed is chosen, the maximum
value of Ts is approximately 7 Mbps in practice.
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channels at random. In order to take this random channel
choice into account, we therefore calculate the performance
that can be achieved by using each channel individually, and
then use the average of those as the “single channel perfor-
mance.” In particular, in Sections 5.2 and 5.3 we compare
diversity to the single-channel case by averaging the ER ob-
tained from using only channel 1 or only channel 2. In other
words, if the throughputs over channels 1 and 2 are ERch1

and ERch2 , respectively, then we define ERone channel as

ERone channel =
ERch1 + ERch2

2
.

Next, we briefly review several packet-level policies that
have been proposed to take advantage of diversity, and mo-
tivate the simple policy we consider in this paper.

2.2 Transmission Policy
Transmission policies determine the channel on which to

transmit a packet, and can be deterministic or probabilis-
tic. Deterministic policies follow a set schedule that de-
termines ahead of time the channel on which each packet
transmission is to take place. Probabilistic policies ran-
domly select a channel for each packet transmission accord-
ing to a pre-defined probability vector. Both types of poli-
cies are relatively simple to implement, even if as discussed
in [20], probabilistic policies extend more readily to trans-
mission schedules that do not use all channels equally. The
goal of any policy is to maximize performance, i.e., ER, as
a function of the (N, k) code in use and assuming some
knowledge of channel characteristics, e.g., long-term error
rates (LTER) and other relevant statistics3 such as the ex-
pected burst length (EBL) or average number of consec-
utive lost/corrupted packets. A number of earlier works,
e.g., [17,19], describe how to compute optimal policies that
maximize ER for certain types of channel models. How-
ever, they also show that in most instances where diversity
yields “meaningful” improvements4, a simple policy that de-
terministically schedules packet transmissions in a round-
robin fashion across the available channels performs close to
optimally. This is of practical significance, as even if opti-
mal policies are reasonably robust to variations in channel
characteristics [20], they are nevertheless dependent on the
underlying channel model and statistics used to derive them.
Given the wide range of channel behaviors that have been
reported for 802.11 channels, e.g., see [22] and our own re-
sults of Section 5.1, the availability of a single, simple policy
that seems to perform reasonably well across a wide range
of channel scenarios is obviously desirable. For the rest of
this paper we therefore focus on a round-robin determinis-
tic policy that simply cycles through the available channels.
Determining whether its use indeed delivers some benefits
in practice is one of the goals of this paper.

Another dimension of any transmission policy, including
the simple round-robin policy we focus on, is the granular-
ity at which it makes decisions. In particular, should new
channels be selected for each packet transmission, or should
channel selection decisions extend to blocks of consecutive
packets? We refer to this dimension as the “stickiness” of the

3Recall that open-loop policies assume that there is no real-
time knowledge of the channel state.
4For sake of argument, we deem the benefits of diversity to
be meaningful if they afford an improvement of more than
25% in Effective Rate.

policy. In practice, sticky policies may be needed to amor-
tize over multiple packets the latency of switching from one
channel to another. As mentioned earlier, the senders used
in our experiments are equipped with multiple (two) NICs so
that switching from one channel to another can be realized
simply by selecting a different NIC, which incurs little or
no overhead. However, as described in Section 5.5 it is also
possible to rely on this setup to emulate an environment in-
volving a single tunable NIC, and explore how different lev-
els of switching overhead (latency) affect the performance of
diversity schemes. Hence, we also consider policies of var-
ious levels of stickiness to explore the trade-off that exists
between leveraging diversity by distributing packet trans-
missions across as many channels as possible, and the cost
associated with channel switching operations.

3. IMPLEMENTATION ISSUES
Before presenting the specific results of our investigation,

we step back and comment on several generic implementa-
tion hurdles one faces when designing a system capable of
realizing the benefits of channel diversity. The main aspect
of interest and one that is likely to be present and affect the
behavior of any system, is controlling the timing of transmis-
sions that diversity policies implicitly assume. Specifically,
the benefits of diversity mostly arise because of its ability
to effectively “break up” extended periods of error bursts.
This is best understood by means of an example. Consider
a scenario involving a sender using a (20,15) code, i.e., a
15-packet long message that can be recovered as long as
at most 5 out of the 20 transmitted packets are corrupted.
Two channels are available for transmission, one of which is
experiencing an error burst lasting for the equivalent of 10
packet transmissions. If the sender properly sequences its
packet transmissions to successively proceed on one chan-
nel, then on the other, and so on, it will then experience
only 5 instead of 10 packet losses, and the message will be
successfully recovered by the intended recipient. This suc-
cess is, however, predicated on the proper serialization of
packet transmissions by the sender, namely, the transmis-
sion of one packet only begins after the transmission of the
previous packet has completed. Failure to do so, e.g., if
packet transmissions proceed in parallel on both channels,
can all but eliminate the benefits. The question that then
arises is how difficult such timing control may be in the con-
text of general purpose end-systems that are our primary
target for open-loop, packet-level diversity solutions.

For example, for a system with two NICs where packet
transmissions alternate between the two corresponding chan-
nels, the transmission pattern assumed by diversity policies
is as shown in S2 of Figure 1, which also illustrates the range
of possible patterns that may arise as a result of end-systems
behavior. Specifically, packets are built and scheduled for
transmission by the Operating System (OS), and although
the OS properly alternates writing successive packets to each
NIC, this does not necessarily result in the consecutive trans-
missions of those packets by each NIC. Instead, both NICs
will often be transmitting packets simultaneously. Barring
the addition of special purpose timing control, the extent
to which this is the case depends on the relative difference
between the time it takes the NIC to transmit a packet and
the time it takes the OS to write it to the NIC. When the
latter is much shorter, then all the packets in a message end-
up being queued to the transmit buffers of the two NICs,
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Figure 1: Possible transmission patterns.
S0: Only one channel is used.
S1: Interleaving over only one channel.
S2: “Ideal” transmissions over two channels.
S3: Two-channel “bandwidth-limited” system.
S4: Two-channel “processor-limited” system.
S5: Interleaving in two-channel “bandwidth-
limited” system.

so that packet transmissions proceed essentially in paral-
lel. We call such systems “bandwidth-limited” and S3 of
Figure 1 illustrates the corresponding transmission pattern.
On the other hand, if the time it takes the OS to write a
packet to the NIC is larger than the time it takes the NIC
to transmit it, then consecutive packets are transmitted one
after the other on each channel with the possible addition of
gaps between them, whose duration depends on how much
slower than the link the processor is. We call such systems
“processor-limited” and S4 of Figure 1 shows the resulting
transmission pattern5. It should be noted that in the con-
text of an 802.11b transmission system, most end-systems
are likely to belong to the “bandwidth-limited” category,
i.e., the bottleneck is the link rather than the OS/CPU, at
least for reasonable packet sizes.

There are a number of possible options for realizing the de-
sired timing of packet transmissions, i.e., transmission pat-
tern S2 of Figure 1. For example, the sender of a bandwidth-
limited system can insert appropriate pauses between trans-
missions of consecutive packets. However, a pausing mech-

5Note that a similar behavior is observed if the sender is
equipped with only one NIC and uses, for example, Mi-
crosoft’s MultiNet software [5] in order to switch between
channels. Then the “gaps” of system S4 can be viewed as
the time it takes for the NIC to switch to a different channel.

anism implies non-trivial changes to the underlying system.
Moreover, the accuracy required to insert pauses of a du-
ration equal to the time it takes to transmit one packet
(of the order of hundreds of μs or one ms) is likely to ex-
ceed the capabilities of software solutions and therefore re-
quire additional hardware support. Another possibility is
for the sender to interleave packets from multiple messages
(N-blocks). In other words, a sender whose diversity pol-
icy calls for distributing packet transmissions of a message
across b channels could use b distinct messages and rotate
the assignment of their packets across the available chan-
nels. This option is illustrated in S1 and S5 of Figure 1.
Scenario S1 corresponds to the case of b = 1, i.e., no di-
versity, where the packet interleaving is aimed at emulating
some of the benefits of diversity by breaking-up the error
bursts that a message could experience through the spread-
ing of its packets over time, i.e., temporal versus spatial
diversity. Scenario S5 corresponds to the base diversity case
of b = 2, where packets of a message are distributed over 2
channels. The major drawback of interleaving, besides the
OS or application modifications it requires, is the added la-
tency it introduces. Specifically, packet transmissions at the
sender are delayed by the time it takes to generate b mes-
sages. Additionally, the receiver now needs to be able to
perform more complex message reassembly.

In order to allow for a consistent comparison of the through-
put, i.e., ER, achieved across different configurations, we use
the following convention. When only one NIC is available,
we simply rely on Eq. (1) to compute ER, whether or not di-
versity is used. When using diversity over one NIC, Eq. (1)
is accurate under the assumption that there is no overhead
involved in tuning the NIC from one channel to the other. In
cases where there is a non-zero switching delay SD, we com-
pute ER by multiplying the result of Eq. (1) by s

s+SD
, where

s denotes the number of packets between channel switching
decisions and SD is in units of packet transmission times.
The situation is slightly different for configurations involv-
ing multiple NICs. For example, in “bandwidth-limited”
systems with two NICs, packet transmissions can proceed
continuously on both channels, and therefore presumably
achieve a rate twice as high as what would be feasible with
a single NIC. For consistency, the ER value we report in
those cases, is either the value as computed from Eq. (1)
if no diversity is used, i.e., transmissions actually proceed
only on one NIC, or it is the value obtained from Eq. (1)
divided by the number of available NICs (typically 2) when
diversity is used. This convention was chosen to facilitate
comparisons across scenarios. As we shall see, it often actu-
ally penalizes diversity whose total throughput across both
NICs often exceed the sum of the throughputs realized by
using each NIC individually (see Section 5.5 for an example).

In addition to the relation between processor and link
speeds, many other factors affect the timing of packet trans-
missions. For example, the time it takes a NIC to transmit
a packet is typically proportional to the packet size. How-
ever, packet size often has little or no impact on the time
it takes the OS to deliver a packet to the NIC. Further-
more, the transfer of a packet from the OS to a NIC is itself
a complex process that involves several additional compo-
nents, each with the potential to affect transmission timings.
The speed of the hardware bus connecting the system mem-
ory (where packets reside) to the NIC, as well as the type
of memory transfer supported further contribute to differ-
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ences across systems. For example, an Ethernet interface
directly on the motherboard will in general receive packets
much faster than a miniPCI interface on a daughter board
connected to the motherboard via a PMC PCI interface6.

Another aspect to consider when implementing and ex-
perimenting with diversity, is the impact of link layer mech-
anisms. In an 802.11b system, there are two mechanisms of
relevance. The first is the use of ACKs that trigger link layer
retransmissions. Because of our focus on real-time applica-
tions and open-loop policies, we disabled the use of acknowl-
edgments7. The second relevant mechanism is the RTS/CTS
hand-shake used to control channel access. This mechanism
can interfere with the scheduling of packet transmissions and
add substantial latency. As a result, we configured our end-
systems to operate with RTS/CTS disabled (by setting a
large enough packet size threshold). Finally, although our
focus on packet-level diversity is in part motivated by our de-
sire to develop solutions that are not tightly coupled to the
underlying physical layers, it is nevertheless important to
understand any physical layer requirement to indeed ensure
adequate channel diversity. One such aspect is the need for
transmitting antennas to be physically separated by approx-
imately six inches8 in order for the power levels not to create
interferences between channels. The setup we describe next
satisfies this requirement, and antenna separation was never
found to be an issue in our experiments.

4. EXPERIMENTAL SETUP
The main goal of our experimental setup was to reproduce

an environment as close as possible to what one could expect
to encounter in practice if one were to use diversity across
multiple 802.11b channels. This is reflected in our choice
of systems and configurations. Our sender was based on
a standard laptop equipped with two wireless cards, while
the access points/receivers it could connect to consisted of
two Intel StarEast boards (see below for more details). Our
channel environment is representative of an indoor “office”
environment, both in terms of propagation and through the
presence of other users and access points distributed across
the building. Specifically, our sender was placed about ten
meters away from the access points (in an adjacent room of
the same building), and was not in their line-of-sight. In
addition, more than ten other Access Points operating in
various channels and creating different levels of interference
in all 11 frequency bands where in the vicinity of our setup.

4.1 Sender
Our sender is a Dell laptop (Intel Pentium III 933 MHz,

with 384 MBytes of memory) running Linux 2.6.8, and equipped
with two wireless interfaces. One is an internal 3Com miniPCI
card and the other a Lucent PCMCIA card using the Orinoco
driver. Each NIC is set to a different frequency, i.e., a dif-
ferent channel, and a simple user-level program was used to
alternate packet transmissions between the two NICs.

The “bandwidth limited” nature of our sender, which re-
sults in packet transmissions taking place simultaneously

6See the following section for illustrative examples from the
experimental setup we used.
7This can be easily accomplished without any system mod-
ifications, by declaring all packets as broadcast packets.
8The actual desired separation depends on the types of an-
tennas used and the power levels of the NICs, but [15] men-
tions that six inches should be enough for most setups.

over both channels, has implications for the choice of fre-
quencies that can be used on each NIC. Because the two
access points associated with each NIC will obviously re-
ceive both transmitted signals, whether intended for one or
the other, it is important that they use non-overlapping
frequency bands9 to avoid self-interferences caused by the
sender’s simultaneous transmissions on the two channels.
Ideally, this means that the two channels should be sepa-
rated by at least 5 frequency bands. In other words, if one
of the NICs is, for example, on frequency band 3, then the
second NIC should be on frequency bands 8, 9, 10, or 11.

4.2 Access Points
We briefly outline the structure of our access points. We

used StarEast stackable systems, which include a baseboard
equipped with an Intel IXP425 network processor, and an
adapter daughter board with two miniPCI interfaces. The
baseboard also includes 133 MHz/256 MBytes of on-board
SDRAM, and 32 MBytes of on-board Intel StrataFlash R©
memory, and provides two fast Ethernet ports, one UART,
and two mirror PMC PCI interfaces to connect the daughter
board10. The boards use the uCLinux 2.4.24 operating sys-
tem. We used Senao NL-2511MP Plus miniPCI cards, and
attached external omni-directional antennas (YSC-RE05T)
to achieve satisfactory signal strength. The boards were
tested to ensure that the packet “logging” they were required
to perform did not degrade their performance, and hence
affect the results of the experiments. In other words, both
boards were capable of sinking and logging all the packets
they were receiving, so that corrupted or lost packets were
indeed the result of link/physical layer errors, e.g., because
of multipath fading, collisions or insufficient SNR.

5. RESULTS
This section introduces the set of experiments performed

over our testbed, motivates the aspects of diversity we ex-
plored, and articulates the conclusions we believe those ex-
periments allow us to draw regarding the benefits of diversity
when used in a realistic setting. All the results presented
in this section correspond to multiple pairs of 10-minute
traces collected simultaneously over two different channels.
We used 1,000 byte packets, and the sequence numbers of
correctly received packets were logged at each access point.
Those logs were then combined and post-processed to calcu-
late performance for different combinations of transmission
policies and system parameters: (i) using only one channel
or both channels, (ii) using different code lengths, (iii) us-
ing interleaving or not, and (iv) emulating the behavior of
various “sticky” transmission policies. For example, to in-
vestigate interleaving, consecutive packets are interpreted as
coming from different rather than the same N-block. Simi-
larly, to emulate “sticky” policies, s consecutive packets are

9Although the 802.11b standard specifies 11 distinct fre-
quency bands, most are overlapping. Specifically, while
there is no precise definition of the “width” of a frequency
band, the standard specifies the center frequency of each,
along with a spectral mask which requires that the signal be
attenuated by at least 30 dB from its peak energy at 11 MHz
from the center frequency, and at least 50 dB at 22 MHz
from the center frequency. Hence, signals from channels
more than 5 frequency “bands” apart should be sufficiently
attenuated to minimally interfere with each other.

10For more details, see Flexcomm’s website.
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processed from one log file, followed by s consecutive packets
from the other, and so on11. Finally, multiple consecutive
10-minute traces were also combined to create traces that
allow us to look at the “average” performance of diversity
over longer time periods. We expand on this in Section 5.4.

A first aspect in designing our experiments is to ensure
adequate coverage of “all” possible channel conditions. As
we shall see and as pointed out by others, the characteristics
of 802.11b channels can vary widely. As a result, we con-
ducted experiments across many combinations of frequency
bands and over extended periods of time and at different
hours of the day. In addition, given our goal of assessing
the performance benefits of using “minimalist” diversity so-
lutions, we proceed in steps of decreasing knowledge at the
sender regarding channel conditions in support of diversity.

In a first step to verify whether the benefits predicted
by the theory remain over real 802.11b channels, we as-
sume that the sender has some knowledge of the channel
characteristics, i.e., the sender has reasonable estimates for
the values of LTER and EBL prevailing on both channels.
Such information could possibly be acquired, at some cost,
from gathering over time the statistics of successful packet
transmissions. Under such an assumption, the sender is
then capable, albeit under some (unrealistic) channel mod-
els, e.g., using a simple Gilbert-Elliott model, of determin-
ing the coding overhead it requires to meet its performance
target (Pmin). Our second set of experiments eliminates the
requirement that the sender be aware of channel characteris-
tics, which may indeed be a more realistic assumption given
the wide fluctuations observed on 802.11b channels. In this
setting, we consider the case of a sender willing to pay a
certain price in terms of coding overhead, i.e., choose a code
length N ≥ k given its original message length of k, and we
then explore if and when diversity still yields performance
benefits, i.e., higher ER values. Our third set of experiments
expands on this by further assessing the benefits of diversity
by tracking the evolution of the throughput it yields over
an extended period of time (hours), and comparing it to the
performance that would have been achieved by a user who
would have selected a single channel for its transmissions.
The results show that the simple diversity scheme we in-
vestigate not only increases ER in most cases, but is also
successful in significantly reducing its variations over time.

The first three sets of experiments use two NICs, and there
is, therefore, no channel switching overhead. In the next set
of experiments, we emulate the transmission patterns that
would have been generated using a single frequency-agile
NIC. In that setting, we investigate the impact of different
channel switching latencies, and explore the use of sticky
transmission policies to compromise between diversity and
switching overhead. We finally comment on the effect of cor-
related errors between channels, and their potential impact
on the benefits of diversity.

In qualitative terms, our results establish that in most
cases diversity improves performance, be it in terms of higher
throughput, or by reducing throughput variations over time.
Additionally, blindly using diversity even when it is unlikely
to offer benefits, rarely hurts performance. In other words,
it appears that using the simple diversity scheme we inves-
tigate is “safe” across different types of channel conditions.

11Recall that s denotes the number of packets between chan-
nel switching decisions.

5.1 Channel Characteristics
Before moving on to results that are specific to the use of

diversity, we first comment on the general channel charac-
teristics we encountered during our experiments. The key
message is that error patterns fluctuate widely depending on
several parameters, e.g., time of the day, choice of channel,
location of the measurements, distance between the sender
and the receiver, behavior of other users, etc. In other words,
unlike other technologies, e.g., GSM-based systems, where
the quality of the channel is more or less “stable,” one cannot
make statements of the form “the average 802.11b channel
has an LTER of X% and an EBL of Y packets.” As a result
of these large fluctuations and because channel diversity op-
erates within a finite time-horizon, i.e., it “sees” channels at
the time granularity of N consecutive packet transmissions,
it is unlikely that theoretical performance results predicated
on simple channel models can accurately predict the benefits
of diversity over 802.11b channels.

Grouping the data collected during our experiments in
10 minutes intervals, we observe LTERs between 0.01% and
70%, and EBLs ranging from 1 packet (essentially a Bernoulli
error process) to 40 packets. The actual sizes of error bursts
varied from 1 packet to several hundreds of packets. Simi-
lar observations have been made by other authors (see for
example Willig et al. [22] for extensive 802.11 channel mea-
surements), and we conclude that systems have to be de-
signed with this wide range of characteristics in mind. This
calls for either designing diversity systems that account for
the “worst case” channel conditions, or for systems that
via some feedback mechanism periodically update their es-
timates of channel statistics. For reasons of simplicity ar-
ticulated earlier, and to assess what might be doable using
a “bare-bone” diversity scheme, we proceed with our eval-
uation of the simple open-loop transmission policy that ro-
tates packet transmissions across channels. Our findings will
show that in spite of the expected “gaps” between theory
and practice, the benefits of even this simplest of diversity
schemes remain non-negligible.

5.2 Benefits of diversity under “known”
channel characteristics

As mentioned earlier, in this first set of experiments we as-
sume known channel characteristics, so that the sender can
compute the best code (the one that maximizes ER given
a target Pmin) for both diversity and no-diversity scenarios.
We compare the performance of two systems that do not
use diversity, and two systems that do. The first system
uses just one channel (S0 of Figure 1). The second one uses
one channel but interleaves the packets of two N-blocks on
that channel (S1 of Figure 1). The third system uses di-
versity across two channels (S3 of Figure 1), and the fourth
system not only uses diversity across two channels but also
interleaves the packets of two N-blocks (S5 of Figure 1).

We present results that cover a fairly broad range of chan-
nel characteristics and combinations, e.g., channels whose
error rates vary from approximately 4% to 66%, by using
three combinations of channel pairs: one “average” and one
“bad” channel; two “average” channels; one “average” and
one “good” channel12. We also investigated cases with two
“good” channels, i.e., error rates of less than 4%, and for rea-
sons that will become apparent later, the benefit of diversity

12See the captions of Figures 2-4 for exact channel statistics.
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in those cases was fairly small. The left hand side (LHS) of
Figures 2-4 shows the throughput achieved by the diversity
and no-diversity systems as a function of Pmin. Note that
for the no-diversity systems, the throughput values reported
in the figures correspond to the average of the throughput
realized over each individual channel. As mentioned earlier,
the motivation for using the average across the two channels,
is to provide for a fairer comparison that accounts for the
fact that in practice users will pick (be assigned to) one of
the two channels at random. In addition, given the varying
nature of 802.11b channels, it is also likely that over time
any one channel will experience the conditions we select for
the two channels for the duration of our experiment.

We first notice that interleaving does not appear to have a
major impact, i.e., while there are some differences in perfor-
mance between systems S0 and S1 and systems S3 and S5,
they are probably not sufficient to warrant the added latency
and message reassembly that interleaving requires. Addi-
tionally, while in some cases interleaving over one channel
(system S1) offers advantages over the vanilla system S0, its
performance is in most cases still far from the performance
that can be achieved via diversity (with or without inter-
leaving). One of the potential reasons for this finding is the
channel sensing and back-off mechanism of 802.11, which
will in some cases add spaces between successive packet
transmissions of the same N-block. Further increasing this
space via the use of interleaving does not improve the per-
formance substantially. We therefore conclude that even if it
attempts to emulate the break-up of error bursts that diver-
sity affords, interleaving over one channel alone cannot yield
meaningful performance improvements. As a result, we do
not pursue further the use of interleaving in the rest of the
experiments. Instead, we focus on quantifying the benefits
of diversity over transmissions using just one channel.

In general, the LHS of Figures 2 to 4 demonstrate that di-
versity is beneficial and can even yield substantial improve-
ments, at least when the target probability of success Pmin

is commensurate with the quality of the channels, i.e., nei-
ther to lax (greater than 90%, which is what most real-time
applications typically call for) nor overly aggressive (so as
to anyhow require an unacceptably high coding overhead).

In the case where the two available channels consist of
an “average” and a “bad” channel (Figure 2), we see that
diversity consistently outperforms the single channel con-
figurations. In particular, when 0.90 ≤ Pmin ≤ 0.95 the
improvement is dramatic, e.g., for Pmin = 0.94 diversity de-
livers an improvement of more than 400% in ER. For the case
where the two available channels are “average” (Figure 3),
we see that there exists a transition point, i.e., a value of
Pmin (Pmin ≈ 0.9) before which diversity can be hurtful.
The intuition is that for low Pmin a high rate code can be
used, i.e., N ≈ k. Because such high rate codes can recover
from only one or at most two lost packets, it is preferable
for the sender to stay on one channel and hope that no error
burst will occur. However, as mentioned before, scenarios
corresponding to such relatively high message loss rates are
of limited interest given our focus on real-time applications.
The situation reverses when performance requirements be-
come more stringent, i.e., Pmin > 0.9, where the benefits of
diversity can again be as high as 330%. Finally, in the case
of one “average” and one “good” channel, the LHS of Fig-
ure 4 shows a similar behavior as in Figure 3, albeit with less
pronounced differences between the diversity and no diver-

sity scenarios. This is because as the quality of the channels
improves, the required coding overhead becomes smaller and
so does the potential for any rate improvement.

5.3 Benefits of diversity under unknown
channel characteristics

Having established that the benefits of diversity predicted
by the theory are still largely present, at least when the
user has some rough knowledge of the characteristics of the
available 802.11b channels, we proceed next to remove this
assumption. Specifically, we consider the more practical set-
ting where because of the widely varying nature of 802.11b
channels, the user does not attempt to optimize the selection
of a code for a particular set of channel conditions. Instead,
it selects a level of coding overhead it is willing to tolerate
as a performance “safeguard.” Our goal is then to quan-
tify how such “blind” selection affects the benefits available
from diversity. We explore this aspect for different levels of
coding overhead deemed acceptable by the user.

The right hand sides (RHS) of Figures 2-4 plot the through-
put achieved across different scenarios as a function of the
coding overhead that the user selects. The general conclu-
sions one can draw are similar to those based on the LHS of
the figures, with one anticipated difference given the use of
a fixed code, independent of actual channel characteristics.
The similarities are that the use of diversity is again ben-
eficial in most scenarios of practical interest, namely, sce-
narios that result in acceptable performance, i.e., a code
length N ≥ 20, which is the value required in most cases to
deliver a message loss probability below 10%. The magni-
tude of those benefits is, however, lower than in the LHS of
the figures, which included improvements in excess of 400%.
Instead, improvements now range from 2% to about 40%,
and meaningful improvements are present only for relatively
poor channels, e.g., one “bad” channel. This is not unex-
pected since the fact that the code length is now fixed means
that the only possible dimension for throughput increase is
to improve the probability of successful message delivery
Psucc . When channels are reasonably good and Psucc is close
to 1, there is little room for improvements. In summary,
blind diversity appears to still deliver benefits when it comes
to overcoming poor performance on individual channels, and
those benefits do not come at the cost of reduced perfor-
mance in other configurations. At least not when focusing
on configurations that are capable of delivering acceptable
performance to applications, i.e., Psucc ≥ 0.9. We explore
this aspect further in our next set of experiments that track
performance over an extended period of time, during which
the quality of individual channels exhibits a wide range of
fluctuations.

5.4 Diversity as a performance “stabilizer”
In this section, we explore the benefits that our “blind”

diversity policy affords in terms of its ability to mitigate the
impact of the high variability of 802.11b channels. Specifi-
cally, we select two distinct 802.11b channels that we mon-
itor over a one hour period during which their quality dis-
plays substantial variations. Channel 1 is average (LTER
=11.4%), except for a few short periods of poor performance.
Channel 2 is worse than channel 1 (LTER=29.2%), in that
it experiences greater variability, including several extended
periods of poor performance. We compare the ER achieved
when using both channels according to our blind diversity
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Figure 2: Channel Scenario 1: One “average” channel and one “bad” channel. LTER1=11.34%, EBL1=5.4,
LTER2=65.76%, EBL2=22.1.
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Figure 3: Channel Scenario 2: Two “average” channels. LTER1=11.39%, EBL1=11.1, LTER2=9.83%,
EBL2=5.0.
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Figure 4: Channel Scenario 3: One “average” channel and one “good” channel. LTER1=11.27%, EBL1=10.9,
LTER2=4.17%, EBL2=1.1.
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policy, to the ER values realized using either of the two
channels alone. In order to capture the evolution of ER
over time, we compute its value over a sliding window of the
last 200 N-blocks that were transmitted. As in the previous
set of experiments, the coding overhead selected by the user
is fixed and remains constant for the entire duration of the
experiment, i.e., we have N = 25 and k = 10. Note that
this corresponds to a relatively large coding overhead, but
we have found this to be typically required to deliver a rea-
sonable probability of success, i.e., Pmin > 0.9, in spite of the
wide range of fluctuations that 802.11b channels experience.

The results are shown in Figure 5 and confirm earlier in-
tuition. In spite of the occasional poor quality of channel
2, diversity yields not only a higher overall13 ER, but also
more stable performance throughout the experiment. For
example, consider a user that decided to only use channel
2. During the first 20 minutes, its throughput would actu-
ally be zero or close to zero for fairly long periods of time.
This is because the channel is bad enough that a (25,10)
code consistently fails to successfully deliver messages (i.e.,
in every block of 25 packets, at least 15 are in error). In
the next 20 minutes, the quality of channel 2 improves dra-
matically, and as a result it now yields the best performance
when used alone. However, its advantage over the diversity
solution is minimal, and certainly nowhere near sufficient
to make up for the lost throughput of the first 20 minutes.
Similar, albeit less pronounced observations hold for chan-
nel 1. Note that even better performance could clearly be
achieved if the user was somehow capable of always selecting
the best channel for its transmissions. Such a dynamic path
switching mechanism is certainly possible, e.g., see [12], but
as discussed earlier, it involves added cost to monitor the
quality of individual channels. Furthermore, our focus in
this paper is on investigating the benefits achievable from
diversity through a simple open-loop approach.

We performed similar experiments for various other code
lengths, and a few representative results are summarized in
Table 1. It presents statistics for the average and standard
deviation of ER when using diversity, channel 1 alone, and
channel 2 alone14. The table shows that diversity consis-
tently outperforms a single channel system. While increases
in ER for the particular codes we chose are not as substan-
tial as the ones reported earlier, the standard deviation of
ER is significantly reduced, approximately by 60-90%, when
diversity is used. This translates into much more stable per-
formance, which is desirable for most real-time applications.

5.5 Diversity with a single frequency-agile NIC
and “sticky” transmission policies

As mentioned earlier, one motivation for conducting ex-
periments using multiple NICs is the channel (frequency)
switching overhead when only a single NIC is available.
In particular, although device level switching latency in an
IEEE 802.11 NIC is approximately 80μs [9], there are many
other factors that contribute to increasing this value, such as
synchronization requirements possibly including association
handshakes with the new access point. Recently, Chandra et
al. [5] reported switching latencies of the order of 25-30 ms,

13Note that without the previously mentioned scaling of the
ER of the diversity scheme (division by 2), its value (twice
that reported in Figure 5) would often significantly exceed
the sum of the rates achieved over channels 1 and 2.

14The column N=25 gives statistics for the traces of Figure 5.
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Figure 5: ER of diversity and no-diversity. A (25,10)
code is used over a period of one hour.

N=22 N=25 N=30

Average ERdiv 0.437 0.381 0.326
Std. Dev. of ERdiv 0.017 0.015 0.011

Average ERch1 0.408 0.360 0.300
Std. Dev. of ERch1 0.046 0.039 0.031

Average ERch2 0.336 0.296 0.247
Std. Dev. of ERch2 0.175 0.153 0.126

Increase in Average ER: 7.1% 5.8% 8.7%
diversity vs. channel 1
Reduction in Var(ER): 63.0% 61.5% 64.5%
diversity vs. channel 1

Increase in Average ER: 30.1% 28.7% 32.0%
diversity vs. channel 2
Reduction in Var(ER): 90.3% 90.2% 91.3%
diversity vs. channel 2

Table 1: Long term performance of diversity vs. no
diversity for different code lengths.

which is clearly an overhead that cannot be incurred after
every packet15. One option to enable the use of a single
frequency-agile NIC is to rely on a policy that only switches
channels every s ≥ 1 packets. The larger the value of s
the less the overhead, but on the other hand a large s also
limits the ability of diversity to break-up error bursts (as a
matter of fact, a value of s ≥ N is equivalent to no diver-
sity). In order to investigate this trade-off, we perform a
number of experiments using different values for s, namely,
s = 1, 4, 7, 10, as well as two channel switching delays SD of
one and five packet transmission times16.

As in Section 5.2, we first consider a scenario where the
sender has some knowledge of channel characteristics so that

15The transmission time of an 1,500 byte packet at 11 Mbps
is about 1.1 ms, which means that channel switching time
is roughly equivalent to 25 packet transmissions. Hence a
policy that transmits successive packets in different channels
suffers an unacceptable throughput reduction.

16This was motivated by the fact that although Chandra et
al. report switching times of about 25 packet transmission
times, they expect substantial reductions in the near future.
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Figure 6: ER of “sticky” diversity systems (same channel scenario as in Figure 2).

it can select the best possible code length N given its target
Pmin. Figure 6 shows the performance achieved by diver-
sity for the two previously mentioned values of SD (LHS:
SD=1; RHS: SD=5), and with policies of different sticki-
ness (values of s). The figure shows that diversity can still
realize some of the benefits of Figure 2, but their magni-
tude is clearly affected by the switching overhead and a non-
negligible stickiness is required. To better assess the impact
of SD, we consider next the same channel scenario, but now
fix the code length N and vary SD. As before, we evaluate
ER for different stickiness values. For reference purposes,
the user’s performance target is set to Pmin = 0.92, and in
each scenario the code length is selected to meet this target
assuming zero switching delay. Figure 7 illustrates the intu-
itive result that when switching overhead is low a “sticky”
policy with a small s should be used, while as the overhead
grows a larger s performs better as it amortizes switching
cost over a longer block of packets. More interestingly, the
figure quantifies the impact of channel switching delays on
the improvement available from diversity. It shows that even
if with the appropriate level of stickiness “some” improve-
ments are present for SD up to about 15 packets, meaningful
benefits really call for a sub-ms level channel switching delay.

5.6 Correlated Channel Error Processes
An important issue we have not discussed so far is how

correlation in the error processes across channels affects the
benefits of diversity. Intuitively, correlated channels should
yield smaller benefits, because if error bursts tend to occur
on both channels at about the same time, switching channel
will not “break up” those bursts. At one extreme, with
perfectly correlated channels, diversity offers no benefits.

In an 802.11 system, channels that are more than 5 fre-
quency bands apart are thought to be “orthogonal.” How-
ever this does not necessarily mean that their error processes
are uncorrelated. For example, consider a diversity system
that uses channels 2 and 7. If another user is transmitting
over channel 4, these transmissions can create correlated er-
rors on both channels 2 and 7, since they have the same
source of interference. The traces we collected during our
experiments and the results we presented up to now, might
therefore correspond to channels that exhibit some level of
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Figure 7: ER of “sticky” diversity systems as a func-
tion of channel switching time (in packet transmis-
sion times) - same channel scenario as in Figure 2.

correlation. To better understand the extent to which this
was the case, we calculated correlation coefficients17 for all
pairs of traces, and found them to be consistently very small,
i.e., between 0 and 0.1. This lack of significant correlation
between 802.11 channels is consistent with what others have
reported [2]. A possible explanation offered in [2] is that
the dominant cause for losses is multipath fading, and not
necessarily interferences from users transmitting in adjacent

17Denoting the trace for channel 1 as x and the trace for
channel 2 as y, the correlation coefficient ρ is defined as

ρ =

�
i(xi − x)(yi − y)

��
i(xi − x)2

��
i(yi − y)2

,

where xi and yi take the value 1 if packet i is correctly
received and 0 if packet i is in error. x and y correspond to
the averages of each trace. ρ takes values in [-1,1], and when
ρ is close to 0, the two traces are considered “uncorrelated.”
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channels18. Willig et al. [22] also make the observation that
“multipath fading instead of noise is the dominant source of
errors.” Additionally, in order to examine if the performance
of diversity would have been different had the channels been
truly uncorrelated, we “time-shifted” by 5 minutes one trace
from each pair of channels, and processed the traces again.
As expected given the small correlation coefficients we had
observed, we did not see any noticeable difference between
the “correlated” and the “uncorrelated” results.

It is, however, conceivable that in environments busier
than ours, e.g., in public libraries, cafés, etc., higher corre-
lation levels might exist even if careful frequency planning
of access points within transmission range of each other can
limit these effects. Such planning may, however, not always
be possible, especially because multiple independent service
providers often deploy their networks within the same small
geographic area (e.g., different companies occupying differ-
ent floors of the same building, or a café located close to a
university campus) and without much or any coordination.
In order to emulate such a scenario, we used an interfer-
ence generator to create interferences on channel 4, while
our diversity system was using channels 1 and 6 for which
we then collected packet traces. Even with the interference
generator located close to the access points (receivers) we
did not observe much correlation between channels 1 and 6.
As mentioned earlier, we suspect that this is because mul-
tipath is the dominant source of errors, especially when the
interfering user is 2-3 frequency bands apart from each of
the channels used for diversity.

We therefore conclude that channel correlation is unlikely
to be an issue when using diversity in 802.11-based systems,
especially when the access points accessible to the user use
frequency bands that are sufficiently “far” apart.

6. RELATED LITERATURE
Diversity has received significant recent attention, but its

experimental validation has been more limited. In this sec-
tion, we review some relevant works targeting experimen-
tal work in an 802.11 environment, and in particular those
aimed at assessing the benefits of channel diversity. We also
identify several recent works focused on exploring the advan-
tages of diversity and developing policies to exploit them.

Robinson et al. [15] experiment with a multi-radio mesh
network and identify several issues that arise in the deploy-
ment of such networks (e.g., interference, antenna separa-
tion, etc.). Aguayo et al. [2] deployed Roofnet, an outdoor
802.11b mesh network and present their findings regarding
the quality of the links between the nodes. Raychaudhuri et
al. [14] present ORBIT, an indoor testbed developed for eval-
uating wireless protocols. Wu et al. [23] use ORBIT to ex-
periment with rate control and frequency selection in 802.11,
and comment on the use of “channel diversity.” However,
their use of the term corresponds to neighboring pairs of
nodes using different frequencies, which differs from the con-
cept of diversity used in this paper. Vaidya et al. [18] develop
a testbed for wireless experiments and comment on the im-
plementation issues that arise in creating realistic environ-
ments. Karrer et al. [10] discuss the challenges in build-
ing a scalable and widely deployed wireless network, and
argue in favor of a multi-hop wireless backbone that uses

18We note, however, that [2] used directional antennas, which
can limit the level of correlation among channels.

directional antennas. Draves et al. [7] discuss routing in
multi-radio wireless mesh networks, and develop a 23-node
indoor testbed in which all nodes are equipped with two
radios. Finally, several other wireless testbeds have been
developed [11, 21, 24, 25], but none of them are used to in-
vestigate issues related to channel diversity.

More specific to channel diversity, Bahl et al. [5] develop
a software-based approach that enables the use of multiple
channels using only one 802.11 NIC. As mentioned earlier,
the channel switching time is relatively large (around 25-
30 ms), which as shown in Section 5.5 makes the use of
packet-level diversity solutions somewhat impractical. Miu
et al. [12] also present a system that uses path diversity, and
evaluate it over experimental testbed. Although the moti-
vation of their work is similar to ours, namely, improve loss
resiliency in wireless networks, their approach is fairly differ-
ent. They use multiple paths to transmit multiple copies of
the same frame which get combined at the receiver end to re-
cover from errors, and they also implement a low-overhead
retransmission scheme. The approach we investigate does
not change the number of packets being transmitted and
simply distributes them across multiple channels. In addi-
tion, we do not consider the use of retransmissions.

In terms of theoretical investigations of path diversity, [6]
provides a comprehensive overview of various relevant is-
sues, from the physical to the network layer. The papers by
Golubchik et al. [8] and Abdouni et al. [1], and the paper by
Tsirigos and Haas [17], together with our work [19, 20] for-
mulated various approaches to evaluate the performance of
diversity for different channel models and policies. However,
none of these works focused on experimental investigations.

7. CONCLUSION
In this work, we investigated the potential benefits of sim-

ple open-loop, packet-level diversity solutions in a realis-
tic setting by evaluating their performance in an 802.11b
testbed. We developed an understanding of many of the
implementation issues that are relevant to building such a
system, and probed its performance across a broad range of
channel scenarios and system configurations.

Our main finding is that in spite of major gaps between
theory and practice, substantial advantages can still be at-
tained. In particular, even though the wide fluctuations
in quality of 802.11b channels make it impossible to se-
lect “optimal” codes tuned for best performance, a sim-
ple diversity policy that evenly distributes packet trans-
missions across channels can still yield meaningful improve-
ments across most code selections. This is especially the
case in configurations where “reasonable” performance is
actually feasible. Those improvements are not so much in
terms of higher transmission rates, although diversity com-
monly delivers higher effective rates, but more because of the
greater stability it affords in helping ride out performance
variations in individual 802.11b channels.

Our investigation also revealed that unlike what the the-
ory assumes, the benefits of diversity are not overly depen-
dent on the precise timing of packet transmissions. Further-
more, although access to multiple NICs clearly simplifies im-
plementation, diversity solutions could also be realized with
a single frequency-agile NIC, provided its switching over-
head was not too high (lower than what is feasible today)
and channel switching decisions were “sticky.” Last but not
least, we confirmed that as long as they are not too close to
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each other, different 802.11b channels exhibit only limited
correlation. This is of practical significance, since diversity
is obviously of little or no use when channels are correlated.

There are many natural extensions to the initial investiga-
tion of this paper.In this paper, the focus was on exploring
potential advantages in terms of the maximum rate that
real-time applications could sustain, but extending this to
adaptive applications such as TCP is an obvious next step.
Another natural extension is to involve multiple senders all
using diversity. Our current experiments did capture inter-
actions with other users, as we operated in an environment
with many other access points besides our own. However,
they did not systematically investigate how users all sharing
access points through diversity would interact. Finally, an-
other area we are interested in is the introduction of some
minimal feedback about channel conditions, to better guide
diversity policies and the choice of codes.
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