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Abstract

This paper explores the feasibility of improving the per-
formance of end-to-end data transfers between different
sites through path switching. Our study is focused on both
the logic that controls path switching decisions and the
configurations required to achieve sufficient path diver-
sity. Specifically, we investigate two common approaches
offering path diversity – multi-homing and overlay net-
works – and investigate their characteristics in the con-
text of a representative wide-area testbed. We explore the
end-to-end delay and loss characteristics of different paths
and find that substantial improvements can potentially be
achived by path switching, especially in lowering end-to-
end losses. Based on this assessment, we develop a simple
path-switching mechanism capable of realizing those per-
formance improvements. Our experimental study demon-
strates that substantial performance improvements are in-
deed achievable using this approach.

1. Introduction

The widespread deployment of distributed applications
is putting renewed emphasis on solutions aimed at ensur-
ing the best possible performance when transferring data
between different end-points, but without necessarily incur-
ring the cost and complexity of traditional QoS solutions.
In particular, the increasing access to multiple providers
and the development of technologies that provide end-users
with the ability to control where and how their traffic is to be
sent, make it possible to take advantage of “path diversity”
to improve the performance and availability of data trans-
fers for such applications. In this paper, we investigate the
feasibility and the performance benefits of a mechanism that
allows a source end system to dynamically switch among
multiple paths to a destination, which is often referred to
as “path switching.” Our focus and goal is to demonstrate
that path switching can indeed deliver meaningful perfor-
mance improvements in settings involving limited path di-
versity and by using very simple mechanisms.

The exploitation of path diversity to improve perfor-
mance has given rise to a number of commercial offerings
and research activities that have taken different approaches
towards achieving this goal. For example, solutions such as
those of [8] and [9] assume that paths between user sites are
continuously monitored, and that information gathered via
monitoring is used to dynamically select the best provider.
Similarly, some providers, e.g., see [7], have opted to offer
such a dynamic best path selection to their customers. The
potential benefits of those solutions have been partially in-
vestigated in [2] with a focus on high volume data sources
and data sinks. Alternatively, overlay networks [3] have also
been used to exploit path diversity, [4], even in the case that
an end system has but a single provider. The investigation
of path switching as a mechanism for improving the perfor-
mance of data transfers has also been motivated by the ob-
servations that the default path is often far from optimal,
e.g., see [10, 11], and that performance fluctuations can be
observed on most Internet paths, e.g., [5, 15].

In general, the ability to improve the performance of data
transfers through path switching requires several conditions
to be met. First and foremost, there must be sufficient diver-
sity across the different paths over which switching can take
place. In other words, performance degradations should not
be strongly positively correlated across paths. In our study,
we explore this problem via measurements over a wide-area
testbed consisting of three separate sites. Path diversity be-
tween sites can be achieved either through the use of dif-
ferent providers, or through overlay paths that use one of
the sites as a relay point towards the third site1. Our inves-
tigation reveals that the level of path diversity achievable
through either method yields paths with sufficiently decou-
pled performances, so that path switching has the potential
of improving communication performance.

Another requirement for producing meaningful perfor-
mance improvements through path switching (even when
the performance of the various paths is sufficiently uncorre-
lated), is that the magnitude and time scale of performance
variations across paths should both justify and allow track-

1 See also [4] for an investigation of this issue and [13] for a study of
the level of diversity that might be available from a single provider.
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ing of the best path. In particular, continuously switching
from path to path to track small improvements in perfor-
mance may be neither feasible nor desirable from an ap-
plication performance point of view. In order to find out
whether these requirements can be met, we conducted ex-
tensive measurements on our testbed across a period of sev-
eral months to estimate both end-to-end delay and loss char-
acteristics of the different paths, thus assessing the potential
performance improvement achievable through path switch-
ing. Our findings across all those paths consistently showed
propagation delay to be the dominant contributor to end-
to-end delay, with variations in queueing delays being typ-
ically insufficient to change the rank ordering of paths, at
least over time scales consistent with path switching deci-
sions, i.e., of the order of a minute. Nevertheless, our find-
ings were somewhat different when it came to end-to-end
losses, as the rank ordering of paths was far from stable.
Although losses were consistently low across all paths (be-
low 1%), they were not uniformly distributed over time.
Because many congestion periods lasted sufficiently long
and did not significantly overlap across different paths, path
switching had the potential to substantially improve end-to-
end loss performance.

Last but not least, switching to a new path is predi-
cated on the assumption that the new path will indeed re-
main better. This last requirement highlights the need to
not only monitor the current performance of a path, but
to also accurately predict its future performance. In other
words, a decision to switch to a new path is justified only
if the new path outperforms other paths, after the switch
has occurred. Based on the insight into path behavior de-
rived from our experiments, we developed a simple yet ef-
fective methodology for monitoring and predicting path per-
formance and making path switching decisions. The perfor-
mance improvements offered by this solution were evalu-
ated against those achievable by an “optimal” solution, i.e.,
a solution that assumes perfect foresight in predicting the
best performing path and selecting it. As we shall see, those
results show not only that sufficient path diversity exists
to achieve substantial performance improvements through
path switching, but also that the simple methodology we de-
veloped is capable of delivering near optimal performance.

The remainder of this paper is organized as follows.
Section 2 introduces the topology of our testbed and the
methodology used in collecting measurement data. Sec-
tions 3 and 4 are concerned with the characteristics of
paths available through multi-homing and overlay solu-
tions, respectively. In both sections, we explore the varia-
tions in end-to-end delay and losses observed across differ-
ent paths, and assess their implications on the benefits of
path-switching. Section 5 is devoted to developing an effec-
tive path-switching solution for improving end-to-end loss
performance. Finally, Section 6 concludes with a summary

Internet
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AB

AB

CW
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Abilene
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Node B
(UPenn)

Node C
(UMN)

Node A
(UMass)

Figure 1. The testbed nodes and their con-
nectivities to different ISP’s.

of our findings.

2. Wide-Area Measurement Testbed

2.1. Testbed Setup

In order to explore the benefit of end-to-end path switch-
ing, we use a wide-area testbed to apply and validate our
analysis. As shown in Fig. 1, the testbed involves three cam-
pus networks in the US, two on the east coast (University
of Massachusetts and University of Pennsylvania), and one
in the Midwest (University of Minnesota), all of which are
multi-homed.

To reach other nodes, each node has the ability to select
Abilene (AB) or commercial providers, i.e., UMass (node
A) via Cable & Wireless (CW), UPenn (node B) via Co-
gent (CO), and UMN (node C) via Genuity (GE) and Super-
net (SN). To enable automatic selection of outgoing ISPs,
end hosts in our testbed are assigned multiple IP addresses,
and the border gateways are configured with special routing
policies: UPenn and UMN use source-address based rout-
ing, and end hosts at UPenn/UMN select one of the outgo-
ing ISPs by choosing an appropriate IP address as the source
address; UMass installs static routes to other two sites at the
border gateway, which selects one of the two outgoing ISPs
based on the destination address. In addition, end hosts at
each site are also configured with source routing capability
to forward traffic. An overlay network is then formed by es-
tablishing IP tunnels among them, so that an end host could
also use overlay paths to reach other nodes. As a result,
there exist more than 10 paths between any given source
and destination.

Table 1 gives a snapshot of the AS level paths traversed
between end hosts when commercial providers are used. Of
the total 13 intermediate ASes covered, four of them are so-
called tier-1 ASes (UUNet, Qwest, C&W, Level3) and the
others are regional transit networks. The average length of
end-to-end AS level path is 4.3 hops. Although our testbed
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Src-dst AS path
A-B UMass C&W Qwest Supernet UMN
A-C UMass C&W UUNet UPenn
B-A UPenn Cogent PSI C&W UMass
B-C UPenn Cogent PSI Level3 Genuity UMN
C-A(SN) UMN Supernet Qwest C&W UMass
C-B(SN) UMN Supernet Qwest UUNet UPenn
C-A(GE) UMN Genuity Level3 C&W UMass
C-B(GE) UMN Genuity Level3 Yipes UPenn

Table 1. The AS level paths between the
nodes through commercial providers.

is relatively small, the combination of paths constitute a
rich and diverse path set. We believe that this testbed is a
representative example for campus or corporate networks,
where end-to-end path switching mechanisms may be ap-
plied, thus serves as an appropriate setting for our study.

2.2. Measurement Experiments

Using the wide-area testbed, we conducted experiments
that continuously monitored and measured the end-to-end
performance (in terms of both delay and losses) of all
combinations of paths over a timespan of several months.
A measurement daemon is installed at every node on the
testbed, where a source node sends time-stamped UDP
probes every second to a destination node via different
paths. When receiving a probe, the daemon at the destina-
tion node records the time at which it is received and stores
this along with the source time-stamp in a trace file. From
these trace files, we compute the end-to-end delay and loss
statistics along various paths. To correlate path characteris-
tics and end-to-end performance, we also run traceroute si-
multaneously (but at a much lower frequency, every 5 or
15 minutes) to track the paths that the probes traverse and
record any path change at either the IP (i.e., router) level or
the AS level.

Since our objective is to study the benefits of path
switching among a set of available paths, we focus pri-
marily on the relative performance of those paths, instead
of their absolute performance. In terms of end-to-end de-
lay, this has the added benefit that clocks at different
nodes do not need to be precisely synchronized. To com-
pare the relative delay performance among a set of paths
between a given source and destination, we select a ref-
erence path (e.g., the “best” path over a measurement
period) and compute the difference between measured de-
lays of other paths and this reference path using data
collected in the same probing interval. The loss statis-
tics of each path are computed by counting the num-
ber of lost probes over some measurement window. In
this paper, we use three sets of measurement traces, de-
noted respectively as E1, E2 and E3, which were collected

from 08/15/2003, 09/02/2003 and 09/15/2003 respec-
tively, each lasting one week.

3. Path Diversity Through Multi-homing

In this section, we analyze and compare the performance
of paths via different providers (called provider paths in
short) on our testbed. This information is helpful in under-
standing the potential path switching benefits that can be
attained via provider selection. Since path switching typi-
cally incurs a cost (e.g., the application flow could see de-
lay jitter or packet reordering), too frequent path switching
is impractical. Therefore, the time scale used in our analy-
sis is no less than 1 minute2, and we mainly focus on per-
formance variations averaged over minute-long intervals.

3.1. End-to-End Delay Performance

We first focus on the end-to-end delay performance of
different provider paths. For a given source and destination
node pair and its associated candidate provider paths, we
fix a reference provider path and compute the relative de-
lay of other provider paths with respect to this path. Then
we rank the relative delay of these provider paths and ana-
lyze how the ranking changes over time. Based on our mea-
surement data, our first major observation is that in terms of
end-to-end delay, there usually exists a provider path that
almost always outperforms the other provider paths.

Path Ranking ∆d (ms) Path Ranking ∆d (ms)
A-B(AB) 1 0.0 B-A(AB) 1 0.0
A-B(CW) 2 11.7 B-A(CO) 2 1.5
A-C(AB) 1 0.0 B-C(AB) 1 0.0
A-C(CW) 2 15.8 B-C(CO) 2 22.7
C-A(GE) 1 0.0 C-B(GE) 1 0.0
C-A(AB) 2 7.3 C-B(AB) 2 6.1
C-A(SN) 3 23.2 C-B(SN) 3 28.4

Table 2. Relative delay performance and rank-
ing of provider paths between each source-
destination pair.

To illustrate, Table 2 presents the overall ranking of
provider paths between every source-destination pair and
their (average) relative delays (∆d, with respect to the best
performing path) using the dataset E2. The notation x-y(z)
indicates that the source is x, the destination is y and the
first-hop ISP from x is z. Fig. 2 further shows the relative
performance gain versus duration for each ranking change
when another provider path outperforms the path with the

2 In Section 5, we further discuss our choice of a 1-minute time scale in
our analysis.
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overall smallest delay3. We see that the majority of rank-
ing changes are short-lived (e.g., less than 1 minute), with
mostly small performance gains. Using ranking statistics
computed over 1-minute intervals, Table 3 shows (1) the
percentage of time that the overall best path indeed provides
the smallest delay; (2) the number of ranking changes, i.e.,
another path outperforms the overall best path; (3) the av-
erage duration of ranking changes, i.e., the average dura-
tion of another path other than the best overall one having
the smallest delay. Between all source-destination pairs, the
best overall provider path outperforms other provider paths
in more than 99% of time.
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Figure 2. Delay gain achieved by non-
dominant paths versus the duration that an-
other path outperforms the best overall path.

Src-dst Occupation of best Number of Average duration of
overall path(%) changes rank changes (min)

A-B 99.78 4 3.5
A-C 100.00 0 0.0
B-A 99.64 25 1.4
B-C 99.50 2 25.0
C-A 99.63 6 2.0
C-B 99.65 16 2.1

Table 3. Performance of the overall best
provider paths in terms of delay.

To better understand this “best provider path” phe-
nomenon and its generality, we quantitatively consider
the various factors that may contribute to the relative de-
lay performance of provider paths and thus their rank-
ings. We first consider the possible effect of queueing delay
on provider path ranking changes. For this purpose we par-
tition the measurement traces into 10-minute segments. As-

3 For clarity, we show only those changes that last more than 10 sec-
onds. The relative delays shown here were the average over 10-second
interval, in order to smooth out anomalous delay hikes.

suming that there is no path change during a 10-minute seg-
ment, the “queueing delay” is estimated by subtracting the
minimum delay of the 10-minute segment from the de-
lay measurement data in the same 10-minute segment. If
there is a path change in a 10-minute segment, this seg-
ment is excluded from the analysis. The results show
that queueing delays were relatively small. For exam-
ple, the probability of queueing delay exceeding 4ms is
less than 0.08 on path C-A(AB) [12]. Given that the av-
erage relative delay among the provider paths is larger
than 7.3 ms (see Table 2), it is evident that queueing de-
lay does not have a significant impact on the relative rank-
ing of these paths.

Since the propagation delay is the dominant factor in de-
termining the relative delay performance of different
provider paths, it is natural to ask how path changes will af-
fect their relative performance. To answer this question, we
again analyze the traceroute data. We group path changes
into two categories: IP-level (or router-level) path changes,
namely, different IP addresses are seen in the tracer-
oute data for a given provider path, but they still belong
to the same AS; and AS-level path changes, namely, dif-
ferent AS paths are seen in the traceroute data for a given
provider path. The IP address to origin AS mapping is
done using BGP information from [1]. From the tracer-
oute data collected over several weeks, we observe that
most provider paths are quite stable, which is consis-
tent with observations in [16]. Most IP-level paths last
hours before any change occurs and their changes are
short-lived, with duration less than 10-15 minutes. In ad-
dition, although about 48% of IP-level path changes last
no longer than 15 minutes, a large portion of such changes
are due to multi-path routing and traffic engineering in cer-
tain tier-1 ISPs such as AS 701 (UUNET). Moreover,
IP-level path changes rarely affect the relative rank-
ing of the provider paths, as they tend to occur within the
same PoP. At the AS-level, the paths show even higher sta-
bility. From the data we collected, we found that more
than 50% AS paths last at least 12 hours, with a small por-
tion (18.9%) lasting fewer than 15 minutes, which is likely
caused by some transient events in inter-domain rout-
ing. However, unlike most IP-level path changes, AS-level
path changes can have a significant impact on the delay per-
formance of a provider path [12].

We conclude this section by summarizing our major find-
ings. In terms of end-to-end delay performance, we find
that there exists a best overall provider path that almost al-
ways outperforms the others. This is likely because propa-
gation delay is the primary factor that determines the end-
to-end delay performance. The difference in the propaga-
tion delays of different provider paths comes from the fact
that ISP’s have different PoP locations and peer with other
ASes only at certain PoP’s. Queueing delay and IP-level
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path changes, in general, cause only small delay fluctuations
relative to the propagation delay, thus having a minimal ef-
fect on the relative delay performance. In contrast, AS-level
path changes, albeit rare, may have a significant impact on
the relative delay performance. These findings suggest that
there is no significant benefit in dynamic path switching for
delay performance optimization, in particular, at small time
scales (e.g., minutes). Switching to another provider path is
only worthwhile when AS-level path changes cause a sig-
nificant and long-lived increase in the delay performance of
the dominant provider path. Those long-lived delay perfor-
mance changes, however, can be easily detected without re-
sorting to any sophisticated mechanism.

3.2. End-to-end Loss Performance

We now analyze the potential benefits of path switching
for optimizing loss performance by comparing the end-to-
end loss rates of different provider paths. From the measure-
ment data collected over our testbed we find that unlike end-
to-end delay performance, when it comes to end-to-end loss
performance there does not exist a provider path that con-
sistently outperform others. There are two reasons for this
observation. First, as Table 4 shows, the average loss rate of
each provider path computed using the dataset E2 and av-
eraged over the entire duration of the experiments, is ex-
tremely low. Second, when losses occur, they tend to come
in bursts, and such losses can happen on any provider path.
As a result, no provider path consistently outperforms the
others.

Path Loss (%) Ranking Path Loss (%) Ranking
A-B(CW) 0.0840 1 B-A(AB) 0.1572 1
A-B(AB) 0.1481 2 B-A(CO) 0.5612 2
A-C(CW) 0.0423 1 B-C(AB) 0.2589 1
A-C(AB) 0.0817 2 B-C(CO) 0.8128 2
C-A(GE) 0.3090 1 C-B(SN) 0.0084 1
C-A(AB) 0.3413 2 C-B(AB) 0.0342 2
C-A(SN) 0.7731 3 C-B(GE) 0.0931 3

Table 4. Overall average loss performance
and ranking of provider paths.

Although the overall loss rate of each provider path is ex-
tremely small, we do observe periods of significant losses
on all provider paths that last a few minutes or longer. For
example, in Fig. 3 we show the loss rates averaged over 1-
minute intervals during a week period starting 09/02/2003
for the two provider paths from node A to node C. We can
see many loss “spikes” on both paths with loss rates ex-
ceeding 1% or more, indicating that losses on both paths
are generally bursty. Moreover, the losses occurring on the
two paths do not appear to be highly correlated, as can be in-
ferred from the bottom plot, where the loss rate differences

between the two paths are shown. It can also be observed
that at times path A-C(AB) has lower loss rates than path A-
C(CW), but at other times it is the other way around. Hence
no one provider path consistently outperforms the other.
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Figure 3. The 1-minute average loss rates on
the two provider paths, A-C(AB) (top), and A-
C(CW) (middle). The bottom plot shows the
relative loss rate difference between the two
paths.
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Figure 4. Loss periods of all provider paths.

Fig. 4 illustrates the bursty nature of losses by showing a
scatter plot of the loss periods of all provider paths, where
the x-axis is the duration of a loss period, i.e., the number
of consecutive 1-minute intervals with at least 1 lost probe,
and the y-axis is the average loss rate computed over the loss
period. From the figure we see that loss periods can some-
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times last more than 10 minutes, and the average loss rates
during such periods can often go above 50% and even reach
100% (some paths actually experienced a few outage peri-
ods during which nearly all packets were lost). Intuitively,
switching to a different path during those loss bursts can
be very beneficial, especially for those points in the upper
right quadrant, namely lossy periods of both high loss rate
and long duration.

Using the 1-minute average loss rates computed from the
dataset E2, Table 5 summarizes the loss performance com-
parison of the provider paths for each source-destination
pair. The table uses the provider path with the best over-
all average loss performance (the path with rank 1 in Ta-
ble 4) as the basis for comparison, and shows (1) the per-
centage of time4 in which the best path does outperform
other provider paths (i.e., occupation of best overall path
(%) in Table 5); (2) the number of ranking changes, namely,
another provider path outperforms the best path; and (3)
the minimum, average, and maximum of the durations over
which another provider path has the best average loss per-
formance. Unlike the end-to-end delay performance (see
Table 3), the provider path with the best long-term loss per-
formance does not consistently outperform other provider
paths. As illustrated in the last two rows of Table 5, it is
quite possible for the best overall path to only deliver the
lowest loss rate for a small fraction of time. This is because
having the best overall loss rate over a week-long period
does not guarantee that at any given 1-minute interval there
are no other paths that offer better performance. This is es-
pecially true when multiple alternatives are available, as is
the case for site C, which can select among three providers.
For example, from node C to node B, the best overall path
(i.e., C-B(SN)) outperforms both the two other paths (i.e.,
C-B(AB) and C-B(GE)) for only 2.22% of the time, even
though it outperforms each single one of them most of the
time. From the above analysis, we can clearly see the po-
tential of path switching that would allow close tracking of
the best path in each time interval.

Src-dst Occupation of best Number of Duration (minutes) of
overall path (%) changes changes (min, avg, max)

A-B 19.24 318 (1, 1.1, 3)
A-C 60.30 98 (1, 1.1, 2)
B-A 57.46 92 (1, 1.2, 12)
B-C 75.64 657 (1, 1.3, 7)
C-A 4.55 11 (1, 3.8, 22)
C-B 2.22 42 (1, 1.0, 2)

Table 5. Performance of the overall best
provider paths in terms of loss.

4 In most 1-minute intervals, the loss rates are 0 on all the paths. Hence,
we only count those intervals in which the loss rate of the best overall
path is not equal to that of the other path(s).

In general, our findings on end-to-end loss performance
of different provider paths suggest that there are potential
benefits in performing dynamic path switching at a rela-
tively fine time scale (e.g., a few minutes). To quantify the
performance gains we can potentially achieve, we consider
an ideal case where the provider path with the best average
loss rate over each 1-minute interval is always used, assum-
ing that the average loss rate on each path is known a priori.
Hence the loss performance using this ideal dynamic path
switching reflects the theoretically best attainable loss per-
formance of any dynamic path-switching mechanism. Ta-
ble 6 shows the resulting overall loss rate achieved by the
ideal dynamic path switching for all six source-destination
pairs (the column marked as “ideal dynamic”). For compar-
ison, the best overall loss performance without path switch-
ing (that of the 1st ranked provider path in Table 4) is also
shown (the column marked as “best static”). Clearly, the
ideal dynamic path switching leads to marked improvement
in the overall loss performance for all source-destination
pairs.

Best Static (%) Ideal Dynamic (%) Correlation
A-B 0.084 0.013 0.213
A-C 0.042 0.015 0.452
B-A 0.157 0.012 0.020
B-C 0.259 0.079 0.024
C-A 0.309 0.010 0.011/0.026/0.626
C-B 0.008 0.001 0.001/0.016/0.029

Table 6. The achievable loss rate by statically
choosing the best path and by ideal path
switching.

Lastly, from Table 6 we see that although ideal dy-
namic path switching attains better overall loss perfor-
mance for every source-destination pair, the percentage of
performance gains is not uniform over all these source-
destination pairs. For example, the performance gains of
source-destination pairs A-B and A-C can be seen to be
much lower than those of the other pairs. This can be ex-
plained by considering the loss performance correlation be-
tween the provider paths for each source-destination pair.
We define the spatial correlation between two paths as the
correlation coefficient of the 1-minute average loss rates be-
tween them. By computing this spatial correlation coeffi-
cient between two provider paths of each source-destination
pair, we find that except for three pairs of provider paths, the
correlation coefficient for all other pairs of provider paths is
less than 0.03 (see Table 6). For the two provider paths from
node A to node B, the correlation coefficient is about 0.21,
and for the two provider paths from node A to node C, it is
about 0.45. This mild loss correlation limits somewhat the
potential performance gains of ideal dynamic path switch-
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ing. In the case of node C to node A, the two provider paths
via SN and GE have a correlation coefficient of about 0.63.
However, losses on these two provider paths are not cor-
related with those of the third provider path via AB. Con-
sequently, the ideal dynamic path switching is still able to
achieve over 95% performance improvement by switching
to the third provider path when the other two paths experi-
ence losses.

In summary, we have shown that as long as losses on
the candidate provider paths are not strongly correlated, dy-
namic path switching based on selecting the best perform-
ing provider path over, say, a one minute time scale, can po-
tentially offer meaningful gains in end-to-end losses.

4. Path Diversity Through Overlays

Overlay networks can also provide path diversity. From
the end-user’s perspective, there is no difference between an
overlay path and a direct (provider) path. However, unlike
direct paths going through different ISP networks, overlay
paths tend to share more common segments with the under-
lying direct paths used to form the overlay. This can lead
to stronger correlation between overlay and direct paths,
and as a result marginal potential for performance improve-
ment from path switching. In the previous section we also
observed that path diversity was of limited benefit when
it came to improving end-to-end delays. This remains true
with overlays, hence, we restrict our investigation to exam-
ining the potential that overlays have for improving end-to-
end loss performance.

In order to eliminate the influence of multi-homing, we
select one provider for each site and consider the result-
ing overlay network spanning the three sites. Using our
testbed, there are twelve possible overlay networks via dif-
ferent combinations of provider selections. This produces
an overlay network with only two candidate paths for each
source and destination pair: the direct path via the selected
provider and the “two-hop” overlay path via the third node.

Dir. (%) Dyn. (%) Corr. Dir. (%) Dyn. (%) Corr.
A-B 0.084 0.033 0.482 0.148 0.138 0.993
A-C 0.042 0.026 0.867 0.082 0.057 0.400
B-A 0.157 0.017 0.032 0.157 0.138 0.547
B-C 0.259 0.006 0.007 0.259 0.008 0.002
C-A 0.309 0.009 0.042 0.341 0.138 0.401
C-B 0.034 0.000 0.001 0.093 0.088 0.513

Table 7. Loss rate improvement achieved by
ideal dynamic path switching between direct
and overlay paths in the first case study (left)
and in the second case study (right).

We initiate our study of end-to-end loss performance in

an overlay with two case studies. In the first case, nodes A,
B, and C use CW, AB, and GE as their respective provider.
In the second case, they all use AB as their provider. We
compare the loss performance of the direct path to that
obtained by dynamically selecting every minute the better
path, direct or overlay, for each source-destination pair. As
shown in Table 7, the loss rate improvement from the ad-
ditional overlay path is remarkable in the first case study.
However, the improvement is less obvious for the second
case study (also see Table 7). By computing the spatial cor-
relation of each path pair in the above two cases, we found
that when the three sites are all connected through AB, the
candidate paths are more likely to be strongly correlated.
This might be explained by the fact that the overlay net-
work using Abilene as the provider shares more physical
links. From Table 7, we also observe that there exist cer-
tain source-destination pairs for which the potential per-
formance improvements are rather limited. For example,
in both cases the path pairs originating from node A have
strong correlations, which greatly limit the resulting perfor-
mance improvement.

So far we have observed that a significant loss per-
formance improvement is achievable when spatial corre-
lation between the direct and overlay paths is small. We
investigate next whether the spatial correlation factor can
serve as a qualitative measure for predicting potential per-
formance improvement. Consider, a pair of paths P1, P2

with overall loss rate s1 and s2, and let s′ denote the loss
rate obtained by dynamically selecting the path with better
loss performance in an off-line fashion. Let R(P1, P2) =
(min(s1, s2) − s′)/ min(s1, s2) denote the best attainable
loss performance improvement relative to the best single
path. In Fig. 5, the relationship between the spatial corre-
lation and the achievable loss performance improvement is
shown for all possible pairs of direct paths and all direct-
overlay path pairs. We observe from Fig. 5 that the connec-
tion between spatial correlation and performance improve-
ment is rather strong. For example, if a pair of paths has
spatial correlation lower than 0.2, the best attainable perfor-
mance gain from path switching is always larger than 70%.
Conversely, if a pair of paths exhibit strong correlation in
their loss processes, then the likelihood that they benefit
significantly from dynamic path switching is also greatly
reduced. However, there are still cases where the potential
performance improvement is larger than 40%, even for path
pairs with a spatial correlation factor larger than 0.6.

To summarize, we have observed that path switching
also has the potential for improving end-to-end loss perfor-
mance even within an overlay. In some cases, this improve-
ment is not as large as what is achievable through multi-
homing based path switching. This is most likely due to
the presence of overlaps between direct paths and overlay
paths. In the next section, we explore practical predictor-

Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04) 
1092-1648/04 $ 20.00 IEEE 



0

20

40

60

80

100

0.2 0.4 0.6 0.8 1.0

Pe
rf

or
m

an
ce

 I
m

pr
ov

em
en

t (
%

)

Spatial Correlation

overlay
direct

Figure 5. Performance improvement and spa-
tial correlation.

based techniques that can achieve much of the potential im-
provement, whether through multi-homing or through over-
lays.

5. The Case for Path Switching

Our previous measurement study demonstrated that there
is significant potential for reducing end-to-end loss rates
through path switching. In this section, we show that this
potential can be realized in practice. In particular, our pre-
vious assessment relied on an ideal model where we al-
ways knew ahead of time which path was going to be the
best one. This is obviously not a realistic assumption, and
the first step towards realizing the potential benefits of path
switching is, therefore, to develop a practical and effective
method for predicting path performance and more specifi-
cally which path will offer the best performance. In the next
two sub-sections, we focus on exploring if and how this is
feasible.

5.1. Predictability of Path State

A random process is predictable only if it exhibits some
form of temporal dependency. Our analysis of the traces that
we have gathered shows the presence of temporal correla-
tion. We computed the autocorrelation functions with differ-
ent time lags for all 46 traces in E2, based on their average
loss rates. The average loss rate is computed every minute
when the time lag is greater than or equal to 1 minute, and is
computed every 30 seconds when the time lag is 30 seconds.
Fig. 6 shows the percentage of traces whose autocorrela-
tion functions exceed different values. It can be observed
that when the time lag is 30 seconds or 1 minute, most of
the traces show strong temporal correlation, and the corre-
lation decreases as the time lag becomes larger. However,
even with a time lag as large as 5 minutes, over 35% of the
traces still have autocorrelations exceeding 0.5. This sug-
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Figure 6. The percentage of traces whose au-
tocorrelations exceed different values.

gests the possibility of using past path loss behavior to pre-
dict future path loss behavior.

Markov processes are capable of capturing correlation
and can, therefore, be used to predict future loss behavior
(for example, see [6] for an application to a related prob-
lem of predicting degradations in round-trip delays, and us-
ing that information to select an “exit” gateway). In pre-
dicting loss, a Markov model can be tuned to operate at
any time scale. From the data of Fig. 6, we know that in
general smaller time scale offers higher temporal correla-
tion when analyzing loss. However, the temporal correlation
in loss does not significantly increase when the time lag is
reduced from 1 minute to 30 seconds. Since path switch-
ing and the associated re-routing incur a cost, using too
fine time granularity for performance prediction and path
switching has disadvantages. We therefore select 1 minute
as the time scale of the Markov model used for path state
prediction.
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Figure 7. The effect of the order of Markov
model k and the threshold θ on the pre-
dictability of path state.

We begin by labeling a path as being in one of two states,
either good or bad. Suppose we use an observation interval
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of length w, the state of path X is defined as 1 if the aver-
age loss rate in the interval is greater than θ, and 0 other-
wise. We use a kth order Markov process to represent the
temporal correlation of the path state; the process is defined
by the probability

Pr{Xi = xi|Xi−1 = xi−1, ..., Xi−k = xi−k}
= P (xi|xi−1, ..., xi−k). (1)

where Xi (xi) refers to the state of the path in interval i.
The order of the Markov model, k, determines how many

intervals need to be observed before we can predict the state
of the path in the next interval. It then remains to choose the
parameters w and θ. As mentioned earlier, we choose w to
be one minute because of the strong correlation that we ob-
served in the traces at that lag. In order to choose appropri-
ate values for θ and k, we focus on the predictability of pro-
cess X as a function of these parameters. Let b represent
the observed sequence (xi−1, xi−2, ..., xi−k), and a repre-
sent the value of Xi, then the predictability can be measured
by the empirical conditional entropy (see [14] for details)

H(θ, k) = −
∑

b∈Xk

Pr (b)
∑
a∈X

P (a|b) log P (a|b). (2)

where Xk = {0, 1}k is the sample space of b. The empir-
ical conditional entropy is 0 if X is completely predictable
and log |X | if X is completely random (note that P (a|b)
could be 0, hence we define log 0 = 0). Given a time se-
ries representing process X , we can count the number of
times that state b is observed (lk(b)), as well as the num-
ber of times that state b is followed by state a (lk(a, b)).
Then P (a|b) can be estimated as

P (a|b) =

{
lk(a,b)

lk(b)
, lk(b) > 0

0 otherwise
(3)

We estimated this value for the C-A(AB) path using the
one-week E1 trace collected on 08/15, and with different
values of k and θ. From the results shown in Fig. 7, we ob-
serve that:

• Predictability is slightly improved by increasing the or-
der of the Markov predictor. This suggests that there
are some long term temporal correlations in this loss
process; thus having a longer memory of the history
may lead to a more accurate prediction.

• The selection of θ has a critical effect on the pre-
dictability of loss. An appropriate value of θ improves
the predictability of path quality because it enables
better differentiation of the path states. For instance,
θ = 3% seems to be the best choice for this particu-
lar trace.

Although some of the above conclusions are specific to
this example, we observed similar trends when studying the
other traces. Henceforth, we use θ = 3% as the threshold
to define the 2 states of our path model. We further study
the effect of the order of the Markov model on prediction
accuracy in the next section.

5.2. Quality of Prediction

The performance of a predictor can be measured by the
precision rate p, the fraction of predicted states that match
the observed states, and the recall rate r, the fraction of ob-
served states that are correctly predicted. Let ht represent
the prediction of X in interval t, xt denote the actual value
of X in interval t, then p and r can be defined as

p = P (Xt = xt|ht = xt) =
P (ht = xt, Xt = xt)

P (ht = xt)
. (4)

r = P (ht = xt|Xt = xt) =
P (ht = xt, Xt = xt)

P (Xt = xt)
. (5)

Clearly, a good predictor should have both high preci-
sion and recall rates. Because the good state is dominant
throughout all traces, the prediction accuracy for the good
state (> 95%) is much higher than for the bad state. There-
fore, we focus on the precision and recall rates of different
predictors in predicting the bad state.

We first study a simple predictor, which always predicts
the state in the next interval as the state in the currently ob-
served interval, i.e.,

Xi = xi−1 (6)

This predictor assumes that the state of a path does not
change in one observation interval. Note that the preci-
sion rate and the recall rate of this simple predictor are the
same. We also study Markov predictors of different orders,
i.e., given that the states of a path in the last k intervals,
Xi−1, Xi−2, ...Xi−k , are b, we predict its state in the next
interval i as

Xi = argmax
a

P (a|b). (7)

The advantage of a Markov predictor over the simple pre-
dictor is that it relies on history to make a prediction. The
first-order model maintains little history, only one observa-
tion interval, and thus does not exhibit this advantage. In
fact, in most cases, the first-order Markov predictor makes
the same decision as the simple predictor.

Higher-order models can account for long-term correla-
tions in loss patterns. However, this requires that the tempo-
ral dependencies of the observation state sequence be sta-
tionary, which may not be the case in a real trace. As a re-
sult, while having longer memory can potentially increase
the recall rate of the Markov predictor, it may also lower the
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precision rate. We measured the overall precision and re-
call rates for all traces in dataset E2, using both the simple
predictor and Markov predictors of different orders. The re-
sults are shown in Table 8. For this dataset, the 4th-order
Markov model gives the best overall performance. How-
ever, the improvements of both precision and recall are very
small compared to the simple predictor. Note that the av-
erage precision/recall rate is not very high. This is because
many traces contain only a small number of bad states, and
these bad states are typically not temporally correlated. To
predict such sporadic loss events ahead of time is nearly
impossible. It therefore makes sense to consider the perfor-
mance of a predictor once a path has entered a bad state,
i.e., a conditional performance measure. The last column
of Table 8 shows the recall rate of the different predictors
conditioned on the fact that the predictor has at least one
bad state in its memory. As can be seen from the table, this
conditional accuracy of the predictors is much higher. Note
that the higher-order models have a lower conditional recall
rate. This is because their longer memory, combined with
the condition of having at least one bad state in memory, in-
troduces larger possibility of incorrect predictions. In con-
trast, both the simple predictor and the 1st order predictor
achieve a 100% recall rate as they essentially always pre-
dict another bad state after experiencing the first bad state.

The 2-state path model provides the simplest classifica-
tion of path quality, but its coarseness can hide differences
in the quality of two paths. For example, if one path has a
loss rate s1 = 0 and another has a loss rate s2 = 2.5%,
they are both considered to be in a “good” state when us-
ing a 2-state path model with θ = 3%. Categorizing loss
rates into a larger number of states provides a finer granular-
ity definition of path state. However, this need not improve
prediction accuracy, because the addition of new states in-
creases the probability that the model makes an incorrect
prediction. For example, we can classify path quality us-
ing a finer granularity as being “good”, “acceptable”, “bad”,
or “very bad”, based on three thresholds, say, 1%, 3%, and
5%. The last row of Table 8 shows the results of applying
a first-order Markov predictor to this 4-state path model for
all the traces. Note again that the precision-recall results are
only computed for the lossy states, i.e., 1% ≤ s < 3%,
3% ≤ s < 5% and s ≥ 5%, and that the conditional re-
call rate is computed given that one of the 3 lossy states
is observed in the last interval. The overall precision and
recall percentages clearly show that the probability of cor-
rectly predicting the lossy states decreases as the number of
states increases. However, in spite of its lower absolute ac-
curacy, a finer definition of path state could still be benefi-
cial when comparing the relative quality difference between
two paths, which might help make better path switching de-
cisions. As we will see in the next section, the results of this
trade-off are case-dependent.

Predictor Precision (%) Recall (%) Cond. Recall (%)
Simple predictor 34.82 34.82 100.0
1st-order Markov 34.81 34.86 100.0
2nd-order Markov 34.80 34.88 74.41
3rd-order Markov 34.87 35.25 64.46
4th-order Markov 34.87 35.37 58.82
5th-order Markov 34.85 35.46 55.11
6th-order Markov 34.71 35.78 52.88
4-state 1st-order 26.33 26.33 62.11

Table 8. The performance of prediction with
different models.
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Figure 8. Comparing the resulting loss rates
of using first-order, 4th-order and 6th-order
Markov predictors.

5.3. Prediction-Based Path Switching

Based on the above analysis, we design the following
path switching strategy. First, we use a predictor to predict
the state of each path in the next time interval (1 minute).
Then, at the beginning of each time interval, we choose the
candidate path with the best predicted state. We remain on
the current path, unless a better path exists.

We first compare the loss rates produced by the the
above strategy when using Markov predictors of different
orders. Fig. 8 compiles the ratios of the loss rate of the first-
order Markov predictor to those of the 4th-order and 6th-
order Markov predictors, for all combinations of traces and
source-destination pairs. The figure confirms the slightly
better performance of the 4th-order predictor, but shows
that although the 6th-order predictor decreases loss rate in
some cases, it also yields worse performance in some other
cases. This is because although the 6th-order predictor has
a higher recall percentage, it has a lower precision percent-
age than the first-order predictor. For both the 4th-order and
the 6th-order predictors, the loss rates are improved only for
a few trace pairs. This suggests that a higher-order predic-
tor in many cases does not provide a significant advantage
over a simple (first-order) predictor. Therefore, we focus on
the latter in the rest of this section.

To evaluate the performance of our path switching mech-
anism, we compare its performance to that of the ideal
switching scheme that has perfect knowledge of future path
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Trace-Pair 1 2
Loss rate on path 1 (%) 0.24 0.33
Loss rate on path 2 (%) 0.12 0.30
Best attainable loss rate (%) 0.003 0.13
Loss rate for 2-state model (%) 0.027 0.17
Error by mis-prediction (%) 0.024 0.04
Loss rate for 4-state model (%) 0.024 0.19
Error by mis-prediction (%) 0.021 0.06

Table 9. The performance of prediction-based
path switching using different models.

states and always picks the best. We use two trace-pairs,
both of length one week, as examples. As shown in Ta-
ble 9, the best attainable loss rate is 0.003% for trace-pair
1, composed of two traces with average loss rates 0.24%
and 0.12%. This value is 0.13% for trace-pair 2, consisting
of two traces with loss rate 0.33% and 0.30%. We first as-
sume a 2-state path model, for which results are given in
the fourth row of Table 9. Although there is a gap between
the resulting loss rate and that of ideal path switching, the
prediction-based mechanism still reduces loss rate signif-
icantly. We then compare this result with what is achieved
when using a 4-state path model. For trace-pair 1, the 4-state
model performs slightly better than the 2-state model. This
implies that, although the 4-state model is less accurate in
predicting path state, its ability to differentiate path quality
at a finer granularity helps path switching decisions. How-
ever, for trace-pair 2, this advantage is overtaken by the fact
that the 4-state model tends to result in more incorrect pre-
dictions. We used both the 2-state and the 4-state path mod-
els for all trace-pairs in our datasets, and the resulting loss
rate ratios are shown in Fig. 9. It can be observed that the
ratios are mostly close to 1, so that neither path model ex-
hibits a clear advantage.

For both the 2-state and the 4-state models, the loss
rate is higher than that of the off-line reference, and it
is important to understand the reasons behind this differ-
ence. The first-order predictor we are using has an intrin-
sic limitation in its ability to predict the state of a path,
and therefore allow timely switching decisions. It needs at
least one observation interval to detect the onset of con-
gestion, so that path switching decisions are always off by
one interval (1 minute). Conversely, path switching expe-
riences a similar one interval lag when a path’s state goes
from bad to good so that it now becomes a better option,
i.e., the other path is also in a bad state. A key question
is, therefore, whether or not the losses that occur during
those transition intervals account for the difference in per-
formance with the ideal off-line model. We call these essen-
tially “unavoidable” errors, mis-prediction errors, and in-
vestigate their magnitude by accounting for all the losses
that take place during such periods. The results shown in
Table 9 indicate that this is indeed the main cause for the
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Figure 9. Comparing the resulting loss rates
using 2-state and 4-state path models.

difference with the ideal off-line model. Bridging that gap
appears, therefore, impossible.
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Figure 10. The relative loss rate improvement
achieved by prediction-based path switching,
compared with the off-line reference.

In Fig. 10, we extend our comparison from two trace-
pairs to all possible pairs of paths in our testbed. This in-
cludes direct multi-homing paths and overlay paths. As be-
fore, the performance of the path switching decision is com-
pared to that of an ideal off-line decision. Each point in the
figure corresponds to a different pair of paths. The loss rate
improvement is a relative value. Namely, for a pair of candi-
date paths with loss rates s1 and s2, we first compute the re-
sulting loss rate of prediction-based path switching s′, and
the relative improvement is then computed as min (s1,s2)−s′

min (s1,s2)
.

The reference (optimal) value is computed similarly. Fig. 10
shows that in a few cases the loss improvement achieved by
the on-line path switching mechanism is fairly close to the
best attainable value, while in many other cases it is not.
However, for most trace pairs the improvement in loss per-
formance remains substantial. The issue of whether multi-
homing or overlay paths provides a greater opportunity for
improvement is explored in Fig. 11, in which each point cor-
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responds to a pair of direct-direct or direct-overlay paths.
The comparison results show that in most cases in our envi-
ronment there does not appear to be a major difference be-
tween the two.
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Figure 11. The relative loss rate improvement
achieved by prediction-based path switching,
with path diversity through multi-homing or
overlay, compared with the reference.

6. Conclusions

The increasing availability of path diversity when con-
necting multiple end-points makes it possible to consider
improving communication performance simply by taking
advantage of the fact that not all paths experience poor per-
formance at the same time. In this paper, we investigate the
feasibility of this idea in a reasonably representative setting,
and devise a simple path switching mechanism to demon-
strate the performance improvements that can be achieved.
Our study shows that it is possible to achieve reasonable
path diversity by relying either on limited multi-homing or
through overlay-routing. In particular, we find that when it
comes to losses, a relatively small amount of path diversity
appears capable of producing paths with non-overlapping
loss periods and, therefore, offers the opportunity to im-
prove performance through path switching.
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