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On-line Estimation of Internet Path Performance: An Application
Perspective

Abstract

Estimating end-to-end packet loss on Internet paths is important not only to monitor network performance,
but also to assist adaptive applications make the best possible use of available network resources. There has
been significant prior work on measuring and modeling packet loss in the Internet, but most of those
techniques do not focus on providing, real-time information and on assessing path performance from an
application standpoint. In this paper, we present an on-line probing-based approach to estimate the loss
performance of a netework path, and extend this estimate to infer the performance that an application using
the path would see. The approach relies on a hidden Markov model constructed from performance estimates
generated from probes, which is then used to predict path performance as an application would experience.
The accuracy of the model is evaluated using a number of different metrics, including loss rate and loss
burstiness. The sensitivity of the results to measurement and computational overhead is also investigated, and
an extension of the base approach using a layered model is explored as a possible solution to capturing time-
varying channel behavior while keeping computational complexity reasonably low. The results we present
show that the approach is capable of generating accurate, real-time estimates of path performance, and of
predicting the performance that applications would experience if routed on the path.
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On-line Estimation of Internet Path Performance:
An Application Perspective

Shu Tao and Roch Guérin
Department of Electrical and Systems Engineering
University of Pennsylvania
Phitadelphia, PA 19104, USA
Email: {shutao@seas, guerin@ee }.upenn.edu

Abstract— Estimating end-to-end packet loss on Internet paths
is important not only to monitor network performance, but also
to assist adaptive applications make the best possible use of
available petwork resources. There has been significant prior
work on measuring and modeling packet loss in the Internet,
but most of those techniques do not focus on providing real-
time information and on assessing path performance from an
application standpoint. In this paper, we present an on-line
probing-based approach to estimate the loss performance of a
network path, and extend this estimate to infer the performance
that an application using the path would see. The approach
relies on a hidden Markov model constructed from performance
estimates generated from probes, which is then used to predict
path performance as an application would experience. The
accuracy of the model is evaluated using a number of different
metrics, including loss rate and loss burstiness. The sensitivity
of the results to measurement and computational overhead is
also investigated, and an extension of the base approach using
a layered model is explored as a possible solution to captur-
ing time-varying channel behavior while keeping computational
complexity veasonably low. The results we present show that the
approach is capable of generating accurate, real-time estimates
of path performance, and of predicting the performance that
applications would experience if routed on the path.

I. INTRODUCTION

End-to-end performance of network paths is useful infor-
mation not only to assess overall network performance, but
also as a key input towards improving application guality. In
particular, adaptive applications can adjust their behavior in
response to changes in network path performance in order
to minimize the impact those changes have on application
level guality, Furthermore, when multiple paths are available,
knowing the pertormance of each path can help application
optimize performance by dynamically selecting which path
to use. The latter has been one of the motivations behind
the development of application (content} specific distribution
networks that are overlaid on top of an existing network
infrastructure, and the attempt to adapt the overlay topology
and routing to ensure the best possible performance for its
apptication, e.g., {1] and the RON project [2]. The use of such
overlays can help overcome sub-optimal routing decisions by
the default routing mechanisms that control the network paths
on which packets are forwarded. In particular, default routing

The material presented in this paper is based upon work supported by the
National Science Foundation under Grant No.-9906855.
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decisions are typically oblivious to the specific requirements
of a given application, and focus instead (rightfully so) on
global network performance measures. As a result, paths are
often available that offer significantly better performance given
the needs of an application.

Taking advantage of the existence of “better” paths calls for
both the ability to control routing decision, and for the ongoing
monitoring of path quality. As mentioned before. the former
has been one of the motivations behind the development
of overlay networks, while the latter is the main focus of
this paper. In particular, our goals are two-fold. First, we
want to develop a practical solution for on-line, ie., real-
time, estimation of end-to-end path performance. Second, we
want o ensure that although the probing mechanism used to
infer path performance will typically differ significantly from
the pattern of application traffic, the performance estimate it
generatcs remains an accurate predictor of the performance
the application would experience if it were to use the path,
The feasibility of the second goal depends on our ability
to construct a model that effectively captures the statistics
of the path state. Such a model would allow us to predict
the evolution of the path state as seen by the packets of
an application. The performance estimates derived from this
model will then be used as an input to any control process
aimed at deciding if and when the traffic of an application
should be switched to a different path. Note that implicit in this
approach is the assumption that the traffic of the application
itself does not (significantly) affect the path state. This will
typically be the case when applications generate an amount of
traffic that is small compared to the path bandwidth and the
total amount of traffic it carries. '

Estimating Internet (path) performance is clearly not a new
topic, but most carlier works have had a somewhat different
focus. These works can be classified into two major categories.
The first category involves smdying traces gathered over a
period of time to extract 4 better understanding of traffic and
loss patterns. For example, works such as [3], [4], and [5]
were aimed at identifying mathematical models to characterize
loss traces and reveal temporal dependencies that might exist.
Other works such as [6] and [7] were concerned with studying
the stationarity of the loss process on Internet paths and
analyzing its predictability. Such analyses are clearly useful
to understand the general loss characteristics of Internet paths.
but they cannot be readily applied to the on-line estimation of

1774



path performance.

The second category of works that targeted the estimation of
Internet performance is more relevant to this paper. It consists
mostly of works that used a variety of probing techniques
o infer various characteristics of Internet paths. By nature,
probing is well suited 1o real-time estimation, and is therefore
also the basis of the method used in this paper. Probes have
been used to obtain various network performance measures
such as available bandwidth, delay, and loss. For instance,
probing a path using packet pairs [8] or packet trains [9]
can provide estimates of bottleneck link speed as well as the
available bandwidth. Similarly, in [10] He et al. use a probing
method to measure end-to-end cross traffic by exploiting the
long range dependence nature of Internet traffic. Closer to
our goals, {11] introduces a method for measuring network
delay using ICMP timestamp probes. Most relevant to this
paper, [12] and [13] use various inference techaiques and
end-to-end multicast/unicast probes to estimate the loss rates
on individual links. The main difference with our work is
that we are primarily interested in inferring end-to-end loss
performance on a given path as opposed to an individual link.
More important, we are trying to ensure that our estimates are
relevant and accurate from the perspective of applications, so
that their traffic can be switched between mubtiple available
paths based on such estimates. In other words, we want o
predict the losscs that would be seen by an application with
very different characteristics compared 1o the probe traffic.
This also mecans that we need to construct a model that
captures more than basic loss estimates and will include other
parameters such as loss length distribution, loss distance, etc.

In order to achieve a comprehensive characterization of the
end-to-end loss, we use the information gathered by the probes
to construct a Hidden Markov Model (HMM) that captures the
main characteristics of the loss process. Salamatian ef al. [14]
first proposed using HMM to model the loss performance of
network paths, But our work extends the basic model along
two dimensions. Specifically, we consider two major issues in
constructing the model:

o The sensitivity of the model accuracy to the probing rate.

A higher rate typically yields a more accurate model but
at the cost of a greater overhead.

o The ability of the model to predict performance for
applications with a broad range of characteristics. This
is affected by both the model’s ability to predict future
path performance, and its dependency on the information
obtained from the probes.

In the paper, we first review the method we follow o
construct an HMM based on the information obtained from
probes. The sensitivity of this model to the characteristics
of probing traffic is then assessed, before we evaluate the
“performance” of our approach in predicting the end-to-end
performance that various applications would experience. This
evaluation phase is carried out based on several experiments
over different network paths and using a variety of applications
as traffic sources.

The remainder of the paper is structured as follows. In
section II, we introduce the mathematical model that underlies
the approach we use for path state estimation, as well as how

0-7803-8355-9/04/320.00 ©2004 IEEE.
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Fig. 1. The difference in sampling the loss process of a network path for
different flows.

Flow 1

to use the model to estimate the performance seen by traffic
sources with different characteristics. Section I describes
the accuracy of the model in estimating loss rate and loss
burstiness. Section I'V is devoted to investigating the sensitivity
of the model’s accuracy to (he intensity of the probe traffic,
while secion V focuses on presenting experimental rcsults
aimed at assessing the validity of the approach. Section VI
presents an extension to the basic model for loss prediction.
Finally, Section VII summarizes the results presented in the

paper.

II. MATHEMATICAL MODEL

What losses a flow would experience if routed on a given
path depends on many factors, including when the packets are
sent (whether the path is in congestion or not), how the packets
are sent (€.g., the inter-packet spacing), the size of packets (a
larger packet is more likely to get lost than a smaller one),
and so on. Clearly, the most accurate way of determining the
performance that a given application flow would experience
is to send probes in exactly the same manner as the target
application sends its packets. Unformunately, this is typically
infeasible because the target application is often not known
ahead of time, and even if it was, the resulting traffic overhead
would be too large. In general, active measurement schemes
are practical only if the amount of probing traffic remains
moderate. Nevertheless, even with different traffic patterns, the
losses that two flows following the same network path would
experience are not independent. Loss is a function of the path
state, e.g., path congestion or path changes, that the two flows
share. This simple statement is the basis of our estimation
method.

Specifically, our goal is to construct a model that lets us
directly estimate the state of a path and its evolution over lime.
Once the path state is known, it can be used to determine the
performance of any flow routed over the path. In other words,
we consider the state of a path as a continuous-time process,
e.g.. alternating between congestion periods when loss occurs
and loss-free periods, that different flows sample differently.
The losses experienced by a flow can then be estimated from
the flow’s sampling pattern and the evolution of the path state.
For example. in Fig. 1, two flows are sampling the same path
with different frequencies and, hence, experiencing different
loss patterns that can, however, be predicted from the evolution
of the path state. Our goal is. therefore, 10 use a “probing
flow” to derive a model describing the state of a path and its
evolution, and then use this model to predict the performance
experienced by other flows with different sampling patterns.
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The approach we rely on involves three steps: (1) probing
the path w0 collect loss statistics; (2) use those collected
statistics to generate a model describing the evolution of the
path state; and (3) derive the characteristics of the losses that
a target applicadon would experience based on the path state
model and the application traffic pattern.

A. Hidden Markov Model

We model the loss process of a network path as a multi-
state continuous-time Markov process. Each state represents a
different level of congestion and is, therefore, associated with
a different loss probability. Thus, the problem boils down to
deriving the model parameters from the fesuits of probing,
and we use a Hidden Markov Model (HMM) [14][151[16] for
this purpose. We first derive a discrete Markov model from
the observation sequence, then convert it to a continuous-time
model, which can then be used to predict the performance that
a given application flow would see.

An HMM is defined by the following parameters:

+ N, the number of states in the model. We denote the

*individual states as S = {51, 51, ..., Sn}, and the state
of the path at time ¢ as ¢,.

« M, the number of distinct observation symbols per state.
In our case, there are only two possible observation
results—either a correctly received packet or a lost one.
We denote the individual symbols as V = {vg, v, }, which
represent received and lost packets. respectively.

« The state transition probability distribution A = {a;;},
where

@i = Plawgs = Sjlac = Sih,ij € {1,2,.., N},

« The observation symbol probability distribution in state
i, B = {b;}, where

bi(k) = Plog at tlq: = 8;},5-€ {1,2,.., N}, & € {0,1}.
« The initial staie distribution ¥ = {4}, where
vi=P{g=5},i€{1,2 .., N}

For the convenicnce of description, we use the compact no-
tation A =
the model. Thus. the model formulation problem becomes the
following: given the observation sequence O = O10,..Op
{T' is the total mumber of observations), choose the proper
model parameters A to maximize F{O|\). To compute A in
an efficient way, we need to first define the forward variable

(i) as
(i) = P{0101..0¢, o = Si|A}.
Similarly, the backward variable ﬁt(i) is defined as
Be(i) = P{O:10149..07ge = Si, A}

Both the forward and the backward variables can be solved
inductively given A and O [17]. We also define &(i, ), the
probability of being in state 5; at time ¢, and state 55 at time
t+ 1, given the model and the observation sequence, i.e.,

: ft(i:j) =P{q = Sisqer1 = 5510, A}

0-7803-8355-9/04/520.00 ©2004 IEEE.

(A, B.¢) to indicate the complete parameter set of

From the definitions of the forward and backward variables.
we can write & (i, 7) in the form

at(')awb (Ot+1 Br1(F)
I Z;q ot ()aizb5(Osp1 ) Berr (4)
Using the variables defined above, we cuan re-estimate

the parameters (A} of an HMM following the Baum-Welch
procedure [17], i.e.,

N
Za(z‘,j),
i=1
i)

iy = T-1

t=1 Ej:;fc(l:j),
E(k) - Zglistdt=vkszv—l§tij). 2)
’ S 2= L &di )

It has been proved that starting from an initial parameter
A, the iterations converge to a maximum likelihood estimate
of the HMM, because P{O|X) > P(O|X) is always satisfied
{171

There are several issues we need to explore before we
can use HMM in our estimation scheme. First, the forward-
backward re-estimation algorithm typically leads to local,
instead of global maxima. In some cases, the optimization
surface can be complex and have many local maxima. There-
fore, the initial estimate of A plays an important role in
determining whether or not the algorithm will converge to the
right parameters, Fortunately, in most of the traces we have
analyzed, randomly selected initial values typically result in
the algorithm converging to the same point. In other words,
the number of local maxima appears to be limited in our
case. In [14], the authors observed a similar phenomenon. The
second concern about HMM is that the convergence process is
often slow and the convergence time varies. The major factors
that affect the convergence time include the number of states.
the number of observations, and the initial parameters. In our
implementation, for a 2-state model with 10,000 observations.
convergence can be achieved in less than 5 seconds on a PC
with 450MHz Pentium processor and 256MB of memory. We
expect the on-line decisions using this estimation scheme to
be in the context of path switching or re-routing that are
unlikely to be extremely frequent. Hence, we believe that a
multi-second convergence time will be adequate.

Another issue with an HMM approach is the actual number
of states needed to precisely describe the state of an Internet
path, In [14], the authors indicate that most loss traces they
studied can be represented by a 2 or 3-state model, while very
few exhibit 4-state behaviors. In our study, we choose to use a
2-state model in most cases. This is motivated by the fact that
a 2-state model is typically sufficient to accurately estimate
the first-order statistics (e.g., loss rate, loss length distribution,
etc.y that we are interested in. Furthermore, computational
complexity grows rapidly with the increase of the number of
states, so that there is strong incentive for using model with
less states. In Section III, we investigate further the impact
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of the number of states in the model on the accuracy of the
estimates it generates.

B. Inferring Loss Performance for Application Flows

The validity of the above model is based upon the fact
that although the path state is “hidden”, it can be statistically
conjectured from the loss perceived by a flow. This, however,
leads to a model that is dependent on the probing interval,
which is not our ultimate goal. Instead, we intend to infer from
this model the losses experienced by an arbitrary application
flow that will typically sample the path with a different rate
compared to the probing flow used to construct the HMM. It is,
therefore, necessary to determine how to “translate” the HMM
constructed from the probing flow into one that is applicabie
to a larget application flow. For simplicity, we inilially assume
that both the probing flow and the target flow have constant
packet size and packet inter-arrival time. The effect of variable
packet size and inter-arrival time will be investigated later in
section V.

We also assume that both the target application flow and the
probing flow see the same loss probability when sampling the
path in state 5;. Again, this is because of our assumption that
neither flow affects the path state, so that the loss probability
experignced by a flow depends only on the underlying path
state. However, the state transition probabilities a;; seen by
the two flows will be different, because they are directly tied
to the packet inter-arrival time. How the two are related can
be explored by considering a continuous time Markov model
to describe the evolution of the path state. Assuming such
a continuous-time model, we first define its discrete state
transition matrix P as [as;]. Then, we can the find its generator
matrix Q by solving the associated Kolmogorov Backward
Equation P'(t) = QP(t), which admits the following solution

O t n
P=ep(ony=3 2L ®)
n=0 .

where ¢ is the sampling interval (packet inter-arrival time). If
the probing flow has a sampling interval of ¢ and a transition
probability matrix P;, while the target flow has a sampling
interval of £ and a transition matrix Py, then Py = exp (Qt)
and Py = exp (Q4). We therefore have Py = y'P1. Similarly,
we can compute the transition matrix P, of a target application
flow that has sampling interval ; as
Pp=PE. 4)
According to Sylvester’s theorem, for any positive ratio-
nal number k, the power of matrix 7, can be numerically
computed using iis eigenvalues and eigenvectors. In practice,
however, we only consider the simplified case where & =
2™ (m==1,2,3,_.). Thus, Pk can be derived by recursively
computing the square root of matrix P;. The square root of a
matrix with no eigenvalues on R~ can be quickly found using,
e.g., the Denman Beavers iteration [18].
Following the above analysis, one can infer the loss perfor-
mance of a target application flow tfrom the HMM constructed
using the probing flow. As mentioned earlier, a key assumption

0-7803-8355-9/04/$20.00 ©2004 IEEE.
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Fig. 2. The actual packet loss rate compared with the results generated by
a 2-state HMM: trace 20Dec97 and 26Jun98.

is that neither the probing flow nor the target flow is a
major contributor to congestion on the sampled path. This
assumption is key to ensuring that the matrix @ does not
depend on the specific flow and preserving the above simple
relation between the discrete state transition matrices of the
two flows,

[II. ACCURACY OF THE MODEL

As mentioned in Section I, there have been other models
used Lo describe packel losses, e.g., [3], [19], most of which fo-
cused on directly describing the temporal dependency of losses
instead of capturing the variation of path state. Representative
samples of such models include the Bernoulli model and the
Markov model with different orders. The Bernoulli model
assumes independent loss probability for each packet, while
the Markov model provides for different levels of memory in
describing the loss probability of successive packets. Unlike
these models, an HMM is a model with parameters that
incorporate memory of the entire sampled data. We therefore
expect it to yield reasonably accurate estimates even when
the number of states used to model the path is limited. In
this section, we investigate the accuracy of this model by
comparing the estimates it generates to the actual statistics
of the loss traces. We are mainly interested in two first-order
statistics: gverage loss rate and loss burstiness.

A. Average Loss Rate

Average loss rate represents the average number of lost
packets out of the transmitted. Given an HMM, this number
can be calculated from the steady state probabilities # =
[71, 7q, ..., wn]. Here 7; is the probability of the path being
in state ¢. Then the average loss rate is

i N
i=1

To evaluate the accuracy of the model, we use different
loss traces as the input to the HMM estimation algorithm. We
use two traces obtained trom [3], one is a 2.5-hour trace from
Seattle to UMass with a sampling interval of 20ms (20Dec97),
and the other is a 6-hour trace from Atlanta to UMass with
a sampling interval of 40ms (26Jun98). We divide the traces

(53
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Fig. 3. The loss burst length distribution estimated by HMM compared with
the statistics from the original loss traces: (a) 20Dec97 and (b) 21Dec97.

into segments of 10,000 samples, each of which is used to
generate a 2-state HMM. We plot both the measured average
loss rate and the values derived from the model in Fig. 2. For
both traces, the estimated results and actual values can be seen
to match each other well. . -

B. Loss Burstiness

Ancther important loss performance metric is loss bursti-
ness, i.e., the number of consecutive packet losses. For some
applications (e.g., video or audio), given the same loss rate,
variations in loss burstiness can result in dramatic differences
in application-level quality [20]. Using HMM, we can compute
the burst length distribution of losses from the steady state
 probability distribution () of the path state, the loss probabil-

- ity in each state (83}, and the state transition probability matrix
(P). )

x(T — B(k))(PB(k))"C(k)
#(Z — Bk)PB(k)I

Plz, =n}= ke {0,1},n>1

(6)

in the above equation, P{z, = n}, k € {0, 1} represents

the probability of having & burst (either v’s or wg's) of length

n; T is the identity matrix; P is the state transition probability

matrix [ag;]: B(k) = diag{bi(k}}; C(k) = [L — bo(k),1 —
bi(k),....1 —by(&)T and I=1,1,...,1]%.

We then compare Lhe estimated loss length distribution (k =
1) to the actual statistics for two traces: 20Dec97 and 21Dec97,
both from [3]. The results are shown in Fig. 3. It can be seen
that the model yields loss length distribution reasonably close
to those of the original data traces, especially in the short loss
burst region.

To illustrate how the number of states affects the estimation
result, we generate 2, 3, and 4-state HMMs and compare their
loss length distributions. The results are also plotted in Fig. 3.
Notably. 3 or 4-state HMM result in a distribution closer to the
statistics of trace 20Dec97. However, increasing the number
of states did not improve the accuracy of the estimates for
trace 21Dec97.

It is worth noting that (7) can also be used to compute the
distribution of vg burst length, or loss distance [20], simply
by letting k£ = 0. This metric is sometimes more convenient
for evaluating application quality. Since the distribution of loss
distance can be derived from the average loss rate and the loss
length distribution; we omit its investigation here.

0-7803-8355-9/04/$20.00 ©2004 IEEE.
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IV. ROBUSTNESS OF THE MODEL

In order to make accurate loss predictions, the HMM is
required to properly represent the evolution of path state.
Obwiously, the more frequently we probe a path, the more
accurate is the resulting model. On the other hand, this
requirement conflicts with our intent to minirize the probing
overhead. In this section, we investigate the trade-off that
exists between model accuracy and probing rate. In particular,
we investigate the sensitivity of the model to changes in the
probing interval and identify key parameters in preserving
accuracy. Our study is conducted using both trace analysis
and experimental results,

A. Trace-based Analysis

Given a loss trace obtained using a certain probing fre-
quency, we down-sample it by a variable factor L and use the
resulting trace to consttuct the path state model. The down-
sampled model and the original model are then compared!
in terms of their ability to estimate loss rate and loss length
distribution. Clearly, depending on the temporal dependency
between losses in the original trace and the value of L,
differences between these models can be expected.

The loss process of some traces can be modeled reasonably
well by a Bernoulli process, i.e., the loss probability of each
packet sample is independent. Assuming that the loss process
remains stationary, variations in the probing interval should
have only a minor impact on the accuracy of the generated
model. This is illustrated in Fig.4(a), which presents the loss
length distribution of such a trace collected on a path from

'Both of them are discrete-time models that are derived by sampling a
contineous Markov model with different intervals (). In order to compare
them, we need to use the aforementioned method to convert them into models
with the same sampling interval. In this analysis, we systematically transform
the down-sampled model using the same sampling interval as used in the
original model.
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UMN 1o UPenn. In this example, the reference model was
derived from the original trace with sampling interval 40ms,
and several down-sampled models (shown as % model in the
figure) were generated for L = 2,4, 8, and 16. As can be
seen in the figure, the log-scale loss length distribution of this
trace is almost linear, and as expected down-sampling did not
produce much change, even for L as large as 16,

Although for some traces a Bernoulli model is adequate,
we find that in many other instances it is not, e.g., when loss
patterns consist of a mixtre of both independent and bursty
(temporally correlated) losses. In those cases, we find that
the accuracy of the model is dependent on the probing rate.
More specifically, probing should be done at a frequency high
enough to capture the temporal dependencies between losses
during bursty loss periods. This means that down-sampled
models are likely to become more inaccurate as the probing
interval increases.

To demonstrate the above observation, we take 160, GO0
samples from trace 21Dec97, in which 3.05% are loss samples.
With L being increased from 2 to 16, the average loss rate
computed from the down-sampled models are 3.06%, 2.90%,
2.96% and 3.18%, respectively. Correspondingly, the loss
length distributions obtained from all down-sampled models
are plotted in Fig.4(b). As seen from the figure, down-sampling
does not affect the models” accuracy significantly, although
slight variations in loss length distribution can be observed
as L increascs. This means ecither the time scale of major
congestion cvents recorded by this particular trace is greater
than 16 x 20 = 320ms, or the loss process itself is not bursty
{Bernoulli-like). Since the tail of the log-scale loss length
digtribution produced by the reference model is approximately
linear, the latter is the more likely scenario. Examining the
trace verified this conjecture: most losses are isolated events
except for a few rare loss bursts that last longer than 320ms.

The third trace we study is 0JMav03 collected on a path
from UMN to UPenn, with an original probing interval of
20ms. For this trace, the loss length distribution derived from
the 1/2 model remains close to that of the original model.
However, this does not extend to the cases of down-sampling
by a factor L. > 4, where significant differences in loss
length distribution can be observed (see Fig.4(c)). To better
understand the source of this inaccuracy, it is helpful to look
at the HMMs generated by the down-sampled traces. The
HMM developed from the original trace has the following
parametiers:

0.8801 0.1199
0.0006 0.9994

This model captures two distinct states on the underlying path.
One is associated with a very high loss probability b(1) =
0.9952, and the other associated with a relatively low loss
probability of ba{1) = 0.0184. Furthermore, the probability of
staying in the high loss state is relatively high, t.e., 0.8801,
meaning that the loss process is rather bursty. When the trace
is down-sampled by factor 4 (i.c., the actual probing interval
is 80ms), the model parameters become as follow:

0.9964 0.0036
0.0002 0.9998

[b:(1)] = [ 0.9952 0.0184 |, P = [

[b:(1)] = [ 0.2185 0.0174 |, P = [
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Fig. 5. The loss length distributions estimated by the probing flows with
sampling interval 20ms. 40ms. 80ms, and 160ms, respectively. The sampled
paths are: (a) from UMN to UPenn, (b) from UPenn to UMN, (c) from UMass
to UPenn. and (d) from UPenn to UMass.

in which the distinction between the two states has diminished.
The high loss state now has a lower loss probability, and
has a duration that is closer to that of the low loss state.
The likely explapation is that the gap between subsequent
packet samples now extends beyond the duration of the initial
loss bursts. In fact. by examining the original trace we find
that most loss events in this trace last less than 10 packets
(200ms). Thus, this is indeed a typical case that the down-
sampling process reduces the correlation between consecutive
losses, and when L becomes larger than the time scale of
congestion ¢vents, the inferred loss model becomes similar
to a Bernoulli model rather than a Markov model with 2
different states. As shown in Fig.4(c), the log-scale loss burst
length distribution of the 1/4 model is almost lincar. It is
also worth noting that as L becomes even larger (8 and 16),
the loss length distribution starts exhibiting some renewed
burstiness, although never close to that of the original model.
This is because the probing interval is now so large that
consecutive samples may fall in different congestion events.
As a consequence, although loss in the down-sampled trace
seems “bursty”. it does not represent the same loss process as
recorded in the original trace.

In some rare cases, we also observed that the distinction
between states could be enlarged by down-sampling. This
happens when the trace consists of several major loss bursts
(longer than the down-sampling factor L) accompanied by a
few isolated losses. The long loss bursts survive the down-
sampling process, while the other losses are mostly eliminated.
As a result, the down-sampling magnifies the initial burstiness
of losses, and results in two dramatically different path states:
one that introduces very few or no losses, while the other
results in long loss bursts.

B. Experimental Validation

To further study the sensitivity of our model to variations
in the probing interval, we carry out experiments by initiating
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simultanecus probing flows along the same path but with
different probing periods. The HMMs developed by each
probing flow are then compared. Two paths between UMN
and UPenn are studied first. The tested path from UMN to
UPenn goes through Internet?, while the reverse path is set
up through a commercial ISP (Cogent).

On the UMN-10-UPenn path, we set up four probing flows
with packet size 100 bytes and sampling interval 20ms, 40ms,
30ms and 160ms, respectively. In this experiment, the loss
rates estimated by model are 1.21%, 1.09%, 1.11%, and
1.13%, corresponding to the 4 flows with probing intervals
from 20ms to 160ms. The loss length distributions for all flows
are plotted in Fig. 5(a). The distributions are close to each
other for probing intervals of 20ms and 40ms, but noticeable
differences emerge when the probing interval is increased to
80ms or 160ms. This observation coincides with the results
obtained from trace 0IMay03 in the previous analysis.

Similarly, we initiate these probing flows on the UPenn-
to-UMN path. In these tesis. the loss rates estimated by
the probing flows are 0.85% (20ms), 0.93% (40ms), 0.91%
(80ms), and 1.02% (160ms). The loss burstiness estimated by
an 80ms probing flow is closer to that of the 20ms probing
flow, compared with the results of the first path. However, as
shown in Fig. 5(b), the probing flow with interval 160ms still
significandy differs from the others and is unable to generate
a good estimate of the loss burstiness.

We also repeat the above experiments on a non-Internet2
path from UMass to UPenn, and vice-versa. It wrns out
that in all these tests. the estimate of loss rate is not sen-
sitive to changes in the probing interval. For example, in
two runs of experimenis on 05/17/2003, the estimated loss
rates are 1.70%/1.65%/1.59%/1.51% (UMass to UPenn) and
1.84%/1.70%/1.91%/1.75% (UPenn to UMass), respectively.
As far as loss burstiness is concerned. a probing interval of
40ms gives a rather stable estimation in both experiments. The
results are shown in Fig. 5(c) and (d).

The above experimental results confirm that when the
probing interval exceeds a certain threshold, the HMM cannot

-properly capture the variations of path state, and therefore be
an accurate estimator of performance. This threshold is deter-
mined by the time scale of queue dynamics and congestion
events, which is in turn dependent on the speed and buffer
size of the bottleneck link. However, from all the experiments
we have conducted, including others not presented here due
to lack of space, a probing interval of 40ms appears adequate
for the kind of network configurations we are considering.
Hence, the resulting HMMs should allow reasonably accurate
inference of performance for different applications. In the next
section, we test this hypothesis by verifying the inference
accuracy of our approach for a range of target application
flows.

V. INFERRING APPLICATION PERFORMANCE

As introduced in Section II, our approach to inferring
the performance of a target application flow assumes that
the packets of both the probing flow and the target flow
are identical and periodically transmitted, and packet spacing
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Fig. 6. The effect of packet size on the performance of inferring loss length
distribution: {a) two tlows with different packet size: (b) a probing flow with
fixed packet size and a target flow with variable packet size.

is their only difference. Clearly, this is too restrictive an
assumption as application flows can have a much broader
range of traffic patierns. For example, probes are often kept as
small as possible to minimize the resulting overhead, while no
such constraints exist on applications. Meanwhile, applications
can generate packet sequences that are far from periodic.
The challenge is that in the absence of a well-defined traffic
pattern, it is impossible to formulate a precise mathematical
relation between the channel model derived from probing
results and the one an application flow would experience’.
Fortunately. many (real-time) applications of intcrests can
be well approximaled by either a pseudo-periodic flow with
limited randomization in packel spacing, or as an ON-OFF
flow with alternating ON and OFF periods. In this section, we
investigate how good a job our approach does in inferring the
performance seen by such application flows.

A. The Effect of Packet Size

We conduct the following experiments to study the effect
of packet size on the accuracy of performance inference. In
the first experiment, we initiated two periodic flows, on a
path from UPenn to UMass on 04/03/2003, with the same
sampling interval of 40ms, but different packet size 50bytes
and 1000bytes. An HMM is constructed from the loss samples
recorded by each flow. The average loss rates seen by these
two flows are 1.08% and 1.17%, respectively. And as shown
in Fig. 6(a), the loss length distributions estimated by the two
models are almost identical.

in the second experiment, we study two periodic flows: a
probing flow with probe size 50bytes and probing interval
40ms, and a target flow with packet size urniformly distributed
in the range of 500—1500bytes, and a sampling interval of
20ms. The loss traces were collected on a path between UMN
and UPenn on 06/20/2003. From the probing trace. we derive
an HMM, which estimates loss rate as 2.27%. The target flow
experiences a loss rate of 2.35%. In Fig. 6(b), the loss length
distribution inferred from the probing trace is compared to the
statistics of the target flow. Clearly, the effect of packet size
on the accuracy of performance inference is again negligible.

The implications of the above findings are two-fold. On one
hand, it means that decreasing probe size should not affect the
accuracy of the resulting HMM, Hence, we can reduce the

*For example. there is no easy way to infer the loss process seen by a
rate-adaptive flow such as TCP.
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Fig. 8. Inferring the loss length distribution of periodic flow with sampling
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probing overhead by using smaller probes. For instance, with
a probe size of 50bytes and a probing interval of 40ms, the
traffic generated by a single probe stream is only [0Kbit/s.
On the other hand, it also shows that our inference approach
is applicable to application flows with variable packet size.
This also partially validates our assumption that path state and
sampling patterns are the only deterministic factors that affect
the loss performance of a flow.

B. Inferring the Performance of a Periodic Flow

As discussed earlier, the sampling pattern of the application
flow has a significant etfect on the accuracy of inference. The
simplest case is a periodic application flow that determinis-
tically samples the path every ¢ units of ume, as shown in
Fig. 7. Note that this is a different perspective from that of
the previous section where we investigated the accuracy of
the HMM itself as a function of the probing period. Here, we
assume that the constructed model® is reasonably accurate,
and our focus is on its ability to accurately predict the losses
experienced by flows with a different sampling period.

To show the validity of our inference approach. we con-
ducted two experiments on the UMN to UPenn path on
06/25/2003. In the first experiment, we set up two target
periodic flows and the probing flow, The sampling period t of
the target flows are 20ms and 10ms, which are smaller than
the probing interval of 40ms. In the second experiment, their

*From this point onward. unless stated otherwise, we always use a probing
flow with a packet size of 50bytes and a sampling interval of 40ms.
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Fig. 9. Inferring the loss length distribution experienced by randomized
periodic flows with sampling interval (a) £ = 20ms and (b) ¢ = 80mas.

sampling periods are 80ms and 160ms. while the configuration
of the probing flow remains unchanged. The inferred loss rate
in the first experiment is 1.44%, while the actual values are
1.53% and 1.51%. In the second experiment, these values are
1.70% (inferred), against 1.66% (80ms) and 1.69% (160ms).
Fig. 8§ shows the inferred and measured loss length distribu-
tions of all flows. The results show that the model is capable of
accurately inferring the performance of periodic flows across
a broad range of sampling periods that differ from that of the
probing flow. Note that deviations such as the one observed
in Fig. 8(b) are unavoidable, as we are dealing with a single
sample path that can occasionally deviate from the expected
long term statistics.

C. Inferring the Performance of a Randomized Periodic Flow

A randomized periodic flow is similar to a periodic flow,
except that rather than sampling the path at the same instant
in each period, it samples the path at a random instant in
each ¢ units of time (see also Fig. 7). The ability to accurately -
estimate the performance of randomized periodic flows is of
practical importance for several reasons, First, even constant
rate applications will often not generate packets in a perfectly
periodic manner. Fluctuations are introduced by many factors.
For example. it is difficult for a server 1o transmit packets
precisely spaced to each client because of the granularity of
system cClock and the scheduling of processor time. Similarly,
media flows generated by a CBR encoder often exhibit a
certain level of rate fluctuation. In addition, even if the
application flow was strictly periodic, interactions with other
flows will typically perturb its original period and introduce
random fluctuations as packets traverse the network. A pseudo-
periodic model is thus well suvited to capture the Huctuations
of most constant rate applications.

To understand how such irregular packet spacing would
affect the performance of inference, we set up a probing flow
and a randomized periodic application flow, on the path from
UMN 10 UPenn on 05/08/2003. In our first experiment, the
randomized periodic flow had a sampling period of 20ms
and its sampling time uniformly distributed within each 20ms
interval. The experiment was run for 800 seconds. The inferred
and the actual loss rates were 4.27% and 4.20%, respectively,
The comparison of the inferred loss burst length distribution
and the actual statistics is shown in Fig. 9(a). In the second
experiment, we changed the period of the application flow o
80ms. The inferred loss rate was then 3.54%, and the corre-
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sponding actual value was 3.42%. The loss length distributions
are shown in Fig. %(b).

As shown in Fig. 9, the introduction of randomization did
not significandy affect the accuracy of the model. We expect
this to hold in general, except in the case of very large periods
where randomization introduces variability that the model is
unable to predict. Such scenarios of very low rate applications
are, however, unlikely to be common or important in practice.

D. Inferring the Performance of an ON-GFF Flow

An ON-OFF flow generates packets periodically in the ON
state and stays silent in the OFF state. It is also representative
of a wide range of real-time traffic sources. For example,
a packet-based voice flow is typically composed of active
and inactive periods, corresponding to the activity of human
speech, Moreover, in some video servers [21], streaming
is implemented in bursts of packets (typically with a burst
duration of hundreds of milliseconds), in order to lower the
overhead on the server,

We consider a flow with ON-OFF ratio N, Ny (in
number of sampiing intervals). The first step in inferring losses
expericnced by such an ON-OFF flow, is to derive from the

"HMM constructed from the probing results an HMM that
assumes a sampling period equal to the packet spacing during
its ON period. Once this HMM is obtained, we use it Lo derive
estimates for the loss rate and burstiness of the ON-OFF flow.
Since the path state variation is a4 random process independent
of the duration ot ON and OFF periods, the average loss rate
of the ON-OFF flow can again be estimated from Eq. (5). The
computation of loss length distribution is more complicated.
In our derivation, we define a loss burst to be consecutive
losses within a single ON period. This not only simplifies the
mathematical derivation, but is also more meaningfuf from an
application perspective. For example, the application content
contained in a given packet burst, e.g., a video frame or a talk
spurt, is often self-contained. Therefore, considering only loss
bursts in each ON period is not unreasonable.

We first study the complementary cumulative distribution
function (CCDF) of loss length, which can be computed in a
manner similar to how Eq. (6) was derived.

. L, n
Plax > n) = P_,k _ (I — B)WPB(k)) 7
(T — BE)PB(E) .
for periodically sampled loss sequence. Here, P denotes the
probability of having a burst (either loss or loss-free) longer
than » — 1, while P} denotes the probability of having a burst
of any length in the sequence.

For an ON-OFF flow, the loss event can start either in the

ON period or in the OFF period. If it starts in the ON period,
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the loss burst can be longer-than n only if its starting point is
more than » samples prior to the end of this ON period (see
Fig. 10). If the loss event starts in the OFF period, the loss
burst can be longer than n only if the end of the loss event
extends more than n samples past the beginning of the next
ON period. The same argument can be applied to loss-free
periods. Assuming the starting time of a loss event is random,
the probability of having a burst of length > n in an ON-OFF
sampling sequence can be approximated as

Pn—N n+1

1
— n—rb‘
FTTNEN, +ZN1+N2P ©®

From Eq. (8), we can derive the CCDF of the burst length
distribution as

- P
Plzy >n} = £, )
Py
Note that as alluded to earlier. we do not consider cases
where a loss burst extends over several ON periods. In general,
the probability of having such long loss bursts is very smatl,
so that they can safely be ignored in the above computation.
To verify the validity and accuracy of the above expressions,
we first collected loss traces of an ON-OFF flow with ratio
20:20, together with a probing flow that was used to construct
the HMM of the path. Subsequently, we conducted a similar
experiment but for an ON-OFF flow with ON-OFF ratio of
15:45. All traces were collected on a path from UMass to
UPenn on (6/23/2002 and had a duration of 800 seconds. All
the tested flows have sampling interval 20ms during their ON
periods. The inferred/actual loss rates for the two tests are
3.54%/3.42% and 4.27%/4.20%, respectively. From the loss
length distributions shown in Fig. 11, we can observe that the
inference based on periodic probing is capable of providing
estimates reasonably close to the actual statistics of the ON-
OFF flows. But the estimation is not as accurate as in the cases
studied before. The ¢stimation error is mainly caused by two
factors. First, for an ON-OFF flow, we are only interested in
the loss events happcening in its ON periods. Compared with
the previous cases, this means that we are using the model
to infer statistics based on fewer loss event samples, which
could resuli in a less accurate estimation. Second, in deriving
the loss length distribution we assume a random starting time
for loss events, which could introduce additional inaccuracy in
the estimation. As a result and in particular if the observation
sequence is short, the estimations produced by Egs. (8) and (9)
can exhibit non-trivial deviations from the actual statistics. In
the above example, the two ON-QFF traces we used contain
10,000 and 3.000 packet samples during the ON periods,
but only 195 and 228 corresponding loss events, respectively.
Thus. the inaccuracy of the estimation observed in Fig. 11 is
not unexpected.

E. A Video Streaming Flow Example

All the previous examples used syathetic applications flows,
and were aimed at assessing the accuracy of our approach for
common moedels represeniing real-time applications. In this
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Fig. 12. Inferring the loss length distribution of video streaming flow with
equivalent sampling interval 10ms. The encoding bit rates of the video sources
are {a) 150Kbit/s and (b} S00KDbit/s.

section, we extend the investigation to a real application flow.
Specifically, we set up a probing flow and a target flow in the
same manner as before, but this time the latter is generated
by a video streaming sofiware. Two sets of experiments
were carried out separately on the UMN-to-UPern path on
06/27/2003, with the difference that the first video flow had
an average bit rate of 150Kbit/s, while the second had a bit
rate of 500Kbit/s. The traffic generated by this video software
has features of both variable packet size (ome major reason
is that the data in a slice of an MPEG frame is designed
to be contained in one or several packets, while no packet
should cross the boundary of two slices) and randomized
periodic sampling (the MPEG video source is CBR-encoded,
and roughly speaking, the number of packets generated in a
certain time interval can be considered as constant).

In these two experiments, the loss rates estimated by the
probing flow are 1.27% and 1.86%, respectively, which are
very close to the values collected at the video client (1.24%
and 1.84%). We also infer the loss burstiness using 10ms as the
equivalent sampling interval for both video flows (the major
difference in bit rate for these two flows turns out to be the
result of different packet sizes). As shown in Fig. 12, the model
performs well in estimating the applicatdon flow’s loss length
distribution,

VI. PREDICTABILITY OF L.OSS

In the previous sections, we have introduced a method
that relies on an HMM constructed from the loss information
gathered by probes, with which we then infer the performance
different applications would experience. This is still one step
short of our ultimate goal, which calls for using the inferred
performance as an input 0 a control process that decides
whether to switch application flows to an alternative path, The
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missing step is to study whether the performance estimates
generated by the model using past statistics allow us to accu-
rately predict future performance, as an application switched
onto the path would experience it. In this section, we introduce
an extension to the basic model that addresses this issue by
allowing relatively accurate loss predictions over different time
scales.

A. Lavered HMM

Due o the bursty nature of Internet traffic, the time series
of network losses represent a fairly complex random process,
in which stationarity and non-stationarity coexist. The level of
stationarity often varies with the observation time scale and
the level of congestion on the path. For example, in [7], the
majority of the loss processes exhibit some level of stationarity
when the observation is restricted to traces with loss rate
less than 1%, while such stationarity decreases dramatically
when it comes to traces with loss rate > 1%. Periodicity
also exists in the loss process. Such periodicity could for
example come from the diurnal behavior of network users, In
[6], the author also observed periodicities because of the timer
synchronization between routers. Based on such observations,
we believe that it is difficult to capture loss variations across
a broad range of time scales using a simple “flat” model.
However, if wc use different models for different time scales,
we may be able to construct a simple, yet reasonably accurate,
compound or layered model.

Specifically, we consider two time scales or layers. At the
coarse time scale associated with observation interval T, we
define a number of loss states or phases. Those phases can be
classified as “no loss”, “minor loss™, “tolerable loss”, “serious
loss™, “very serous loss”, and “unacceptable loss™, which
quantitatively correspond to loss rates in the following ranges:
0, 0 —0.5%. 0.5% — 1%. 1% — 5%, 5% — 10%, and > 10%.
Within each phase an HMM is constructed from the observed
loss samples. In other words, the HMM parameters are derived
from observations in the corresponding phase. This process is
structured as a dynamic process with the system parameters
being continuously refined based on observations.

B. Farameter Estimation

At the coarse time scale, what we use to describe transitions
between phases is a first-order Markov model, which is
characterized by the state transition probabilities

di; = P{Xor1 = 25| X, = ai}, i,5 €1{0,1,...,5}

where X is the phase of the loss process in interval ¢. The
transition probabilities can be esumated on-line by counting
in the observed time series the number of times that phase :
is Tollowed by phase j (n;;), and the number of times the loss
process is in phase 7 (n;), ie.,

= Mg
¢23 = e .

(10)

AThese qualitative notations are defined roughly in accordance 1o the loss
tolerant capability of real-time applications, such as streaming video,
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The values of ¢;;'s are adjusted after each observation interval
T. Then given that the current phase is X, = =;, the next
phase X, can be predicted as X, = w, using a maximum
likelihood predictor [22]:
k=argm;'_adx¢),:j‘ (i)

The purpose of construcling an HMM in each phase is to
derive estimates for the loss rate and burstiness given the phase
prediction. In keeping with standard estimation techniques, we
use past observations within the corresponding phase to derive
the model parameters. A window of size W, i.c., the number
of observation intervals used in constructing the HMM for a
particular phase, governs the amount of memory or history
used by the estimator. Too long a memory will unnecessarily
increase the length of the training sequence for the HMM,
which results in long convergence time, while potentially
preserving irrelevant data if the statistical behavior of a given
phase has evolved over time. On the other hand. too shorl a
memory cannot provide sufficient training data for the MM,
and therefore leads to an “over-fitted” model that could yield
poor accuracy. Our experience shows that only limited amount
of history is necessary, as the dependency of losses observed
in different iniervals decreases dramatically when increasing
the time lag between these intervals. The impact of W on the
accuracy of prediction is investigated further below.

Assuming that the [oss processes in W observation intervals
of a particular phase are represented by the same HMM,
we consider the problem as forming an HMM from multiple
observation sequences

0= [O(‘),O(?), . O(W)],

Thus the goal of the re-estimation procedure becomes adjust-
ing A to maximize

Ww w
POW) =[] O™ = T] B
k=1 k=1
Consequently, the re-estimation formulas of a;; and b;(1)
should be modified as [17]:

s = Zk 1 ng ?;;laf(')”ijb( t+1)ﬁt+1( ) (12)
K LB Dk e ()8R
Zk 1 PL Tk;—lx O¢=v; af(J)ﬁk(J)
by(l) = T - (13)
Zk 1?>_Zt af(7)BF(5)

Here (i) and B¥ (i) are the forward and backward variables
corresponding to observation sequence k, and P is the proba-
bility of sequence k being observed with current parameters .
%) i5 estimated based only on sequence OF) and the related
re-estimation procedure remains intact. The data in window W
is updated after each interval T. So that the HMM fer each
phase keeps “learning” from the most updated observations,
while “forgetting” outdated ones.
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TABLE I
THE PERFORMANCE OF PREDICTION WiTH DIFFERENT W

W 2 | 3 7 5 16
Emorin K| 0.55% | 0.49% | 0.38% | 0.34% | 0.45%
EBrrorin P; | 33.0% | 367% | 31.3% | 35.3% | 30.9%

C. Prediction Accuracy

In this section. we evaluate the ability of the approach
we just described to accurately predict the evolution of
path state and, therefore, the losses that an application flow
would experience. We implemented the probing-prediction
scheme as a UDP sender-receiver pair. The sender transmits
probes periodically with a pre-configured interval. The es-
timation/prediction mechanism is inegrated in the receiver.
The loss sequences are first collecied by the receiver. Then,
after each observation interval T', the most likely phase in the
next observation interval is predicted, as well as its loss rate
and loss length distribution. After finishing collecting the loss
information in each time interval T, the HMM parameters of
the corresponding phase are updated.

We ran the probing program on the UMN-to-UPenn path
for several weeks and selected two traces with relatively high
loss rate for our analysis. One is a 4-day trace starting from
03/14/2003 with loss rate 1.78%, and the other is a 3-day
trace starting from 04/28/2003 with loss rate 1.25%. Both
traces show some diurnal patterns, namely the loss rate and
loss burstiness vary in accordance with the time of a day.
To demonstrate the performance of loss burstiness prediction,
we used the percentage of isolated loss events (Pr), which is
defined as the percentage of loss bursts shorter than 3 packets.

The window size W is the first parameter that needs to be
carefully tuned, because it affects not only the accuracy of the
estimator, but also the computational load during the prediction
process. We measure the overall performance for the predictors
with W = 2, 4, and 6, using the aforementioned traces. The
probing interval was 80ms, while the observation interval was
set to T = 10min to yield enrough samples in each interval for
training the model. The prediction error is measured as | f—rl
given that f is the target parameter, and f is the predicted
value. Table I shows the overall errors for predicting the loss
rate R and the percentage of isolated loss events Pr among
all loss events. It is notable that W = 4 (i.e., a memory of 40
minutes) gives the best overall prediction performance. Further
increasing this value does not yield much improvement, while
decreasing it may result in worse prediction in either loss rate
or burstiness.

Using window size W = 4, the receiver predicts both
the loss rate and the loss burstiness in the next imterval T
We scatterplot the prediction results against actual statistics
in Fig. 13, Fig. 13(a) shows the performance of loss rate
prediction, while Fig. 13(b) provides a similar comparison
for the percentage of isolated losses. From these figures,
we see that the layered model can provide reasonably good
predictions, especially in terms of loss rate. However, the
model tends to underestimate the loss burstiness (as shown
in Fig. 13(b), the predicted percentage of isolated loss is
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Fig. 13. 'The performance of predicting loss using the layered HMM: (a)
average loss rate, and (b) loss burstiness.

generally lower than the actual value). It is worth noting that
there are a few sample points in Fig. 13(b) where the actual
value of Py is 100%, while the predicted values are much
lower. These points correspond to intervals that have very low
loss rate {typically less than 0.1%).

VII. CONCLUSION

In this paper, we have introduced an approach for on-line es-
timation of end-to-end loss performance of network paths. This
approach models the path loss process using a continuous-
time hidden Markov model and constructs the mode! based on
the loss trace collected using an active probing scheme. From
the resulting model, we show that it is possible to infer the
loss performance that an application flow routed over the path
would experience. We investigated both the accuracy of the
proposed approach and the associated trade-off in the model’s
complexity, with an eye on ensuring its suitability for on-
line estimation, This included guidelines for minimizing the
overhead of probe tratfic, while keeping estimation accuracy at
a meaningful level. We also extended the basic model to a two-
tier layered model, attempting to not only give accurate on-line
estimations, but to also incorporate the ability to predict the
evolution of path performance over time. The results in the
paper show that the proposed approach appears to hold some
promises in timely and accurately estimating path performance
and quality, as seen by application flows.

We believe that there are several potential applications for
such an on-ling estimation method. First, it can serve as an
end-to-end measurement facility to momitor toss performance
of network paths as it affects different applications. The
measurement results can be used to trigger application-specific
alarms. Second, it can be used as input to the admission control
that might be performed by an application gateway responsible
for certain resources. Third, it can also be integrated into a
dynamic path selection solution in a multihoming or overlay
environment, where the information it provides can be used
to decide when to switch the tratfic of various applications
to an alternative path. The last aspect is the one that we are
currently investigating in the context of a wide-area testbed
aimed at serving real-time applications.
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