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Application-Specific Path Switching: A Case Study for Streaming Video

Abstract
The focus of this paper is on improving the quality of streaming video transmitted over the Internet. The
approach we investigate assumes the availability of multiple paths between the source and the destination, and
dynamically selects the best one. Although this is not a new concept, our contribution is in estimating the
"goodness" of a path from the perspective of the video stream, instead of relying only on raw network
performance measures. The paper starts by showing that the use of raw network performance data to control
path switching decisions can often result in poor choices from an application perspective, and then proceeds
to develop a practical approach for evaluating, in real-time, the performance of different paths in terms of
video quality. Those estimates are used to continuously select the path that yields the best possible
transmission conditions for video streaming applications. We demonstrate the feasibility and performance of
the scheme through experiments involving different types of videos.
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Application-Specific Path Switc hing:
A Case Stud y for Streaming Video

Shu Tao and Roch Guérin
Department of Electrical & Systems Engineering

University of Pennsylvania, Philadelphia, PA 19104�
shutao@seas,guerin@ee� .upenn.edu

ABSTRACT
The focusof this paperis on improving the quality of streaming
video transmittedover the Internet. The approachwe investigate
assumesthe availability of multiple pathsbetweenthesourceand
thedestination,anddynamicallyselectsthebestone.Althoughthis
is not a new concept,our contribution is in estimatingthe “good-
ness”of a path from the perspective of the video stream,instead
of relying only on raw network performancemeasures.Thepaper
startsby showing that theuseof raw network performancedatato
control pathswitching decisionscan often result in poor choices
from an applicationperspective, and then proceedsto develop a
practicalapproachfor evaluating,in real-time,theperformanceof
differentpathsin termsof videoquality. Thoseestimatesareused
to continuouslyselectthe paththat yields the bestpossibletrans-
missionconditionsfor video streamingapplications.We demon-
stratethefeasibilityandperformanceof theschemethroughexper-
imentsinvolving differenttypesof videos.

Categoriesand SubjectDescriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tectureandDesign; H.4.3 [Inf ormation SystemsApplications]:
CommunicationsApplications

GeneralTerms
Design,Experimentation,Performance

Keywords
PathSwitching,Quality, StreamingVideo

1. INTRODUCTION
Thesteadyrisein thequalityandavailability of bandwidthacross

theInternethasmadethetransmissionof streamingvideoareality.
However, in spiteof this progress,sourcesof impairmentarestill
presentanddevising mechanismscapableof furtherimproving the
performanceof videotransmissionremainsa worthy goal. Sucha
goalhasbeenthefocusof many previousworks,which we briefly
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review hereto highlight how they differ from this paperand its
contributions.

In general,mostearlierworkstargetedadaptingtheencodingor
thetransmissionof thevideostreamin responseto changesin net-
work performance.For example,ratecontrol[7, 11] canbeusedto
dynamicallyadjustthetransmissionrateof avideoflow whenpath
conditionfluctuates.Occasionaldelayandlossvariationscanbe
concealedby adaptingtherateof retrieving datafrom theplayout
buffer andthe rateof presentingthedecodedmediato theviewer
[8]. Similarly, upondetectingseverecongestion,the receiver can
signal the senderto reduceits encodingand transmissionrate to
maximizethe likelihoodthat the quality of the received video re-
mainsacceptableto the viewer [8, 2, 12]. More recently, the use
of pathdiversity hasalsobeenstudiedasan option to provide an
extradimensionof adaptabilityto videoapplications.For instance,
Apostolopouloset al. [3] investigatedan approachthat relieson
the simultaneoustransmissionof several substreamsof the video
signalover differentpaths,whereeachsubstreamencodesa partial
descriptionof thevideo. Thevideocanbecorrectlydecodedwith
gracefulquality degradation,even if someof the substreamsare
missingor incomplete.

Ourstudyshareswith theseworksthefactthatit doesnotrequire
the introductionof additionalnetwork-basedmechanisms,but in-
volvestheparticipationof thevideoapplication(or anaccessgate-
way actingon behalfof theapplication).Meanwhile,our scheme
differsfrom theseexistingworksin thatwedonotattemptto adapt
eithertheencodingor the transmissionof thevideodata. Instead,
we consideranenvironmentthatofferspathdiversity, namely, the
ability to selectfrom amongmultiple possiblepathswhentrans-
mitting videopacketsbetweena givensourceanddestination,and
investigatehow to dynamicallyselectthebest pathin orderto op-
timize the quality of the received video. In otherwords,we seek
to determinethebestconditionsunderwhich thenetwork andthe
applicationcaninteract.

Our investigationwasmotivatedin part by the increasedavail-
ability of multi-homingandoverlaynetworks thathave madepath
diversity morecommon,andby a numberof recentworks [1, 16]
that have demonstratedthat simple path switching strategies can
improve the performanceof end-to-enddatatransfers. However,
applyingthepathselectionstrategiesproposedin thoseworksisnot
necessarilybeneficialfor improving video quality, becausethose
strategiesweredevelopedwith thegoalof optimizingnetwork per-
formance.For example,themethodof [16] makespathswitching
decisionsto achieve thelowestoverall end-to-endloss.Therefore,
it selectspathsbasedontheirpredictedlossrates.Thisdoesnotal-
waysresultin improvedvideoquality, sincevideoquality is influ-
encedby multiple characteristicsof the lossprocess,not just loss
rate. For example,the burstinessof losses,the distancebetween
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Figure 1: Quality of video Alberta (encodedwith bitratesof 300
kbpsand700kbps)underdifferentlossmodels.All modelshave
the sameloss rate of 2%, but the loss burstinessdecreasesfrom
model1 to 16.

consecutive loss events (groupsof losses),etc., all affect video
quality differently [6, 9]. Furthermore,the relationbetweendif-
ferent losscharacteristicsand their impacton video quality is by
itself complicated. It dependson factorssuchas the codingand
packetizationschemeusedby the codec,the buffering and error
concealmentcapabilitiesof thereceiver, etc.

Fig. 1 illustratesvideoquality variationsassociatedwith differ-
ent losspatterns.We plot thePeakSignal-to-NoiseRatio (PSNR)
of two CBR-encodedframesequencesunder16 differentlosspro-
cesses,all with thesamelossrateof 2%. As wediscusslater, PSNR
providesa useful initial measureof videoquality. The two frame
sequencesareencodedfrom the samevideo source,but have bi-
tratesof 300kbpsand700kbps,respectively. It is clearfrom the
figurethatboththeencodingbitrateandtheactuallosspatternhave
a significantinfluenceon the quality of the received video in the
presenceof loss.Thus,ourgoalsin thispaperareto first developa
practicalschemethatcanassesstheperformanceof differentpaths
from theperspective of videoquality, andthenusethis information
to build apathswitchingmechanismthatmaximizesvideoquality.

Ourmainchallengeis to deriveaccurateestimatesof videoqual-
ity on eachavailablepath,asif thevideostreamweretransmitted
on it. Hence,anaturalfirst stepis to understandhow to objectively
measurevideoquality. Mostof theproposedobjectivequalitymod-
els[17] involvecomparingtheoriginalvideoframesto thereceived
ones.Suchanapproachis unfortunatelyhardto usein ourcontext,
becauseof thedifficulty in having boththeoriginalandthereceived
videoframesbesimultaneouslyavailableat thesenderwherepath
switchingdecisionsarebeingmade.Wolf et al. [18, 10] developed
a methodthat can to someextent overcomethis constraint,as it
determinesvideoquality simplyby comparingfeatureinformation
extractedfrom theoriginalandthereceivedvideoframes.Because
featureinformation is representedby a much smalleramountof
data,it is possibleto actually transmitthe featureinformationof
the received frame sequenceback to the sender, which can then
compareit to that of the original video and evaluateits quality.
However, sucha solution is still inadequatefor our purpose,not
only becauseit requiresmodifying thevideoclient to performfea-
tureextraction,but moreimportantbecauseweneedto estimatethe
quality of videotransmissionover multiple pathsin parallel. As a
result,usingthis approachmeansthat thevideowould have to be
simultaneouslytransmittedon all paths,which is clearlyanunac-
ceptablerequirement.Therefore,we cannotrely on such“closed-
loop” quality estimationapproachesandmust insteadinvestigate
“open-loop”solutions.

An open-loopsolutionmapsmeasurednetwork performancedi-
rectly ontovideoquality without “feedback”obtainedfrom there-
ceived video. This is challengingnot only becausevideo quality
dependsonmultiplenetwork performanceparameters,but alsobe-
causevideoquality andnetwork performanceexhibit a non-linear
relationasshown, for example,in [4]. Oneof this paper’s main
contributionsis, therefore,to developa practicalapproachfor esti-
matingin real-timetherelative(video)qualitydifferenceof two (or
more)paths.This thenenablesapathswitchingstrategy capableof
delivering meaningfulquality improvementsfor streamingvideo.
We demonstratethoseimprovementsthrougha numberof experi-
mentsinvolving a variety of video streamsanddifferent typesof
network impairments.

Theremainderof thepaperis organizedasfollows. Section2 in-
troducesthedistortionmodelusedto relatenetwork performance,
namelylosses,andvideoquality. Section3 briefly reviews a net-
work probingmethodwe previously developed,andon which we
rely to infer the lossesthat thevideostreamwould experienceon
differentpaths.Section4 combinesthe resultsof Section2 and3
in devising andevaluatinga pathswitchingstrategy that improves
videoquality by selectingthe bestperformingpath. Finally, Sec-
tion 5 summarizesthefindingsof thepaperandoutlinesdirections
for futurework.

2. LOSS-QUALITY MODEL
In this section,we describetheloss-qualitymodelwe useto es-

timatevideoqualityunderdifferentlossconditions.Themethodis
derivedfrom themethodologyproposedin [14, 9]. An exactmodel
obviouslydependsontheimplementationdetailsof thevideotrans-
missionsystem. In our analysis,we usean internally developed
MPEG-1/2videostreamingsoftwareasthereferenceimplementa-
tion. However, asshown in this section,themodelcanbetunedto
fit otherimplementationsaswell.

2.1 Basicdistortion model
Considera video sequencewith framesize �������
	 , we use������

(of size � � ��� 	 ) to representthe 1-D vector obtainedby
line-scanningframe

�
, and ������� to denotethecorrespondingframe

restoredat thereceiver’s side.Thus,theerrorsignalin frame
�

is� ������� ������������������ (1)

which representsthe signal impairment in frame
�

incurred by
transmissionloss.A frequentlyusedmetricfor measuringthedis-
tortion is theMeanSquareError (MSE),which is definedas� 	 ������� � �"! �����$# � �����&%(')� � � # � 	 %(* (2)

Thetotaldistortionof thevideois theMSEaveragedoverall frames.
Packet lossesare handledas follows: if the receiver detectsany
numberof packet lossesin a frame,it discardstheentiredamaged
frame and the most recentlydecodedframe is repeated.For in-
stance,if any errorhappensin frame

�
while frame

�(���,+-%
hasbeen

correctlyreceived, ���������.����/�0+1� and� �������.����/�2+(�$�0������ .
An importantissuein modelingthedistortionwith motioncom-

pensatedvideo coding is the propagationof error signals. Since
suchvideoencodingschemesintroducedecodingdependenciesbe-
tweenadjacentframes,a packet loss affects not only the frame
missingthe datacontainedin that packet, but also other frames
with decodingdependencieson it. However, becauseof thespatial
filtering effect of thedecoder(which canbemodeledasa low pass
filter [14]), theerrorsignaltendsto decayover time. If anerroroc-
cursin frame

�
with anMSEof � 	 ����� , thepowerof thepropagated



errorat frame
�(�43651%

canbeapproximatedas[9]� 	 ���73�58�9� � 	 �����$#;:9<&* (3)

Theattenuationfactor
:

(
:�=>+

) accountsfor theeffect of spatial
filtering, and thereforeis dependenton the power spectrumden-
sity of theerror signalandthe impulseresponseof the loop filter
containedin thedecoder.

To preventerrorpropagation,periodicintra-framecodingis used
in MPEG-1/2. As a result,error in oneframecanonly propagate
to the framesfollowing the damagedframein the samegroupof
picture(GoP).If theGoPstartswith anI-frameandcontinueswith�@?A�2+B%

P-frames1, thetotaldistortioncausedby a singlelossisC � DBE �F <HG�I � 	 ���73�5J��� (4)

whereK is thenumberof framesfrom wheretheoriginal lossoc-
curs(frame

�
) to theendof theGoP. Weassumethat K is uniformly

distributedin
� L��M?A��+1�

, andthattheinitial errorcausedby losing
oneframeis a constant,i.e., � 	 ������� � 	N . Thus,thetotaldistortion
causedby losinga singleframeis approximately[9]C � � ! E �F <HG�I � 	N #�: < �O+$� 5? %�� : !QP � �2�@?�3�+B%@:R36??S�O+T��:�% 	 � 	N �VU,# � 	N *

(5)
Here,

U
is a function of

:
and
?

that accountsfor the total prop-
agationeffect of the error signal. Although seeminglyrestrictive,
theassumptionthatthe initial errorcausedby a singlelossis con-
stantis reasonable,becausewearemainly interestedin theaverage
distortionover the whole videosequenceinsteadof thedistortion
in individual frames.For thesamereason,wewill alsoassumethatU

is equalto its averagevaluethroughouttheframesequence.The
exact valueof

U
canbe estimatedby simulatingindividual losses

andmeasuringthe MSE in the decodedframes. Nevertheless,as
shown in Section4, estimatingthevalueof

U
is not necessaryfor

pathselection.

2.2 The effect of losspattern
Thebasicdistortionmodelonly considerstheeffect of a single

loss. In [14], the total losseffect is modeledasa productof the
lossrateandthe averagedistortioncausedby a single loss. This
assumesthattheeffectsof individual lossesareindependentof each
other. However, in practicethevideoflow mayexperiencevarious
losspatternsandin particularlossescanbetemporarilycorrelated.
Therefore,it is importantto understandtheimpactof differentloss
patternson thequalityof thetransmittedvideo.

First, packet losscouldbebursty, i.e., a singlelosseventor loss
burstmayconsistof a numberof consecutive losses.In our video
transmissionsystem,whena lossburst falls in a singleframe,the
resultingdistortionwill alwaysbethedistortioncausedby missing
that frameno matterhow many packetsarecontainedin the loss
burst. When a loss event affects several consecutive frames,we
simply model the total distortionas the superpositionof the dis-
tortion of missingeachindividual frame. As pointedout in [9],
this is an optimistic approximation,as the total distortion in this
caseis typically greaterthantheapproximatedvalue.For example,
the distortionof losing 2 consecutive frames

�(�W�X+-%
and
�

(i.e.,

1To simplify the analysis,this model doesnot considerthe bi-
directionallypredictedframesor B-frames.
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Figure 2: The effect of crosscorrelationof error signals � ���
�+1�
and � ����� in modelingthe distortioncausedby lossbursts. The

valuesof � 	 ����� and � 	N ���W�X+1�93 � 	N ����� arecomparedfor sample
videoAlberta (top)andRobot (bottom).

��Q�����9� �����/�0+1�9�Z����/�V[1� ) canbederivedas[9]C 	 � � 	 ���/�V+1��3�U\# � 	 ������ � 	 ���/�V+1��3�U\# � 	N ���/�V+1�Q36U\# � 	N �����3/[1]$^ E �O_ ^`#ba U 	 # � 	N ���7�0+1�$# � 	N ������ �O+`32[;U\30[;] ^ E �O_ ^ #1U`%c# � 	N � (6)

where
]$^ E �O_ ^ refersto thecrosscorrelationfactorbetweentheer-

rors in frame
�(�d�Z+B%

and
�
; � 	N ����� denotesthe initial distortion

introducedby replacingframe
�

with frame
�(�/�2+B%

. Here,we are
againassumingthat � 	 ���e�f+(��� � 	 ������� � 	N and

U
hasa constant

value. It is clear from Eq. 6 that the approximationerror mainly
comesfrom thecrosscorrelationbetweenerrorsignalsin different
frames2. To accuratelyestimatethevaluesof

] ^ E �O_ ^ requirespro-
cessingevery framein the video sequence,which is infeasiblein
anonlinevideotransmissionsystem.In Fig. 2, wemeasurethisap-
proximationerror for two samplevideos,Alberta andRobot. The
former is a high motionvideowith limited similarity betweenad-
jacentframes,while thelatterhaslittle motionandthereforehasa
largercross-correlationfactorbetweenneighboringframes.As can
beseenin thefigure,theapproximationerror is not significantfor
eitherof them,andis almostnegligible for Alberta. Theeffect of
losingmorethan2 consecutive framescanbemodeledin a similar
way [9]. As the numberof lost framesincreases,the approxima-
tion errorcouldbecomemoresignificant.Fortunately, for the loss
processeswe target,theprobabilityof having very long lossbursts
is typically small. Therefore,the above simplificationshouldnot
significantlyaffect qualityestimation.Thus,we simplyusethead-

2Theotherextra factor� 	N turnsout to besmallcomparedwith the
total distortionandthereforecanbeignored.
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ditive model to describethe effect of bursty losses,i.e., the total
distortioncausedby losing

�
consecutive framesis approximated

asthe superpositionof the distortionscausedby individual frame
losses: C ^ �.�/#1U\# � 	N * (7)

Assumethat a lossevent startsrandomlyin a GoPandleadsto h
consecutive packet losses,andeachframeis transmittedusing i
packets, thenthe expectednumberof framesaffectedby this loss
event is j � h %��lk hidm 3 h � i #-�Bncop�q �0+-%c�2+i *

(8)

Accordingto theadditive model,theexpectationof

j � h % givesthe
averagedistortioncausedby a singlelossevent:C N � j � h %c#1Uf# � 	N * (9)

Another importantperformancefactor is loss distance,which
representsthefrequency of losseventsthatoccurin thevideostream.
Intuitively, themorefrequentthelossevents,themoreannoying is
the impairedvideo to the viewer. We evaluatethe combinedef-
fect of lossburstinessandlossdistanceasfollows. Let rTs denote
theprobabilityof a losseventseenby thevideostream,theoverall
MSE of thereceivedframesequencecanbemodeledasC � rTs # i # C N � rTs # j � h %t# i #;U\# � 	N * (10)

Here r s and

j � h % representthe characteristicsof the lossprocess
experiencedby thevideostream;i is determinedby thepacketiza-
tion process;

U
and� 	N describethefeatureof thevideocontentand

theerror concealmentability of thedecoderthatcanbeestimated
off-line. Therefore,rTs and

j � h % aretheonly parametersthatneed
to beestimatedon-line. We defineu � rTs # j � h % asthe loss factor
thatmodelsthetotaleffectof lossonvideoquality. If weusePSNR
to representvideoquality, it canbecomputedfrom thevalueof

C
as rRvQ�xw �.+(Lzy|{B} � I [-~B~ 	C � +1L�y|{-} � I [-~B~ 	u # i #1Uf# � 	N * (11)

In the examplein Fig. 1, the PSNRmeasuredfrom video Al-
berta shows a decreasingtrendwhenthe lossmodel is changing
from 1 to 16. Although the averageloss ratescorrespondingto
thesemodelsarethesame,themeasureof the lossfactor u shows
an increasingtrendfrom model1 to 16, ascanbe seenin Fig. 3.
To further illustratetheeffect of losspatternon videoquality, we
provide a groupof simulationresultsin Fig. 4. In this simulation,
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Figure 4: An illustrative exampleof the impactof losspatternon
videoquality.

wefirst measuretheresultingPSNRwhenthevideostreamAlberta
is subjectedto a Bernoulli lossprocesswith lossratesin therange
of 1% - 5%. Next, we measurethePSNRunder”bursty” losspro-
cesseswith rTs ��LQ*�~-� andaveragelossratesvarying from 1%
to 10%.ThePSNRdifferencesbetweeneachBernoulli lossmodel
andeachbursty lossmodelarethenplottedin Fig. 4. The points
indicating0 dB PSNRdifferenceon eachcurve identify theplace
wheretheBernoulli lossprocessandthe bursty lossprocesshave
thesameimpacton videoquality. For example,theeffect of a 1%
Bernoulli lossratecanbeseento beroughlyequivalentto thatof a
4%burstylossratein termsof qualitydegradation,andconversely
a1%burstylossrateyieldsaPSNRlevel thatis about2.5dB better
thana Bernoulli processwith thesamelossrate. Thefigure illus-
tratesfurther thatsimplelossratemeasurementsarenot sufficient
to assessthesupportablevideoqualityon a path.

3. LOSS ESTIMATION
Our quality estimationmodelrelieson the online characteriza-

tion of thelossprocessthatthevideoflow would experience, andin
thissectionweoutlineourapproachfor acquiringthis information.
In [15], we proposeda solutionbasedon a HiddenMarkov Model
(HMM) of theevolution of pathstate.Here,we briefly review the
resultinglossmodelandhighlight our methodologyfor estimating
therequiredlossparameters.Interestedreadersarereferredto [15]
for detaileddiscussions.

We usea 2-stateHMM to characterizethe lossprocessexperi-
encedby a flow. In this model,thestateof a network pathseenby
theapplicationflow canbeeithercongested( v � ) or not ( v 	 ), each
having acertainlossprobability, i.e., �b� and��	 (�b������	 ). Thetran-
sition probabilitiesbetweenv9� and vc	 , �9�M	 and �c	1� , statistically
modeltheevolution of pathstate.Note that thestateevolution of
a path is a continuous-timeprocess,while differentflows canbe
consideredassamplingthis processat differenttime granularities.
Therefore,we can first usea probing flow (with relatively large
probing interval to reduceprobingoverhead)to samplethe path,
andthena discrete-timeHMM representingthelossprocessexpe-
riencedby theapplicationflow canbeobtainedgiventhesampling
intervalsof boththeprobingflow andtheapplicationflow.

Fromtheinferreddiscrete-timeHMM, we cancomputetheloss
parametersthat arerequiredfor video quality estimation.For ex-
ample,wecanfirstderivethesteadystateprobabilities� �.� �z� � ��	 � ,
where � < representsthe probability of the path being in state

5
(
5d��+-��[

). Then, lossburstinesscanbe estimatedby computing
the probability of seeinga loss event composedof h consecutive
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losses r o � � �@�����4%O�@�/�e% o �� �@�����4%@�/��� � (12)

where
�

is the identity matrix;
�

is thestatetransitionprobability
matrix

� � <�� � ; �X� diag
� � < � ; � �Z�|+�� �b�1� +�� ��	 � ! and

�z� �|+���+(� ! .
Similarly, thelosseventprobability r s canbecomputedasrTs � � �@�����4%@�/�T��* (13)

FromEq.12, theaveragelosslengthisj � h %z���F o G �
j � h %t# r o * (14)

Thus,thelossfactoru canbeestimated.
We have verified the above approachon a numberof Internet

paths[15]. Here,we furthertestthis methodusinga videostream-
ing flow asthe target for estimation. In our experiments,probes
andapplicationpacketsaretransmittedsimultaneouslyonthemon-
itoredpath.Theprobingflow is configuredwith a 40 mssampling
interval, while thetargetflow hasa10mssamplinginterval, which
correspondsto a videostreamencodedwith a framerateof 25 fps
anda bitrateof 300kbps. Eachframeis transmittedusing i �A�
packets. In Fig. 5, we comparethe lossfactorestimatedby prob-
ing with the actualstatisticsobtainedfrom the applicationpacket
traces.Thefiguregivestheestimationresultsof anexperimentper-
formedon a pathbetweenUPenn andUMN with a durationof 10
hours.Theestimatedresultsandthemeasuredresultsarecompared
for eachpair of 3 minutetraces.As shown in the figure, theesti-
matedvaluesarecloseto theactualstatistics.Similar resultswere
observedin theexperimentsconductedonotherpathsaswell. This
confirmsthat our approachis capableof generatingaccurateloss
estimateswith a muchlower overheadcomparedto that of a du-
plicate video flow (the probing flow hasboth a longer sampling
interval anda muchsmallerpacket size).

4. QUALITY -BASED PATH SWITCHING
Basedonthepreviousanalysis,wecannotonly estimatetheloss

performanceexperiencedby a videostreamwhena certainpathis
used,but alsolink this estimateto a measureof video quality. In
this section,we further investigatehow to usethis informationto
dynamicallyselectapathfor transmittingthevideostreamin order
to offer thebestpossiblevideoquality.

4.1 The costof path switching
Beforedescribingthe pathselectionmethod,we briefly review

somebasicaspectsof pathswitchingincludingthepotentialimpact

that theswitchingprocessitself canhave on videoquality. In our
environment,e.g.,see[16], pathswitchingis conductedby anac-
cessgateway thatis responsiblefor measuringthenetwork, select-
ing thepath,andforwardingvideopacketsonto theselectedpath.
Path switching is, therefore,transparentto both the video sender
andreceiver. Nevertheless,this processmay affect video quality
if therearedifferencesin end-to-enddelaybetweenthecandidate
paths.Therefore,it is importantto understandif andhow this can
impactvideoquality.

Assumethat a video streamis switchedfrom path A to path
B, while its senderkeepstransmittingpackets at a constantrate
of � packets per unit of time. When the propagationdelay on
pathA (��� ) is smallerthanon pathB (�$� ), pathswitchingcauses
a reception“gap” of duration

� �$� � ��� % at the receiver. Con-
versely, when ���>���$� , pathswitchingwill generatea burst of
out-of-orderpackets at the receiver, whosesizedependson both� and

� ��� � �$� % . Receptiongapsand out-of-orderpackets are
certainlyundesirable,but mostcurrentvideostreamingsystemsin-
cludemechanismsthat adapttheoccupancy level of their playout
buffer in order to accommodatejitter andout-of-orderpacket de-
livery. For example,a commonplayoutbuffer design[13] involves
a combinationof two watermarksthat definea rangeoutsideof
which buffer overflow and underflow can occur, and two thresh-
olds that identify a target areain which buffer occupancy should
be maintained.A numberof effective methodshave beendevel-
opedfor maintainingbuffer occupancy in the target areaacrossa
broadrangeof network perturbations.For example,the receiver
canreduceor increasethe framepresentationrate[13], or signal
the senderto adjustits rate[5]. Given that mostvideo streaming
applicationsenforcea pre-buffering of a few secondsof playout
data[8], while the end-to-enddelay differencebetweennetwork
pathsis typically muchsmaller, onecanexpectthe impactof path
switchingto beeasilyhiddenby thoseexistingmechanisms.

4.2 Comparing path quality
As shown in Eqs.10 and11, theparametersu , i ,

U
, and � 	N al-

low usto estimatethePSNRof avideosignalasif it weresentover
a pathwith known characteristics.As discussedin Sections2 and
3, i canbereadilyobtainedandthelossfactor u of eachavailable
pathcanbeestimatedthroughactive probingandstatisticalinfer-
ence. However, accuratelyestimating

U
and � 	N is non-trivial, as

it involvesunderstandinghow lossespropagatewhile decodinga
video streamandmeasuringthe resultingaveragedistortion[14].
This is typically difficult in live video streamingsystems.Fortu-
nately, in the context of pathswitching,estimatingthe exact val-
uesof

U
and � 	N is not required,becausewe aremainly interested

in the quality difference betweentwo (or more)paths. Therefore,
whencomputingthe differencein PSNRbetweentwo paths,the
only contributing parametersarethe lossfactorsof the two paths,
which canbothbeestimatedin real-time.Specifically, if thesame
video is transmittedon two pathsthat have lossfactorsu � and u 	
respectively, thequalitydifferencein PSNRisrRv��wW� <H ¡  �Z+(L¢y|{B} � I u£�u"	 * (15)

To verify theaccuracy of this expressionin estimatingdifferences
in quality, weused30differentlossmodelsspanningabroadrange
of losscharacteristicsandvariousvaluesfor the lossfactor u . Us-
ing eachlossmodel,we generateda losstraceandappliedit to the
video streamsAlberta andRobot. For eachpair of losstraceand
receivedvideo,wecomputedthevalueof rRv��w � <H )  usingEq.15
andcomparedit with themeasuredPSNRdifference.Thescatter-
plots of this comparisonareshown in Fig. 6. Clearly, the quality
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Figure 6: The differencein PSNRcausedby two lossprocesses:
model-estimatedresult vs. measurementresult for Alberta (top)
andRobot (bottom).

differenceestimatedby Eq.15 is closeto theactualvaluefor both
video sequences.Note that our modeltendsto underestimatethe
quality differencewhentheratio of u£� ' u"	 is large(theupperright
region in the plot). This is becausethe model is built upon the
assumptionthat individual losseventsarefar apartso that thedis-
tortionscausedby different losseventsdo not interferewith each
other. This assumptionbecomesweaker as lossesbecomeheav-
ier or rTs becomeslarger. However, this inaccuracy typically will
not affect the pathswitchingdecisionsif the thresholdof quality
differenceusedfor pathswitchingis appropriatelyselected.

Thelaststepin formulatingapracticalstrategy for real-timepath
switchingthatoptimizesvideoquality, is to confirmthatdifferences
in PSNRareindeedanaccuratemeasureof differencesin quality,
andcanthereforebeusedto makecorrectpathselections.In partic-
ular, althoughapositive PSNRdifferencedoesimply thatonepath
is better, thedifferencemaynot bemeaningfulin termsof quality
andcouldevenbewithin theerrormargin of ourmethodology. It is
thereforedesirableto identify whenPSNRdifferencescorrespond
to significantenoughdifferencesin video quality. Furthermore,
several studieshave shown that PSNRis a good measureof the
actual(or subjective) video quality only within a certainrangeof
values,andthat therelationshipbetweenthetwo is highly nonlin-
ear[17]. For example,a proposedmappingbetweenPSNRanda
MeanOpinionScore(MOS) rangingfrom 0 to 1 (0 representsthe
bestquality, 1 representstheworstquality) is asfollows [17]:¥Z¦ v � ++�3�§�¨"©S� �b� � rRvQ�xw � ��	 %O% � (16)

wherein [18], the following valuesweresuggestedfor �b� and ��	 :�"� �VLQ*�+-ª1L+ , and��	 � [-~-*�«-«-ªB~ .
In orderto betterassesstherelationshipbetweenPSNRandvideo

quality, how it evolvesfor differentPSNRvalues,andhow it varies
for differentvideostreams,we presentin Fig. 7(a)samplePSNR-
qualitymappingsfor Alberta andRobot. Theresultswereobtained
by comparingtheoriginalandimpairedframesequencesusingthe
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Figure7: (a)Comparisonof PSNR-qualitymappingfor thevideos
Alberta andRobot (top)and(b) Divisionof PSNR-qualitymapping
with threedifferentregions(bottom).

objective video quality metric (VQM) developedby the Institute
for TelecommunicationScience[18]. From the figure,we clearly
seethat therelationshipbetweenPSNRandquality is highly non-
linear, andthemappingtrendis roughlythesamefor bothvideos.
This illustratesthat even if a generalexpressionsuchas Eq. 16
is not perfectlyaccurate,it doescapturethe relationshipbetween
PSNRandvideoquality. Thisallowsusto finalizeourapproachof
usingPSNRin makingpathswitchingdecisionsto improve video
quality.

Specifically, Fig. 7(b) shows a typical mappingfrom PSNRto
video quality, asgiven by Eq. 16. The curve identifiesthreema-
jor “semi-linear”regions.Region I correspondsto a high lossfac-
tor region with low PSNRvalues,wherethequality is consistently
closeto the worst possiblescore. Within this region, differences
in PSNRdo not translateinto meaningfulquality improvements.
From a pathswitchingperspective, two pathswith suchhigh loss
factorsareequallyundesirable,in spiteof their PSNRdifferences.
In otherwords,even a positive PSNRdifferenceshouldnot trig-
gera pathswitchingdecision.A similar result,albeit for opposite
reasons,holds in Region III that correspondsto pathswith suffi-
ciently low lossfactors,so that the resultingPSNRvaluesareall
high enoughto generatenearperfectvideo quality. As a result,
even whentwo pathsin this region have a positive PSNRdiffer-
ence,switching betweenthem will againnot yield a meaningful
improvementin videoquality. The only region wheredifferences
in PSNRtranslateinto substantialdifferencesin videoquality, and
canthereforebeusedto effectively guidepathswitchingdecisions,
is Region II. In this region,videoquality improvesalmostlinearly
with PSNR,so thatour earliermethodologyfor computingdiffer-
encesin PSNRfrom network measurementscanbeusedto trigger
pathswitchingdecisionsthatimprove videoquality.

Given the above analysis,the only remainingissueis to deter-
minewheretheboundariesof theabove threeregionslie in terms
of network parameters,andin particularlossfactors. We discuss
next a simplemethodologythat we derived andvalidatedfor that
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Figure 8: Verifying the empirical thresholdof r`sx® +�')�O+1L-? i %
that definesthe boundaryof region III. The quality measurement
resultsfor (a) Alberta, (b) Harry Potter, and(c) Tonight Show.

purpose.We considerthePSNR-qualitymappingto be in Region
I, if thelosseventprobabilityestimatedon thecandidatepath,r s ,
is lessthan

+�')�@? i % . This choiceis motivatedby the fact thatour
loss-distortionmodelingreliesontheassumptionof arelatively low
lossevent probability, so that our estimationof quality difference
is inaccuratewhen rTs�� +-'B�@? i % . If this is the case,the signal
errorscouldfall in thesameGoPandinterferewith eachother(re-
call that

?
is the numberof framesin a GoP and i the number

of packets per frame). Similarly, we defineRegion III ascorre-
spondingto rTs4� +�')�O+1L-? i % . This definitionis empirical,but has
beenvalidatedthrougha numberof experiments.In particular, we
report in Fig. 8 thequality of threevideosamplesAlberta, Harry
Potter, andTonight Show for differentlossprocesseswith rTs vary-
ing from 1/10 to 1/640. Thesethreevideosamplescover a broad
rangeof motion levels, with Alberta a commercialadvertisement
with lots of scenechanges;Harry Potter a movie clip with mild
motion;Tonight Show ahead-and-shouldertypeof videowith min-
imal motion. All videosampleswereencodedwith GoPsizes(

?
)

of 4, 8, and16 frames,respectively. In all the tests,eachframe
wastransmittedusing4 packets(i �0� ). As canbeseenfrom the
figure,thevideosampleswith

?¯���
have a quality scorecloseto

0 when rTsT® +�')+-«(L , andthequality of thesamplevideosaturates
with r s ® +-'B°-[(L and r s ® +-'B«(�-L when

?>�²±
and
?³�¯+-«

, re-
spectively. Thisshows that rTs`® +�'B�O+(L�? i % is a reasonablechoice
for identifying theboundaryof Region III.

4.3 Path switching and its evaluation
Becausethereis a costassociatedwith switchingfrom onepath

to anothereven if its impact on quality can be successfullyhid-
den,andbecauseaccuratelyestimatingnetwork performancecalls
for accumulatinga sufficient numberof samples,path switching
decisionsshouldbe madeat a relatively coarsetime granularity.
This granularitycan rangefrom a few tensof secondsto a few
minutes,andin our experimentswassetto 3 minutes.In addition,
becausetheaboveregionbasedapproachis intrinsicallyanapprox-
imation,switchingfrom onepathto anothershouldtypically only
be performedif “sufficient” quality improvementcanbeachieved
by routing the video packetsonto the alternative path. In our ex-

Table1: Quality improvementfrom pathswitching
Path1 Path2 Pathswitching

Overall quality 0.251 0.214 0.165
Qualityvariation 0.158 0.176 0.108

periments,a PSNRdifferenceof 1.5 dB wasusedasthe threshold
below which pathswitchingshouldnot beconsidered.To summa-
rize,thepathswitchingstrategy wefollow consistsof thefollowing
steps3:´ If eitherof the lossprocessesestimatedon the two pathsis

in region I, i.e., r �s � �! p or r 	s � �! p , where r �s , r 	s
standfor thelosseventprobabilitiesonpath1 andpath2, we
choosepath1 overpath2 if andonly if r �s � r 	s � �! p , and
viceversa.´ If the loss processeson both pathsare in region III, i.e.,r �s = �� I ! p and r 	s = �� I ! p , no pathswitchingneedsbe
performed.´ Otherwise,wechoosepath1overpath2 if andonly if u 	 ' u � �+�* �Q+B[-~

or vice versa,i.e., thepotentialquality improvement
shouldbegreaterthan1.5dB.

The effectivenessof the above strategy was testedexperimen-
tally usinga 3 minutesvideoclip Tonight Show, andtwo candidate
pathsconnectingUPenn and UMN. The video packets are trans-
mitted approximatelyevery 10 ms. The experimentlastedfor 10
hoursduring which the video clip was repeatedlytransmittedon
bothpaths.Thetransmissionof theclip on bothpathsallowedthe
simultaneousevaluationof the quality of the received video over
eachof them(seeFigs.9(a)(b)). This wasthenusedto assessthe
benefitsof path switching againstour baselinestrategy that uses
only one path at a time. In addition to the video stream,prob-
ing flows werealsotransmittedon both paths. Probesweregen-
eratedevery 40 ms, and the collectedloss traceswere fed to the
lossestimationprocessthatdrove thepathswitchingdecisions.In
particular, the lossparametersof eachpathwereestimatedevery
3 minutes(

���;~1L-L
probes),which wasalsothe time granularityof

pathswitching.Thereceivedvideostreamwith pathswitchingwas
“reconstructed”by piecingtogetherthe associatedsegmentsfrom
thevideostreamsreceivedoneachpath,following thepathswitch-
ing decisionsbasedon probingandquality differenceestimations.
The quality of the resultingstreamwas then evaluated. The re-
sultsin Fig.9(c)clearlyillustratestheimprovementin videoquality
achieved by pathswitching. Table1 providesadditionalinforma-
tion onthebenefitsof pathswitchingby comparingtheaverageand
thestandarddeviation of thequality scoreon eachindividual path
to thoseof thevideo resultingfrom pathswitching. Thestatistics
clearlyshow thatourschemenotonly improvestheoverall quality,
but alsoreducesits variations.

Obviously, theeffectivenessof pathswitchingdependsnot only
onthedecisionprocessitself, but alsoonthepotentialperformance
improvementsofferedby the paths. If all pathshave similar loss
characteristics,e.g.,they shareacommoncongestionpoint,switch-
ing pathsis of limited use. Similarly, if the loss patternson the
monitoredpathsaretransientor unpredictable,theaccuracy of the
lossestimationcomponentwill suffer, hencethe effectivenessof
pathswitchingwill alsobe limited. However, whenlosspatterns
acrosscandidatepathsare uncorrelated,while at the sametime
losseson a path exhibit somelevel of temporalcorrelation,i.e.,
3Notethatalthoughit is formulatedfor thecaseof two paths,it is
readilyextendableto thecasesof morethantwo paths.
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Figure 9: Videoquality improvementachievedby performanceestimation/predictionanddynamicpathselection:Quality variations(a) on
path1 (left), (b) on path2 (middle),and(c) with dynamicpathswitching(right).

pathshave non-overlappingandextendedcongestionperiods,then
pathswitchingcanbeeffective in improving network andapplica-
tion (video)performance.Two suchinstancescanbeseenonFig.9
at time 160minutes(on path2) andat time 400minutes(on path
1). A comprehensive studyof this issueis beyondthescopeof this
paper, andmore discussionscan be found in [16] demonstrating
thatsuchconditionsarecommonlyencountered.

5. CONCLUSION
Thispaperinvestigatedtheuseof dynamicpathswitchingto im-

prove the quality of streamingvideo, when it is transmittedover
a network that offers pathdiversity. Thepaperfocusedon under-
standinghow network level performancedifferencescanbe trans-
latedinto improved videoquality. This wasmotivatedby the fact
that in many casesa purelynetwork basedpathswitchingdecision
canresultin poorervideoquality. Addressingthis issuecalledfor
developinga simpleyet reasonablyaccuratemodelfor comparing
thevideoquality achievableon differentpaths.Thepaper’s contri-
butionswerein developinga modelbasedon which thebestpath,
in termsof videoquality, canbecorrectlyselectedin real-time,us-
ing only simplemeasurementsof network performance.Although
the modelwas initially usedto drive pathswitchingdecisions,it
obviously hasbroaderapplicability. For example,it canbeusedto
testthereadinessof anetwork in supportingstreamingvideoappli-
cations,aswell asto designquality-basedadaptationschemesfor
videotransmission.

Thereareseveralnaturalextensionsfor thiswork, andwebriefly
mentiontwo of themthat we arecurrentlypursuing. The first is
to extend the useof path switching to otherapplicationssuchas
VoIP and interactive video for which both lossesanddelayneed
to be taken into account.A secondextensioninvolvescombining
pathswitchingwith existing video adaptationschemes,e.g., lay-
eredcoding,to further enhancethe robustnessof video transmis-
sionsover best-effort networks.
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