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Closing the Loop: A Simple Distributed Method for Control over
Wireless Networks

Abstract
We present a distributed scheme used for control over a network of wireless nodes. As opposed to traditional
networked control schemes where the nodes simply route information to and from a dedicated controller
(perhaps performing some encoding along the way), our approach, Wireless Control Network (WCN), treats
the network itself as the controller. In other words, the computation of the control law is done in a fully
distributed way inside the network. We extend the basic WCN strategy, where at each time-step, each node
updates its internal state to be a linear combination of the states of the nodes in its neighborhood. This causes
the entire network to behave as a linear dynamical system, with sparsity constraints imposed by the network
topology. We demonstrate that with observer style updates, the WCN's robustness to link failures is
substantially improved. Furthermore, we show how to design a WCN that can maintain stability even in cases
of node failures. We also address the problem of WCN synthesis with guaranteed optimal performance of the
plant, with respect to standard cost functions. We extend the synthesis procedure to deal with continuous-
time plants and demonstrate how the WCN can be used on a practical, industrial application, using a process-
in-the-loop setup with real hardware.
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ABSTRACT
We present a distributed scheme used for control over a net-
work of wireless nodes. As opposed to traditional networked
control schemes where the nodes simply route information to
and from a dedicated controller (perhaps performing some
encoding along the way), our approach, Wireless Control
Network (WCN), treats the network itself as the controller.
In other words, the computation of the control law is done in
a fully distributed way inside the network. We extend the
basic WCN strategy, where at each time-step, each node
updates its internal state to be a linear combination of the
states of the nodes in its neighborhood. This causes the en-
tire network to behave as a linear dynamical system, with
sparsity constraints imposed by the network topology. We
demonstrate that with observer style updates, the WCN’s
robustness to link failures is substantially improved. Fur-
thermore, we show how to design a WCN that can maintain
stability even in cases of node failures. We also address the
problem of WCN synthesis with guaranteed optimal perfor-
mance of the plant, with respect to standard cost functions.
We extend the synthesis procedure to deal with continuous-
time plants and demonstrate how the WCN can be used on a
practical, industrial application, using a process-in-the-loop
setup with real hardware.
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1. INTRODUCTION
Improvements in the capabilities and cost of wireless tech-

nologies have allowed multi-hop wireless networks to be used
as a means of (open-loop) monitoring of large-scale indus-
trial plants [1, 2]. With this technology, sensor measure-
ments of plant variables can be transmitted to controllers,
data centers and plant operators without the need for exces-
sive wiring, thereby yielding gains in efficiency and flexibility
for the operator. However, the use of multi-hop wireless net-
works in closed-loop feedback control is in its infancy, and is
an active area of research [3, 4]. Wireless Networked Con-
trol Systems (WNCSs) fundamentally differ from standard
wired distributed systems in that the dynamics of the net-
work (variable channel capacity, probabilistic connectivity,
topological changes, node and link failures) can change the
operating points and physical dynamics of the closed-loop
system [3, 5]. The most important objective of WNCSs is
to provide stability of the closed-loop system. An additional
requirement is optimality with respect to some appropriate
cost function. It is therefore necessary for the network (along
with its interfaces to sensors and actuators) to be able to
provide some form of guarantee of the control system’s sta-
bility in the face of the non-idealities of the wireless links
and the communication constraints of the wireless network.



s1
a1
a2

am

s2

s3

sp

...

Plant Controller

(a) Wired Network Control

v1

v6

v7 v8

v5

v4 v3

v9

v10

v2

v9

s1

a1

a2

am

s2

s3

sp

...

Plant
Controller

(b) Wireless Network Controlled System

v1

v6

v7 v8

v5

v4 v3

v9

v10

v2

v9

s1

a1

a2

am

s2

s3

sp

...

Plant

WCN

(c) Wireless Control Network

Figure 1: Standard architectures for Networked Control Systems; (a) Wired system with a shared bus and
dedicated controller; (b) Red links/nodes - routing data from the plant’s sensors to the controller; Blue
links/nodes - routing data from the controller to the plant’s actuators; (c) A multi-hop wireless control
network used as a distributed controller.

The most common approach to incorporating WNCSs into
the feedback loop is to use it primarily as a communication
medium: the nodes in the network simply route informa-
tion to and from one or more dedicated controllers, which
are usually specialized CPUs capable of performing compu-
tationally expensive procedures (see Fig. 1(b)). The use of
dedicated controllers imposes a routing requirement along
one or more fixed paths through the network, which must
meet the stability constraints, encapsulated by end-to-end
delay requirements [6, 7]. However, this assignment of routes
is a static setup, which commonly requires global reorganiza-
tion for changes in the underlying topology, node population
and wireless link capacities.

Routing couples the communication, computation and con-
trol problems [4, 8, 9]. Therefore, when a new route is re-
quired due to topological changes, the computation and con-
trol configurations must also be recalculated. Merely insert-
ing a WNCS into the standard network architecture “sensor
→ channel → controller/estimator → channel → actuator”
requires the addition of significant software support [7, 10],
as the overhead of completely recomputing the computa-
tion and control configurations, due to topological changes
or packet drops, is too expensive and does not scale.

1.1 Wireless Control Design Challenge
It should be noted that providing closed-loop stability

and performance guarantees for wireless control networks
is a challenging problem. On one hand, the control sys-
tems community typically abstracts away the systems de-
tails and solves the problem for semi-idealized networks with
approximated noise distributions and link perturbations [3,
5]. While this approach provides mathematical certainty
of the properties of the network, it fails to provide a sys-
tematic path to real-world network design. On the other
hand, the network systems community uses hardware and
software approaches to address open-loop issues, but these
fail to provide any guarantees to maintaining stability and
performance of closed-loop control. We propose a control
scheme over wireless networks that provides closed-loop sta-
bility or optimality with respect to standard metrics, while
maintaining ease of implementation in real-world networks.

The applications of interest in this work are industrial
process control systems (such as natural gas refineries and
paper pulp manufacturing plants) and building automation
systems. In general, the plant time-constants are on the

order of several seconds to a few minutes and the control
network is expected to operate at rates of hundreds of mil-
liseconds. While such plants may have as many as 80,000
to 110,000 control loops, they are organized in a hierarchal
manner such that networks span 10-20 wireless nodes (per
gateway) for low-level control [6]. Therefore, in this work
we focus on the networks with up to a few tens of nodes.

Furthermore, the networks might be shared among control
loops (i.e., a node may be involved in several feedback loops),
and new feedback loops may be added at run-time. Adding
new communication loops in a standard WNCS could affect
the performance of the existing loops, and the system must
be analyzed as a whole. Although techniques have been de-
veloped for compositional analysis of WNCS (e.g., [4]), their
complexity limits their use in these applications. Therefore,
it is necessary to derive a composable control scheme, where
control loops can be easily added and a simple compositional
analysis can be performed at run-time, to ensure that one
loop does not affect performance of other loops.

Finally, with the use of asynchronous event triggered net-
work substrates, it is difficult to design, model and analyze
control networks and also hard, if not impossible, to ver-
ify performance of a system that consists of several event-
triggered loops. On the other hand, full network synchro-
nization allows the use of Time-Triggered Architectures (TTAs)
where communication and computation are scheduled at
particular instances of time (i.e., time slots) [11]. This sim-
plifies modeling of the closed-loop system, which now con-
sists of continuous-time physical dynamics and a communi-
cation network. With TTA, the closed-loop system can be
modeled as a switched control system [4], allowing the use
of existing techniques for switched-system analysis. There-
fore, when communication and computation schedules are
derived, it is possible to determine if the closed-loop system
is stable (i.e., asymptotically stable or mean square stable)
for channel errors, with and/or without permanent link or
node failures.

1.2 Contributions
In this effort, we build on the work from [12], in which

we introduced the Wireless Control Network (WCN), a fun-
damentally new concept where the network itself acts as
the controller. We proposed a basic scheme that can be
used to guarantee closed-loop system stability. We hence-
forth refer to this as the “basic WCN”. Our contribution



is focused specifically on four major extensions to the basic
WCN, making it optimal, more robust and practical:

1.) While the basic WCN in [12] provided closed-loop sta-
bility, the key issue of optimality was not investigated. We
present here a method to extract an optimal WCN configu-
ration, thus providing a greater incentive to adopt WCN in
industrial control applications.

2.) The basic WCN was able to provide stable network con-
figurations for a large class of wireless network topologies.
However, it was highly susceptible to packet drops greater
than 1%. In this work, we present significant robustness im-
provements, maintaining stability for packet drop rates up
to 20% for a specific network topology and plant. This
bridges the gap between the basic WCN and the theoretical
upper bound of robustness to packet drops [13].

3.) Furthermore, we propose a method to extract WCN
configurations that maintain stability of the closed-loop sys-
tem even in presence of node failures.

4.) Finally, we illustrate the use of the improved WCN in
an industrial process control case study. Using a process-
in-the-loop test-bed we demonstrate its ability to optimally
control continuous-time physical processes, and to maintain
system stability under the presence of node and link failures.

In this paper, we consider scenarios where the network
topology is already set, and we present algorithms to config-
ure the WCN to guarantee stability (optimality) for the pre-
defined topology. In [14] we have investigated a dual prob-
lem, how to synthesize the network so that a stable WCN
configuration exists. The topological conditions from [14],
along with the results from this work allow for an integrated
decentralized wireless control network design framework.

1.3 Organization of the Paper
The rest of the paper is organized as follows: Sec. 2 de-

scribes the concept of the WCN. In Sec. 3 we present a
method used to extract optimal WCN configurations. Sec. 4
and 5 extend the WCN scheme to improve its robustness to
link and node failures. Sec. 6 describes an approach to em-
ploy WCN for control of continuous-time process. Finally, in
Sec. 7 we show how the WCN can be used in an industrial,
process control application.

1.4 Notation
We use IN to denote the N ×N identity matrix, while I

denotes the identity matrix of appropriate dimensions. The
notation diag (·) indicates a square matrix with the quan-
tities inside the brackets on the diagonal, and zeros else-
where. For a vector x, ‖x‖ denotes the Euclidean norm

(i.e., ‖x‖ =
√

xTx). Finally, A � 0(� 0) indicates that
matrix A is positive (semi)definite.

2. WIRELESS CONTROL NETWORKS

2.1 An Intuitive Overview of the WCN
The role of feedback control is to apply inputs to the plant

(based on observed outputs) in order to elicit the desired
behavior. The exact mapping between observed behavior
and applied inputs depends on a mathematical model of the
plant, describing how inputs affect the system (over time).
Here, we start with a common discrete-time, linear time-

invariant model of the form:1

x[k + 1] = Ax[k] + Bu[k] + Bwuw[k]

y[k] = Cx[k],
(1)

where x ∈ Rn and y ∈ Rp denote the plant’s state and
output, u ∈ Rm is the plant’s (controllable) input, and uw ∈
Rmw is the disturbance input.2 Accordingly, the matrices
A,B,Bw,C have suitable dimensions.

Standard dynamical feedback controllers collect the ob-
served plant outputs y[k] and generate the control input
u[k] as the output of a linear system of the form:

xc[k + 1] = Acxc[k] + Bcy[k]

u[k] = Ccxc[k] + Dcy[k].
(2)

The vector xc[k] denotes the state of the controller, and
the matrices Ac,Bc,Cc and Dc are designed using standard
tools from control theory, to ensure that the control inputs
are stabilizing. Depending on the control method used, the
state of the controller can often be as large as the state of
the system itself.

In the above traditional approach to controller design, a
wireless network would simply be placed between the con-
troller and the plant to carry information back and forth.
The goal of our work is to derive a truly networked and
fully distributed control scheme, where the collective compu-
tation and communication capabilities of the wireless nodes
are fully leveraged to compute the control inputs in-network.
Intuitively, we propose a simple scheme for each node in the
network to follow (using only information from its nearest
neighbors at each time-step) that results in the desired net-
work behavior. Essentially, we would like each wireless node
to act as a small dynamical controller, with two main dif-
ferences: (i) the state of the controller at each node will
be constrained to be rather small (in order to account for
resource and computational constraints), and (ii) in its up-
dates, each node only uses the states of its nearest neigh-
bors (which could include the plant’s outputs, if the node is
within transmission range of the outputs). Note that the lat-
ter condition precludes the need to route information from
the plant to each controller in order for it to perform its
update. In the rest of this section, we will make these con-
ditions more mathematically precise.

2.2 Model of the Wireless Control Network
To model the WCN we consider the basic WCN setup from

Fig. 1(c), where the plant is to be controlled using a multi-
hop, fully synchronized wireless network with N nodes. In
this paper, we extend the proposed scheme to allow for the
design of a WCN that applies inputs in an ‘optimal’ manner
(according to a cost function that we will define later). The
plant model is given by (1), where the output vector y[k]
contains the plant’s output measurements provided by the
sensors s1, . . . , sp, while the input vector u[k] corresponds to
the signals applied to the plant by actuators a1, . . . , am. The
wireless network is described by a graph G = {V, E}, where
V = {v1, v2, . . . , vN} is the set of N nodes and E ⊆ V × V
represents the radio connectivity (communication topology)
in the network (i.e., edge (vj , vi) ∈ E , if node vi can receive
information directly from node vj).

1In Section 6 we will show how continuous-time plants can
be cast in this framework using discretization.
2We do not have any control over the disturbances.
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Figure 2: An illustration of the WCN scheme for a simple network.

As mentioned earlier, our scheme views each node vi as
a (small) linear dynamical controller, with (possibly vector)
state zi. Each node updates the state of its controller as a
linear combination of the states of its neighbors and its own
state. The state update for node vi can also include a linear
combination of the plant outputs from all plant sensors in
vi’s neighborhood.

For example, consider the network presented in Fig. 2,
where at the beginning of a time frame each node has an
initial state value denoted by zi (Fig. 2(a)). If each node
maintains a scalar state, the size of the state is just 2 bytes.3

In the first time slot of a frame (Fig. 2(b)) node v4 transmits
its state, and in the second slot node v5 transmits the state,
etc. Finally, in the 6th slot node v3 is the last node in the
frame to transmit its state (Fig. 2(g)). This results in a
communication schedule as depicted in Fig. 2(h). After slot
6, node v4 is informed about all its neighbors’ states, which
enables it to update its state by activating the WCN task.
The task has to compute the updated state value before the
node is scheduled for transmission in the next frame.

In the general case, if zi[k] denotes the ith node’s state
at time step (i.e., communication frame) k, the runtime
update procedure is:

zi[k + 1] = wiizi[k] +
∑

vj∈Nvi

wijzj [k] +
∑

sj∈Nvi

hijyj [k], (3)

where the neighborhood of a vertex v is represented as Nv
and yj [k] is the measurement provided by sensor sj . We will
model the resource constraints of each node in the network
by limiting the size of the state vector that can be main-
tained by each node.4 Note the similarity of the update (3)
to the state update equation for traditional dynamical con-
trollers of the form (2); the state zi[k] plays the role of xc[k],

3Given that standard analog-to-digital converters have a
precision of 12-16 bits, two bytes suffice for scalar values.
4To present our results, we will focus on the case where each
node’s state is a scalar. The general case, where each het-
erogeneous node can maintain a vector state with possibly
different dimensions, can be treated with a natural extension
of our approach (e.g., see [12]).

the weights wii and wij play the role of Ac and the columns
of Bc, respectively.

To enable interaction between the network and the plant,
each actuator ai applies input ui[k], which is computed as
a linear combination of states from the nodes in the neigh-
borhood of the actuator:

ui[k] =
∑
j∈Nai

gijzj [k]. (4)

Once again, note the resemblance of this applied input to
the input applied by a standard controller of the form (2).
Therefore, the behavior of each node in the network is de-
termined by values wij , hij and gij . Aggregating the state
values of all nodes at time step k into the value vector z[k],
we see that the above individual controllers at each node
collectively cause the entire network to act as a dynamical
controller of the form:

z[k + 1] =


w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN


︸ ︷︷ ︸

W

z[k]+

+


h11 h12 · · · h1p

h21 h22 · · · h2p

...
...

. . .
...

hN1 hN2 · · · hNp


︸ ︷︷ ︸

H

y[k]

= Wz[k] + Hy[k] ,

u[k] =


g11 g12 · · · g1N

g21 g22 · · · g2N

...
...

. . .
...

gm1 gm2 · · · gmN


︸ ︷︷ ︸

G

z[k] = Gz[k]

for all k ∈ N. Since for all i ∈ {1, . . . , N}, wij = 0 if
vj /∈ Nvi , hij = 0 if sj /∈ Nvi , and gij = 0 if vj /∈ Nai
the matrices W,H and G are structured, with sparsity con-
straints determined by the network topology at design time.



Throughout the rest of the paper, we will define Ψ to be the
set of all tuples (W,H,G) ∈ RN×N ×RN×p ×Rm×N satis-
fying the aforementioned sparsity constraints. Denoting the
overall system state (plant’s state and states of all nodes

in the network) by x̂[k] =
[
x[k]T z[k]T

]T
, the closed-loop

system evolves as:

x̂[k + 1] =

[
A BG

HC W

]
︸ ︷︷ ︸

Â

[
x[k]
z[k]

]
︸ ︷︷ ︸

x̂[k]

+

[
Bw

0

]
︸ ︷︷ ︸

B̂

uw

= Âx̂[k] + B̂uw[k].

(5)

To use the WCN runtime scheme it is essential to deter-
mine an appropriate set of link weights (wij , hij and gij) at
design-time, so that the closed loop system is asymptoti-
cally stable.5 When there are no disturbances (i.e., uw[k] ≡
0), an initial procedure was proposed for the basic WCN
that guarantees that the closed-loop system is stable, or
Mean Square Stable (MSS) if the communication links are
unreliable.6

2.2.1 Advantages of the WCN
The WCN introduces very low communication and com-

putation overhead. The linear iterative runtime procedure (3)
is computationally very inexpensive as each node only com-
putes a linear combination of its value and values of its
neighbors. This makes it suitable for resource constrained,
low-power wireless nodes (e.g., Tmote). Furthermore, the
communication overhead is also very small, as each node
needs to transmit only its own state once per frame. In
the case when a node maintains a scalar state it transmits
only 2 bytes in each message, making it suitable to combine
this scheme with periodic message transmissions in existing
wireless systems.

Another key benefit is that the WCN can easily handle
plants with multiple geographically distributed sensors and
actuators, a case that is not easily handled by the “sensor
→ channel → controller/estimator → channel → actuator”
setup commonly adopted in networked control design. The
existence of a centralized controller might impose a require-
ment that the sampling time of the plant is greater than
or equal to the sum of communication delays, from sensors
to the controller and from the controller to the actuator,
along with the time required for the computation of the con-
trol algorithm. The WCN does not rely on the existence of
centralized controllers, and inherently captures the case of
nodes exchanging values with the plant at various points in
the network. Therefore, when the WCN is used, the network
diameter does not affect the sampling period of the plant.

Finally, the WCN utilizes a simple transmission schedule
where each node is active only once during a TDMA cycle
and the control-loop does not impose end-to-end delay re-
quirements. This allows the network operator to decouple
the computation schedule from the communication sched-

5A linear system x[k+1] = Ax[k] is asymptotically stable if
for any x[0], limk→∞ x[k] = 0. This is equivalent to saying
that all eigenvalues of A have magnitude less than 1.
6The system x[k + 1] = Aθ(k)x[k], where subscript θ(k)
describes time-variations caused by (probabilistic) drops of
communication packets, is mean-square stable if for any ini-
tial state (x[0], θ(0)), limk→∞ E

[
‖x[k]‖2

]
= 0, where the

expectation is with respect to the probability distribution of
the packet drop sequence θ(k) [15, 16].

ule, which significantly simplifies closed-loop system design
and enables compositional design and analysis. As long as
each node can send additional states in a single transmis-
sion packet, and schedule computation of additional linear
procedures, adding a new control loop will not affect the
performance of the existing control loops. For example, con-
sider IEEE 802.14.5 networks that have the maximal packet
size of 128 bytes. If each plant is controlled using the WCN
scheme where all nodes maintain a scalar 16 bit state value,
then up to 64 plants can be controlled in parallel.

In this paper, we provide an enhanced WCN scheme that
maintains all of these desirable properties, and further in-
corporates optimality and robustness metrics into the basic
scheme.

2.2.2 Synchronization Requirements
For the network sizes considered here, it is necessary to use

either hardware-based out-of-band synchronization or some
of the built-in synchronization protocols that guarantee low
synchronization error between neighboring nodes (e.g., the
approach described in [17] guarantees that the maximal syn-
chronization error between neighboring nodes is less than
1 µs). Even for 10 µs synchronization error between neigh-
boring nodes, for large scale networks with the network di-
ameter less than 100 nodes, maximal synchronization error
between nodes is less than 1ms, which is significantly smaller
than standard sampling rates of the plant when WCN is
used. For example, if communication frames that consist of
16 slots are used, where each slot is 10 ms wide, the sam-
pling period of the plant equals to 160 ms. In this case,
synchronization errors would take less than 1% of the sam-
pling period. We employ a synchronized network and use
the RT-Link [18] time synchronized protocol in our evalua-
tion. Time synchronized network protocols are the norm in
the control automation industry, and two recent standards,
WirelessHART[1] and ISA 100.11a [19] utilize a time divi-
sion multiplexing link protocol.

3. SYNTHESIS OF AN OPTIMAL WCN
In this section we present a design-time method to deter-

mine a WCN configuration (i.e., link weights for a network
with predefined topology) that minimizes effects of the dis-
turbances acting on the system. More specifically, consider
the model of the closed-loop system from (5), and assume
that we want to minimize the influence of the disturbance
input uw on the vector ŷ = Ĉx̂[k], for some matrix Ĉ. For
example, if we would like to focus on minimizing the effects
on the plant’s state x, we would define Ĉ =

[
I 0

]
. Thus,

we can consider the vector ŷ as the ‘output’ of the system:

x̂[k + 1] = Âx̂[k] + B̂uw[k]

ŷ = Ĉx̂[k].
(6)

To determine the effect of the disturbance on the system’s
outputs, it is necessary to define a unit of measure to capture
the ‘size’ of discrete-time signals. We will use the norms:

‖v‖`2 ,
(∑∞

k=0 ‖v[k]‖2
)1/2

and ‖v‖`∞ , supk≥0 ‖v[k]‖.
Furthermore, the notion of a system gain is introduced to
classify the worst-case system response to limited energy in-
put disturbances.

Definition 1 ([20]). System gains for the discrete-time
system (6) are defined as:



• Energy-to-Peak Gain: γep = sup‖uw‖`2≤1 ‖ŷ‖`∞
• Energy-to-Energy Gain: γee = sup‖uw‖`2≤1 ‖ŷ‖`2

We will require the following result from [21].

Theorem 1. Suppose that the system (6) is asymptoti-
cally stable and consider any nonnegative γ ∈ R.
(a) γep < γ if and only if there exist matrices X � 0,Υ � 0
and Z such that Υ ≺ γI and

R(X ,Z,Υ,X−1) =


X Z Â B̂

ZT Υ Ĉ 0

ÂT ĈT X−1 0

B̂T 0 0 I

 � 0 (7)

(b) γee < γ if and only if there exist matrices X � 0,Υ � 0
such that Υ ≺ γ2I and (7) holds for Z = 0.

Only the matrix Â contains the WCN parameters, aggre-
gated in the structured matrices W,G,H (from (5)). Our
goal is to determine matrices W,G,H that satisfy the im-
posed structural constraints, along with matrices X ,Z,Υ,
for which the value γ is minimized.

The constraint (7) is linear with respect to all variables,
except the matrix X (due to the presence of the term X−1).
This term causes the problem of solving the matrix inequal-
ity to be non-convex. To ameliorate this issue and efficiently
solve the optimization problem, we linearize the X−1 term.
As shown in [21], the Taylor series expansion of X−1 ‘around’
any matrix Xk is

LIN(X−1,Xk) = X−1
k −X−1

k (X − Xk)X−1
k . (8)

With the above linearization we obtain a linear matrix
inequality (LMI) for the constraint 7. As in [21, 22], we
can now define an iterative algorithm to minimize γ, while
ensuring that the constraint from (7) is satisfied. This is
achieved by replacing the term X−1 with LIN(X−1,Xk)
in each iteration, which results in Algorithm 1. Note that
Â(W, H, G) denotes the matrix Â obtained from matrices
W, H, G as defined in (5). Finally, for γ obtained from
Algorithm 1,

√
γ should be used if we had optimized for γee.

Consider the sequence {γk}k≥0 obtained from Algorithm 1.
As shown in [21], the linearization from (8) guarantees that
for each k ≥ 0, in step k + 1 there exists a feasible matrix
in an open neighborhood of the point Xk for which there
exists γ, such that γ ≤ γk. Since γk+1 is the minimum in
that iteration, it follows that γk+1 ≤ γ. Thus, the sequence
{γk}k≥0 is non-increasing and bounded (γk ≥ 0), mean-
ing that it will always converge. Since we are optimizing
a convex function over a non-convex set, by linearizing the
constraints we might obtain a sub-optimal WCN configura-
tion. The final result and the convergence rate depend on
the initial point (from Step 1. of the algorithm). Finally,
the smallest ε for which we can find an optimal controller
can be obtained using bisection on the parameter ε.

4. ROBUSTNESS TO LINK FAILURES
We now describe the main limitation of the basic WCN,

and extend the WCN scheme to improve its robustness to
link failures.

The unreliability of wireless communication links is one
of the main drawbacks when wireless networks are used for
control. When communication links in the feedback loop fail
according to a given probability distribution, the notion of

Algorithm 1 Design-time procedure used to extract op-
timal WCN configuration

1. Set ε > 0, k = 0. Find a feasible point X0,Y0,Υ0 � 0,
Â(W0, H0, G0), such that R(X0,Z,Υ0,Y0) � 0, X0 �
Y−1

0 and (W0,H0,G0) ∈ Ψ. If a feasible point does not
exist, it is not possible to stabilize the system with this
network topology.

2. At iteration k (k ≥ 0), from Xk obtain the matrix Xk+1

and scalar γk+1 by solving the LMI problem

Xk+1 = arg min
X ,Z,Υ,W,H,G,γk+1

γk+1 (9)

R(X ,Z,Υ, LIN(X−1,Xk)) � 0, (10)

Υ ≺ γk+1I, (11)

(W,H,G) ∈ Ψ, X � 0,Υ � 0 (12)

if γee is being optimized, add the constraint Z = 0.

3. If γk+1 < ε stop the algorithm. Otherwise, set k = k+1
and go to the step 2.

asymptotic stability is typically relaxed to settle for mean
square stability (MSS), where the expected value of the norm
of the state stays bounded. For the basic WCN, we proposed
a design-time procedure that can be used to extract a stabi-
lizing configuration that guarantees MSS despite unreliable
communication links [12]. For example, consider the system
from Fig. 3 with a scalar plant, where α = 2 (the plant is
unstable), and assume that the link between node v2 and
the actuator is reliable (i.e., never drops packets). The ba-
sic WCN scheme, where each node maintains a scalar state,
guarantees that the closed-loop system is MSS for probabil-
ities of packet drops ≤ 1.18%.

To place this result in context, it is worth comparing it
with the theoretical limit of robustness in lossy networks
from [13]. The work in [13] considers a system with a plant
controlled by a centralized controller, which is connected to
the plant using a single wireless link between a sensor and
the controller. In addition, the controller is connected to
the actuators with a set of wired connections. It was shown
that for this setup, the system can not be stabilized with a
linear controller for probability of message drops p greater
than 1

|λmax|2 , where |λmax| denotes the maximal norm of

the plant’s eigenvalues (i.e., eigenvalues of A from (1)). For
the plant from Fig. 3, this would mean that a centralized
controller in the aforementioned setup cannot provide MSS
of the plant if the probability of message drops is higher than
25% (since α = 2). This value is significantly larger than the
1.18% value obtained when the basic WCN scheme is used.
We now show how the basic WCN formulation presented
in (3), (4) can be modified to significantly improve tolerance
to packet drops.

w21

v1

x[k+1]=αx[k]+u[k],

y[k]=x[k]

v2

y[k]u[k]

w12

g h

Figure 3: An example of the WCN: A plant with a
scalar state controlled by a WCN.



4.1 WCN with Observer Style Updates
To improve WCN robustness to independent link failures,

we now allow each node in the network to use different
weights in each time step, depending on which neighbors’
transmissions were successfully received. Thus, we define
the update procedure as:

zj [k + 1] = w̃jjzj [k] +
∑
i∈Nvj

w̃jizi[k], 7 (13)

where w̃ji = 0 if the message from the node vi was not
received, or wji otherwise.8 More importantly, w̃jj depends
on a newly introduced set of link weights (qji): w̃jj = wjj −∑
i∈Nvj

q̃ji. Here, q̃ji = 0 if the message from the node

vi was not received, and qji (a free parameter that will be
carefully designed) otherwise.

To model the WCN that employs the above scheme, we
need to model the links in the network. We utilize the ap-
proach proposed in [16], where each unreliable link ξji =
(vi, vj) (i.e., vi → vj) can be modeled as a memoryless, dis-
crete, independent and identically distributed (IID) random
process ξji. Here, IID implies that the random variables
{ξji[k]}k≥0 are IID.9 For each link, these random processes
map each transmitted value tji into a received value ξji[k]tji
(see Fig. 4).

With this link model, (13) can be described as:

zj [k + 1] = (wjj −
∑
i∈Nvj

ξjiqji)zj [k] +
∑
i∈Nvj

ξjiwjizi[k],

Remark 1. If we consider the case with reliable commu-
nication links, the update procedure for each node vj in the
network can be described as:

zj [k + 1] = wjjzj [k] +
∑
i∈Nvj

(wjizi[k]− qjizj [k]), (14)

Since the above equation has the standard observer struc-
ture [23], we refer to this scheme as the WCN with observer
style updates (as in [24]).

Following the approach from [16], each link described with
a random process ξji can be specified with a fixed gain,
corresponding to the mean value of the random variable, and
the zero-mean random part: ξji = µji+∆ji. For example, if
each link (i.e., random process ξji) is described as a Bernoulli
process with probability pji ≤ 1 (i.e., the link delivers the
transmitted message with probability pji), then µji = pji
and ∆ji can have values −pji and 1−pji, with probabilities
1−pji and pji, respectively. Therefore, the above procedure
becomes:
zj [k + 1] = (wjj −

∑
i∈Nvj

µjiqji)zj [k] +
∑
i∈Nvj

µjiwjizi[k]

+
∑
i∈Nvj

∆ji(wjizi[k]− qjizj [k]).

We define rt[k] := (wjizi[k] − qjizj [k]), for each link t =
(vi, vj). Also, for each link t = (si, vj) we denote rt[k] :=
(hjiyi[k]− qjizj [k]). After aggregating all of the rt[k]’s in a

7A similar update is introduced for nodes that receive sensor
values. This part has been omitted for ease of exposition.
8Although these weights are technically time varying (i.e.,
they depend on k), we use this notation for simplicity.
9We will address these assumptions later in this section.

zi
ξji

ξjizivi vjx

wji vjvi
zi µjiwji

µjiwjizi

∆ji
∆jiriri

x

wji

Figure 4: Communication over a non-deterministic
channel; (a) A link between nodes vi and vj; (b) Link
transformation into a robust control form.

vector r[k] of length Nl (where Nl is the number of links),
we obtain:

r[k] = Jor
[
y[k]
z[k]

]
= Jor

[
C 0
0 IN

]
︸ ︷︷ ︸

Ĵor

x̂[k]. (15)

Each row of the matrix Jor ∈ RNl×(N+p) contains up to two
nonzero elements, equal to a gain wt, ht, gt or −qt.

This allows us to model the behavior of the closed-loop
system with unreliable communication. Specifically, the up-
date equation for each node vj is:

zj [k + 1] = (wjj −
∑
i∈Nvj

µjiqji)zj [k] +
∑

t=(vi,vj)

µtwtzi[k]

+
∑

t=(si,vj)

µthtyi[k] +
∑

t=(vi,vj)

∆t[k]rt[k] +
∑

t=(si,vj)

∆t[k]rt[k]

Similarly, the input value applied by each actuator at time
k is:

uj [k] =
∑

t=(vi,aj)

µtgtzi[k] +
∑

t=(vi,aj)

∆t[k]rt[k].

Finally, denoting ∆[k] = diag({∆t[k]}Nlt=1), the above ex-
pressions can be written in vector form as:

z[k + 1] = Wµz[k] + Hµy[k] + Jdstv ∆[k]r[k], (16)

u[k] = Gµz[k] + Jdstu ∆[k]r[k], (17)

where all elements of matrices Wµ,Hµ and Gµ (except the
diagonal entries of Wµ) are of the form µjiwji, µjihji and
µjigji, respectively. The diagonal entries of Wµ are of the
form wjj−

∑
i∈Nvj

µjiqji. The binary matrices Jdstv and Jdstu

are designed in a way that each row of the matrices selects
elements of the vector ∆[k]r[k] that are added to the linear
combinations calculated by the nodes and the actuators. If

we denote Jdst =
[
Jdstu

Jdstv

]
the overall system with unreliable

links can be modeled as:

x̂[k+1] =

[
A BGµ

HµC Wµ

]
︸ ︷︷ ︸

Âµ

x̂[k]+

[
B 0
0 IN

]
Jdst︸ ︷︷ ︸

Ĵdst

∆[k]r[k],

(18)
with r[k] given by (15). Now, using the same approach as
in [16, 12], the following theorem can be proven.

Theorem 2. The system from (18) is MSS if and only if
exist matrices X ,Y � 0 and scalars α1, ..., αNl such that[

X − Ĵdstdiag{α}(Ĵdst)T Âµ

ÂT
µ Y

]
� 0 (19)

Y = X−1 (20)

αi ≥ σ2
i (Ĵor)iY−1(Ĵor)Ti , ∀i ∈ {1, . . . , Nl} (21)



where (Ĵor)i denotes the ith row of the matrix Ĵor.

A procedure based on LMIs, with the same structure as
Algorithm 1, can be used in this case to compute a WCN
configuration that guarantees MSS of the closed-loop system
with error-prone links. The difference from Algorithm 1 is
that in Step 2, the following problem should be solved:

Xk+1 = arg min
X ,Y,Υ,W,H,G

tr(Υ)

Y − LIN(X−1,Xk) ≺ Υ, X � Y−1

such that the constraints from (19),(21),(12) are valid,

where tr(A) denotes the trace of the matrix A. Note that
the above algorithm adds only one additional LMI constraint
for each link in the network.

4.1.1 Validity of the Assumptions
While developing the model of the WCN from (16), we

have assumed that all links in the network are memoryless
and independent. Memoryless channels can be obtained if
channel hopping is used at the network layer [25]. How-
ever, the physical placement of the nodes might introduce
correlation between some of the network links.

If these IID assumptions are not valid (or too simplistic),
we must model correlation between links along with more
complex link failures (such as those induced by a Markov
process). In these cases, an approach similar to [15] can
be used, which would result in an exponential number of
additional constraints introduced to deal with link failures
(compared to the linear number of additional constraints
introduced under the IID assumption of independent and
memoryless channels). Except for very large scale systems,
the observer style update procedure is practical as the com-
putation of WCN configurations (W,H,G) is only required
at design time.

4.1.2 Evaluation
We evaluated the performance of the proposed scheme by

modeling all links as independent Bernoulli processes. To
analyze robustness of the WCN with observer style updates,
we first analyzed the performance of WCNs with N ≥ 2
nodes that create a complete graph. The WCN is used
for control of a single-state plant shown in Fig. 3 (with
α > 1). Node v1 receives the plant output y[k] = x[k]
at each time-step k, and the input to the plant is derived
as a scaled version of the transmission of the node v2 (i.e.,
u[k] = gz2[k] for a scalar g). Using the bisection method
from [15], we extracted the maximal probabilities of message
drops (pm) for which there exists a stabilizing configuration
that ensures MSS.

We considered two scenarios: In the first scenario, we have
compared the performance of the basic WCN with that of
the WCN with observer style updates (denoted oWCN). We
analyzed networks where all the links are unreliable, de-
scribed with the same probability of packet drops p (includ-
ing the links between the plant and the network nodes). The
results are presented in Fig. 5(a). In addition, we have in-
vestigated the case where the link between node v2 and the
plant’s actuator is reliable (without any packet drops). The
results are shown in Fig. 5(b). As can be observed, the pro-
posed scheme significantly improves system robustness to
link failures. For example, the WCN with observer style up-
dates guarantees MSS for the system from Fig. 3 even when

w21

v1

x[k+1]=αx[k]+u[k],

y[k]=x[k]

v2

y[k]u[k]

w12

g h

Figure 5. An example of WCN, a plant with a scalar state controlled by
a WCN.

where each row of the matrix Jor ∈ RNl×(N+p) (similarly
as Jor in the ‘basic’ WCN) contains one or two nonzero
elements, equal to a gain wt, ht, gt or −qt.4

This approach has enabled the use of similar method as
for the ‘basic’ WCN to model the behavior of the closed-
loop system. Specifically, the update equation for each node
vj is:
zj [k + 1] = (wjj −

∑

i∈Nvj

µijqji)zj [k] +
∑

t=Ω(vi,vj)

µtwtzi[k]

+
∑

t=Ω(si,vj)

µthtyi[k] +
∑

t=Ω(vi,vj)

∆t[k]rt[k] +
∑

t=Ω(si,vj)

∆t[k]rt[k].

Also, the input value applied by each actuator at time k is:

uj [k] =
∑

t=Ω(vi,aj)

µtgtzi[k] +
∑

t=Ω(vi,aj)

∆t[k]rt[k].

Finally, denoting with ∆[k] = diag({∆t[k]}Nl
t=1), the

above expressions can be written in vector form as:

z[k + 1] = Wµz[k] + Hµy[k] + Jdstv ∆[k]r[k],

u[k] = Gµz[k] + Jdstu ∆[k]r[k],

where all elements of matrices Wµ,Hµ and Gµ (except the
diagonal entries of Wµ) are defined as in [1]. The diagonal
entries of Wµ are of the form wjj −

∑
i∈Nvj

µijqji. The

binary (0, 1) matrices Jdstv and Jdstu are also defined as in
[1], [2], where each row of the matrices selects elements of
the vector ∆[k]r[k] that are added to the linear combinations
calculated by the nodes and the actuators. Therefore, a
procedure based on LMIs (similar to the previously de-
scribed) can be used in this case to compute a stabilizing
configuration for the WCN, which guarantees MSS of the
closed-loop system.

1) Evaluation: To analyze robustness of the WCN with
observer style updates we analyzed the performance of a
WCN with N ≥ 2 nodes that create a complete graph.
The WCN used for control of a single-state plant shown
in Fig. 5 (with α > 1). Node v1 receives the plant output
y[k] = x[k] at each time-step k, and the input to the plant
is taken to be a scaled version of the transmission of the
node v2 (i.e., u[k] = gz2[k], for some scalar g). Using the

4It is worth noting here that the only difference from the ‘basic’ WCN
case is that previously there was only one nonzero element in each row of
the matrix Jor .

WCN WCN oWCN oWCN
(scalar state) (R2 state) (scalar state) (R2 state)

N = 2 pm = 0.69% pm = 0.72% pm = 1.64% pm = 1.82%
N = 3 pm = 0.74% pm = 0.77% pm = 1.66% pm = 1.88%
N = 4 pm = 0.77% pm = 0.79% pm = 1.66% pm = 1.88%

Table I
MAXIMAL MESSAGE DROP PROBABILITY WHICH GUARANTEES MSS

FOR THE SYSTEM IN FIG. 5 (α = 2) WITHOUT (WCN) AND WITH
OBSERVER STYLE UPDATES (OWCN)

WCN WCN oWCN oWCN
(scalar state) (R2 state) (scalar state) (R2 state)

N = 2 pm = 1.18% pm = 1.30% pm = 10.46% pm = 17.82%
N = 3 pm = 1.32% pm = 1.46% pm = 11.24% pm = 17.88%
N = 4 pm = 1.41% pm = 1.54% pm = 11.46% pm = 17.88%

oWCN oWCN oWCN
(R3 state) (R4 state) (R5 state)

N = 2 pm = 20.40% pm = 20.48% pm = 20.64%

Table II
MAXIMAL MESSAGE DROP PROBABILITY WHICH GUARANTEES MSS
FOR THE SYSTEM IN FIG. 5 (α = 2) WITH RELIABLE LINK BETWEEN

NODE v1 AND ACTUATOR ( OBSERVER STYLE UPDATES - OWCN)

bisection method described in [2], we extracted the maximal
probabilities of message drops (pm) for which there exists
a stabilizing configuration that guarantees MSS. We consid-
ered two scenarios: In the first scenario, we have compared
the performance of the initial WCN with that of the WCN
with observer style updates (denoted oWCN). We considered
the network where the link between plant output and node
v1 is also unreliable. The results are presented in Table I.
In addition, we have investigated the case where the link
between the plant’s sensor and node v1 is reliable (without
any packet drops). The results are presented in Table II. As
can be noticed, the proposed scheme significantly improves
system robustness to link failures. For example, the WCN
with observer style updates can guarantee MSS for the
system from Fig. 5 even when the probability of link failures
is more than 20.5% (compared to initial 1.5%).

B. Robustness to Node Failures

The stability of the closed-loop system, described by Eq.
(4), can be affected by node crash failures (nodes that stop
working and drop out of the network). Currently, we have
considered two approaches to deal with node failures. One
obvious method to deal with up to k node failures is to
precompute a set of Nk =

∑k
j=0

(
N
j

)
different stabilizing

configurations (W,H,G), that correspond to all possible
choices of k or fewer failed nodes. In this case each node
would need to maintain Nk different sets of link weights
for all its incoming links (e.g., if each node in the WCN
maintains a scalar state, a node with d neighbors would have
to maintain d ·Nf different scalar weights). The switching
between the precomputed stabilizing configurations could be
done either by implementing the detection algorithm from

(a) With all links being unreliable
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Figure 5. An example of WCN, a plant with a scalar state controlled by
a WCN.

where each row of the matrix Jor ∈ RNl×(N+p) (similarly
as Jor in the ‘basic’ WCN) contains one or two nonzero
elements, equal to a gain wt, ht, gt or −qt.4

This approach has enabled the use of similar method as
for the ‘basic’ WCN to model the behavior of the closed-
loop system. Specifically, the update equation for each node
vj is:
zj [k + 1] = (wjj −

∑

i∈Nvj

µijqji)zj [k] +
∑

t=Ω(vi,vj)

µtwtzi[k]

+
∑

t=Ω(si,vj)

µthtyi[k] +
∑

t=Ω(vi,vj)

∆t[k]rt[k] +
∑

t=Ω(si,vj)

∆t[k]rt[k].

Also, the input value applied by each actuator at time k is:

uj [k] =
∑

t=Ω(vi,aj)

µtgtzi[k] +
∑

t=Ω(vi,aj)

∆t[k]rt[k].

Finally, denoting with ∆[k] = diag({∆t[k]}Nl
t=1), the

above expressions can be written in vector form as:

z[k + 1] = Wµz[k] + Hµy[k] + Jdstv ∆[k]r[k],

u[k] = Gµz[k] + Jdstu ∆[k]r[k],

where all elements of matrices Wµ,Hµ and Gµ (except the
diagonal entries of Wµ) are defined as in [1]. The diagonal
entries of Wµ are of the form wjj −

∑
i∈Nvj

µijqji. The

binary (0, 1) matrices Jdstv and Jdstu are also defined as in
[1], [2], where each row of the matrices selects elements of
the vector ∆[k]r[k] that are added to the linear combinations
calculated by the nodes and the actuators. Therefore, a
procedure based on LMIs (similar to the previously de-
scribed) can be used in this case to compute a stabilizing
configuration for the WCN, which guarantees MSS of the
closed-loop system.

1) Evaluation: To analyze robustness of the WCN with
observer style updates we analyzed the performance of a
WCN with N ≥ 2 nodes that create a complete graph.
The WCN used for control of a single-state plant shown
in Fig. 5 (with α > 1). Node v1 receives the plant output
y[k] = x[k] at each time-step k, and the input to the plant
is taken to be a scaled version of the transmission of the
node v2 (i.e., u[k] = gz2[k], for some scalar g). Using the

4It is worth noting here that the only difference from the ‘basic’ WCN
case is that previously there was only one nonzero element in each row of
the matrix Jor .

WCN WCN oWCN oWCN
(scalar state) (R2 state) (scalar state) (R2 state)

N = 2 pm = 0.69% pm = 0.72% pm = 1.64% pm = 1.82%
N = 3 pm = 0.74% pm = 0.77% pm = 1.66% pm = 1.88%
N = 4 pm = 0.77% pm = 0.79% pm = 1.66% pm = 1.88%

Table I
MAXIMAL MESSAGE DROP PROBABILITY WHICH GUARANTEES MSS

FOR THE SYSTEM IN FIG. 5 (α = 2) WITHOUT (WCN) AND WITH
OBSERVER STYLE UPDATES (OWCN)

WCN WCN oWCN oWCN
(scalar state) (R2 state) (scalar state) (R2 state)

N = 2 pm = 1.18% pm = 1.30% pm = 10.46% pm = 17.82%
N = 3 pm = 1.32% pm = 1.46% pm = 11.24% pm = 17.88%
N = 4 pm = 1.41% pm = 1.54% pm = 11.46% pm = 17.88%

oWCN oWCN oWCN
(R3 state) (R4 state) (R5 state)

N = 2 pm = 20.40% pm = 20.48% pm = 20.64%

Table II
MAXIMAL MESSAGE DROP PROBABILITY WHICH GUARANTEES MSS
FOR THE SYSTEM IN FIG. 5 (α = 2) WITH RELIABLE LINK BETWEEN

NODE v1 AND ACTUATOR ( OBSERVER STYLE UPDATES - OWCN)

bisection method described in [2], we extracted the maximal
probabilities of message drops (pm) for which there exists
a stabilizing configuration that guarantees MSS. We consid-
ered two scenarios: In the first scenario, we have compared
the performance of the initial WCN with that of the WCN
with observer style updates (denoted oWCN). We considered
the network where the link between plant output and node
v1 is also unreliable. The results are presented in Table I.
In addition, we have investigated the case where the link
between the plant’s sensor and node v1 is reliable (without
any packet drops). The results are presented in Table II. As
can be noticed, the proposed scheme significantly improves
system robustness to link failures. For example, the WCN
with observer style updates can guarantee MSS for the
system from Fig. 5 even when the probability of link failures
is more than 20.5% (compared to initial 1.5%).

B. Robustness to Node Failures

The stability of the closed-loop system, described by Eq.
(4), can be affected by node crash failures (nodes that stop
working and drop out of the network). Currently, we have
considered two approaches to deal with node failures. One
obvious method to deal with up to k node failures is to
precompute a set of Nk =

∑k
j=0

(
N
j

)
different stabilizing

configurations (W,H,G), that correspond to all possible
choices of k or fewer failed nodes. In this case each node
would need to maintain Nk different sets of link weights
for all its incoming links (e.g., if each node in the WCN
maintains a scalar state, a node with d neighbors would have
to maintain d ·Nf different scalar weights). The switching
between the precomputed stabilizing configurations could be
done either by implementing the detection algorithm from

(b) With a reliable link between the node v2 and actuator

Figure 5: Maximal probabilities of link failures for
which the closed-loop system from Fig. 3 (α = 2)
is MSS, when controlled without (WCN) and with
observer style updates (oWCN).

the probability of link failures is more than 20% (compared
to 1.5% for the basic WCN). Similarly, going back to the
discussion from the beginning of the section, we have shown
in this simple example that the WCN performance is much
closer to that of the optimal centralized controllers used for
control over wireless links (guaranteeing MSS with up to
25% packet drops).

Using the observer style updates, similar significantly im-
proved results were obtained for the more complex examples
from [12], including larger plants with multiple inputs and
outputs, controlled by a mesh network with 9 nodes.

5. ROBUSTNESS TO NODE FAILURES
The stability of the closed-loop system, described by (5),

can be affected by node crash failures (i.e., nodes that stop
working and drop out of the network). Currently, we have
considered two approaches to deal with the node failures.
One obvious method to deal with up to k node failures is to
precompute at the design-time a set of Nk =

∑k
j=0

(
N
j

)
dif-

ferent stabilizing configurations (W,H,G) that correspond
to all possible choices of k or fewer failed nodes. In this case,
each node would need to maintain Nk different sets of link
weights for all its incoming links. For example, if each node
in the WCN maintains a scalar state, a node with d neigh-
bors would have to maintain on the order of d ·Nk different
scalar weights. The switching between the precomputed sta-
bilizing configurations could be done either by implementing
the detection algorithm from [26], or by having the neighbors
of failed nodes broadcast the news of the failures throughout
the network, which will prompt all nodes to switch to the
appropriate choice of (W,H,G).

A more sophisticated method for dealing with the node
failures would be to design the WCN in a way that even
if some of the nodes fail, the closed-loop system remains
stable. For simplicity, consider a WCN that can deal with
a single node failure. Let us denote with Âi the matrix Â
from (5) in the case when node i dies. This is equivalent to
setting to zero the ith row of matrices W and H, along with
the ith column of W and G:

Âi ,

[
A BGIiN

IiNHC IiNWIiN

]
, i = 1, . . . , N, (22)



Here, IiN denotes N × N diagonal matrix, with all ones on
the diagonal except at the ith position. A sufficient condition
for system stability in this case is that there exists a positive
definite matrix X (and, thus, a common Lyapunov function

V (x̂) = x̂TX x̂) such that X − ÂTX Â � 0 and

X − ÂT
i X Âi � 0, i = 1, 2, . . . N. (23)

Therefore, the procedure from the previous section with ad-
ditional N LMI constraints, can be used to extract a stabi-
lizing configuration that can deal with a single node failure.
However, in this case it is necessary to design the network in
a way that guarantees that such a stabilizing configuration
exists. Initial results on these topological conditions have
been presented in [14].

6. CONTROL OF CONTINUOUS-TIME
PLANTS

Optimal and stabilizing WCN configurations can be ob-
tained using algorithms developed from the closed-loop sys-
tem model (5) that contains a discrete-time model of the
plant (1). However, a similar framework can be used for con-
trol of continuous-time plants by discretizing the controlled
plant, while taking into account a subtle delay introduced
by the communication schedule. To illustrate this, consider
a standard continuous-time plant model:

ẋ(t) = Acx(t) + Bcu(t)

y(t) = Ccx(t),
(24)

with input x(t) ∈ Rn, output y(t) ∈ Rp, u(t) ∈ Rm and
matrices Ac,Bc,Cc of the appropriate dimensions.10 We
denote the sampling period of the plant by T , and we assume
that all sensors sample the plant outputs at the beginning of
the zero-th slot (as shown in Fig. 6(a)). We also assume that
all actuators are scheduled to apply their newly calculated
inputs at the beginning of the hth time slot. Note that
h > 0, because from (4) each actuator has to first receive
state values from all of its neighbors, before calculating its
next plant input. Similarly, from (4) h ≥ max(dai), where
dai denotes the number of neighbors of the actuator ai.

Therefore, the new inputs will be applied to the plant with
the delay τ = hTsl, where Tsl is the size of communication
slots. This results in the input signal with the form shown
in Fig. 6(b). Denoting the number of slots in a communica-
tion frame by F , we can write T = FTsl. Using the approach
from [3, 5], we describe the system:

ẋ(t) = Acx(t) + Bcu(t),

y(t) = Ccx(t), t ∈ [kT + τ, (k + 1)T + τ),

u(t+) = Gz[k], t ∈ {kT + τ, k = 0, 1, 2, . . .}
(25)

where u(t+) is a piecewise continuous function and only
changes values at time instances kT + τ, k = 0, 1, . . .. From
the above equation, the discretized model of the system with
the sampling period T can be represented as [23]:

x[k + 1] = Ax[k] + BGz[k] + B−Gz[k − 1]

y[k] = Cx[k],
(26)

10For simplicity we do not model disturbance inputs to the
plant. However, the approach presented in this section can
readily handle that scenario.
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Figure 6: (a) Scheduling sampling/actuation at the
start of the slots; (b) Timing diagram for the first
type of plant inputs; (c) Plant inputs when actuators
reset the inputs at the beginning of the frames.

where x[k] = x(kT ), k ≥ 0 and

A = eAcT , B =

∫ T−τ

0

eAcδBcdδ, B− =

∫ T

T−τ
eAcδBcdδ.

(27)
When the communication schedule is extracted and the net-
work is configured, the matrices A,B and B− obtain fixed-
values that depend on the continuous-time plant dynamics,
communication frame size T (i.e., the sampling period of
the plant) and the utilized communication schedule (as it
determines the value for h).

If each actuator applies its current input only until the
end of the corresponding frame and then forces its input to
zero until the next actuation slot (i.e., hth slot), the input
signals would have the form shown in Fig. 6(c) (instead of
the form from Fig. 6(b)). In this case, the discretized sys-
tem could be specified as in (26), (27), with the difference
that B− = 0. Therefore, the discrete-time system takes the
form from (1), and stabilizing and optimal configurations
can be obtained using the procedures described in the pre-
vious sections. However, due to the delay τ , the resulting
discrete-time system could be uncontrollable, which in the
general case would mean that there is no stabilizing config-
uration for the closed-loop system.

In situations where (A,B) is not controllable it is neces-
sary for all actuators to apply their ‘old’ inputs until new
inputs are available (as shown in Fig. 6(b)). This results in a
discrete-time plant that does not have the form from (1), and
the previous algorithms cannot be directly employed. How-

ever, by defining a new vector x̃[k] ,
[
x[k]T u[k − 1]T

]T
the discrete-time system can be described as:

x̃[k + 1] =

[
A B−

0 0

]
︸ ︷︷ ︸

Ã

x̃[k] +

[
B
I

]
︸︷︷︸
B̃

u[k] = Ãx̃[k] + B̃u[k],

y[k] =
[
C 0

]︸ ︷︷ ︸
C̃

x̃[k] = C̃x̃[k]



Figure 7: (a) Structure of the distillation column;
(b) The network topology of the WCN correspond-
ing to the sensor and actuator positions.

The above system has the same form as (1) and, there-
fore, we can use the aforementioned algorithms to obtain a
stabilizing or optimal configurations of the WCN.

7. PROCESS CONTROL APPLICATION
The WCN has been deployed on a process-in-the-loop test-

bed with a plant running in Simulink and the plant’s sensors
and actuators connected to analog interfaces (see Fig. 8(a)).
We first describe the plant’s model, then the closed-loop
wireless control test-bed and finally demonstrate the WCN
use for control of the plant.

7.1 Case Study Description
To illustrate the use of the WCN, we consider the distilla-

tion column control (Fig. 7(a)), a well-known process control
problem described in [27]. Four input flows (in [mols/s]) are
available for the column control: reflux (L), boilup (V ), dis-
tillate (D) and bottom flow (B). The goal is to control
four outputs: xD - top composition, xB - bottom compo-
sition, MD - liquid levels in condenser, and MB - liquid
levels in the reboiler (in [mol]). Finally, the column has
two disturbances, feed flow-rate F and feed composition zF .
The columns are described using the continuous-time Linear
Time Invariant (LTI) model from [27], where the state-space
contains 8 states.

7.2 WCN Experimental Platform
We have implemented the WCN scheme on FireFly em-

bedded wireless nodes [28] and TI’s MSP430F5438 Experi-
menter Boards, both equipped with IEEE 802.15.4 standard-
compliant radio transceivers. FireFly is a low-cost, low-
power platform based on Atmel ATmega1281 8-bit micro-
controller, while the experimenters board uses a 16-bit MSP430
microcontroller. Both platforms can be used for TDMA-
based communication with the RT-Link protocol [18], and
support in-band synchronization provided as a part of the
protocol.

The WCN procedure on each wireless node was imple-
mented as a simple task executed on top of the nano-RK, a
Real-Time Operating System (RTOS) [29]. The WCN task
had a 140.64ms period, equal to the RT-Link frame size (RT-
Link was configured to use 16 slots of size 8.79 ms). Since
the WCN requires a TTA, nano-RK has been modified to
enable scheduling of sensing and actuation at the start of

the desired slots. This guarantees synchronized actions at
all sensors and all actuators.

The column, modeled as a continuous-time LTI system
along with disturbances and measurement noise was run in
Simulink in real-time using Real-Time Windows Target [30].
The interface between the model and the real hardware were
two National Instruments PCI-6229 boards which provided
analog outputs that correspond to the Simulink model’s out-
puts (see Fig. 8(a)). The output signals were saturated
between -4V and 4V, due to NI boards limitations. Also,
to provide inputs to the Simulink model, the boards sam-
pled the analog input signals within range [-4V, 4V], at a
1 kHz rate. Finally, Simulink’s input and output signals
were monitored and controlled with 4 sensors and 4 actu-
ators positioned according to the distillation column struc-
ture (Fig. 7(a)). In addition, 4 real wireless controller nodes
(v1 − v4) were added, resulting in the topology shown in
Fig. 7(b).

7.3 Results
From the communication and computation schedules, we

obtained the discrete-time plant model using the discretiza-
tion procedure from Section 6 (Eqs. (26),(27)), with sam-
pling rate T = 140.64 ms (RT-Link frame size).

We first investigated the problem of providing MSS of the
closed-loop system with uncorrelated random link failures
and single node failures. Assigning each node to maintain
a scalar state, using the procedures from Sections 4 and 5
we derived a stabilizing WCN configuration for the topology
presented in Fig. 7(b) and the discretized LTI plant model.
To solve the convex optimization problems we used the CVX,
a package for specifying and solving convex programs [31].

We were able to obtain only WCN configurations that
maintain stability if one of the nodes v1-v3 fails, meaning
that the constraint from (23) for the node v4 was violated
(without v4 the topology violates the conditions from [14],
for existence of a stabilizing configuration). Fig. 9 shows
obtained measurements where the disturbance inputs F, zF
were set to zero, while we provided periodical pulses to the
input L. Although the output of the plant degrades when
the node v1 is turned off, the WCN maintains system stabil-
ity. However, if the node v4 is turned off, the system becomes
unstable (shown in Fig. 10 - after the node is turned back
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Figure 9: Plant outputs for a stabilizing WCN con-
figuration. Node v1 has been turned off at time
t = 1680 s and turned back on at t = 4560 s.
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Figure 8: Process-in-the-loop simulation of the distillation column control; (a) The plant model is simulated
in Simulink, while the WCN is implemented on FireFly nodes; (b) Experimental setup used for the WCN
validation.

on, the system slowly, due to the output saturation, returns
to stability). Finally, we showed that if a node was added,
connected to actuator a2, sensor s4 and nodes v2, v4, we
could maintain stability if one of the node fails.

We also considered optimal WCN design that minimizes
effects of disturbance inputs F, zF . Using Algorithm 1 we
computed an optimal WCN configuration for energy to peak
minimization. The obtained measurements for a setup with
periodical F impulses are shown in Fig. 11. Fig. 11(b) and
Fig. 11(a) present the plant outputs for the optimal and
stable WCN configurations. As shown in Fig. 11(c), the
norm of the output controlled with the optimal configuration
is almost 5 times smaller than the norm with the stabilizing
WCN.

8. CONCLUSION
We have extended the concept of the Wireless Control

Network, where the network itself acts as a fully distributed
controller. We have first addressed the WCN synthesis prob-
lem to guarantee optimal performance of the plant with re-
spect to standard cost functions. Second, by including the
observer style updates in the simple, linear iterative proce-
dure, we have been able to significantly increase robustness
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Figure 10: Distillation column output MB. Node v4

has been turned off at t = 2140 s and back on at
t = 2860 s. Top - Simulink signal; bottom - analog
signal, saturated at 4V.

of the closed-loop system to link failures. We have also pro-
posed a method to extract a stabilizing configuration for
the WCN that can deal with node failures. Finally, we have
extended the synthesis procedure to deal with continuous-
time plants, and demonstrated how the WCN can be used on
an industrial application, using a process-in-the-loop setup
with real hardware. In future, we aim to introduce com-
plex control operations (e.g., Kalman filtering, model pre-
dictive control) and investigate heterogeneous nodes with
varied computation/communication capabilities.
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