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null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are
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Galileon theories are of considerable interest since they allow for stable violations of the null energy

condition. Since such violations could have occurred during a high-energy regime in the history of our

Universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this

paper, where we construct generic classes of N ¼ 1 supersymmetric Galileon Lagrangians. They are

shown to admit nonequivalent stress-energy tensors and, hence, vacua manifesting differing conditions for

violating the null energy condition. The temporal and spatial fluctuations of all component fields of the

supermultiplet are analyzed and shown to be stable on a large number of such backgrounds. In the process,

we uncover a surprising connection between conformal Galileon and ghost-condensate theories, allowing

for a deeper understanding of both types of theories.

DOI: 10.1103/PhysRevD.84.043521 PACS numbers: 98.80.Cq, 04.50.Kd, 11.30.Pb

I. INTRODUCTION AND OVERVIEW

Matter in the Universe is typically assumed to satisfy the
null energy condition (NEC) [1]. This is because standard
two-derivative theories generically lead to the appearance
of ghosts or gradient instabilities on NEC-violating back-
grounds [2]. Moreover, higher-derivative theories—
generically associated with equations of motion that are
of third and higher order in derivatives—also lead to the
appearance of ghosts and are, therefore, catastrophically
unstable [3–6].

However, in recent years it has become clear that these
theoretical limitations are neither necessary nor, perhaps,
desirable. Indeed, there are a number of cosmological
situations in which violations of the NEC become inevi-
table, including inflationary models with extra dimensions
[6,7], string gas cosmological scenarios [8–11] (see [12]
for a review), and pre–big bang [13] and ekpyrotic theories
with cosmic bounces [14–50] in which the Universe reverts
from contraction to expansion (see [51,52] for reviews of
ekpyrotic/cyclic theories). Furthermore, there is an impor-
tant caveat to the theorem of [2]—namely, the existence
of stable, NEC-violating higher-derivative theories that
nevertheless lead to equations of motion with at most
two derivatives acting on any field. Two classes of such
theories have been studied in the literature so far. The first
is ghost-condensate theories [53], in which the Lagrangian
is taken to be an analytic function of a scalar field � and
X � � 1

2 ð@�Þ2. The second example is provided by the

Galileons [54–64], in which higher-derivative terms are
combined precisely so that the equations of motion have
at most two derivatives acting on each field. Both types of
theories have the remarkable property that they allow for
stable violations of the NEC, and hence, both types of
theories can be used as effective theories to model novel
cosmological scenarios. Indeed, ghost condensates have
been used to violate the NEC [65] and, hence, enable

cosmic bounce from contraction to expansion in the new
ekpyrotic scenarios in [34–36]. Similarly, Galileons have
been used to devise cosmological scenarios in which the
Universe expands from asymptotically flat initial condi-
tions [66,67].
The relationship of these theories to string theory is not

yet entirely clear, although it is interesting that (in a certain
small field limit) the Galileon theories describe the fluctu-
ations of a brane embedded in a higher-dimensional space-
time [68] (see also [69] for a derivation of the Galileons via
compactification of Lovelock gravity). Such scenarios
arise naturally in heterotic M theory [70–73], for example,
where five-branes wrapped on holomorphic two-cycles
[74–78] can exist in the five-dimensional bulk space. The
visible sector of such theories can contain exactly the
supersymmetric standard model [79–85] and, hence,
present realistic vacua to explore Galileon cosmology. If
ghost-condensate or Galileon theories turn out to be rele-
vant in modeling the dynamics of the Universe in the high-
energy regime, then it would seem necessary to consider
these theories in a supersymmetric context. Quite indepen-
dently, it is of theoretical interest to have a model that
allows one to study the interplay between supersymmetry
and NEC violation. As we will consider global supersym-
metry in this paper, what we mean by NEC violation is that
the sum of energy density � and pressure P is negative
(more specifically, we are interested in solutions for which
� ¼ 0 and P < 0). In previous work [86], we supersym-
metrized the ghost-condensate models. In this paper, we
further this viewpoint by constructing generic N ¼ 1
supersymmetric extensions of Galileon theories.
In [86], we studied the N ¼ 1 supersymmetric exten-

sion of ghost-condensate theories using chiral multiplets.
As reviewed in Sec. II, the extra scalar and auxiliary fields
required by supersymmetry are well behaved for such
models, while the fermionic member of the supermulti-
plet is not. Specifically, the fermion kinetic term on
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the ghost-condensate background violates Lorentz
covariance—the spatial-derivative part has the wrong
sign while the time-derivative part has the correct one. In
this paper, we show that a manifestly supersymmetric
interaction can be added to this theory which has the
property of restoring the fermion kinetic term to its ca-
nonical form. This will be the subject of Sec. III. When we
examine the effect of adding this term on the bosonic part
of the theory, we find a surprise: the resulting scalar field
theory is precisely the second- and third-order conformal
Galileon theory. Hence, in rendering the fluctuations
around the ghost-condensate background canonical,
we rediscover the second- and third-order conformal
Galileon model. Moreover, using a field redefinition, the
ghost-condensate background is easily seen to be equiva-
lent to the ‘‘self-accelerating’’ de Sitter solution of the
Galileon theory. The real difference between these two
theories lies in the form of the spatial gradient terms.
Generally speaking, the Galileon theories are much better
behaved with regard to spatial gradients than their ghost-
condensate counterparts, as will be discussed in Sec. IV.

When we consider the fourth-order conformal Galileon
Lagrangian, we find that there are now many choices in
how to construct a supersymmetric generalization. Since
these choices become vastly more numerous for the fifth-
(and highest-) order Galileon theory, we only present terms
up to fourth-order in this paper. There are two reasons for
this proliferation. The first is that, using integration by
parts, one may rewrite a given action into one that is
equivalent up to total derivatives. If we now discard the
total derivatives and supersymmetrize the new action,
we generically end up with inequivalent results. This is
an important ambiguity regarding higher-derivative
theories—that is, different theories, though related by in-
tegrations by parts (on a flat background), lead to different
stress-energy tensors and, hence, different conditions for
NEC violation. We provide a detailed treatment of these
issues in Sec. V. The second reason for this proliferation of
choices is intrinsically supersymmetric. As in our previous
paper on ghost-condensate theories, we construct super-
symmetric extensions of many-field terms by using a num-
ber of smaller building blocks. And for some terms, there
are several inequivalent ways of subdividing them into
separate building blocks. It is interesting to note that the
resulting supersymmetric extensions can be quite different,
and can now contain noncanonical fluctuations of the
fermion field, for example. This will be discussed in detail
in Sec. VI.

In Sec. VII, we discuss our results and speculate on
future applications. Two appendixes are included. The
first provides useful formulas regarding the supersym-
metric building blocks that we are using, and the second
discusses in more detail those supersymmetric extensions
that contain noncovariant kinetic terms for the fermionic
fields.

II. SUPERSYMMETRIC GHOST CONDENSATE

A. A Review of ghost condensation

The simplest form of a ‘‘ghost condensate’’ [53] arises
within the context of a single real scalar field � in four
dimensions. Assuming space-time is flat and nondynami-
cal, the evolution of � is governed by a higher-derivative
Lagrangian of the form

L ¼ PðXÞ; (1)

where PðXÞ is an arbitrary function that is analytic around
zero in

X � � 1

2m4
ð@�Þ2 ¼ 1

2m4
ð _�2 ��;i�;iÞ: (2)

The mass scale m is introduced to render X dimensionless.
To simplify notation, we set m ¼ 1 in most of the paper.
For purely time-dependent solutions, the associated equa-
tion of motion is given by

d

dt
ðP;X

_�Þ ¼ 0: (3)

Clearly, � ¼ const is a solution. However, (3) also allows
for solutions with arbitrary constant X, that is,

� ¼ ct; (4)

where c is a constant. Although in this paper space-time is
taken to be nondynamical, we note that in a cosmological
context the equation of motion on a Friedmann-Robertson-
Walker background becomes

d

dt
ða3P;X

_�Þ ¼ 0; (5)

where aðtÞ is the scale factor of the Universe. For a generic
choice of PðXÞ, this implies that _� must redshift as the
Universe expands. However, there is one key exception: if
PðXÞ has an extremum at some X ¼ c2=2, then � ¼ ct is
a solution to (5) independent of the behavior of aðtÞ.
Moreover, this solution is an attractor on an expanding
background—small departures away from the extremum
are driven to zero by Hubble friction. This solution,
� ¼ ct, spontaneously breaks Lorentz invariance and is
called a ghost condensate.
Returning to a flat background and expanding in fluctu-

ations

� ¼ ctþ ��ðt; ~xÞ (6)

around a ghost condensate, to quadratic order in �� the
Lagrangian becomes

L quad ¼ XP;XX � ð� _�Þ2 � 0 � ��;i��;i: (7)

As a result of Lorentz breaking, the coefficients in front of
the time and spatial-derivative terms are unequal. We see
that the condition for the absence of a ghost is

XP;XX > 0; (8)
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which is automatically satisfied close to a local minimum
of PðXÞ. (For a general X ¼ const solution, the ghost-free
condition is XP;XX þ P;X=2> 0 [87].) We, henceforth,

assume this is the case. However, the vanishing of the
second term in (7) is troubling, since it clearly signals
that the ghost condensate is on the verge of a gradient
instability. Can this potential instability be removed?
Happily, the answer is affirmative, although it requires
introducing higher-derivative terms, such as [53]

� ðh�Þ2
M2

; (9)

into the Lagrangian that are not of the PðXÞ type. Such
corrections are expected from an effective field theory
point of view. Because this term involves two derivatives
per field, the background � ¼ ct clearly remains a solu-
tion. However, (9) does affect the gradient term of the
fluctuations, giving rise to the dispersion relation !2 �
k4=M2. For large enough mass M, this higher-derivative
term can be consistently treated as a small correction. Be
this as it may, the question of temporal ghosts and/or
gradient instabilities in ghost-condensate theories is an
important one, and will become even more important in
the supersymmetric context.

Before proceeding, we introduce the following simpli-
fication. Sufficiently close to the ghost-condensate point,
PðXÞ is approximately quadratic. Without loss of general-
ity, one can rescale the field � so that the minimum lies at
X ¼ 1=2 (corresponding to c ¼ 1) and write the prototyp-
ical ghost-condensate action as

L ¼ �Xþ X2 ¼ þ 1

2
ð@�Þ2 þ 1

4
ð@�Þ4: (10)

The quadratic Lagrangian (7) now becomes

L quad ¼ ð� _�Þ2 � 0 � ��;i��;i: (11)

We will use Lagrangian (10), which contains all of the
essential physics, to supersymmetrize ghost-condensate
theories.

B. Supersymmetric ghost condensate

In [86], we presented anN ¼ 1 supersymmetric exten-
sion of the bosonic ghost-condensate theory in (10). To do
this, consider a chiral superfield

� ¼ Aþ i��� ��A;� þ 1

4
�� �� ��hAþ ��F

þ ffiffiffi
2

p
�c � iffiffiffi

2
p ��c ;��

� ��; (12)

with the complex scalar AðxÞ, the auxiliary field FðxÞ, and
the spinor c �ðxÞ being functions of the ordinary space-
time coordinates x�. Spinor indices which we do not write
out explicitly are understood to be summed according to
the convention c � ¼ c ��� and �c �� ¼ �c _�

�� ��. The com-
plex scalar is chosen so that

A ¼ 1ffiffiffi
2

p ð�þ i�Þ; (13)

where � is the real field of the bosonic condensate theory.
The imaginary component � is a new real scalar degree of
freedom, introduced into the condensate theory by super-
symmetry. That is, � is taken to be the lowest component
of the N ¼ 1 chiral supermultiplet ð�;�; c ; FÞ.
It was shown in [86] that a supersymmetric extension

of the prototypical ghost-condensate Lagrangian (10) is
given by1

LSUSY ¼
�
���y þ 1

16
D�D� �D�y �D�y

����������� �� ��
; (14)

where j�� �� �� indicates taking the �� �� �� component of a
superfield. [Here and throughout the paper, derivatives
are understood as acting only on the nearest superfield,
unless noted otherwise. For example,D�D� �D�y �D�y ¼
ðD�ÞðD�Þð �D�yÞð �D�yÞ. Similarly for space-time deriva-
tives acting on component fields.] In terms of component
fields, (14) becomes

LSUSY ¼ 1

2
ð@�Þ2 þ 1

4
ð@�Þ4 þ 1

2
ð@�Þ2 � 1

2
ð@�Þ2ð@�Þ2

þ ð@� � @�Þ2 � i

2
ðc ;��

� �c � c�� �c ;�Þ

� i

4
ð@�Þ2ðc ;��

� �c � c�� �c ;�Þ

����;	

i

2
ðc ;	�� �c � c�� �c ;	Þ þ . . . ; (15)

where we display terms to quadratic order only in �, c and
set F ¼ 0. (In the absence of a superpotential, the terms
involving F can be set to zero consistently. They are
immaterial to the present discussion, but, if needed,
can be found in our earlier paper [86].) Note that for
� ¼ c ¼ 0, this expression exactly reduces to Lagrangian
(10). It is in this sense that LSUSY is the supersymmetric
extension of the prototype bosonic condensate theory.
Since � always appears at least to quadratic order, it can
consistently be set to zero. Thus the equations of motion
can be solved by the ghost condensate

� ¼ ct; � ¼ 0: (16)

The classical fermion solution is, of course, zero. That is,
the Lorentz-violating ghost condensate continues to exist
as a vacuum of the supersymmetrized theory.
Setting c ¼ 1 and expanding in fluctuations

� ¼ tþ ��ðt; ~xÞ; � ¼ ��ðt; ~xÞ; c ¼ �c ðt; ~xÞ
(17)

1As discussed in [86], there exists a second (inequivalent)
supersymmetric extension of X2, which however leads to the
exact same issues with the fermionic fluctuations as those dis-
cussed below. Our discussion, and the cure proposed below, are
thus general.
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around this vacuum, we find to quadratic order that

LSUSY
quad ¼ ð _��Þ2 � 0 � ��;i��;i

þ 0 � ð _��Þ2 þ ��;i��;i

þ i

4
ð�c ;0�

0� �c � �c�0� �c ;0Þ

� i

4
ð�c ;i�

i� �c � �c�i� �c ;iÞ: (18)

The first line reproduces the standard result (11) for the
single � field ghost condensate, as it must. That is, the
time-derivative term is ghost-free, but at the minimum of
PðXÞ, the spatial gradient term for �� vanishes. As dis-
cussed above, higher-derivative terms of the form (9) cure
the potential gradient instability in the bosonic theory and
stabilize the dispersion relation. Can one find a supersym-
metric generalization of these terms? In [86] we showed
that this can indeed be done. The simplest such example is

� 1

211
D�D� �D�y �D�yðfD; �DgfD; �Dgð�þ�yÞÞ2j�� �� ��;quad

¼�ðh��Þ2; (19)

where we have evaluated this up to quadratic order in
fluctuations around a ghost-condensate background. To
this order, (19) does not contain �, c or the auxiliary field
F at all.

Now consider the second line in LSUSY
quad . This is the

kinetic term for the scalar fluctuation �� and, hence, is
new to the supersymmetric theory. Note that this suffers
from two serious problems. The first is that the temporal-
derivative term vanishes and, hence, this field is marginally
a ghost. Second, the spatial gradient term has the wrong
sign. Fortunately, it was shown in [86] that supersymmetric
terms can be added to (14) that solve both problems. These
are, for example,�

8

162
D�D� �D�y �D�yðfD; �Dgð���yÞfD; �Dgð�y ��ÞÞ

� 4

163
D�D� �D�y �D�yðfD; �Dg

� ð�þ�yÞfD; �Dgð���yÞÞ2
����������� �� ��;quad

¼ �2ð@�Þ4ð@�Þ2 � ð@�Þ4ð@� � @�Þ2: (20)

Adding these to Lagrangian (14), and expanding to qua-
dratic order around the ghost condensate, changes both the
time and spatial gradients of � in (18) to the Lorentz-
covariant expression

L SUSY
quad ¼ . . .þ ð� _�Þ2 � ��;i��;i þ . . . : (21)

This renders the � fluctuations stable, without adversely
affecting anything else. In particular, since (20) vanishes
when � is set to zero, the sum of (14) and the superfield
expression in (20) remains a supersymmetric generalization

of the PðXÞ bosonic theory. It will be helpful in the next
section if we analyze this result in more detail. First, note
that adding (20) to the second term in (14) gives�

8

162
D�D� �D�y �D�yðfD; �Dgð���yÞfD; �Dgð�y��ÞÞ

� 4

163
D�D� �D�y �D�yðfD; �Dgð�þ�yÞfD; �Dgð���yÞÞ2

þ 1

16
D�D� �D�y �D�y

����������� �� ��;quad

¼½�2ð@�Þ4ð@�Þ2�ð@�Þ4ð@��@�Þ2�
þ
�
�1

2
ð@�Þ2ð@�Þ2þð@��@�Þ2

�
; (22)

where we have not shown irrelevant pure � terms or terms
involving fermions. When evaluated around the ghost-
condensate vacuum (16) with c ¼ 1, (22) reduces to

½�2ð@�Þ2 � ð _�Þ2� þ
�
1

2
ð@�Þ2 þ ð _�Þ2

�
¼ � 3

2
ð@�Þ2: (23)

That is, adding (20) to the second term of (14) exactly
cancels the Lorentz-violating term. In addition, the signs
are such that the resulting Lorentz-covariant kinetic term
for � is ghost-free with correct-sign spatial gradient.
Second, adding this to the first term in (14) produces the
canonical normalization while leaving the correct sign un-
changed. That is,�

1

2
ð@�Þ2

�
þ

�
� 3

2
ð@�Þ2

�
¼ �ð@�Þ2; (24)

which gives (21) precisely.
Finally, consider the kinetic term for the fermion fluc-

tuation �c . This is given in the third line of (18) and, as
with ��, is new to the supersymmetric theory. We see from
(18) that, although the magnitudes of the coefficients of the
two �c terms are equal, the time-derivative term is ghost-
free while the spatial gradient term has the wrong sign.
Note that this is not the same kind of gradient instability as
occurs for�. There, the coefficient of the spatial-derivative
term is zero or small, and hence, higher-derivative terms
can play a role in guaranteeing stability over an extended
time period. For c , on the other hand, the coefficient of the
wrong-sign spatial gradient term is not small. It follows
that the inclusion of higher-derivative terms, such as those
in (19), is necessarily irrelevant. The situation for the
fermion, therefore, is more akin to that of the second scalar
�, whose deep wrong-sign spatial gradient had to be cor-
rected by the addition of a new second-order term—the
sum of the two kinetic spatial gradients having the correct
sign. However, within the context of the supersymmetric
extension of the pure PðXÞ theory, we are unable to find a
fermionic analog of this mechanism. That is, the fermion
kinetic spatial gradient term has the wrong sign.
As discussed in [86], it is unclear whether or not this is

physically unacceptable. This will be explored elsewhere
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[88]. In this paper, we ask a different question: by modify-
ing the bosonic theory so that it is no longer purely a PðXÞ
theory, can one find a supersymmetric extension that is free
of both ghostlike and gradientlike instabilities in all of its
component fields? The answer, as we will see, is yes, and
leads to another interesting class of higher-derivative
Lagrangians—the conformal Galileon theories.

III. CURING THE FERMION
GRADIENT INSTABILITY

To solve the gradient instability problem for the fermion,
we proceed by analogy with the � scalar. That is, (1) we
find a supersymmetric interaction which, when added to
the second term in (14), cancels the Lorentz-violating part
of its fermion quadratic terms—rendering the fermion
kinetic term Lorentz-covariant with the correct sign—and
(2) we add this to the first term in (14) to canonically
normalize the coefficient. However, there is one important
caveat. As stated above, our attempts to do this with
precisely the two terms in (14) failed. To solve this prob-
lem, it turns out that one must make a mild modification of
each of these terms—a modification that, however, does
not reduce to the pure PðXÞ theory, or even the generalized
PðX;�Þ theory discussed in [86].

With this in mind, recallfrom (14) and (15) that

1

16
D�D� �D�y �D�yj�� �� ��

¼ 1

4
ð@�Þ4 � i

4
ð@�Þ2ðc ;��

� �c � c�� �c ;�Þ

� i

2
�;��;	ðc ;	�� �c � c�� �c ;	Þ þ . . . : (25)

Here and henceforth in this section, we drop irrelevant
terms containing � and set F ¼ 0 (that this can be done
consistently will be shown in Sec. VI). Let us now modify
this term to�

1

4ð�þ�yÞ4 D�D� �D�y �D�y
����������� �� ��

¼ 1

4�4
ð@�Þ4 � i

4�4
ð@�Þ2ðc ;��

� �c � c�� �c ;�Þ

� i

2�4
�;��;	ðc ;	�� �c � c�� �c ;	Þ þ . . . : (26)

To the order we are working, the only effect of
ð�þ�yÞ�4 is to multiply expression (25) by an overall
factor of ��4. Furthermore, setting c ¼ 0 reduces (26) to
X2=�4. In other words, this modified term is a supersym-
metric extension of the PðX;�Þ theories discussed in [86].
When evaluated on a ghost-condensate background, the
first fermionic term in (26) remains Lorentz-covariant,
while the last term explicitly breaks Lorentz invariance.

Can one find a supersymetric interaction that will ex-
actly cancel this Lorentz-violating fermion kinetic term?
Consider

� �1

24ð�þ�yÞ3 ðD�D� �D2�y þ H:c:Þ
����������� �� ��

¼ � 1

6�3
h�ð@�Þ2 � i

6�3
�;�ðc ;	�

	 �c ;� � c ;��	 �c ;	Þ

þ i

12�3
h�ðc ;	�

	 �c � c�	 �c ;	Þ

� i

12�3
�;�ðc��h �c �hc�� �c Þ

� i

4�4
ð@�Þ2ðc ;	�

	 �c � c�	 �c ;	Þ; (27)

where we work to quadratic order in the c fluctuations.
(Useful intermediate steps in evaluating the above expres-
sion can be found in Appendix A.) An important technical
fact is that, while the first four terms are contained in the
component expansion of ðD�D� �D2�y þ H:c:Þ j�� �� �� , the
last term arises due to a contribution from the prefactor.
This did not occur in (26) which, to the order that concerns
us, was simply multiplied by a factor of ��4. Here, how-
ever, the prefactor is significant and must be included to
solve the fermion gradient instability problem. Integrating
the second and fourth terms by parts, and dropping all
interactions that vanish on a ghost-condensate background,
we find that (27) dramatically simplifies to� �1

24ð�þ�yÞ3 ðD�D� �D2�y þ H:c:Þ
����������� �� ��

¼ � 1

6�3
h�ð@�Þ2 þ i

2�4
�;��;	ðc ;	�� �c � c�� �c ;	Þ:

(28)

Note that the fermion term is simply�1 times the Lorentz-
violating last term of (26)—a fact requiring, amongst other
things, the �þ�y prefactors in both (26) and (28). Also,
when setting the fermion to zero (28) reduces to
�h�ð@�Þ2=6�3, which is manifestly not of the PðX;�Þ
form. Instead, we recognize this as the cubic term of
Galileon theories (more precisely, conformalGalileon theo-
ries, as we will see shortly). The fact that (28) goes beyond
the PðX;�Þ form is consistent with our earlier conclusion
that the fermionic instability could not be removed within
the context of supersymmetric ghost condensates.
Adding (26) and (28) together, the Lorentz-violating

fermion term exactly cancels and one obtains the
Lorentz-covariant fermionic Lagrangian� �1

24ð�þ�yÞ3 ðD�D� �D2�y þ H:c:Þ

þ 1

4ð�þ�yÞ4 D�D� �D�y �D�y
����������� �� ��

¼ � 1

6�3
h�ð@�Þ2 þ

�
1

4�4
ð@�Þ4

� i

4�4
ð@�Þ2ðc ;��

� �c � c�� �c ;�Þ
�
þ . . . : (29)
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Integrating twice by parts, the first term can be expressed
as

� 1

6�3
h�ð@�Þ2

¼� 1

6�4
ð@�Þ4þ 1

18�2
ð@�@	�Þ2� 1

18�2
ðh�Þ2: (30)

It follows that

� �1

24ð�þ�yÞ3 ðD�D� �D2�y þ H:c:Þ

þ 1

4ð�þ�yÞ4 D�D� �D�y �D�y
����������� �� ��

¼ 1

12�4
ð@�Þ4 þ 1

18�2
ð@�@	�Þ2 � 1

18�2
ðh�Þ2

� i

4�4
ð@�Þ2ðc ;��

� �c � c�� �c ;�Þ þ . . . : (31)

Three fundamental conclusions can be drawn from (31):
(1) the fermion kinetic term is Lorentz-covariant and, for
any purely time-dependent background, of the correct sign,
that is, ghost-free with correct-sign spatial gradient; (2) the
first term is simply X2=3�4 and is manifestly of the
PðX;�Þ type; (3) the remaining � terms are of a different
differential form and not of the PðX;�Þ type. Thus, by
moving away from purely PðX;�Þ theory we have solved
the problem of the fermion gradient instability.

As with �, one must now add this equation to the first
term in Lagrangian (14). Since canceling the Lorentz-
violating fermion kinetic term required a modification of
the higher-derivative operators, we must also appropriately
modify the first term in (14). Clearly, this requires multi-
plying the �� �� �� component of���y by 1=�4. Although
naively one might think this would be accomplished by the
expression�4��y=ð�þ�yÞ4, the correct result is more
subtle, as discussed in [89]. Defining

Kð�;�yÞ ¼ 2

3ð�þ�yÞ2 ; (32)

the appropriate modification is given by

� Kð�;�yÞj�� �� ��

¼ 1

2�4
ð@�Þ2 � i

2�4
ðc ;��

� �c � c�� �c ;�Þ; (33)

where we suppress irrelevant � and F contributions. The
first term is just �X=�4 and hence of the PðX�Þ form.
Although not strictly necessary, we choose to add (31) to
(33) in such a way that the X dependent contribution for �
takes the canonical ghost-condensate form (10). This will
be the case if one takes the complete Lagrangian to be (33)
þ3�(31):

�
�Kð�;�yÞ � 1

8ð�þ�yÞ3 ðD�D� �D2�y þ H:c:Þ þ 3

4ð�þ�yÞ4 D�D� �D�y �D�y
����������� �� ��

¼ 1

2�4
ð@�Þ2 þ 1

4�4
ð@�Þ4 þ 1

6�2
ð@�@	�Þ2 � 1

6�2
ðh�Þ2 � i

2�4

�
1þ 3

2
ð@�Þ2

�
ðc ;��

� �c � c�� �c ;�Þ þ . . .

¼ 1

�4
ð�Xþ X2Þ þ 1

6�2
ðð@�@	�Þ2 � ðh�Þ2Þ þ i

4�4
ðc ;��

� �c � c�� �c ;�Þ þ . . . : (34)

The first bracketed term is of the PðX;�Þ type, whereas
the second group of scalar terms is not. Be that as it may,
the ghost condensate � ¼ ct with c ¼ 1 is a vacuum
solution of the equations of motion. The coefficient of
the fermion kinetic term in the final line of (34) has been
evaluated in this vacuum. As promised, the fermion kinetic
term is ghost-free with correct-sign spatial gradients and,

rescaling c ! ffiffiffi
2

p
c , has canonical normalization. By ca-

nonical we mean that the ratio of the fermion kinetic
coefficient to the coefficients of the � and � kinetic terms
is the same as in a standard supersymmetric Lagrangian.
Note, however, that in the present case all three kinetic
terms are multiplied by the common prefactor 1=�4 ¼
1=t4. For completeness, we point out that similar vacua
can be achieved by choosing the Lagrangian to be
�c2�(33)�c3 � 3�(31) for any negative coefficients

c2, c3.
2 In this case, a ghost-condensate solution � ¼ ct

still exists, but with c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
c2=c3

p
.

Although the equations of motion continue to have a
ghost-condensate solution of the form (16), the Lagrangian
(34) is not a supersymmetrized ghost-condensate theory.
Therefore, the price one pays to solve the gradient insta-
bility problem for the fermion is a modification of the
bosonic part of the theory. Remarkably, (34), and its gen-
eralizations to arbitrary positive coefficients�c2 and�c3,
is precisely the Lagrangian for a well-known class of
higher-derivative models—the conformal Galileon theo-
ries—to which we now turn.

2The coefficients ci are defined so as to conform with the
standard notation used in the following section.
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IV. GALILEONS AND THEIR RELATION
TO PðX;�Þ THEORIES

Galileon scalar field theories were first discovered in the
context of the Dvali-Gabadadze-Porrati (DGP) brane-
world model [90,91] and arise generically in brane-induced
gravity models [92–99]. In a certain decoupling limit
[54,55,100], the theory becomes local in four dimensions
and describes a real scalar field 
 (the brane-bending
mode) with

LDGP ¼ � 1

2
ð@
Þ2 � 1

�3
ð@
Þ2h
þ 1ffiffiffi

6
p

MPl


T�
�; (35)

where T�	 is an external source, and the strong coupling

scale � is related to the four- and five-dimensional Planck

scales as � � ffiffiffi
6

p
M2

5=MPl. (Despite the conformal cou-

pling to T�
� , the theory is nevertheless consistent with tests

of gravity because 
 is screened in the vicinity of massive
sources [54,95,100,101]. See [102,103] for reviews of
screening mechanisms.) As a vestige of five-dimensional
Poincaré invariance, this theory has two independent inter-
nal symmetries [55,56],

�c
 ¼ c; �v
 ¼ v�x
�; (36)

where c and v� are constant. The first transformation in
(36) is just a standard shift symmetry, whereas the second
is called a Galilean symmetry. The latter protects the cubic
interaction from being renormalized [55,56]. Remarkably,
despite its higher-derivative form, (35) leads to an equation
of motion that is second order in derivatives.

In [57], Lagrangian (35) was generalized to include all
possible interactions that are invariant under the shift and
Galilean symmetries, and which lead to second-order

equations of motion. In addition to the linear, quadratic,
and cubic terms in 
 shown in (35), it was found that
quartic and quintic interactions are also allowed. The most
general ‘‘Galileon’’ theory is found to be a linear combi-
nation of the Lagrangians [57]

LGal;2 ¼ � 1

2
ð@
Þ2;

LGal;3 ¼ � 1

2
ð@
Þ2h
;

LGal;4 ¼ ð@
Þ2
�
� 1

2
ðh
Þ2 þ 1

2

;�	
;�	

�
;

LGal;5 ¼ ð@
Þ2
�
� 1

2
ðh
Þ3 � 
;�	
;	�


;�
�

þ 3

2
h

;�	
;�	

�
; (37)

where we have set the associated mass scales of each term
to unity to simplify notation. As with the cubic term, these
interactions are protected by nonrenormalization theorems.
The construction stops with LGal;5—no higher-order inter-

actions can satisfy the simultaneous requirements of shift/
Galilean invariance and second-order equations.
The symmetries in (36) can be promoted to a subgroup

of the conformal group, with infinitesimal dilation and
special conformal transformations acting, respectively, as

�c
 ¼ cð1þ x�@�
Þ;
�v
 ¼ v�x

� � @�


�
1

2
v�x2 � ðv � xÞx�

�
: (38)

In the limit of small 
, these reduce to (36). The unique
Lagrangians invariant under these symmetries and leading
to second-order equations of motion are [57,68]

L2 ¼ � 1

2
e2
ð@
Þ2;

L3 ¼ � 1

2
ð@
Þ2h
� 1

4
ð@
Þ4;

L4 ¼ e�2
ð@
Þ2
�
� 1

2
ðh
Þ2 þ 1

2

;�	
;�	 þ 1

5
ð@
Þ2h
� 1

5

;�
;	
;�	 � 3

20
ð@
Þ4

�
;

L5 ¼ e�4
ð@
Þ2
�
� 1

2
ðh
Þ3 � 
;�	
;	�


;�
� þ 3

2


;�	
;�	 þ 3

2
ð@
Þ2ðh
Þ2 � 3

2
ð@
Þ2
;�	
;�	

� 15

7
ð@
Þ4h
þ 15

7
ð@
Þ2
;�
;	
;�	 � 3

56
ð@
Þ6

�
: (39)

The theories obtained by taking general linear combinations of these terms are called conformal Galileon theories. To
compare Galileons to PðX;�Þ theories, it is useful to change variables to

� � e�
: (40)

The above Lagrangians then become
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L2 ¼ � 1

2�4
ð@�Þ2;

L3 ¼ 1

2�3
h�ð@�Þ2 � 3

4�4
ð@�Þ4

¼ � 1

4�4
ð@�Þ4 � 1

6�2
ð@�@	�Þ2 þ 1

6�2
ðh�Þ2;

L4 ¼ � 1

2�2
ð@�Þ2ðh�Þ2 þ 1

2�2
ð@�Þ2�;�	�;�	 þ 4

5�3
ð@�Þ4h�� 4

5�3
ð@�Þ2�;��;	�;�	 � 3

20�4
ð@�Þ6;

L5 ¼ ð@�Þ2
�
1

2�
ðh�Þ3 þ 1

�
�;�	�;	��

;�
� � 3

2�
h��;�	�;�	 � 3

4�2
@�ð@�Þ2@�ð@�Þ2

þ 3

�2
h��;�	�;��;	 þ 6

7�3
ð@�Þ2�;�	�;��;	 � 6

7�3
ð@�Þ4h�� 3

56�4
ð@�Þ8

�

¼ ð@�Þ2
�
1

2�
ðh�Þ3 þ 1

�
�;�	�;	��

;�
� � 3

2�
h��;�	�;�	 � 3

4�2
ð@�Þ2ðh�Þ2

þ 3

4�2
ð@�Þ2�;�	�;�	 þ 9

14�3
ð@�Þ4h�� 9

14�3
ð@�Þ2�;��;	�;�	 � 3

56�4
ð@�Þ8

�
; (41)

where the second versions of L3 and L5 follow from
integration by parts.

Note that although the bosonic Galileon LagrangiansL2

andL3 were introduced for entirely different reasons, they
are precisely of the form—derived in detail in Sec. III—
required by a quadratic and cubic supersymmetric theory
to have a ghost-condensate vacuum with Lorentz-covariant
and canonical sign fermion kinetic energy. Specifically, the
purely �-dependent part of (33) and 3�(31) are

1

2�4 ð@�Þ2 ¼ �L2 (42)

and

1

4�4
ð@�Þ4 þ 1

6�2
ð@�@	�Þ2 � 1

6�2
ðh�Þ2 ¼ �L3; (43)

respectively. Thus, as claimed in Sec. III, Galileon theories
arise naturally in generalized supersymmetric ghost-
condensate theories, independently of their original origin
in [55–57,90]. It is of interest, although somewhat periph-
eral to our main discussion, to ask what scalar sector would
emerge if we allowed the quadratic and cubic supersym-
metrized ghost-condensate theory to have a Lorentz-
violating fermion kinetic term. This possibility is explored
in detail in Appendix B.

The most general Galileon Lagrangian is given by

L ¼ c2L2 þ c3L3 þ c4L4 þ c5L5; (44)

where the ci coefficients are constant. Restricting to time-
dependent fields only, it follows from (41) that

L ¼ 1

�4
PðXÞ;

PðXÞ ¼ c2X � c3X
2 þ 6

5
c4X

3 � 6

7
c5X

4; (45)

where X ¼ _�2=2. In other words, for purely time-
dependent backgrounds, the Galileon theory reduces to a
PðXÞ theory with an overall multiplicative factor of ��4.
However, the spatial gradients are radically different, and
much better behaved, than in the PðX;�Þ case. This fact
has important consequences, which we discuss below.
Nevertheless, the connection with PðX;�Þ theories consid-
erably simplifies the analysis of time-dependent solutions,
as we now demonstrate.
It follows from the above discussion that the ‘‘de Sitter’’

solution


dS ¼ � lnðH0tÞ (46)

of the Galileon theory is simply the ghost-condensate
solution

� ¼ H0t (47)

of the associated PðX;�Þ theory. The constant H0, as it is
usually denoted in the Galileon literature, thus corresponds
to the coefficient c of the ghost condensate,

c ¼ H0: (48)

For such solutions, where X is constant, the equation of
motion derived from action (45) is

2XP;X � P ¼ 0: (49)

In terms of the ci coefficients and H0, this reduces to

c2 � 3

2
c3H

2
0 þ

3

2
c4H

4
0 �

3

4
c5H

6
0 ¼ 0: (50)
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Interestingly, since the energy density � is given by

� ¼ 1

�4
ð2XP;X � PÞ; (51)

the equation of motion (49) implies that � ¼ 0. That is, in
order to have a solution with constant X, the energy density
must vanish.3 This fact, which appeared to be coincidental
in previous treatments of the Galileon self-accelerating
solution, can now be seen to be a general requirement.

What are the conditions for these X ¼ const solutions to
be stable against small perturbations? As demonstrated in
[57], Galileon theories have the property that they modify
the spatial gradients of the � field in just such a way as to
render the Lagrangian for fluctuations ��ðt; ~xÞ covariant,
despite the Lorentz-breaking background. Hence, it suffi-
ces to require positivity of the temporal kinetic term of the
perturbations. Substituting

� ¼ H0tþ ��ðt; ~xÞ (52)

into (45) yields the quadratic Lagrangian

Lquadratic ¼ 1

H4
0t

4
ð _��Þ2

�
1

2
c2 � 3

2
c3H

2
0

þ 9

4
c4H

4
0 �

3

2
c5H

6
0

�
þ . . . : (53)

Stability requires the expression in brackets to be positive;
that is,

c2 � 3c3H
2
0 þ

9

2
c4H

4
0 � 3c5H

6
0 > 0: (54)

Note that this inequality can easily be satisfied simulta-
neously with constraint (50) derived from the equation of
motion.

V. VIOLATING THE NULL ENERGY CONDITION

Galileons are interesting theoretically because they can
violate the NEC

T�	n
�n	 � 0; (55)

where n� is an arbitrary null vector, while having stable
temporal and spatial fluctuations. This is no small feat
since, under very general conditions, theories with two
derivatives are inevitably plagued with ghost or gradient
instabilities on NEC-violating backgrounds [2]. Galileon
(and ghost-condensate [65]) Lagrangians circumvent this
problem by having more than two derivatives and, hence,

can have vacua with stable violations of the NEC [66]. This
is particularly interesting for cosmological applications. In
a cosmological context, (55) reduces to �þ P � 0, where
P denotes pressure. Since _H ¼ �ð�þ P Þ=2, violating
this inequality then allows the Universe to bounce from a
contracting to an expanding phase.
In this section, we derive the conditions under which the

conformal Galileon Lagrangian (44) violates the NEC.
Although this question has been studied in earlier work
[66], here we point out important new ambiguities in
defining the stress tensor, above and beyond the usual field
theory ambiguities in T�	. Remarkably, even on a flat-

space background (which is what we consider in this
paper), T�	 is sensitive to how one defines the theory,

including total divergence terms. In particular, two flat-
space Lagrangians that differ only by integration by parts
can have physically different stress tensors.
Before proceeding, we point out an important distinction

between Galileons and ghost-condensate theories. Recall
from Sec. IV that for purely time-dependent solutions,
� ¼ �ðtÞ, the conformal Galileon Lagrangian (44) reduces
to the particular PðX;�Þ theory in (45). The full Galileon
Lagrangian, of course, differs from the corresponding
PðX;�Þ theory by spatial gradient terms, but these are
irrelevant in computing the � equation of motion (50), its
energy density (51), and the ghost-free condition (54).
However, the gradient terms are important for computing
the pressure. Setting the gradient terms to zero in the action
does not commute with varying the action to obtain the
pressure, as we will see explicitly in the examples below.
A standard way to derive the stress tensor is by cova-

riantizing the theory and varying with respect to the metric.
Alternatively, entirely within the context of field theory on
flat space, the stress tensor is derived via the Noether/
Belinfante method. For theories that include up to two
derivatives per field, that is, Lð�; @��; @�@	�Þ, the

Belinfante stress tensor is given by [104]

T�	 ¼ ��	L� @�

�
@L

@ð@�@	�Þ@
��

�
� 1

2

@L
@ð@��Þ@

	�

� 1

2

@L
@ð@	�Þ@

��þ @�

�
@L

@ð@�@��Þ
�
@	�

þ @�

�
@L

@ð@�@	�Þ
�
@��: (56)

By construction, this is both symmetric and conserved.
Moreover, in all cases we have checked, the Belinfante
definition agrees with the covariantization method and,
hence, gives the correct stress tensor that sources gravity.
To compute the pressure, let us set � ¼ 	 ¼ i and

assume � ¼ �ðtÞ. In this case, the second line in (56)
vanishes and the pressure is given by

P ¼ Lþ d

dt

�
@L

@ð@i@i�Þ
_�

�
; (57)

3Note that the energy density is zero despite the fact that the
solution breaks supersymmetry. This is possible because Lorentz
invariance is also broken, and the energy density � does not
coincide with the Hamiltonian; rather, if gravity were included,
� would correspond to the gravitational energy density, or, in
other words, to the time-time component of the energy-
momentum tensor. For a more general discussion of this point
see [53].
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where no summation is assumed in the second term. This
clearly elucidates the difference between Galileons and the
corresponding PðX;�Þ theories mentioned earlier. For pure
PðX;�Þ, the second term is manifestly absent, and (57)
reduces to the usual P ¼ L ¼ PðX;�Þ. For Galileons,
however, the second term will in general contribute to
the pressure, even on purely time-dependent backgrounds.

First consider L2 ¼ �ð@�Þ2=2�4. In this case, (57)
gives

P 2 ¼ 1

2�4
_�2 ¼ 1

2H2
0t

4
; (58)

where we have substituted (47) in the last step. Next, let us
compute the pressure for L3. This is the simplest example
that displays the integration-by-parts ambiguities alluded
to earlier. We begin with the definition of L3 given by the
second line in (41),

L 1st version
3 ¼ 1

2�3
h�ð@�Þ2 � 3

4�4
ð@�Þ4: (59)

In this case, h�ð@�Þ2 contributes to the second term in
(57). Hence, the pressure differs from the corresponding
PðX;�Þ result and

P 1st version
3 ¼ 3

2�4
_�4 � 3

4�4
_�4 ¼ 3

4t4
: (60)

This agrees with P 3 derived in [66], since their definition
of L3 was identical to (59).

Now, instead, defineL3 by the third line in (41), namely,

L2nd version
3 ¼� 1

4�4
ð@�Þ4 � 1

6�2
ð@�@	�Þ2 þ 1

6�2
ðh�Þ2:

(61)

Although this was obtained from (59) solely by integration
by parts, the associated pressure is different. Indeed,

P 2nd version
3 ¼ � 1

4t4
; (62)

which disagrees with (60). The resolution of this paradox is
as follows. As mentioned earlier, the Belinfante stress
tensor gives the same answer as the covariantization
method evaluated on a flat background. The point is that
although (59) and (61) differ only by a total derivative,
their covariant versions do not. Indeed, in going from (59)
to (61) we have canceled the terms

1

6�2 ð@�h��h@��Þ@��: (63)

Although fully justified in flat space, such terms do not
cancel on a curved background. Instead, they give rise to
the nonminimal coupling

1

6�2
ðr�h��hr��Þ@��¼� 1

6�2
R�	@

��@	�: (64)

Even though this nonminimal coupling vanishes on a flat
background, its variation does not. It is the contribution
of the variation of this nonminimal term to the stress
tensor that accounts for the discrepancy between (60) and
(62). The lesson is that the stress tensor of Galileon theo-
ries, thanks to their higher-derivative nature, depends on
the precise form of the theory in flat space. If two
Lagrangians differ by a total derivative, then their stress
tensors will agree provided that in the process of integrat-
ing by parts one only cancels terms that would also cancel
on a curved background. For example, the stress tensor for
L2 is unambiguous, but that of L3 and higher-order
Galileon terms clearly is not.
In the next section, we will see that in order to super-

symmetrize L4, it is most convenient to use a new version
ofL4, related to the version in (41) by integration by parts.
In order to avoid any confusion, we quote the results for the
pressure for the conformal Galileon Lagrangians, as de-
fined in (39), and then also for the version that we super-
symmetrize. With the Galileon Lagrangians defined as in
(39), substituting into (56) and setting 
ðtÞ ¼ � lnðH0tÞ as
the background solution, the pressure is

P 2¼ 1

2H2
0t

4
; P 3¼ 3

4t4
; P 4¼�9H2

0

4t4
; P 5¼�21H4

0

8t4
:

(65)

In particular, since our convention for the form of L4 and
L5 differs from that of [66], our results for the pressure do
not agree. We have checked that all of these agree with the
covariantization method, evaluated on a flat-space back-
ground. Since � ¼ 0 on this background, the condition for
violating the NEC for the full Lagrangian (44) is therefore

P / c2 þ 3

2
c3H

2
0 �

9

2
c4H

4
0 �

21

4
c5H

6
0 < 0: (66)

When we supersymmetrize these theories, we use the same
form forL2 andL3, but forL4 we use instead the last line
in (78), and, for the reasons described before, we do not
supersymmetrize L5 explicitly. We then obtain

P SUSY
4 ¼ 3H2

0

4t4
; (67)

and in our case the condition for violating the NEC
becomes

P SUSY / c2 þ 3

2
c3H

2
0 þ

3

2
c4H

4
0 < 0: (68)

VI. SUPERSYMMETRIC GALILEONS

Having discussed Galileons associated with a single real
scalar field �, we proceed to supersymmetrize these theo-
ries by embedding � in an N ¼ 1 chiral superfield � ¼
ð�;�; c ; FÞ. The procedure we follow is identical to that
used in supersymmetrizing PðX;�Þ theories in [86] and
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employs formulas discussed there, such as the supersym-
metry algebra

fD�; �D _�g ¼ �2i��
� _�@� (69)

and its immediate consequence

fD; �Dg�fD; �Dg� ¼ �8@�@� (70)

for any chiral superfields � and �. In addition, in
writing the supersymmetric extensions of the Galileon
Lagrangians we are making use of several new building
blocks, whose component expressions have been written
out explicitly in Appendix A.

We find that the possible supersymmetric extensions of
L2 and L3 are very limited. However, there are several
options on how to build supersymmetric extensions of the
�-dependent Lagrangian L4. When we reach L5, the
choices on how to supersymmetrize become so numerous,
and the corresponding expressions so large, that it becomes
impractical—and not very illuminating—to write them out
explicitly, though there is no obstacle in principle. Hence,
we only consider the Galileon Lagrangians up to L4 from
this point on.

A. L2

The supersymmetric extension ofL2 in (41) has already
been discussed in Sec. III. Defining

Kð�;�yÞ ¼ 2

3ð�þ�yÞ2 ; (71)

the complete supersymmetrized L2 action is given by

LSUSY
2 ¼ Kð�;�yÞj�� �� ��

¼ � 1

2�4
ð@�Þ2 � 1

2�4
ð@�Þ2 þ 1

�4
F�F

þ i

2�4
ðc ;��

� �c � c�� �c ;�Þ: (72)

Note that this matches the corresponding expression in (41)
when � ¼ F ¼ c ¼ 0.

B. L3

In Sec. III, we ‘‘discovered’’ the third-order Galileon
Lagrangian by looking for a cure for the wrong-sign fer-
mionic spatial gradient term obtained in supersymmetriz-
ing the ordinary ghost-condensate theory. We now examine
L3 in more detail, including all fields of the chiral super-
multiplet ð�;�; F; c Þ. Working to quadratic order in all
fields except for �, we find

�
1

ð�þ�yÞ3 ðD�D� �D2�y þ H:c:Þ
����������� �� ��;quad

¼ 4

�3
h�ð@�Þ2 � 4

�3
h�ð@�Þ2 þ 8

�3
h�ð@� � @�Þ � 8

�3
h�F�Fþ 12

�4
ð@�Þ2F�Fþ 4i

�3
�;�ðc ;	�

	 �c ;� � c ;��	 �c ;	Þ

� 2i

�3
h�ðc ;	�

	 �c � c�	 �c ;	Þ þ 2i

�3
�;�ðc��h �c �hc�� �c Þ þ 6i

�4
ð@�Þ2ðc ;	�

	 �c � c�	 �c ;	Þ (73)

and

�
1

ð�þ�yÞ4 D�D� �D�y �D�y
����������� �� ��;quad

¼ 1

�4
ð@�Þ4 � 2

�4
ð@�Þ2ð@�Þ2 þ 4

�4
ð@� � @�Þ2 � 4

�4
ð@�Þ2F�F

� i

�4
ð@�Þ2ðc ;��

� �c � c�� �c ;�Þ � 2i

�4
�;��;	ðc ;	�� �c � c�� �c ;	Þ:

(74)

These can be combined to give a supersymmetric extension of the L3 conformal Galileon Lagrangian

LSUSY
3;quad ¼

1

8ð�þ�yÞ3 ½D�D� �D2�y þ H:c:�j�� �� �� �
3

4ð�þ�yÞ4 D�D� �D�y �D�yj�� �� ��

¼ � 1

4�4
ð@�Þ4 � 1

6�2
ð@�@	�Þ2 þ 1

6�2
ðh�Þ2 � 1

�3
@��@	�@�@	�þ

�
� 1

�3
h�þ 9

2�4
ð@�Þ2

�
F�F

þ 5i

�4
ð@�Þ2ðc ;	�

	 �c � c�	 �c ;	Þ � 2i

�3
h�ðc ;	�

	 �c � c�	 �c ;	Þ þ 4i

�3
�;�ðc ;	�

	 �c ;� � c ;��	 �c ;	Þ

þ 2i

�3
�;�ðc��h �c �hc�� �c Þ � 2i

�4
�;��;	ðc ;	�� �c � c�� �c ;	Þ: (75)
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To obtain the bosonic part of (75), we have used (30) and
the fact that, integrating by parts,

1

�3
h�ð@� �@�Þ¼ 3

�3
ð@� �@�Þ2� 1

�3
�;��;	�;�	

� 3

2�4
ð@�Þ2ð@�Þ2þ 1

2�3
�ð@�Þ2: (76)

Note that (75) reduces to L3 in (41) when � ¼ c ¼
F ¼ 0, as it should.

Finally, integrating the third and fourth fermion terms
by parts and dropping any term that vanishes on a ghost-
condensate background (where �;�	 ¼ 0 and, hence,

X ¼ const), LSUSY
3;quad reduces to

LSUSY
3;quad;X¼const¼� 1

4�4
ð@�Þ4þ 9

2�4
ð@�Þ2F�F

þ 3i

4�4
ð@�Þ2ðc ;��

� �c �c�� �c ;�Þ: (77)

Remarkably, at quadratic order, the second scalar � does
not contribute to LSUSY

3 on a constant X background.

Another interesting feature of this Lagrangian is that,
despite its higher-derivative nature, no kinetic term for F
is generated. Hence, the auxiliary field can be eliminated as
described in our previous paper [86].

C. L4

While the supersymmetric extension of L3 derived
above was relatively straightforward, the analogous con-
struction forL4 is more complicated. First of all, forL4 in
(41) the building blocks necessary to constructing super-
symmetric generalizations are not manifest. It is useful,
therefore, to use integration by parts to rewrite this fourth-
order Lagrangian as

L4 ¼ � 1

2�2
ð@�Þ2ðh�Þ2 þ 1

2�2
ð@�Þ2�;�	�;�	 þ 4

5�3
ð@�Þ4h�� 4

5�3
ð@�Þ2�;��;	�;�	 � 3

20�4
ð@�Þ6

¼ � 1

4�2
@�ð@�Þ2@�ð@�Þ2 þ 1

�2
h��;��;	�;�	 � 1

5�3
ð@�Þ4h�þ 1

5�3
ð@�Þ2�;��;	�;�	 � 3

20�4
ð@�Þ6

¼ � 1

4�2
@�ð@�Þ2@�ð@�Þ2 þ 1

�2
h��;��;	�;�	 � 1

4�3
ð@�Þ4h�: (78)

The last expression consists of only three terms and is particularly simple. We will focus on this version, and construct
supersymmetric extensions for each of its three terms. For the first term, consider

L SUSY
4;1st term ¼ 1

64ð�þ�yÞ2 fD; �DgðD�D�ÞfD; �Dgð �D�y �D�yÞj�� �� ��: (79)

In components, up to quadratic order in fields other than � and using integration by parts, this becomes

LSUSY
4;1st term;quad¼� 1

4�2
@�ð@�Þ2@�ð@�Þ2þ 1

�3
�;�@�ð@�Þ2ð@�Þ2� 1

�2
hð@�Þ2ð@�Þ2� 1

�2
�;��;	�

�
;��

;	�

þ 1

�2
ð@�Þ2@F �@F�þ 1

2�2
@�ð@�Þ2@�ðF�FÞþ 1

�2
�;�	�;�	F

�F

þ i

2�3
@�ð@�Þ2ð@�ðc�	�;	Þ �c �c�	@�ð �c�;	ÞÞ

þ i

4�2
@�ð�;	c Þ�	 ����
@�ð �c ;
�;�Þ� i

4�2
@�ð�;	c ;�Þ�� ��	�
@�ð �c�;
Þ� i

2�2
@�ð�;	c Þ�	@�ð �c ;��

;�Þ

þ i

2�2
@�ð�;	c

;	Þ��@�ð �c�;�Þþ i

4�2
@�ð�;	c Þ�	@�ð �ch�Þ� i

4�2
@�ðh�c Þ�	@�ð �c�;	Þ; (80)

which reduces to the first term in (78) when � ¼ c ¼ F ¼ 0. Moreover, on a ghost-condensate background, and dropping
higher-derivative kinetic terms for fields other than �, (80) further simplifies to

LSUSY
4;1st term; quad;X¼const ¼ � 1

4�2
@�ð@�Þ2@�ð@�Þ2 þ 1

�2
ð@�Þ2@F � @F� � 9i

4�4
ð@�Þ2�;��;	ðc ;��	 �c � c�	 �c ;�Þ: (81)

There are three noteworthy features here. First, we see that the scalar � does not contribute at quadratic order on a constant
X background. Second, note that (81) contains a kinetic term for the ‘‘auxiliary’’ field F. And third, on a purely time-
dependent background, the fermion kinetic term becomes noncovariant since it contains only the time-derivative part.
These last two issues will be discussed in detail below.
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The second term in the last line in (78) can be supersymmetrized as

L SUSY
4;2nd term ¼ �1

128ð�þ�yÞ2 ðfD; �Dgð�þ�yÞfD; �DgðD�D�Þ �D2�y þ H:c:Þj�� �� ��: (82)

In terms of � and �, and using integration by parts, we obtain to quadratic order in fields other than �,

LSUSY
4;2nd term; quad ¼

1

2�2
�;�@�ð@�Þ2h�þ 1

2�2
ð@�Þ2

�
� 2

�
ð@�Þ2h�þ ðh�Þ2 þ�;�@�h�

�

þ 1

2�2
@�ð@�Þ2�;�h�þ 1

�2
�;��;	�;�	h�þ 1

2�2
�;�½�ðFh�Þ;�F� � ðF�h�Þ;�F

þ ð@F � @�Þ;�F� þ ð@F� � @�Þ;�F� ðF�;	Þ;�F�;	 � ðF��;	Þ;�F;	� þ 1

4�2
@�ð@�Þ2@�ðF�FÞ

� 1

�3
�;�@�ð@�Þ2F�Fþ i

4�2
@��ð@�ð�;	c ;�Þ�� ��	�
 �c ;
 � c ;
�


 ��	��@�ð �c ;��;	ÞÞ

þ i

2�2
@��ðc ;��

�@�ð �c ;	�;	Þ � @�ð�;	c ;	Þ�� �c ;�Þ

þ i

4�2
@��ð@�ðh�c Þ�	 �c ;	 � c ;	�

	@�ð �ch�Þ þ @�ð�;	c Þ�	h �c �hc�	@�ð �c�;	ÞÞ

þ i

4�2
h�ð@�ð�;	c Þ�	 �c ;� � c ;��	@�ð �c�;	ÞÞ þ i

4�2
@�ð@�Þ2ðc ;	�

	 �c ;� � c ;��
	 �c ;	Þ

þ i

2�3
h�@��ðc�	@�ð �c�;	Þ � @�ð�;	c Þ�	 �c Þ þ i

2�3
@��@�ð@�Þ2ðc�	 �c ;	 � c ;	�

	 �c Þ: (83)

When � ¼ c ¼ F ¼ 0, this is simply the second term in the final line of (78). On a ghost-condensate background,
dropping higher-derivative kinetic terms for c and integrating by parts, this further reduces to

LSUSY
4;2nd term;quad;X¼const¼

1

2�2
�;�@�ð@�Þ2h�þ 3

�3
ð@�Þ4F�F� 2

�2
ð@� �@FÞð@� �@F�Þþ 9i

4�4
ð@�Þ4ðc ;	�

	 �c �c�	 �c ;	Þ

þ 3i

4�4
ð@�Þ2�;��;	ðc ;��	 �c �c�	 �c ;�Þ: (84)

The expression above contains a non-Lorentz-covariant kinetic term forF on a time-dependent background, as well as both
a covariant and a noncovariant kinetic term for c .

For the third term in the last line of (78), we have a choice of how to supersymmetrize since one can take either ð@�Þ4 or
ð@�Þ2h� as the basic building block. This leads to inequivalent results.

Choice 1—based on ð@�Þ4: The supersymmetric extension in this case is given by

LSUSY
4;3rd termð1Þ; quad ¼

1

64ð�þ�yÞ3 D�D� �D�y �D�yfD; �DgfD; �Dgð�þ�yÞj�� �� ��; quad

¼ � 1

4�3
h�½ð@�Þ4 þ ð@�Þ4 � 2ð@�Þ2ð@�Þ2 þ 4ð@� � @�Þ2 � ð@�Þ2F�F�

þ i

4�3
h�½ð@�Þ2ðc ;	�

	 �c � c�	 �c ;	Þ þ 2�;��;	ðc ;��	 �c � c�	 �c ;	Þ�

þ i

4�3
ð@�Þ2@��ðc��h �c �hc�� �c Þ: (85)

For � ¼ c ¼ F ¼ 0, this gives the third term in the final line of (78). Because of theh� prefactor, quadratic fluctuations
in � and F vanish on a ghost-condensate background and, dropping higher-derivative terms for c , we are left with

L SUSY
4;3rd termð1Þ; quad; X¼const ¼ � 1

4�3
ð@�Þ4h�� 3i

4�4
ð@�Þ2�;��;	ðc ;��	 �c � c�	 �c ;�Þ: (86)

Choice 2—based on ð@�Þ2h�: Here we have additional freedom since there is some ambiguity about how to write the
supersymmetric version of the ð@�Þ2 factor. That is,
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LSUSY
4;3rd termð2Þ; quad ¼

ðD�D� �D2�y þ H:c:Þ
64ð�þ�yÞ3

�ð1� aÞ
4

fD; �Dgð�þ�yÞfD; �Dgð�þ�yÞ þ afD; �Dg�fD; �Dg�y
����������� �� ��; quad

¼ � 1

4�3
ðh�ð@�Þ2 �h�ð@�Þ2 þ 2h�@� � @�� 2h�F�FÞðð@�Þ2 þ að@�Þ2Þ

þ i

8�3
ð@�Þ2@��½4ðc ;��	 �c ;	 � c ;	�

	 �c ;�Þ þhc�� �c � c��h �c �

þ i

8�3
ð@�Þ2h�ðc ;	�

	 �c � c�	 �c ;	Þ þ 3i

8�4
ð@�Þ4ðc ;	�

	 �c � c�	 �c ;	Þ

þ i

4�3
h��;��;	ðc ;��	 �c � c�	 �c ;�Þ; (87)

where a is an arbitrary real number. Note that for � ¼ c ¼ F ¼ 0, this also leads to the third term in the last line of
(78). Specializing to a ghost-condensate background, integrating by parts, and dropping higher-derivative kinetic terms for
c , (87) becomes

LSUSY
4;3rd termð2Þ;quad; X¼const¼� 1

4�3
ð@�Þ4h�� 3

2�4
ð@�Þ2ð@� �@�Þ2þ 3

4�4
ð@�Þ4ð@�Þ2� 3i

8�4
ð@�Þ4ðc ;	�

	 �c � c�	 �c ;	Þ

þ 9i

8�4
ð@�Þ2�;��;	ðc ;��	 �c � c�	 �c ;�Þ: (88)

The terms proportional to a have disappeared, and hence, one can choose a convenient value for a, such as a ¼ 1. Note that
the term containing F�F is also missing. The fermion appears both with a canonical and a Lorentz-breaking fluctuation
term on a constant X background. Note that, contrary to all previous terms, LSUSY

4;3rd termð2Þ introduces kinetic terms for the
second scalar �, both covariant and noncovariant.

In general, one can use a linear combination of choices 1 and 2 above. We therefore define our supersymmetric
generalization of L4 to be

L SUSY
4 ¼ LSUSY

4;1st term þLSUSY
4;2nd term þ ð1� bÞLSUSY

4;3rd termð1Þ þ bLSUSY
4;3rd termð2Þ; (89)

where b is an arbitrary real number. In components, and restricted to a ghost-condensate background with quadratic
fluctuation terms up to two derivatives, this becomes

LSUSY
4;quad; X¼const ¼ L4ð�Þ � 3b

2�4
ð@�Þ2ð@� � @�Þ2 þ 3b

4�4
ð@�Þ4ð@�Þ2 þ 3

�3
ð@�Þ4F�Fþ 1

�2
ð@�Þ2@F � @F�

� 2

�2
ð@� � @FÞð@� � @F�Þ þ

�
18� 3b

8

�
i

�4
ð@�Þ4ðc ;	�

	 �c � c�	 �c ;	Þ

þ
��18þ 15b

8

�
i

�4
ð@�Þ2�;��;	ðc ;��	 �c � c�	 �c ;�Þ: (90)

When � ¼ c ¼ F ¼ 0 this reduces to the �-dependent Galileon term L4 in (78), as it should. However, as it stands, the
above Lagrangian still contains a number of troubling features. We now discuss how to address these.

First, the scalar � appears with a noncovariant kinetic term. This, however, is not a serious problem since it can be dealt
with in exactly the same manner as discussed in and below (20). That is, the noncovariant term can be eliminated by adding

� 3b

29ð�þ�yÞ4 D�D� �D�y �D�yðfD; �Dgð�þ�yÞfD; �Dgð���yÞÞ2j�� �� ��; quad ¼ � 3b

2�4
ð@�Þ4ð@� � @�Þ2: (91)

Moreover, the coefficient in front of the covariant kinetic
term for � can be modified arbitrarily by adding a term
proportional to

1

28ð�þ�yÞ4 D�D� �D�y �D�yðfD; �Dgð���yÞ

� fD; �Dgð�y ��ÞÞ ¼ � 1

�4
ð@�Þ4ð@�Þ2 (92)

without affecting anything else. Hence, the stability of �
can always be ensured.
Second, there are two troubling terms for the auxiliary

field F, namely,

1

�2 ð@�Þ2@F � @F� � 2

�2
ð@� � @FÞð@� � @F�Þ: (93)

These act as kinetic terms for F which, hence, is no longer
an auxiliary field. We note that this occurs because we are
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interested in a time-dependent background �ðtÞ. Around
the usual zero vacuum, such terms would be higher-order
interactions and would not trouble us unduly. A propagat-
ing F field is not necessarily a problem. It would imply that
both complex components of the Weyl spinor c would
now propagate—giving a supersymmetric multiplet with
four bosonic and four fermionic physical degrees of free-
dom. However, in this paper we will follow a conservative
approach and add the appropriate terms that restore F to its
auxiliary field status. Consider the following supersym-
metric terms evaluated for constant X,

� 1

28ð�þ�yÞ2 D�D� �D�y �D�yfD; �DgD2

��fD; �Dg �D2�yj�� �� ��; quad

¼ 8

ðAþ A�Þ2 ð@AÞ
2ð@A�Þ2@F � @F�

¼ 1

�2
ð@�Þ4@F � @F�; (94)

and

1

210ð�þ�yÞ2 D�D� �D�y �D�yjfD; �Dg

��fD; �DgD2�j2j�� �� ��; quad

¼ 16

ðAþ A�Þ2 ð@AÞ
2ð@A�Þ2ð@A � @FÞð@A� � @F�Þ

¼ 1

�2
ð@�Þ4ð@� � @FÞð@� � @F�Þ: (95)

At quadratic order, these do not involve � or c . Therefore,
they can be added with suitable coefficients to LSUSY

4 to
cancel the unwanted kinetic terms for F, again without
changing anything else. Thus, one can ensure that the
auxiliary field remains truly auxiliary.
Finally, consider the fermionic kinetic terms in (90). The

first is covariant, and unproblematic. The second one is
Lorentz violating and, hence, undesirable. This term can be
eliminated by choosing b ¼ 6=5. With this choice, and
adding in the terms just discussed, we find that a healthy
supersymmetric extension of the fourth-order conformal
Galileon Lagrangian is given by

L̂SUSY
4 ¼

�
1

64ð�þ�yÞ2 fD; �DgðD�D�ÞfD; �Dgð �D�y �D�yÞ� 1

128ð�þ�yÞ2 ½fD; �Dgð�þ�yÞfD; �DgðD�D�Þ �D2�yþH:c:�

� 1

5�64ð�þ�yÞ3D�D� �D�y �D�yfD; �DgfD; �Dgð�þ�yÞ

þ 6

5�64ð�þ�yÞ3 ðD�D� �D2�yþH:c:ÞfD; �Dg�fD; �Dg�y

� 9

28�5ð�þ�yÞ4D�D� �D�y �D�yðfD; �Dgð�þ�yÞfD; �Dgð���yÞÞ2

þ 1

28ð�þ�yÞ2D�D� �D�y �D�yfD; �DgD2�fD; �Dg �D2�y

� 1

29ð�þ�yÞ2D�D� �D�y �D�yjfD; �Dg�fD; �DgD2�j2
�
j�� �� ��: (96)

In components, up to quadratic order in fields other than � on a constant X background, this reduces to

L̂SUSY
4; quad; X¼const ¼ � 1

4�2
@�ð@�Þ2@�ð@�Þ2 þ 1

�2
h��;��;	�;�	 � 1

4�3
ð@�Þ4h�þ 9

10�4
ð@�Þ4ð@�Þ2

þ 3

�3
ð@�Þ4F�Fþ 9i

5�4
ð@�Þ4ðc ;	�

	 �c � c�	 �c ;	Þ: (97)

It is encouraging to see that healthy supersymmetric ex-
tensions of the Galileon Lagrangians exist, as demon-
strated above. We would like to emphasize once more
that, as should be clear already from the discussion around
(78), the supersymmetric extension of L4 given above is
not unique. Hence it would be interesting to see, should a
derivation of a supersymmetric Galileon theory be found in
a more fundamental setting, precisely which form of the
Lagrangian would arise.

VII. DISCUSSION AND OUTLOOK

In this paper, we have shown how to construct super-
symmetric extensions of the conformal Galileon theories.
In doing so, we have uncovered a deep connection between
Galileon and ghost-condensate theories. That is, conformal
Galileons can be seen as equivalent to ghost-condensate
models—in terms of the temporal gradients alone, the two
theories are identical up to an overall factor of ��4—but
with improved behavior of the spatial gradients. This
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connection clarifies the role of both theories, and signifi-
cantly simplifies the analysis of time-dependent solutions
of the Galileon theories.

In our analysis, we have encountered two important
subtleties, one related to supersymmetry and the other
inherent already in the bosonic Galileons. For the quadratic
and cubic Galileon Lagrangians, the supersymmetric ex-
tensions are highly constrained and, around a ghost-
condensate/self-accelerating–de Sitter background, lead
to covariant fluctuations for all fields. In contrast, for the
quartic (and quintic) conformal Galileon Lagrangian there
are many inequivalent ways to construct supersymmetric
extensions. For some of these options, noncovariant fluc-
tuations in some fields can arise, as well as kinetic terms
for the auxiliary field. We have discussed these possibil-
ities, and have provided an illustrative example of a
completely healthy supersymmetric version of the fourth-
order conformal Galileons, for which all fluctuations are
covariant, and where the auxiliary field remains truly
auxiliary.

A second subtlety we encountered, and which is inherent
in higher-derivative theories, is that Lagrangians related
using integration by parts generically lead to different
stress-energy tensors and thus, for example, different con-
ditions for violating the NEC. Keeping this subtlety in
mind, let us now put all our results together and see if we
can truly have a stable, NEC-violating solution of our
supersymmetric conformal Galileon theory. For the
Lagrangian

L SUSY ¼ c2LSUSY
2 þ c3LSUSY

3 þ c4LSUSY
4 ; (98)

with LSUSY
2 given by (72), LSUSY

3 by (75), and LSUSY
4 by

(96), the conditions for having (a) a ghost-condensateself-
accelerating–de Sitter solution, (b) stability, (c) NEC vio-
lation, and (d) canonical and correct-sign fermionic
fluctuations are

c2 � 3

2
c3H

2
0 þ

3

2
c4H

4
0 ¼ 0; (99)

c2 � 3c3H
2
0 þ

9

2
c4H

4
0 > 0; (100)

c2 þ 3

2
c3H

2
0 þ

3

2
c4H

4
0 < 0; (101)

c2 � 3

2
c3H

2
0 þ

18

5
c4H

4
0 > 0; (102)

respectively. These can be satisfied simultaneously pro-
vided that

c2 <
3

2
c3H

2
0 < 0; (103)

with the value of c4H
4
0 determined by (99). Hence, we

have an example of a supersymmetric conformal

Galileon theory that has a background solution which
is both stable and can violate the NEC at the same time.
We note that this is merely a proof of principle, and that
using a supersymmetric L5, or other choices for super-
symmetrizing L4, will lead to a variety of such theories.
For these, the conditions for violating the NEC and
having canonical fermionic fluctuations will have to be
reevaluated on a case-by-case basis, but it seems likely
to us that healthy supersymmetric models might also
exist for which all the conditions mentioned above can
be satisfied with c2 > 0. In that case, even the ordinary
zero vacuum would be stable.
We anticipate a number of applications for our

results:
(i) Since the (nonsupersymmetric) conformal Galileon

theories can be derived as the Lagrangians describ-
ing the fluctuations of a brane in a higher-
dimensional space-time, there does not seem to exist
a fundamental obstacle to deriving the supersymmet-
ric Galileons in a supergravity context. It will then be
interesting to see precisely which version of the
supersymmetric Galileons comes out naturally.
Moreover, such a treatment would require one to
extend the present work to local supersymmetry
and the coupling to gravity, which will be of impor-
tance for cosmological applications. This derivation
will appear elsewhere [105].

(ii) As we discussed in detail in the paper, two Galileon
actions, related using integration by parts and drop-
ping the surface terms, are physically inequivalent
in that they lead to the same time-dependent back-
grounds, but to different pressures. Hence, for two
such theories, the conditions for violating the NEC
are different. It may be that one theory allows for
stable violations of the NEC, while the other does
not. It will be interesting to investigate this situation
further in a cosmological context. Indeed, it means
that in approaching a regime where the NEC is
violated, such as a cosmic bounce, spatial gradients
must necessarily make their presence felt, and either
allow or disallow entering into the NEC-violating
regime. This should be the case regardless of how
small the spatial gradients are initially. It will be of
interest to see how this works out in a concrete
model.

Supersymmetric Galileons provide a fascinating theo-
retical laboratory in which to study the connections be-
tween higher derivatives, supersymmetry, and violations of
the NEC. This is at present largely uncharted territory, but,
in this paper, we hope to have provided the basic tools
necessary for mapping it out.
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APPENDIX A: USEFUL SUPERFIELD
EXPRESSIONS

In constructing the supersymmetric extensions of the
higher-derivative scalar actions discussed in this paper,
we make frequent use of a number of building blocks.
We list them here for reference, our notation and conven-
tions being those of Wess and Bagger [89]:

D�D�¼2c c þ4
ffiffiffi
2

p
F�c þ4

ffiffiffi
2

p
ic�� ��A;�þ4��F2�4 �� ��ð@AÞ2þ8i��� ��FA;��4i�c c ;��

� ��

þ4i�c ;�c�� ��þ2
ffiffiffi
2

p
�� ��ð�chAþc ;��

� ��	�A;	�2A;��c ;�Þ
þ2

ffiffiffi
2

p
i��ðF;�c�� ���3Fc ;��

� ��Þþ�� �� ��ð4FhA�4@F �@A�chc þ@c �@c �c ;��
� ��	c ;	Þ; (A1)

D2� ¼ �4Fþ 4
ffiffiffi
2

p
ic ;��

� ��� 4 �� ��hAþ 4i��� ��F;� � 2
ffiffiffi
2

p
�� �� �hc � �� �� ��hF: (A2)

Multiplying the first of these building blocks with the Hermitian conjugate of the second, we obtain, up to quadratic order
in the spinor c ,

D�D� �D2�y¼�8c cF��16
ffiffiffi
2

p
�cFF��16

ffiffiffi
2

p
ic�� ��A;�F

��8��c chA��16��F2F�þ16i��c�� �c ;�F

þ16 �� ��ð@AÞ2F��32i��� ��A;�FF
�þ32c�� ����	 �c ;	A;��8i��� ��c cF�

;�þ16i�c c ;��
� ��F�

�16i�c ;�c�� ��F�þ8
ffiffiffi
2

p
��ð�2ic�� ��A;�hA��2�� �c ;��

	 ��FA;	þic�� ��FF�
;�

�ic�� ��F;�F
�þ3ic ;��

� ��FF�Þþ8
ffiffiffi
2

p
�� ��ð2i��� �c ;�ð@AÞ2þ��� ��	cA;	F

�
;�þ2A;��c ;�F

�

��cAF��c ;��
� ��	�A;	F

�Þþ�� �� ��ð16ð@AÞ2hA��16hAFF�þ16F�@F �@A�16F@F�@A

þ8ic ;��
� ��	�� �c ;�A;	�16ic ;��

	 �c ;	A
;�þ8ic�	 �c ;	hAþ8ic��h �cA;�þ4chcF��4@c �@cF�

þ4c ;��
� ��	c ;	F

�þ4c�� ��	c ;	F
�
;��4c ;��

	 ���cF�
;	�2c chF�Þ: (A3)

We also make frequent use of

ð�þ�yÞk ¼ ðAþ A�Þk þ k
ffiffiffi
2

p ðAþ A�Þk�1ð�c þ �� �c Þ
þ k��ðAþ A�Þk�1Fþ k �� ��ðAþ A�Þk�1F�

þ ki��� ��ðAþ A�Þk�1ðA;� � A�
;�Þ; (A4)

where we have dropped the top component as well as terms
quadratic and higher in fields other than �.

APPENDIX B: NON-LORENTZ-COVARIANT
FERMION KINETIC TERMS

In Sec. III, we showed that the exact linear combination
of (28)þ(26) not only gives the conformal third-order
scalar Galileon Lagrangian, but also results in a Lorentz-
invariant fermion kinetic term. In this appendix, we gen-
eralize this analysis by allowing for a more general linear
combination. The fermion kinetic term now breaks Lorentz
invariance, and the resulting generalized Galileon theory is
only invariant under dilations but not special conformal
transformations.

Instead of (31), consider the more general expression

ð28Þþð1þ�Þ�ð26Þ
¼ 1

12�4
ð@�Þ4þ 1

18�2
ð@�@	�Þ2� 1

18�2
ðh�Þ2

þ �

4�4
ð@�Þ4� ið1þ�Þ

4�4
ð@�Þ2ðc ;��

� �c �c�� �c ;�Þ

� i�

2�4
�;��;	ðc ;	�� �c �c�� �c ;	Þþ . . . ; (B1)

where � is a constant. It follows that 3�(31), the
higher-derivative term entering expression (34), is now
replaced by

L � � 3ið1þ �Þ
4�4

ð@�Þ2ðc ;��
� �c � c�� �c ;�Þ

� 3i�

2�4
�;��;	ðc ;	�� �c � c�� �c ;	Þ þ . . . ; (B2)

where

L � � �L3 þ 3�

4�4
ð@�Þ4; (B3)
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and L3 is the third-order conformal Galileon Lagrangian
in (41).

For � ¼ 0, the last term in (B2) vanishes, and the
fermion kinetic term is Lorentz-covariant with the correct
sign on the ghost-condensate background. Furthermore,
L�¼0 ¼ �L3 is the standard conformal Galileon action
discussed in Sec. IV. As mentioned in Sec. IV, L3 is
invariant, up to a total derivative, under the infinitesimal
dilations and special conformal transformations given in
(38). We now show that in the more general case, when
� � 0, only the dilation symmetry survives.

To see this, we work in terms of 
 and decomposeL3 as

L 3 ¼ L3A þL3B; (B4)

with

L 3A ¼ � 1

2
ð@
Þ2h
; L3B ¼ � 1

4
ð@
Þ4 (B5)

being of order Oð
3Þ and Oð
4Þ, respectively. In this
notation, the generalized Lagrangian L� can be written as

L � ¼ �L3A � ð1þ 3�ÞL3B: (B6)

First consider the dilation transformation �c
 ¼
cð1þ x�@�
Þ. Since each 
 in (B5) is acted on by at least

one derivative, the relevant variation is

�c@�
 ¼ c@�ðx�@�
Þ: (B7)

This preserves the order in 
, and hence, the variations of
L3A andL3B cannot cancel against each other. Instead they
must be separately invariant (up to a total derivative) under
this transformation. It is straightforward to check that this
is indeed the case. And since L� is just a linear combina-
tion of these two terms, it too is dilation invariant.

Now consider the infinitesimal special conformal trans-
formation, given by the second equation in (38). The
relevant variation in this case,

�v@�
 ¼ v� � @�

�
@�


�
1

2
v�x2 � ðv � xÞx�

��
; (B8)

has both zeroth- and first-order contributions in 
. Thus,
unlike the previous transformation, the variations of the
two terms in (B5) can cancel against each other, so that
neither need be a total divergence. For example, consider

�vL3B ¼ �v�ð@�
Þð@
Þ2 þOð
4Þ: (B9)

Since �vL3A is at most cubic in 
, the Oð
4Þ term in (B9)
must be a total derivative, which is indeed the case.
However, the first term need not a total derivative, and,
in fact, it is not. This is most easily checked by defining an
action�R

d4xv�ð@�
Þð@
Þ2. If the integrand were a total
derivative, then the variation of this action would vanish
identically. Instead we find the nonzero result

� �

�


Z
d4xv�ð@�
Þð@
Þ2

¼ 2v�ð@�
Þh
þ 4v�ð@�
Þð@�@�
Þ � 0: (B10)

It follows thatL3B is not by itself invariant under (B8). The
invariance of L3 relies on a cancellation between the first
term in (B9) and theOð
3Þ part of the variation ofL3A [the
Oð
2Þ term in �vL3A is a total derivative].
The immediate corollary is that L� is not invariant

under the transformation (B8) for � � 0. In other words,
when the fermion kinetic term is not Lorentz-invariant on
the condensate background, the purely
-dependent part of
the Lagangian is still invariant under dilations (B7) but
breaks special conformation transformations (B8). This
generalized class of ‘‘detuned’’ Galileon theories, and their
supersymmetric extension discussed above, admit a ghost-
condensate vacuum and are potentially interesting in their
own right, such as for cosmological applications. We will
explore their properties elsewhere [88].
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