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Exploring User-Provided Connectivity
A Simple Model∗

M. H. Afrasiabi and R. Guérin

University of Pennsylvania, Philadelphia PA 19104, USA,
(afram@seas,guerin@ee).upenn.edu

Abstract. The advent of cheap and ubiquitous wireless access has intro-
duced a number of new connectivity paradigms. This paper investigates
one of them, user-provided connectivity or UPC. In contrast to tradi-
tional infrastructure-based connectivity, e.g., connectivity through the
up-front build-out of expensive base-stations, UPC realizes connectivity
organically as users join and expand its coverage. The low(er) deployment
cost this affords is one of its main attractions. Conversely, the disadvan-
tages of connectivity sharing and a high barrier-to-entry from low initial
penetration create strong disincentives to its adoption. The paper’s con-
tributions are in formulating and solving a simple model that captures
key aspects of UPC adoption, and in articulating guidelines to make it
successful. For analytical tractability, the model is arguably simplistic,
but the robustness of its findings is demonstrated numerically across a
wide range of more general (and more realistic) configurations.

1 Introduction

There is no denying that we are a networked society, and the increasing capabil-
ities and versatility of mobile devices has fueled a growing thirst for ubiquitous
connectivity, i.e., connectivity everywhere and all the time. This has driven the
growth and success of wireless carriers worldwide. These carriers tout compre-
hensive coverage and connectivity that in some instances approaches that of
wired networks. However, their very success has often made it difficult to main-
tain the connectivity quality their users expect [19]. This is in part because
connectivity relies on a costly infrastructure, whose deployment calls for careful
long-term planning. This together with the relatively high cost of those services
has awaken interest in alternative solutions to offering ubiquitous connectivity.

One such promising alternative is that of user provided connectivity (UPC),
where connectivity grows “organically” as more users join the network and im-
prove its coverage. In UPC, as users gain (local) access to connectivity, e.g., from
subscribing to an Internet Service Provider (ISP), they allow others to share that
connectivity in exchange for either compensation or reciprocation. More specifi-
cally, a UPC user allows roaming users to obtain connectivity through its own lo-
cal access for a small fee or the ability to enjoy the same benefits when itself roam-
ing. This is made possible by the availability of low-cost wireless access solutions
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(Wi-Fi), as popularized through services such as FON (http://www.fon.com).
FON users purchase an access router (FONERA) that they use for their own
local broadband access, but with the agreement that a (small) fraction of their
access bandwidth can be made available to other FON users. In exchange, they
receive the same privileges when roaming, i.e., they are able to connect through
the access points of other FON users.

The challenge faced by such a service model is that while its has low de-
ployment costs (no expensive infrastructure build-out), it does not offer truly
ubiquitous connectivity until it has reached a large enough level of penetration,
i.e., there are enough users to offer comprehensive coverage. This high external-
ity in the service’s value can, therefore, hamper early adoption and hence even-
tual success. Consider for example a FON-like service starting with no users.
This makes the service unattractive to users that value ubiquitous connectivity
highly, e.g., users that roam frequently, because the limited coverage offers little
connectivity beyond that of a user’s “home base”. On the other hand, sedentary
users are unaffected by the negative utility associated with low coverage, and if
the price is low enough can derive positive utility from the service; hence joining.
If enough such (sedentary) users join, coverage may increase past a point where
it becomes attractive to roaming users who will start joining. This would then
ensure rapid growth of the service, were it not for a negative dimension to that
growth.

Specifically, as more roaming users join, they start consuming resources in
the home bases of other users. This lessens the utility these users derive from the
service. This can cause some (sedentary) users to leave, and the corresponding
reduction in coverage makes the service less attractive to roaming users that also
start leaving. As a result, the initial period of growth in the service is followed
by a decline, and the process repeats. The extent to which such behaviors arise
depends on many factors, including the benefits users derive from the system, its
cost, the severity of the degradations they experience when other users access
the network through their home base, and the possible incentives the service
provider offers to compensate for those.

The goal of this paper is to develop a simple model that can help understand
how these many factors interact and affect the adoption of UPC services. The
paper’s contributions include

– Identifying service adoption equilibria (or lack thereof) and how they are
influenced by system parameters;

– Characterizing “regions” (ranges of price and user valuation) that result in
high or low adoption equilibria;

– Validating the robustness of the findings through the numerical evaluation
of more realistic (and more complex) models.

The rest of the paper is structured as follows. Section 2 introduces the model
and its parameters. Solution methods and findings are presented in Section 3.
Section 4 demonstrates the robustness of the results to generalizations of the
model. Finally, Section 5 gives a brief overview of related works, while Section 6
summarizes the paper’s results and points to possible extensions.



2 Model Formulation

This section introduces a simple model for the decision process of individual
users faced with the question of whether to adopt a UPC service. As commonly
done, adoption depends on the utility a user derives from the service, with users
adopting if their utility is non-negative. Utility depends on several factors, in-
cluding the number (coverage) and type (roaming or not) of existing adopters.
Users are myopic when evaluating the utility they expect to derive from the
service, i.e., do not account for the impact of their decision on other users, but
as adoption levels change, an individual user’s utility varies. In other words, the
service value exhibit (positive and negative) externalities that affect adoption
decisions. It is those dynamics we seek to capture.

For analytical tractability, the model relies on a number of simplifying as-
sumptions. They are relaxed in Section 4, where we show that the findings remain
qualitatively unchanged. The utility U(θ) of a user considering the adoption of
a UPC service is given in Eq. (1), where θ, 0 ≤ θ ≤ 1 represents the roaming
characteristics of the user, i.e., a low θ indicates a sedentary user while a high
θ corresponds to a user that frequently roams. The exact value of θ is private
information, but its distribution (over the user population) is known.

U(θ) = γ + θf(x) − p− g(m) + g∗(m) . (1)

The parameter γ denotes the intrinsic utility that all users associate with basic
home connectivity, while θf(x) represents the utility they derive from being able
to connect through the home base of other users while roaming. The function
f(x) reflects the coverage that the UPC service offers, which grows with the level
of adoption x, 0 ≤ x ≤ 1. The factor θ in θf(x) accounts for the effect of het-
erogeneity in the roaming characteristics of users, i.e., low θ or sedentary users
derive comparatively little benefits from being able to connect through other
users’ home base. The impact of heterogeneity could arguably be extended to
how users value basic connectivity, i.e., γ, as well as capture the fact that roam-
ing users (high θ values) may in turn put less value than sedentary users on
home connectivity. The assumption of a fixed γ value across users is a reflection
of our focus on understanding how a UPC service can be attractive to users
that require more than just home connectivity, i.e., we are not trying to model
the adoption of basic Internet service. Conversely, accounting for the fact that
roaming users may value home connectivity less could be accomplished by re-
placing γ by (1 − θ)γ. As shown in Appendix A of [1], this does not affect the
overall structure of the model. As a result, we only consider the utility function
of Eq. (1) in the rest of the paper.

The parameter p is the price charged for the service, while the factors g(m)
and g∗(m) capture how roaming traffic affects users, with m measuring the
volume of roaming traffic in the system (a function of how many roaming users
have joined). Specifically, −g(m) is the (negative) utility associated with roaming
traffic consuming resources in the home base of other users. We note that this
penalty depends only on the volume of roaming traffic and not on the availability



of resources at a user’s base station. This is reasonable in the context of home
based Internet connectivity where access bandwidth is the main resource, and
roaming users can connect at any time. Conversely, the quantity g∗(m) represents
possible compensation that the UPC service provider may offer to offset the
negative impact of roaming traffic, e.g., by logging external accesses to a user’s
home base and offering payment for each instance.

For analytical tractability, we make several assumptions regarding the form
and range of the parameters of Eq. (1) (as mentioned earlier, Section 4 explores
the impact of relaxing many of those assumptions).

First, the parameter θ that measures a user’s propensity to roam, is taken
to be uniformly distributed in [0, 1]. This implies that the adoption level, x, of
a UPC service is given by

x =

∫ 1

0

I[U(θ)] dθ , (2)

where I[U(θ)] is an indicator function that takes value 1 if U(θ) ≥ 0 and zero
otherwise.

Next, we assume that the distributions of users over the service area and
their roaming patterns are uniform. A uniform distribution of users implies that
coverage grows in proportion to adoption, x. Similarly, uniform roaming patterns
mean that roaming traffic is evenly distributed across users’ home bases, i.e., on
average all home bases see the same volume of roaming traffic.

The next assumption concerns the shape of the function f(x). Specifically,
we expect frequently roaming users, i.e., users with a high θ value, to see little
or no value in the service until its penetration is high enough to realize a certain
minimum level of coverage. This means that the overall connectivity utility of
those users, as measured by γ + θf(x), should be positive only once x is large
enough. For ease of exposition we use the function f(x) below to capture this
effect.

f(x) = d (2x− 1) , d > 0 ,

where the factor d scales the weight of this utility relative to other terms in U(θ).
The function f(x) is linear in x and negative for small x, i.e., for x below

a threshold value of 1/21. It should be noted that a similar outcome could be
realized while keeping f(x) positive for all x, by assuming instead that the value
of home base connectivity decreases for roaming users, i.e., replace γ by (1−θ)γ
in Eq. (1). As discussed in Appendix A of [1], this yields a structurally equivalent
model.

With a similar goal of simplicity, both the penalty and the compensation
that users receive from providing connectivity to roaming traffic are assumed
proportional to the volume of roaming traffic they carry. In other words, the
functions g(m) and g∗(m) are taken to be linear functions of m, i.e.,

g(m) = cm , c > 0

g∗(m) = bm , b > 0

1 Other threshold values obviously quantitatively affect the outcome, but do not qual-
itatively affect overall behaviors.



where

m =

∫ 1

0

θI[U(θ)] dθ .

In practice, the volume of roaming traffic at individual home bases varies. How-
ever, users whose home base carries more roaming traffic also receive a propor-
tionally larger compensation (when b > 0). This should mitigate the impact of
heterogeneity.

Using the above assumptions in Eq. (1), a user’s utility becomes

U(θ) = k + l m+ θ (2x− 1) , (3)

where k = γ − p and l = b − c, and where for normalization purposes, the
maximum roaming utility d was taken to be 1. We also assume that roaming
and home base connectivity are of a similar nature, so that the utility γ derived
from home base connectivity is no more than the maximum utility from roaming
connectivity, i.e., 0 ≤ γ ≤ 1. From the above expression for k, this then implies

k ≤ 1 − p ≤ 1. (4)

Before proceeding with investigating the adoption process that Eq. (3) gives rise
to, we note that its parameters k = γ − p and l = b− c include both exogenous
and potentially endogenous components. Specifically, γ and c capture external
system properties, i.e., users valuation for connectivity and their sensitivity to
the impact of roaming traffic, respectively. The values of such exogenous pa-
rameters can be estimated, e.g., using techniques from marketing research as
discussed in [10], but not controlled. In contrast, the service price, p, and incen-
tives for providing connectivity to roaming users, b, are both under the control
of the UPC provider. They can, therefore, arguably be endogenized to optimize
some measure of success such as profit. Using the results of this paper to explore
such options is a topic of ongoing research.

3 Equilibria and Adoption Dynamics

With Eq. (3) in place, it is possible to investigate the dynamics of user adoption
over time. We formulate a discrete-time model that evaluates user adoption
decisions at successive epochs. For simplicity2, at epoch (n + 1) all users are
assumed to know the system state produced by adoption decisions at epoch n.
Users with a non-negative utility then proceed to adopt. Specifically, the utility
at epoch (n+ 1), Un+1(θ), of a user with roaming value θ is given by

Un+1(θ) = k + l mn + θ (2xn − 1) , (5)

where xn and mn are the adoption level and volume of roaming traffic produced
by adoption decisions at epoch n.

2 Section 4 gives numerical results for a more realistic, diffusion-based adoption model.



The next proposition (the proof is in Appendix B of [1]) establishes a key
result that ensures the analytical tractability of a solution, namely, that as the
system evolves adopters remain associated with a continuous set of θ values. In
other words, the set of adopters does not fragment.

Proposition 1 For all choices3 of k, 0 < k ≤ 1 and l, the set of adopters is
characterized by a range of θ values of the form [0, θ̂] or [θ̂, 1], 0 ≤ θ̂ ≤ 1.

Returning to Eq. (5), note that mn depends not just on the overall adoption
level, xn, but also on which users have adopted. This is because the amount of
roaming traffic a user contributes depends on its θ value. As a result, character-
izing the system state calls for specifying the level of adoption and identifying
adopters. As shown in Appendix B of [1], adoption at epoch n+ 1 then depends
on adoption levels at both epochs n and n− 1. Specifically, xn+1 depends on xn,
and on whether xn−1 was in the range [0, 1/2) or [1/2, 1]. Although as stated
in Proposition 1 adopter sets remain continuous, they can experience abrupt
changes when adoption crosses the threshold (x = 1/2) of f(x). Abrupt changes
are inherent in discrete time models, but as shown in Appendix B of [1], this
introduces additional difficulties in characterizing adoption evolution. These are
technical in nature, and call for the use of different functional expressions when
characterizing adoption after crossing the x = 1/2 threshold (in either direction).

Fig. 1. Adoption Evolution as a Function of Initial Adoption.

This is illustrated in Fig. 1, which corresponds to a scenario where depending
on initial adoption levels, final adoption can converge to either one of two stable4

3 Starting from zero adoption, non-zero adoption is possible only if k > 0.
4 In this scenario, there is also an unstable equilibrium in each of [0, 1/2) and [1/2, 1].



equilibria in [0, 1/2) or [1/2, 1]. The x-axis of the figure is the current adoption
level, while the y-axis, H(x), denotes the next adoption level given x. The dash-
dot curves of Fig. 1 correspond to expressions that characterize the evolution
of adoption just after crossing the x = 1/2 threshold, while the solid lines are
used to characterize adoption while it progresses inside either [0, 1/2) or [1/2, 1].
The dashed arrows illustrate adoption trajectories for different initial adoption
levels. For example, when the system starts with no adopters, x0 = 0, adoption
increases monotonically until it reaches about 10%, the stable equilibrium in
[0, 1/2). If seeding is used, i.e., x0 > 0, the outcome depends on the seeding
level. When seeding is “low,” e.g., x0 ≈ 35%, adoption declines back to 10%. If
seeding is high enough, e.g., x0 ≈ 46%, adoption enters [1/2, 1] and eventually
converges to the higher adoption equilibrium in that interval (around 85%).

Using the approach developed in Appendix C of [1], adoption evolution can
be characterized. Possible outcomes are summarized in the table on the left-
hand-side of Fig. 2, with the right-hand-side displaying the regions of the (k, l)
plane corresponding to each table entry. Region boundaries, i.e., f1, f2, f3 and f4,
are derived from conditions on the roots of the equation H(x) = x as discussed
in Appendix C of [1]. There can be multiple equilibria, both stable (•) and
unstable (◦), as well as fixed points associated with an “orbit” (�). Orbits can
be convergent, periodic, or chaotic depending on the choice of (k, l) values (in
regions 2’ and 3’). Finally, some (k, l) values (region 1) altogether result in the
absence of any equilibrium (denoted by — in the table).

Cases [0, 1/2) [1/2, 1]

1 — —

2 • —

2’ � —

3 — •
3’ — �
4 •, ◦ —

5 — •, ◦
6 •, ◦ •
7 • •, ◦
8 •, ◦ •, ◦

Fig. 2. Possible Combinations of Equilibria and Associated Regions of the (k, l) Plane.

The scenario shown in Fig. 1 corresponds to Case 8 of Fig. 2, where as
discussed earlier, convergence to a stable equilibrium in either [0, 1.2) or [1/2, 1]
is possible depending on initial adoption levels. As indicated in the table of



Fig. 2, other behaviors are possible based on which region of the (k, l) plane the
system parameters belong to. In the rest of this section, we review the different
possible outcomes that can arise, and attempt to provide some intuition in how
and why they are associated with different combinations of system parameters.

Behavior (i): Absence of convergence to an equilibrium. This arises in
Cases 1, 2′, and 3′. Region 1 consists of relatively high values of k(= γ − p),
i.e., at its offered price the intrinsic value of the service is reasonably high, but
rather negative values of l(= b−c), i.e., even accounting for compensation (b), the
negative impact of roaming traffic is high. This produces the following dynamics:
When the service has few users, coverage is low and frequently-roaming users
find the service unattractive in spite of the high k. In contrast, sedentary users
are unaffected by the limited coverage, and the high k value entices them to
adopt. As they adopt, coverage improves and the service becomes attractive to
roaming users, which start adopting. The associated growth in roaming traffic,
however, starts to negatively affect sedentary users that derive little benefits
from the improved coverage. This leads some of them to disadopt, which reduces
coverage so that eventually roaming users start leaving as well. Once roaming
traffic has been sufficiently reduced, the service becomes again attractive to
sedentary users, and the cycle repeats. A similar, albeit more nuanced process
is at work in regions 2′ and 3′. Appendix C of [1] offers additional discussions.

Behavior (ii): Convergence to a single stable equilibrium in either
[0, 1/2) or [1/2, 1], independent of initial adoption. This arises in Cases 2,
3, 4, and 5. Cases 2 and 4 correspond to low k values and relatively large nega-
tive l values. Because of the low k value, few sedentary users adopt and coverage
never gets high enough to make the service attractive to frequent roamers. Hence,
adoption saturates at a low level in [0, 1/2). Seeding is of no help in this case,
as a combination of a low intrinsic value and a high (negative) impact of roam-
ing traffic keeps the service unattractive to frequent roamers even if coverage
is artificially increased. A symmetric situation exists in Cases 3 and 5, where
adoption converges to a single stable equilibrium in [1/2, 1]. The value of k is
now relatively high and l boasts only a small negative value. The high intrinsic
value of the service initially attracts sedentary users that are not deterred by
the limited coverage. Once enough of them have adopted, frequent roamers start
joining. Because incentives compensate for the impact of the increasing roaming
traffic, few sedentary users leave and adoption stabilizes at a high level.

Behavior (iii): Convergence to one of two stable equilibria in [0, 1/2)
or [1/2, 1], as a function of initial adoption. This arises in Cases 6, 7, and 8,
which share relatively low k values and marginally negative l values. Under those
conditions, while adoption (coverage) is low, frequent roamers are not interested
in the service and the small k value limits the number of sedentary users who
adopt. Hence, adoption saturates at a low level. However, unlike (ii), this is an



instance where seeding can help. In particular, a high enough level of seeding
can lead to a much higher final adoption (in [1/2, 1] as opposed to [0, 1/2)).
Specifically, if seeding is high enough, frequent roamers will start adopting in
spite of the low k value. As their number grows and coverage continues improving
more adopt and even some sedentary users might also adopt because of the
relatively high level of compensation they receive to allow roaming traffic through
their home base. As a result, overall adoption eventually stabilizes at a high level.

Fig. 3. Adoption Outcomes as a Function of k and l.

The above behaviors are illustrated in Fig. 3 that plots the “final” adoption
levels for different (k, l) pairs when starting from an initial adoption level of
x0 = 0. In scenarios where adoption does not converge, i.e., Behavior (i),
the adoption level reported in the figure was sampled at a particular iteration.
The figure clearly identifies the regions of the (k, l) plane that correspond to
chaotic or at least non-converging adoption (regions 1, 2′, and 3′), low adoption
(regions 2 and 4, as well as regions 6, 7, and 8 since no seeding was used), and
regions of high adoption (regions 3 and 5).

4 Robustness to Model Variations

The model and the analysis behind the paper’s results are predicated on a num-
ber of simplifying assumptions that are unlikely to hold in practice. It is, there-
fore, important to validate that the findings and insight derived from these results
remain applicable under more realistic conditions. For that purpose, a number of
“perturbations” were introduced to the modeling assumptions, and their impact
on the results evaluated. The perturbations that were investigated include

1. Relaxing the synchronized nature of adoption decisions and perfect knowl-
edge of system state, i.e., through a “diffusion-like” process that introduces
heterogeneity in how users learn and react to changes in system state.



2. Generalizing the distribution of users’ roaming characteristics θ, and there-
fore sensitivity to coverage, i.e., from uniform to arbitrary distributions;

3. Varying users’ sensitivity to roaming traffic and incentives compensating for
it, i.e., by considering sub-linear and super-linear utility functions;

Because those perturbations typically imply a loss of analytical tractability, nu-
merical evaluations were used to assess their impact. A representative scenario
is shown in Fig. 4 that assumes a diffusion-like adoption process in a configura-
tion where the analysis predicts the existence of both a stable and an unstable
equilibrium in [1/2, 1]. The paper’s analytical model assumes that adoption pro-
ceeds by discrete jumps, so that it eventually enters a region where convergence
to the stable equilibrium is guaranteed. Adoption progression is different under
a diffusion-like model, as there is latency in how changes in adoption affect users’
utility, and therefore adoption decisions. As a result, adoption trajectories can
“traverse” unstable equilibria, but those traversals can depend on the initial ser-
vice penetration, e.g., as realized through seeding. This is illustrated in Fig. 4.

(a) Zero initial adoption (b) high initial adoption

Fig. 4. Adoption evolution as a function of initial penetration.

Fig. 4a illustrates the adoption trajectory when the service starts from zero
penetration. In this case, adoption starts relatively steeply as the service is at-
tractive to many sedentary (low θ) users. Adoption then slows down as it ap-
proaches the unstable equilibrium, but the initial momentum is sufficient to
“carry it through” that region. The pace of adoption then picks up again and
eventually overshoots the stable equilibrium before it finally converges back to it.
Fig. 4b shows a different behavior when initial penetration is high, e.g., because
of seeding, but below the unstable equilibrium. In this scenario, the artificially
inflated utility of many adopters drops quickly and they disadopt, which trig-



gers a rapid initial drop in service adoption. However, once adoption has dropped
sufficiently, a similar process as that followed in Fig. 4a emerges, and adoption
proceeds to grow again and finally converge to the same final adoption level.

Details reporting the outcome of investigations of many other perturbation
scenarios can be found in Appendix D of [1]. They establish that the main
findings of the paper remain valid in those more general and realistic settings.

5 Related Works

The service adoption process that the paper targets exhibits both positive and
negative externalities. There is a vast literature investigating the effect of exter-
nalities, often called network effects [13], but the majority of these works focus
on either positive or negative externalities separately. See for example [4,5,8,11]
for works exploring the impact of positive externalities on product adoption
and competition. Conversely, the impact of negative externalities, e.g., from
congestion, has been extensively investigated in the context of pricing for both
communication networks [9, 14,16,18] and transportation systems [2, 12,15].

Systems that exhibit both positive and negative externalities have been stud-
ied mostly in the context of the theory of clubs [17]. Club-like behaviors also
arise in peer-to-peer (p2p) systems where more peers increase the total resources
available to store content, but induce a higher load on file-serving peers. This
has triggered the investigation of incentives to promote resources sharing, e.g.,
BitTorrent “tit-for-tat” [6] or [7] that also explores a possible application to a
wireless access system similar in principle to the one considered in this paper.

This paper differs from these earlier works in a number of ways. It introduces
a model for individual adoption decisions of a service, which allows for hetero-
geneity in the users’ valuation of the service. In particular, certain users (roaming
users) have a strong disincentive to adoption when coverage/penetration is low,
while others (sedentary users) are mostly insensitive to this factor. Conversely,
this heterogeneity is also present in the negative externality associated with an
increase in service adoption, which depends not just on the number of adopters,
but on their identity as well, i.e., roaming or sedentary users.

6 Conclusion

The paper introduces a simple model that captures the positive and negative
externalities of a UPC service. The model’s solution characterizes possible out-
comes (equilibria) and when they arise. The robustness of the findings to relax-
ations in the model’s simplifying assumptions was verified numerically.

There are many extensions of interest to this basic model. The first is to
endogenize system parameters associated with prices and incentives, based on
a revenue maximization objective. This is the topic of ongoing work. Empirical
validation of the approach is also obviously desirable and a target for future
work, e.g., by collaboration with a UPC provider such as FON. Other exten-
sions include the introduction of competition between UPC and infrastructure



based services, as well as the investigation of the possible benefits of cooperation
between two such offerings i.e., how a UPC service can best complement a tra-
ditional 3G or 4G offering. This is a topic that has seen much recent interest [3]
because of the rise in bandwidth demand originating from smartphone and other
Internet-enabled portable devices, e.g., e-readers.
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