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unclear. To this end, the paper proposes and solves a model for adoption of competing network technologies
by individual users. The model incorporates a simple utility function that captures key aspects of users'
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Modeling the Dynamics of Network Technology
Adoption and the Role of Converters

Soumya Sen, Youngmi Jin, Roch Guérin and Kartik Hosanagar

Abstract—New network technologies constantly seek to dis-
place incumbents. Their success depends on technological supe-
riority, the size of the incumbent’s installed base, users’ adoption
behaviors, and various other factors. The goal of this paper is
to develop an understanding of competition between network
technologies, and identify the extent to which different factors,
in particular converters (a.k.a. gateways), affect the outcome.
Converters can help entrants overcome the influence of the
incumbent’s installed base by enabling cross-technology inter-
operability. However, they have development, deployment, and
operations costs, and can introduce performance degradations
and functionality limitations, so that if, when, why, and how
they help is often unclear. To this end, the paper proposes and
solves a model for adoption of competing network technologies
by individual users. The model incorporates a simple utility
function that captures key aspects of users’ adoption decisions. Its
solution reveals a number of interesting and at times unexpected
behaviors, including the possibility for converters to reduce
overall market penetration of the technologies and to prevent
convergence to a stable state; something that never arises in their
absence. The findings were tested for robustness, e.g., different
utility functions and adoption models, and found to remain valid
across a broad range of scenarios.

Index Terms—Externality, converters, dynamics, equilibrium.

I. INTRODUCTION

Advances in technology often see newer and better solu-
tions replacing older ones. Networking is no exception. For
example, the Internet competed against alternative packet data
technologies before finally displacing the phone network as the
de facto communication infrastructure. Recently, there have
been calls for new architectures to succeed it, and these will
face a formidable incumbent in the Internet. Their eventual
success in replacing it will likely depend not just on technical
superiority, but also on economic factors, and on their ability
to win over the Internet’s installed base.

A large installed base can give an incumbent an edge
even if a new (entrant) technology is technically superior.
The traditional networking approach to this problem has
been converters (a.k.a. gateways) to ease migration from one
technology to another. This is not unique to networks, but
converters are particularly important in network settings where
“communication” is the primary function, and its benefits grow
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with the number of users that can be reached, e.g., as in Met-
calfe’s Law. Since converters allow users of one technology
to connect with users of another, they are an important tool in
the adoption of network technologies. However, developing,
deploying, and operating converters comes at a cost, one
that often grows as a function of the converter’s quality.
Further, converters can play a directionally ambiguous role.
On one hand, a converter can help the entrant overcome the
advantage of the incumbent’s large installed base by allowing
connectivity to it. On the other hand, the converter also helps
the incumbent technology by mitigating the impact of its users
migrating to the newer technology. Understanding the impact
of converters on (network) technology adoption is, therefore,
a topic that deserves further scrutiny.

In this paper, we develop a modeling framework to study
adoption dynamics of entrant and incumbent technologies
in the presence of network externalities. Specifically, we
introduce a model for the utility derived by an individual
user from a communication network, and use it to build an
aggregate model for technology adoption that is consistent
with individual rational decision-making. We apply the model
to study the role that converters can play in the adoption of
network technologies. Our main findings are:
• The adoption process can exhibit multiple steady state

outcomes (equilibria); each associated with a specific
region of initial adoption levels for the two technologies.

• Converters can help a technology improve its own stand-
ing, i.e., market share, and even ensure its dominance
while it would have entirely disappeared in the absence
of converters.

• Improving converters efficiency can at times be harmful.
They can result in lower market shares for an individual
technology or for both.

• Converters can disrupt technology adoption and prevent
both technologies from converging to a stable market
share, i.e., users switch back and forth between tech-
nologies. In contrast, this never arises without converters,
with technology adoption always converging to a stable
equilibrium.

The rest of this paper is organized as follows: Section II
introduces our model and problem formulation. Section III
characterizes technology adoption trajectories and equilibrium
adoption levels. Section IV explores the role of converters
in influencing adoption outcomes. Section V reviews prior
work and positions the paper in the literature. We discuss the
limitations of this study and conclude the paper with remarks
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on future work in Section VI.

II. TECHNOLOGY ADOPTION MODEL

A. Technology Valuation

As in most competitive situations, the choice of one technol-
ogy over another depends on the “value” they provide. Value
is a somewhat elusive concept that depends in part on the
quality and functionality of the technology and its cost. In
the context of network technologies whose main purpose is
to enable communication among users, the number of users1

accessible through it is another important component, often
termed network effect or externality. As commonly done,
we account for these factors and their effect on technology
adoption through a utility function. For two competing network
technologies, 1 and 2, the respective utility functions are given
by eqs. (1) and (2).

U1 = θq1 + (x1 + α1βx2)− p1 (1)
U2 = θq2 + (βx2 + α2x1)− p2 (2)

Eqs. (1) and (2) consist of three distinct terms. Focusing on,
say, Technology 1, the first term, θq1 represents the stand-
alone benefits from the technology, with q1 representing the
intrinsic quality of the technology, and θ a random variable
accounting for heterogeneity in how users value technology.
The quantity q1 incorporates aspects of functionality, reliabil-
ity, performance, etc., for the technology. In the rest of the
paper, we assume q2 > q1, i.e., Technology 2 is superior
to Technology 1 and correspondingly can be viewed as the
entrant with Technology 1 playing the role of the incumbent.
The model, however, does not mandate such an assignment of
roles, e.g., it can be used to study settings where Technology
1 is the entrant and offers, say, a lesser quality but cheaper
alternative than the incumbent Technology 2. The random
variable θ ∈ [0, 1] determines the relative weight a user
places on the intrinsic quality of a technology. It is private
information, but we assume that the distribution of θ across
users is known. We make the common assumption [2] that
θ is uniformly distributed in the interval [0, 1]. This choice
affects the magnitude of equilibrium adoption levels, but does
not qualitatively affect findings regarding technology adoption
dynamics and outcomes as demonstrated in Appendix F.

The second component of the user’s utility is the network
externality (or network effect), which refers to benefits de-
rived from the ability to connect with other users. Network
externalities are chosen to be proportional to the number of
users each technology gives access to. This linear dependency
of network benefits on the number of adopters is consistent
with Metcalfe’s Law and commonly used in the literature [7].
In Appendix F, we investigate other possible models and
demonstrate the robustness of our findings across different
functional forms for network externality, including non-linear
ones. Denoting as x1 and x2 the fractions of adopters of
each technology out of a large population of size N , the
externality benefits for Technology 1 consist of x1, the fraction

1Users can be individuals or organizations, and include resources and
content.

of Technology 1 users, plus α1βx2, a term that includes the
fraction of Technology 2 users weighed by two additional
factors. The first, 0 ≤ α1 ≤ 1, captures the availability
of converters offering connectivity from Technology 1 to
Technology 2 (α1 = 0 corresponds to no converter and
α1 = 1 to “perfect” converters). The second parameter, β,
allows different externality benefits for the two technologies2.
We note that converters, once deployed, are available to
all users of the technology. This corresponds to what we
term “technology-level” converters, i.e., their development and
deployment are decisions made by the providers of network
technologies.

Converters can be characterized as either duplex or simplex,
symmetric or asymmetric, and constrained or unconstrained.
Duplex converters provide bi-directional connectivity between
technologies, while simplex converters are present in only
one direction (most network technologies involve duplex con-
verters, but the model does not mandate them). Asymmetric
converters simply refer to the fact that converter efficiency
can be different in each direction i.e., α1 6= α2. The notion of
constrained vs. unconstrained converters arises in the presence
of technologies that exhibit different externalities, i.e., β 6= 1.
For example, when β > 1, it captures whether converters allow
users of Technology 1 access to the greater externality benefits
of Technology 2 when connecting to its users. A converter is
unconstrained if this is permitted, i.e., α1β > 1. We discuss
an example where this can arise at the end of the section.

The last element of eqs. (1) and (2) is the price, pi, i ∈
{1, 2}. Because of our focus on networks and connectivity that
is typically offered as a service rather than a good or product,
price is recurrent. In other words, maintaining connectivity
through a particular network technology incurs new charges
at regular intervals. As a result, users continuously reevaluate
their technology choices, and can switch from one technology
to another and possibly back. This assumes that switching
costs are negligible. This assumption is for analytical tractabil-
ity of the model, but the framework can be extended to
incorporate switching costs, albeit at the cost of increased
complexity. In Appendix G we discuss how switching cost
can be included, its implications, and provide numerical and
simulation based evidence to demonstrate that the qualitative
results presented in this work remain valid even in the presence
of switching costs.

We note that the model parameters, i.e., qi, pi, αi, β, are
static and exogenously specified. An obvious extension is to
make them time-varying, e.g., technology gets better and/or
cheaper as time goes by, and the outcome of strategic decision-
making. Incorporating such effects is clearly of interest, espe-
cially in the context of competitive scenarios where firms may
offer introductory pricing or seed the market to gain an initial
foothold. This, however, requires that we first understand
the basic tenets of technology adoption and dynamics in the
simpler setting considered in this paper.

Another important question is how to assign actual values
to the model’s parameters. This is a topic that goes well

2Eqs. (1) and (2) implicitly express utility in units of Technology 1
externality benefits, i.e., Technology 1 externality benefits are equal to 1 when
its penetration level is 100% (x1 = 1).
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beyond this paper, and we only point to a possible approach.
A common method to estimate utility weights is conjoint anal-
ysis, a technique that has been widely adopted by marketing
researchers and practitioners (see [9] for a detailed review).
It relies on surveys offering users different combinations of
functionality and attributes to extract a relative ordering among
them, and ultimately produce individual weight assignments.

B. User Decisions

Given current adoption levels, x1 and x2, the utility func-
tions of eqs. (1) and (2) identify how a user values each
technology, which in turn determines her technology selection
decisions. (Recall that the recurring nature of price makes
this an ongoing decision process). Specifically, a user chooses
Technology i whenever it provides a surplus that is both
positive (Individual Rationality constraint) and higher than that
of the other technology (Incentive Compatibility constraint).
In other words, a user chooses




no technology if Ui < 0 for all i,
Technology 1 if U1 > 0 and U1 > U2,
Technology 2 if U2 > 0 and U2 > U1.

Note that the model assumes an exclusive choice of tech-
nology by users, i.e., they select Technology 1, or 2, or
neither, but not both. This translates into the constraint 0 ≤
x1 +x2 ≤ 1. The dynamics of technology adoption arise from
the dependency of the Ui’s on the xi’s that change with users’
adoption decisions. Capturing these dynamics, therefore, calls
for specifying when users become aware of changes in the xi’s
and update their adoption decisions. Knowledge of changes in
adoption levels is likely to diffuse through the user population
and users’ reactions are often heterogeneous, i.e., some switch
quickly, while others defer. An approach, commonly used in
individual-level diffusion models [10] and that captures these
aspects is a continuous time approximation.

Specifically, assume that at time t the “current” technology
adoption levels, x(t) = (x1(t), x2(t)), are known to all users.
With this information, users can compute their utility for each
technology and make adoption decisions. Let Hi(x(t)), i ∈
{1, 2} denote the fraction of users for whom Technology
i provides the highest (and positive) utility3. The quantity
Hi(x(t))−xi(t) corresponds to the fraction of users that would
normally proceed to adopt (disadopt) Technology i at time t.
To capture a progressive adoption process, we assume that the
rate of change in users’ technology choices is proportional to
this quantity, namely,

dxi(t)
dt

= γ
(
Hi(x(t))− xi(t)

)
, i ∈ {1, 2}, (3)

The quantity γ < 1 is analogous to the hazard rate in diffusion
models, and can be viewed as the expected conditional prob-
ability that an individual who has not yet adopted technology
i will do so at time t. In our analysis, we assume that the
propensity of individuals to adopt does not change with time,
i.e., γ is constant.

3We discuss the derivation of Hi(x(t)) in Section III-A.

Two aspects of this diffusion process need further clarifica-
tion. First, users are myopic. At any instant, the adoption deci-
sions are driven by the number of adopters at that time (xi(t))
and users are not able to anticipate likely adoption levels in
the future. Second, the model identifies the rate of technology
adoption across users, but not which users are making the
change. To preserve consistency with user preferences, θ, we
assume that the first users to adopt Technology i are those
that stand to benefit most from the action. This ensures that at
all times the sets of users having adopted either technology
correspond to blocks of users with contiguous technology
preferences.

The diffusion dynamics governed by eq. (3) can converge
to an equilibrium x∗ characterized by:

dxi(t)
dt

∣∣∣∣
xi(t)=x∗i

= 0 ⇔ x∗i = Hi(x∗) for i ∈ {1, 2}. (4)

In other words, at equilibrium, the fraction of users for
whom it is individually rational and incentive compatible to
choose Technology i equals the current fraction of adopters
of Technology i. Based on this formulation, our goal is to
characterize, as a function of the exogenous system parameters
β, pi, qi, αi for i ∈ {1, 2}, the equilibrium adoption levels, i.e.,
the fixed points of eq. (4), and the dynamics leading to them.

Before exploring the dynamics and equilibria of technology
adoption that the model gives rise to, we pause to briefly
introduce a couple of examples that illustrate the model’s
parameters and applicability.

IPv4 vs. IPv6: The impending exhaustion of IPv4 addresses,
e.g., http:/www.potaroo.net/tools/ipv4 for a daily countdown,
implies that service providers signing up new Internet cus-
tomers will have to start using IPv6 addresses or charge
more users who insist on an IPv4 address, i.e., pIPv4 = p1 >
p2 = pIPv6. As technologies, although IPv4 and IPv6 are
incompatible, they are largely similar so that for the purpose
of our model one can reasonably assume q1 . q2 and β = 1.
Because of their incompatibility, converters (gateways), e.g.,
see [5] for a representative recent proposal, are needed for IPv6
users to access the IPv4 content that is the bulk of today’s
Internet content and unlikely to become natively accessible
over IPv6 any time soon4. Conversely, those converters also
enable the reverse flow from IPv4 to IPv6, i.e., they are
duplex converters, albeit not necessarily delivering the same
performance in both directions, i.e., they can be asymmetric,
so that both α1 and α2 are non-zero but not always equal.

Users then decide between subscribing to an IPv4 or IPv6
service on the basis of price (pi), the level of content they are
able to access (xi), and the quality of that access (αi).

Low Def. vs. High Def. Video: The previous example illus-
trated a common adoption scenario with two mostly equivalent
technologies and duplex, asymmetric converters. Because of
the similarity of the two technologies (β = 1), converters
were by default constrained (α1β ≤ 1). However, when tech-
nologies exhibit significant differences in externality benefits,

4Although the servers hosting most web sites can typically get an
IPv6 address, very few have bothered registering one with DNS, e.g., see
http://bgp.he.net/ipv6-progress-report.cgi.



4

e.g., β > 1, converters can be unconstrained (α1β > 1) and
we present next a possible example.

Consider a provider that offers its customers a video-
conferencing service with the associated equipment. The ser-
vice comes in two versions, high-definition (HD) and standard
quality (SQ), i.e., HD equipment generates a high-definition
(q2) video signal while SQ equipment produces a lower reso-
lution (q1 < q2). Users derive value from video-conferencing
with one another, with β > 1 reflecting the higher quality
of an HD signal. The two services are priced accordingly
(p2 > p1). However, because video is a highly asymmetric
technology (encoding is hard but decoding is comparatively
easy), it is possible for the provider to enable the decoding of
HD signal on SQ equipment (and obviously conversely). This
conversion can introduce quality degradations (α1 < 1), but
more importantly it allows SQ users access to the external-
ity benefits associated with receiving HD signals. Assuming
HD↔SQ conversion is available in both direction, this is an
instance of a duplex, possibly asymmetric (α1 6= α2), and
unconstrained (α1β > 1) converter.

Many users may then opt for the SQ service because of its
lower price and the ability to still enjoy the higher benefits
of viewing HD signals. On the other hand, if all users were
to select the SQ service, those externality benefits would
disappear. In general, users with high technology valuation (θ
close to 1) may still opt for the HD service, but the decision
depends on choices made by others.

III. TRAJECTORIES AND EQUILIBRIA

Solving the evolution of technology adoption decisions over
time described in eq. (3) calls for first computing expressions
for Hi(x(t)), i = {1, 2} as functions of known parameters.

A. Characterizing Hi(x)
For notational convenience we omit dependency on time

and write x(t) simply as x. Recall that Hi(x), i ∈ {1, 2},
corresponds to the fraction of users for whom it is rational
to adopt Technology i, given the current adoption levels, x.
To determine the fraction of adopters of each technology, we
introduce the notion of indifference points, which identify
thresholds in users technology valuation (θ) corresponding
to qualitatively significant changes in technology preference.
Specifically, θ0

i (x), i ∈ {1, 2} identify the θ value separating
users with a negative utility for Technology i from those with
a positive utility. In other words, for technology penetration
levels x, θ0

i (x) is such that Ui(θ0
i , x) = 0, and Ui(θ, x)

is positive (negative) for θ values larger (smaller) than θ0
i .

Similarly, θ1
2(x) corresponds to the θ value separating users

preferring Technology 1 from those preferring Technology 2,
i.e., U1(θ1

2, x) = U2(θ1
2, x) and users with θ > θ1

2(x) derive
greater utility from Technology 2 than Technology 1 (recall
that q2 > q1).

From eqs. (1) and (2), Ui(θ0
i , x) = 0 gives

θ0
1(x) =

p1 − (x1 + α1βx2)
q1

(5)

θ0
2(x) =

p2 − (βx2 + α2x1)
q2

(6)

Similarly, U1(θ1
2, x) = U2(θ1

2, x) gives

θ1
2(x) =

(1− α2)x1 − β(1− α1)x2 + p2 − p1

q2 − q1
(7)

Combining eqs. (5)-(7) gives

θ1
2(x)− θ0

1(x) =
q2

q2 − q1
(θ0

2(x)− θ0
1(x)), (8)

θ1
2(x)− θ0

2(x) =
q1

q2 − q1
(θ0

2(x)− θ0
1(x)), (9)

from which the following Proposition can be derived.
Proposition 1:

If θ0
1(x) < θ0

2(x), then θ1
2(x) > θ0

2(x) > θ0
1(x).

If θ0
1(x) ≥ θ0

2(x), then θ1
2(x) ≤ θ0

2(x) ≤ θ0
1(x).

Proposition 1 constrains the possible orderings of the indif-
ference points given by eqs. (5)-(7), so that Hi(x), i ∈ {1, 2}
can be characterized in a compact manner.

H1(x) =


[θ1

2(x)][0,1] − [θ0
1(x)][0,1] if θ0

1(x) < θ0
2(x)

0 otherwise
(10)

H2(x) =


1− [θ1

2(x)][0,1] if θ0
1(x) < θ0

2(x)
1− [θ0

2(x)][0,1] otherwise

where y[a,b] is the ‘projection5’ of y into [a, b].
Based on the ordering of the indifference points θ0

1, θ
0
2

and θ1
2 , and the outcome of their projections on [0, 1], the

exact expressions for H1(.) and H2(.) can be computed. In
Appendix A, we show that the entire (x1, x2) plane can be
partitioned into nine distinct regions, R1 to R9 (see Figure 7);
each associated with unique expressions for the Hi(x) pair 6.
Furthermore, although dependent on the system parameters,
the relative positions of all regions in the feasible solution
space, S = {(x1, x2) s.t. 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, x1 + x2 ≤
1}, remain fixed. This facilitates the derivation of a general
solution, as we outline next.

B. Characterizing Adoption Trajectories
By combining eqs. (5) to (7) with eq. (10), explicit expres-

sions can be obtained for Hi(x) in each of the nine regions.
These are listed in Table I. Using these expressions, it is now
possible to solve eq. (3) and characterize the trajectory of
technology adoption in each region. The trajectories have the
following general form:

xi(t) = ai + bie
λ1t + cie

λ2t, i ∈ {1, 2} (11)

where λ1 and λ2 can be positive, negative, or complex
depending on the region. Individual solutions for each region
are listed in Table II.

The full trajectory of technology adoption starting at some
initial adoption levels x(0) within a given region, can then
be obtained by “stitching” together trajectories in individual
regions as region boundaries are crossed. The next question
is to determine whether and where these trajectories may
eventually converge as t →∞. We tackle this issue next.

5i.e., its value is y for y ∈ [a, b], a for y < a, and b for y > b.
6This method of partitioning the (x1, x2)-plane into nine regions remains

applicable even for more generic network externality functional forms as
explained in AppendixB
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TABLE I
EXPRESSIONS FOR Hi(x)

R1

H1(x) = 0
H2(x) = 1

R2 H2(x) = 1− p2−(βx2+α2x1)
q2

R3 H2(x) = 0
R4 H1(x) = 0 H2(x) = 1

R5 H1(x) = (1−α2)x1−β(1−α1)x2+p2−p1
q2−q1

H2(x) = 1− (1−α2)x1−β(1−α1)x2+p2−p1
q2−q1

R6 H1(x) = (1−α2)x1−β(1−α1)x2+p2−p1
q2−q1

H2(x) = 1− (1−α2)x1−β(1−α1)x2+p2−p1
q2−q1

− p1−(x1+βα1x2)
q1

R7 H1(x) = 1
H2(x) = 0R8 H1(x) = 1− p1−(x1+βα1x2)

q1
R9 H1(x) = 0

TABLE II
TECHNOLOGY ADOPTION TRAJECTORIES

x1(t) x2(t)

R1 x1(t0)e
−γ(t−t0) (x2(t0)−1)

x1(t0)
e−γt + 1

R2 c1e
−γ(t−t0) p2−q2

β−q2
+ c2e

−γ(1−β/q2)(t−t0) − c1
α2
β

e−γt

c1 = x1(t0) c2 = [x2(t0) + α2x1(t0)
β

− p2−q2
β−q2

]

R3 x1(t) = x1(t0)e
−γ(t−t0) x2(t) = x2(t0)e

−γ(t−t0)

R4 same as R1 same as R1

R5 x∗1R5
+ c2e

−γ(t−t0) + c1e
(−1+

(1−α2)+β(1−α1)
q2−q1

)γ(t−t0)
x∗2R5

+ c2
(1−α2)

β(1−α1)
e−γ(t−t0) − c1e

(−1+
(1−α2)+β(1−α1)

q2−q1
)γ(t−t0)

c1 = β(1−α1)
1−α2+β(1−α1)

(x∗2R5
− x2(t0)) c2 = ( β(1−α1)

1−α2+β(1−α1)
)[x1(t0) + x2(t0)− 1]

− 1−α2
1−α2+β(1−α1)

(x∗1R5
− x1(t0))

R6 x∗1R6
+ c1K1e

A+
√

A2−4B

2 γ(t−t0) + c2K2e
A−
√

A2−4B

2 γ(t−t0) x∗2R6
+ c1e

A+
√

A2−4B

2 γ(t−t0) + c2e
A−
√

A2−4B

2 γ(t−t0)

c1 =
(1−α2){x∗1R6

−x1(t0)−K2(x∗2R6
−x2(t0))}

(q2−q1)
√

A2−4B
c2 =

(1−α2){−(x∗1R6
−x1(t0))+K1(x∗2R6

−x2(t0))}
(q2−q1)

√
A2−4B

K1 =
α2+β(1−α1)−q2/q1−(q2−q1)

√
A2−4B

2(1−α2)
A = 1−α2+β(1−α1)

q2−q1
+ 1

q1
− 2

K2 =
α2+β(1−α1)−q2/q1+(q2−q1)

√
A2−4B

2(1−α2)
B = ( 1

q1
− 1)(β(1−α1)

q2−q1
− 1) + 1−α2

q2−q1
(βα1

q1
− 1)

R7 (x1(t0)− 1)e−γ(t−t0) + 1 x2(t0)e
−γ(t−t0)

R8
p1−q1
1−q1

+ c1e
−γ(1− 1

q1
)(t−t0) − c2βα1e

−γ(t−t0) c2e
−γ(t−t0)

c1 = [x1(t0) + βα1x2(t0)− p1−q1
1−q1

] c2 = x2(t0)

R9 x1(t) = x1(t0)e
−γ(t−t0) x2(t) = x2(t0)e

−γ(t−t0)

C. Computing Steady-state Equilibria

From eq. (11), we see that a technology adoption trajectory
in, say, region Rk, converges to a stable equilibrium xi(∞) =
ai, i ∈ {1, 2}, if λ1 and λ2 are both negative (equilibrium
is locally stable), and (a1, a2) ∈ S ∩ Rk (the equilibrium
is valid, i.e., in the region associated with the trajectory). In
other words, solutions to eq. (4) (Hi(x∗) = x∗i , i ∈ {1, 2}),
must satisfy stability and validity conditions to be valid
steady-state outcomes of the technology adoption process7.
The simple nature of eq. (4) makes characterizing valid and
stable solutions relatively straightforward, albeit tedious. The
results are listed in Tables III and IV, where for readability,
expressions for equilibria in R5 and R6, x∗R5

and x∗R6
, are

given separately in eqs. (12) and (13), respectively. Table III
gives the stability conditions associated with each equilibrium,
along with the joint validity and stability conditions (they are
inter-dependent) in the last column.

7Our model is well-behaved and instances of boundary fixed points do not
arise

x
∗
1 R5

=
(p2 − p1) − β(1 − α1)

(q2 − q1) − [(1 − α2) + β(1 − α1)]

x
∗
2 R5

= 1 − x
∗
1 R5

=
(q2 − q1) − (p2 − p1) − (1 − α2)

(q2 − q1) − [(1 − α2) + β(1 − α1)]
(12)

x
∗
1 R6 =

p1q2 − p2q1 + βα1(p2 − q2) − β(p1 − q1)

(q1 − 1)(β − q2) + (q1 − α1β)(q1 − α2)

x
∗
2 R6 =

p2q1 − p1q1 − p2 + p1α2 + q1
2 − q1q2 + q2 − q1α2

(q1 − 1)(β − q2) + (q1 − α1β)(q1 − α2)
(13)

The derivations are mechanical in nature, but we review the
implications and properties of their solutions.

First, possible equilibria include instances where one tech-
nology wipes out the other while achieving either full (x∗i = 1)
or partial (0 ≤ x∗i < 1) market penetration, and instances
where both technologies coexist, again at either full (x∗1+x∗2 =
1) or partial market penetration (0 ≤ x∗1 + x∗2 < 1). Instances
where both technologies die-out, i.e., x∗ = (0, 0), while
possible (the equilibrium lies in regions R3 or R9), are absent
from Table III, as we restrict our focus to scenarios where
Technology 1 survives in the absence of the Technology 2’s
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introduction. This precludes a (0, 0) outcome.
Second, although not explicitly indicated in Table III, con-

figurations can be found for which the validity and stability
conditions of multiple equilibria are simultaneously satisfied.
In other words, depending on the initial conditions x(0),
technology adoption converges to different outcomes. The
following proposition identifies the configurations of multiple
equilibria that can simultaneously arise for a given set of
parameter values.

Proposition 2: The only combination of multiple valid and
stable equilibria that can coexist are:

1. (1, 0) and (0, 1)
2. (x∗1R8

, 0) and (0, 1)
3. (x∗1R8

, 0) and (0, x∗2R2
)

4. (1, 0) and (0, x∗2R2
)

5. (x∗1R5
, 1− x∗1R5

) and (0, x∗2R2
)

6. (x∗1R6
, x∗2R6

) and (0, 1)
7. (x∗1R6

, x∗2R6
) and (1, 0)

Additionally, no combination of three or more equilibria can
coexist as valid and stable equilibria.

The proof of the above proposition is available in Appendix
D. When multiple equilibria arise, the initial market penetra-
tion determines the equilibrium to which the adoption process
converges. Therefore it is useful to identify the set of all
initial market levels, x(0), for which the adoption trajectory
converges to a particular stable equilibrium. This set is known
as the ‘Basin of Attraction’ of that stable equilibrium. If the
stable equilibrium is the only stable equilibrium in the system
i.e., globally stable, then the entire region S is its basin of
attraction. That is, all starting points lead to the equilibrium.
But whenever a pair of stable equilibria coexist, a ‘separatrix’,
demarcating the basins of attraction of the two stable equilibria
can be computed. The expressions for the separatrices are
provided in Table VI of Appendix E.

Figure 1 provides an illustrative example. The figure, called
a phase diagram, shows the path of the diffusion process in
the (t, x1, x2) space projected onto the (x1, x2) plane. In other
words, it plots x1(t) versus x2(t) and is what one would see
if one stood high on the time axis and looked down into the
(x1, x2) plane, sometimes referred to as the phase plane. We
observe that there are two stable steady-state equilibria (of the
form (0, x∗2) and (x∗1, 0)) and an unstable equilibrium in R6. A
separatrix passes through this unstable equilibrium, separating
the basins of attraction of the stable equilibria.

The framework developed here can be used in a wide
range of situations to model the dynamics of adoption. As an
illustration of the useful insights that such a model can offer,
we apply our model to studying the role of converters in the
adoption of incompatible technologies. We see from Tables III
and IV that converters can influence (through the parameters
αi) both the validity and the stability of equilibria. In other
words, converters may lead technology adoption to an entirely
different equilibrium. A rapid inspection of Table II shows
that a similar conclusion holds for trajectories. In particular,
converters can affect the values of λ1 and λ2 of eq. (11).
Investigating if and when such changes can happen, is the
topic of Section IV.

Fig. 1. Separatix and the Basins of Attraction
(p1 = 1.2, q1 = 2.95, p2 = 2.54, q2 = 5.1, α2 = α1 = 0.01, β = 1)

IV. THE IMPACT OF CONVERTERS

As we shall see, converters are capable not just of shifting
equilibria around; they can also eliminate or create equilibria.
An exhaustive investigation of the full influence of converters,
while possible, results in a situation where it is difficult to
“see the forest for the trees.” As a result, we focus on what we
believe are some of the more revealing and significant effects
of converters. We identify the reasons behind these effects,
and provide conditions under which they can arise.

The investigation proceeds along the following thrusts:
(i) Can converters help a network technology improve its
market standing and in particular avoid elimination? (ii) Can
improving the efficiency of one’s converter hurt a technology?
(iii) Can improving the efficiency of one’s converter hurt the
overall market? and (iv) Can the introduction of converters
affect overall market stability? Note that when referring to
converters of a particular technology, we mean converters
developed by that technology provider to let its users commu-
nicate with users of the other technology. This distinction is
moot when using symmetric converters, but worth highlighting
as the model allows it.

A. Impact on Adoption Levels

We begin our investigation with a simple numerical example
that illustrates how converters can induce drastic changes in
the adoption of network technologies. Specifically, consider
the scenario of Figure 2 that shows two adoption outcomes for
the same two network technologies (p1 = 1.01, q1 = 0.7, p2 =
2.5, q2 = 2.51, β = 3), with and without converters.

The plot on the left corresponds to a scenario without
converters (α1 = α2 = 0) and in which Technology 2
eventually eliminates Technology 1 and achieves full market
penetration8. This corresponds to a single, stable equilibrium
(0, 1). The right hand plot shows how the use of perfect
converters results in the elimination of the original (0, 1)
equilibrium, so that the only possible outcome of technology
adoption is now one where both technologies co-exist.

8Note that this is a scenario in which Technology 1 is marginally compet-
itive, i.e., if left alone it would achieve a relatively low market penetration.
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TABLE III
CONDITIONS FOR STABLE, VALID EQUILIBRIA

Region Equilibria Stability Conditions Validity and Stability Conditions
R1 (0, 1) always locally stable p2 ≤ β, α1 ≤ p1

β
+ q1

q2
(1− p2

β
)

R2 (0, p2−q2
β−q2

) β < q2 β < p2 < q2

α1β(q2 − p2) ≤ β(q1 − p1) + p1q2 − p2q1

R4 (0, 1) always locally stable p1 < α1β, p1
β

+ q1
q2

(1− p2
β

) ≤ α1 ≤ 1 + p1−p2
β

R5 (x∗1R5
, 1− x∗1R5

) q2 − q1 > 1− α2 + β(1− α1) p2 − p1 > β(1− α1)
(See Eq. (12)) q2 − q1 − (p2 − p1) ≥ 1− α2

q2 − q1 > β(1− α1) + 1− α2

α1β(α2 + q2 − q1 − p2) ≥ β − p2 − p1(β − α2 − (q2 − q1))
R6 (x∗1R6

, x∗2R6
) See Table IV 0 < x∗1R6

, 0 < x∗2R6
, 0 < x∗1R6

+ x∗2R6
< 1

(See Eq. (13))
R7 (1, 0) always locally stable p1 ≤ 1, α2 ≤ 1 + p2 − p1 − (q2 − q1)
R8 ( p1−q1

1−q1
, 0) 1 < q1 1 < p1 < q1

α2(q1 − p1) ≤ (1− q1)(q2 − p2) + q1(q1 − p1)

TABLE IV
STABILITY CONDITIONS FOR x∗R6

Case Conditions
A2 − 4B ≥ 0 A < 0 ⇔ β(1− α1)− α2 < 2(q2 − q1)− q2

q1
(Ref. Table II for exp. of A and B) B > 0 ⇔ (q1 − 1)(β − q2) + (q1 − α1β)(q1 − α2) < 0

A2 − 4B < 0 A < 0 ⇔ β(1− α1)− α2 < 2(q2 − q1)− q2
q1
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Fig. 2. On the effect of converters on the existence of equilibria.(p1 = 1.01, q1 = 0.7, p2 = 2.5, q2 = 2.51, β = 3)

Figure 2 answers our question regarding a technology’s abil-
ity to avoid elimination through the introduction of converters,
and thus leading to a new equilibrium adoption outcome. We
now state it more formally in the following proposition.

Proposition 3: Converters can help a technology alter mar-
ket equilibrium from a scenario where it has been eliminated
to one where it coexists with the other technology, or even
succeeds in nearly eliminating it.

The proofs of Proposition 3 and subsequent propositions can
all be found in Appendix D.

As discussed above, Figure 2 provides a sample configu-
ration illustrating Proposition 3, i.e., Technology 1 goes from
elimination to dominating Technology 2 simply by introducing
an efficient converter. Table III identifies that the equilib-
rium (0, 1) becomes invalid when the converter efficiency
of Technology 1 verifies α1 > 1 + p1−p2

β . Note that since
0 ≤ α1 ≤ 1, this requires p1 < p2. Assuming this is the case,

the difference between the maximum intra-network benefits
of Technology 2 and the maximum cross-networks (through
the converter) benefits that the users of Technology 1 derive,
becomes at this point equal to the price differential between
the two technologies. As a result, low-end users (with small
θ values) become indifferent to choosing either technology
i.e., θ1

2 = 0, and any further increase in α1 leads them to
switching to Technology 1. Depending on the values of the
other system parameters, it is possible that further increases
in α1 can allow it to nearly eliminate Technology 2. Note
that while Technology 1 may succeed in nearly eliminating
Technology 2, a small number of users of Technology 2 must
remain present to contribute externality benefits to the users
of Technology 1, and those scenarios typically require large β
values. Note also that as illustrated in Figure 2 that considers
symmetric converters, the outcome is not one that can be
changed by the other technology deploying its own converters.
This is a general phenomenon, and outcomes induced by
introducing unidirectional converters can typically not be fully
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reversed through the deployment of converters operating in the
other direction. In other words, most if not all of the results
in this section also hold under the constraint of symmetric
converters (we will explicitly highlight those that don’t).

A similar set of results hold for Technology 2 that, under
some conditions, can enjoy the same benefits from convert-
ers. The symmetric condition that allows Technology 2 to
overcome elimination ((1, 0) is now the initial equilibrium),
is to introduce a converter whose efficiency α2 exceeds
α2 ≥ 1 + (p2 − p1) − (q2 − q1). In other words, Technology
2 needs to develop a converter whose efficiency compensates
for both the maximum intra-network benefits of Technology 1
and the difference between the price and quality differentials of
the two technologies9. At that point, θ1

2 = 1 so that with any
further improvement in its converter efficiency, Technology
2 will start attracting some high-end users (large θ values)
and eventually re-emerge. As with Technology 1, further
improvements in its converter efficiency can in some cases
allow Technology 2 to nearly wipe out Technology 1, although
again not entirely.

Similar results can also be obtained from Table III for
(x∗1, 0) and (0, x∗2), i.e., instances when the elimination of a
technology does not coincide with full market penetration for
the other.

Proposition 3 focused on a scenario where converters allows
a technology to avoid elimination. Next, we explore whether
it is possible for an increase in converter efficiency to actually
harm a technology, i.e., lower its market penetration.

Proposition 4: Technology 1 can hurt its market penetration
by introducing a converter and/or improving its efficiency if
Technology 2 offers higher externality benefits (β > 1) and
the users of Technology 1 are able to access these benefits
(α1β > 1). Furthermore, whenever Technology 1 hurts its
own market penetration, it also reduces the overall market
penetration. Conversely, Technology 2 can never hurt itself
while improving its own converter efficiency.

Note that the proposition implicitly assumes asymmetric con-
verters, i.e., explores the effect of unidirectional converter
introduction or improvement.

The following discussion tries to shed light on when and
why the outcome of Proposition 4 arises. Intuitively, the orig-
inal impetus for Technology 1 to improve the efficiency of its
converters, is to make itself more attractive to potential users
by allowing them to better tap into the (higher) externality
benefits of Technology 2. It may then attract new users,
either from among those that had not previously adopted any
technology or among users of Technology 2 who decide to
switch to Technology 1. It is the acquisition of the latter type
of users that can prove harmful to Technology 1. Specifically,
because α1β > 1, the switching of users from Technology
2 to Technology 1 negatively affects the externality benefits
of all Technology 1 users. When β is high, the decrease in
externality benefit can be significant. As illustrated in Figure 4,
the result of this decrease can be that some low-end (small θ)

9The price differential must be lower than the quality differential, i.e., p2−
p1 < q2 − q1, for this to be possible.
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Fig. 3. Better converters harm Technology 1 and the overall market when
α1 is increased from 0.85 to 1.
(p1 = 1.3, q1 = 0.8, p2 = 2.3, q2 = 2.4, α2 = 0.6, β = 2.5)

users decide to leave Technology 1 and exit the market. When
the influx of new users is less than the outflow, the overall
penetration of Technology 1 decreases. Figure 3 shows an
instance of such a decrease. Additionally, the same reasoning
shows that this also results in a decrease in overall market
penetration (both x1 and x2 decrease).

Fig. 4. Technology 1 hurts itself as well as the overall market penetration.

When β ≥ 1, it is easy to see that the above argument
does not hold for Technology 2, so that it cannot experience
such a reversal when improving its own converter. Appendix D
provides a proof that this property actually holds for all values
of β, i.e., even when β ≤ 1.

Proposition 4 indicated that Technology 1 could not only
hurt itself through better converters, but also the overall market
penetration. The next proposition states that this can actually
happen because of either Technology 1 or Technology 2, and
formally identifies conditions under which this takes place.

Proposition 5: Both technologies can hurt overall market
penetration through better converters. Technology 2 can have
such an effect only when α1β < 1, i.e., Technology 1
users derive lesser externality benefits from connecting to
Technology 2 users than to their peers. Conversely, Technology
1 demonstrates this behavior only when α1β > 1, i.e., its
users derive greater externality benefits from connecting to
Technology 2 users than to their peers.
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Fig. 5. Greedy Technology 2 harms overall market penetration. (p1 = 0.9, q1 = 1.9, p2 = 2.7, q2 = 4.3, α1 = 0, β = 1.2)

As the discussion of Proposition 4 highlighted how this oc-
curred with Technology 1, we focus instead on Technology 2.
The motivation for better converters remains the same, namely,
allow users of Technology 2 to derive higher externality bene-
fits by connecting to users of Technology 1. This improvement
in the externality benefits of Technology 2 leads some users
(those close to the θ1

2 boundary) to switch. When α1β < 1,
the migration of those users from Technology 1 to Technology
2 translates into a net drop in the overall utility Technology 1
offers its remaining users (the externality benefits contributed
by every user that migrates goes down from a relative weight
of 1 to one of α1β < 1). This decrease in Technology 1 value
then leads some low valuation users (small θ) to drop out
altogether, which brings the overall market penetration down.

Figure 5 provides a representative example. In this con-
figuration, in the absence of converters, Technology 1 had
reached full market penetration. When Technology 2 intro-
duces a converter of efficiency α2 = 0.45, it emerges and
both technologies coexist at equilibrium, while still achieving
full market penetration. If the efficiency of Technology 2
converter further improves, it still sees a rise in its own market
penetration, but the overall market penetration now decreases
to ≈ 55%, as low valuation users drop out.

B. Impact on Adoption Dynamics
The previous sub-section explored the effect that converters

can have on equilibria. In this sub-section we extend the
investigation to both trajectories and equilibria. In particular,
we concentrate on an unexpected effect of converters, one that
can be shown not to be possible in their absence, namely,
the possibility that the introduction of converters can render
the process of technology adoption unstable. In the next
proposition, we quantify this potential for instability and the
conditions under which it can arise.

Proposition 6: The introduction of converters can create
“boom and bust” cycles in the technology adoption process.
This behavior arises only when Technology 2 exhibits higher
externality benefits (β > 1) than Technology 1 and the users
of Technology 1 are unconstrained in their ability to access
these benefits (α1β > 1).

Conversely, the next corollary establishes that this never occurs
in the absence of converters. The proofs of both are again in

Appendix D.

Corollary 4.1: In the absence of converters, technology
adoption trajectories always converge to a stable equilibrium.

Before trying to offer some insight into the emergence of in-
stabilities when converters are introduced, we offer an example
to illustrate the type of outcomes that can arise.

Figure 6 provides a sample scenario of converters affecting
the stability of technology adoption, and in particular introduc-
ing cycles in the adoption trajectories. The left-hand-side of the
figure shows how in the absence of converters, Technology 2
displaces Technology 1 and achieves full market penetration.
The introduction of a reasonably efficient converter (α1 ≈
0.623) by Technology 1, however, drastically changes the situ-
ation by introducing two new equilibria; both of them unstable
(middle diagram). As a result, while the original equilibrium
of (0, 1) remains valid, its basin of attraction has now shrunk
considerably . Instead, under most initial conditions, a cyclical
pattern of adoption decisions emerges. In other words, users
repeatedly switch back and forth between the two network
technologies. Matters only become worse if the efficiency of
the converter of Technology 1 continues improving10, and with
a perfect converter the original equilibrium of (0, 1) has all
but disappeared and only one, unstable equilibrium remains
around which adoption decisions keep circling.

The intuition behind the emergence of such a situation is
somewhat similar to that of a technology harming itself and/or
the overall market through the introduction of better convert-
ers. Specifically, consider an instance where Technology 2
offers higher externality benefits that users of Technology 1
can tap into if a converter is available. When converters are
absent, users that value the higher quality of Technology 2
adopt it (when it offers a higher overall utility), eventually
leading to full adoption as shown on the left most part of
Figure 6. However, once a converter is introduced, users have
the option to remain with Technology 1 (and enjoy its lower
price) without forfeiting all the benefits of Technology 2,
and in particular its externality benefits. As a result, while
Technology 2 will initially still gain market share by attracting
high technology valuation users away from Technology 1, this
now happens with Technology 1 also gaining new customers

10As mentioned before, similar situations arise under symmetric converters.
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Fig. 6. Effect of converters on adoption stability (p1 = 1.05, q1 = 0.4, p2 = 2.1, q2 = 2.11, α2 = 0.3, α1 = 0.675, β = 2.8)

(low technology valuation customers are now adopting because
of the externality benefits accessible through the new users
who joined Technology 2). This combined effects results in
a steady increase in overall market share until a limit is
reached. This limit corresponds to a point where Technology
2 has tapped out all the high technology valuation users it
could attract. As Technology 2 growth tapers off, Technology
1 continues growing as it still attracts new low technology
valuation customers. Continued growth in Technology 1 cus-
tomer base eventually makes it attractive to some mid-range
technology valuation customers (the latest ones to have joined
Technology 2) that start switching back to it. This fuels an
accelerated growth in the user base of Technology 1 that
now acquires customers from both Technology 2 and non-
adopters. This continues until the user base of Technology
2 becomes so small that it starts affecting the ability of
Technology 1 to grow. At this point, both technologies start
loosing customers. This ends when the customer base of
Technology 1 is small enough to allow Technology 2 to again
start attracting customers (its own customer base had by then
all but disappeared), and the process repeats anew.

Quantitative support for the above intuition can be extracted
from Table II. Consider trajectories in the region R6. Their
expressions include a term of the form

√
A2 − 4B, where both

A and B depend on the converter efficiency terms α1 and
α2. Changing α1 and/or α2 can affect the sign of A2 − 4B,
and in particular allow it to become negative. This introduces
complex exponents, or rather cos(.) and sin(.) terms in the
adoption trajectories. It is these terms that allow the “changes
of direction” needed for cycles in the adoption trajectories.
When converters are absent (α1 = α2 = 0), A2 − 4B is
always positive and trajectories cannot change direction (their
slope has a constant sign), which precludes the cycles. This is
essentially what is behind Corollary 4.1.

V. RELATED WORK

Modeling the diffusion of new products and technologies
has a long tradition in marketing. Fourt and Woodlock [8] first
proposed a product diffusion model in which a fixed fraction
of consumers who have not yet bought the product do so at
every period; this is known as the constant hazard rate model.
Bass [1] proposed an extension that additionally incorporates
word-of-mouth communication between current adopters and

potential adopters. A large body of work has since built
on these earlier models (see [13] for an overview of this
literature). Although most of the literature deals with single-
product settings, Norton and Bass [15] study the joint diffusion
of successive generations of technologies. Their model belongs
to a class of substitution models that assume that the newer
generation eventually replaces the earlier generation and thus
their interest is only in the time it takes for this to occur.
Significantly, both single-product and multiple-generation dif-
fusion models focus on aggregate adoption dynamics without
explicitly modeling individual decision-making processes. The
advantage of such an approach is that it results in relatively
simple diffusion models that can, in turn, be used to study
dynamic policies (e.g., dynamic pricing). Unfortunately, these
aggregate models do not shed sufficient light on the decision
processes that lead to the emergent system dynamics or the
exact mechanism through which various decision variables
(pricing, quality, advertising, etc.) impact adoption decisions.

A few models have focused on individual-level adoption
(e.g., [10]). These models provide far greater insight into the
mechanism through which rational individual decision-making
results in aggregate system dynamics. Given the complexity
of these models, much of the progress to date has been in
settings with a single technology. In contrast, the adoption of
new network technologies is often influenced by incumbents.
Moreover, all of the above models and indeed much of the
literature refers to generic durables, e.g., washing machines.
Such models do not account for the unique features of network
technologies, including network externalities and the role of
converters.

A recent stream of work in economics has studied the role
of network externalities on equilibrium adoption of standards
and technologies. Cabral [2] develops a model of individual
decision-making in the presence of network externalities and
characterizes the aggregate adoption dynamics. He shows that
network externalities are potential drivers of S-shaped diffu-
sion curves. We build on Cabral’s model but differ in our focus
by considering a two-technology setting. Put another way, we
are interested in the diffusion of a new network technology
in the presence of an incumbent. A related paper by Farrell
and Saloner [6] evaluates the impact of an installed base on
the transition to a new standard. They show that the installed
base can cause “excess inertia” which prevents the transition
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to the new standard. At the same time, the adoption of the
new standard by a few users can create “excess momentum”
as well. In their model, users are homogeneous except for the
time of their arrival into the system. As a result, they observe a
bandwagon effect in which the adoption of a standard by one
set of users makes the same choice more attractive to all other
users. Thus, one standard always wins and coexistence is not
feasible. Choi [3] extends the model by Farrell and Saloner [6]
to include converters and shows that converters can in some
instances blockade the transition by weakening the threat of
being stranded for users of the incumbent technology. In a
more recent study, Joseph et al. [11] also show that increase
in efficiency of a converter can hinder the adoption of a new
network architecture.

An important distinction of our work relative to these papers
is that we incorporate heterogeneity in user preferences. We
show that this gives rise to equilibria in which the technologies
may coexist, i.e., neither network technology fully captures the
market. Further, very little attention is paid to the adoption path
in these papers because all users make the same decision. In
contrast, we show that the heterogeneity across users can result
in interesting adoption dynamics including non-monotonic
evolution of the market shares of the technologies. Addi-
tionally, these papers focus on environments in which users
make the decisions to adopt the converters. This is meaningful
in environments in which the converter functionality and its
deployment resides with individual users, e.g., converters for
two incompatible software applications that a user decides to
download. In contrast, our interest is in environments in which
converters are usually deployed by the technology providers
upon incurring high fixed costs, and in the process made
available to all its users.

VI. CONCLUSION AND EXTENSIONS

The paper provides a framework to study the adoption and
diffusion of a new network technology in the presence of an
incumbent and offers insight into the role of converters. Our
model accounts for both externalities and user heterogeneity,
and helps reveal several unexpected behaviors. Of note are that
the presence of converters can hurt overall market penetration,
and that under certain conditions they can preclude the adop-
tion process from ever converging. As shown in Appendix F,
those behaviors remain present across a wide range of utility
models that differ from the one used for analytical tractability
in this paper.

As the first step of our investigation in the dynamics of
technology adoption in the presence of converters, the paper
and its model clearly have limitations that we plan to address
in the future. As mentioned earlier, allowing some of the
system parameters to be time-varying is of obvious interest.
Similarly, letting prices be endogenous variables, e.g., to
optimize revenue or as a result of dynamic pricing policies, is
another direction we have started investigating.

In addition, while the paper concentrated on a setting in
which switching costs are negligible, there are obviously many
environments where such an assumption is inadequate. Explor-
ing the extent to which the results are robust when switching

costs are present is, therefore of interest. For example, very
high switching costs may make it infeasible for users to switch
back and forth between technologies, thereby affecting the
likelihood of observing boom-and-bust cycles.

Our work represents an initial step towards understanding
adoption dynamics of network technologies. Further work
building on this paper would likely provide further insight.
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APPENDIX

A. Solution Regions

This Appendix shows why eq. (10) gives rise to a partition
of the (x1, x2) plane that, irrespective of the choice of system
parameters, consists of only nine regions with fixed relative
positions, and each associated with a unique expression for
Hi(x), i = {1, 2}.

The line θ0
1(x) = θ0

2(x) separates regions that require
different expressions of Hi(x), i = {1, 2}. For points above
that line (θ0

1(x) > θ0
2(x)), the expression of H2(x) depends

on the projection of θ0
2(x) on [0, 1]. Therefore the lines

θ0
2(x) = 0 and θ0

2(x) = 1 delineate regions associated with
different H2(x). Similarly, for points below that line, the
lines θ0

1(x) = 0, θ0
1(x) = 1, θ1

2(x) = 0 and θ1
2(x) = 1

introduce additional region boundaries for Hi(x), i = {1, 2}.
Expressions for all the lines can be obtained from eqs. (5)
to (7).

Arguably, so many different lines with slopes varying with
system parameters could give rise to arbitrary intersections,
and therefore patterns of regions. Fortunately, this is not so.
It can be easily shown11 that irrespective of the choice of
system parameters, the lines θ0

2(x) = 0, θ0
1(x) = 0 and

θ1
2(x) = 0 always intersect at a point P , and the lines

θ0
2(x) = 1, θ0

1(x) = 1 and θ1
2(x) = 1 always intersect at a

point Q, with both P and Q lying on the line θ0
1 = θ0

2 . The
points P and Q act as “anchors” of the partition of the solution
space. A representative configuration is shown in Figure 7,
where reach region has been labeled as in Table I.

Fig. 7. Region Partitions

B. Generalized Region Partition

The analysis of solution regions in the above subsection
was based on the fact that for linear externality functions,
the (x1, x2)-plane can be partitioned into nine regions, each
representing a unique ordering of the indifference points,
and therefore different expressions for Hi(x) and diffusion
trajectory. The unique points P and Q on the line θ0

1(x) =
θ0
2(x) acted as ‘pivots’ for the partition of the plane into

nine regions. Although one may expect that for arbitrary
externality functions, the lines denoting the region boundaries
will intersect in arbitrary ways, we show here that even for
more generic monotonically increasing network externality
functions, the two ‘pivot’ points P and Q remain unique.

11By solving simple systems of linear equations.

This uniqueness of P and Q, along with constraints on how
the boundary lines can intersect as imposed by the monotonic
property of externality functions, result in the partitioning of
the plane into “nine” regions.

Let the network externality of the two technologies, Tech-
nology 1 and 2 be given by positive increasing externality
functions g1(x1) and g2(x2) for the respective adoption levels
of x1 and x2 (i.e., gi(xi) ≥ 0, g′i(xi) > 0, i = {1, 2}).

The end user’s utility from using Technologies 1 and 2 is
given by:

U1 = θq1 + (g1(x1) + α1βg2(x2))− p1 (14)
U2 = θq2 + (βg2(x2) + α2g1(x1))− p2 (15)

Setting Ui(θ, x) = 0, we get

θ0
1(x) =

p1 − (g1(x1) + α1βg2(x2))
q1

(16)

θ0
2(x) =

p2 − (βg2(x2) + α2g1(x1))
q2

(17)

Similarly, setting U1(θ, x) = U2(θ, x) gives

θ1
2(x) =

(1− α2)g1(x1)− β(1− α1)g2(x2) + p2 − p1

q2 − q1
(18)

To simplify notation, we use from now on θ0
i and θ1

2 instead
of θ0

i (x) and θ1
2(x). After simple manipulations, we get

θ1
2 − θ0

1 =
q2

q2 − q1
(θ0

2 − θ0
1), (19)

θ1
2 − θ0

2 =
q1

q2 − q1
(θ0

2 − θ0
1) (20)

Given that Technology 2, the entrant, is technically
superior (i.e., q2 > q1), from the above relation we establish
the following Proposition.

Proposition 7: If θ0
1 < θ0

2 , then θ1
2 > θ0

2 > θ0
1 . If θ0

1 ≥ θ0
2 ,

then θ1
2 ≤ θ0

2 ≤ θ0
1 .

H1(x) =
{

[θ1
2][0,1] − [θ0

1][0,1] if θ0
1 < θ0

2

0 otherwise
(21)

H2(x) =
{

1− [θ1
2][0,1] if θ0

1 < θ0
2

1− [θ0
2][0,1] otherwise

where x[a,b] is the projection of x into the interval [a, b], i.e.,
is equal to x for x ∈ [a, b], a for x < a, and b for x > b.

As the preference levels θ of all users lie in [0, 1], Equa-
tion (21) fully determine Hi(x), albeit with possibly different
expressions depending on the outcome of the projections
of the indifference thresholds on [0, 1]. Hence, we partition
the (x1, x2) plane into regions where Hi(x) has a unique
expression. This can be achieved by combining Equation (16)
to (18) with Equation (21).

The line θ0
1(x) = θ0

2(x) separates regions that require
different expressions of Hi(x), i = {1, 2}. For points above
that line (θ0

1(x) > θ0
2(x)), the expression of H2(x) depends

on the projection of θ0
2(x) on [0, 1]. Therefore the lines

θ0
2(x) = 0 and θ0

2(x) = 1 delineate regions associated with



13

different H2(x). Similarly, for points below that line, the
lines θ0

1(x) = 0, θ0
1(x) = 1, θ1

2(x) = 0 and θ1
2(x) = 1

introduce additional region boundaries for Hi(x), i = {1, 2}.
Expressions for all the lines can be obtained from eqs. (16)
to (18).

Next we show that irrespective of the choice of system
parameters, the lines θ0

2(x) = 0, θ0
1(x) = 0 and θ1

2(x) = 0 al-
ways intersect at a point P , and the lines θ0

2(x) = 1, θ0
1(x) = 1

and θ1
2(x) = 1 always intersect at a point Q, with both P and

Q lying on the line θ0
1(x) = θ0

2(x). The points P and Q act
as “anchors” of the partition of the solution space.

We denote the lines θ0
1(x) = 0 and θ0

2(x) = 0 by
functions f1(x1, x2) = 0 and f2(x1, x2) = 0. Let (x∗1, x

∗
2)

denote the co-ordinates in (x1, x2)-plane where these
lines intersect (i.e., fi(x∗1, x

∗
2) = 0, i = {1, 2}). Note

that the lines θ1
2(x) = 0 and θ0

1(x) = θ0
2(x), which can

then be represented as f2(x1, x2) − f1(x1, x2) = 0 and
(1/q2)f2(x1, x2) − (1/q1)f1(x1, x2) = 0 respectively, also
must pass through (x∗1, x

∗
2). This point of intersection of all

these lines can be labeled as P . Additionally, it can be seen
that if any two of these lines intersect at some point, all the
other curves must also pass through that point. Similarly,
we obtain the other ‘pivot’ point, Q, at which the lines
θ0
1(x) = θ0

2(x), θ0
2(x) = 1, θ0

1(x) = 1 and θ1
2(x) = 1 must

intersect.

Proof of Uniqueness of P and Q
Let us consider the intersection of the lines θ0

1(x) = 0,
θ0
2(x) = 0, θ1

2(x) = 0 and θ0
1(x) = θ0

2(x) at some point P as
shown in Figure 8. Assume that there exist another such point
P ′ where all the lines again intersect (because we showed
that whenever any two of these lines intersect, the other lines
should also intersect). However, using eqn.(5-7) and g′i(xi) ≥
0, i = {1, 2}, we see that the line θ1

2 = 0 is always increasing
in x1 and x2, while the line θ1

0 = 0 is decreasing in x2 for
increase in x1. Therefore in the entire region θ0

1 < θ0
2 the

lines can only intersect once, and therefore the point P must
be unique. A similar argument holds for point Q as well.

Thus the (x1, x2)-plane can only be partitioned into the nine
regions shown in Figure 8, and the relative positions of these
regions in the plane remain fixed. Moreover, each of these
regions is a connected set. As shown in the figure, each region
corresponds to a different arrangement of the indifference
points with respect to the 0, 1 boundary under the two feasible
orderings (from Proposition 7). The classification of these nine
regions based on the different orderings is provided in Table V.
A brief explanation of the meaning of the regions is provided
next.

Meaning of Regions
Each region correspond to a particular ordering of the

indifference points, which in turn maps to unique expressions
for Hi(x) in eqn.(21). For example, consider the region R8,
which is the set of all (x1, x2) penetration levels for which
θ0
1 < θ0

2 , 1 ≤ θ2
1 and 0 ≤ θ0

1 < 1. In this region, because
θ2
1 > 1 for any current (x1, x2) adoption levels, no user has

a preference for choosing Technology 2 over 1. But since
0 < θ0

1 < 1, some users whose preference θ0
1 < θ derive

positive utility from Technology 1, will be willing to adopt it.

Fig. 8. Generalized Region Partitions

TABLE V
PARTITIONS CHARACTERIZING Hi(x)

θ0
1 ≥ θ0

2 θ0
1 < θ0

2

Region condition Region condition
R1 θ0

2 ≤ 0 R4 θ1
2 ≤ 0, 0 ≤ θ0

1

R2 0 < θ0
2 < 1 R5 0 < θ1

2 < 1, θ0
1 ≤ 0

R3 1 ≤ θ0
2 R6 0 < θ1

2 < 1, 0 < θ0
1 < 1

R7 1 ≤ θ1
2, θ0

1 ≤ 0
R8 1 ≤ θ1

2, 0 < θ0
1 < 1

R9 1 ≤ θ1
2, 1 ≤ θ0

1

Therefore if at any instant t, the system reaches adoption levels
(x1, x2) in Region R8, the diffusion from that point on in the
inside of Region R8 will proceed with a decrease in the value
of x2 i.e., users leave Technology 2 as θ1

2 > 1. This fact is also
reflected in the exponentially decreasing value of the x2(t) co-
ordinate of the diffusion trajectory in R8 (as given in Table II).
Each region can be interpreted in a similar manner, and Table
V essentially connects this abstract notion of each region to
the corresponding ordering of the indifference thresholds that
define it.

C. Conditions for valid and stable equilibria

The expressions in Table III and IV for the validity and
stability conditions for each of the equilibrium are rearranged
and presented below for clarity.

Region R1 – Equilibrium: (0, 1)
Validity and Stability Conditions are:

p2 ≤ β (22)

α1 ≤ p1

β
+

q1

q2

(
1− p2

β

)
(23)

Region R2 – Equilibrium: (0, p2−q2
β−q2

)
Validity and Stability Conditions:

β < p2 < q2 (24)

α1 ≤ β(q1 − p1) + p1q2 − p2q1

β(q2 − p2)
(25)
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Region R3 – Candidate equilibrium (0, 0)

By assumption, this is not a feasible equilibrium.

Region R4 – Equilibrium: (0, 1)

Validity and Stability Conditions:

p1 ≤ α1β (26)
p1

β
+

q1

q2

(
1− p2

β

)
≤ α1 ≤ p1

β
+ 1− p2

β
(27)

Region R5 – Equilibrium: (x∗1R5
, x∗2R5

)

x
∗
1R5

=
(p2 − p1) − β(1 − α1)

(q2 − q1) − [β(1 − α1) + (1 − α2)]

x
∗
2R5

= 1 − x
∗
1R5

=
(q2 − q1) − (p2 − p1) − (1 − α2)

(q2 − q1) − [β(1 − α1) + (1 − α2)]

Rewriting the Validity and Stability conditions given in
Table III, we have:

p2 − p1 > β(1− α1) (28)
q2 − q1 − (p2 − p1) ≥ 1− α2 (29)

q2 − q1 > β(1− α1) + 1− α2 (30)
α1β(α2 + q2 − q1 − p2) ≥ β − p2 − p1(β − α2 − (q2 − q1))(31)

Region R6 – Equilibrium: (x∗1R6
, x∗2R6

)

x
∗
1R6

=
p1q2 − p2q1 + βα1(p2 − q2) − β(p1 − q1)

(q1 − 1)(β − q2) + (q1 − α1β)(q1 − α2)

x
∗
2R6

=
p2q1 − p1q1 − p2 + p1α2 + q2

1 − q1q2 + q2 − q1α2

(q1 − 1)(β − q2) + (q1 − α1β)(q1 − α2)

The validity conditions for these equilibrium expression
requires x∗1R6

≥ 0, x∗2R6
≥ 0 and x∗1R6

+ x∗2R6
< 1. We

will denote the numerators of x∗1R6
and x∗2R6

in eq. (13) as
N1 and N2, respectively, and their common denominator as
D. Table IV shows that the if A2 − 4B ≥ 0 the stability
conditions require A < 0 and B > 0, while if A2 − 4B < 0
then A < 0 is required (and B > 0 since B > A2/4 > 0).
Thus an equilibrium in R6 can satisfy stability conditions only
if B > 0 and A < 0. Additionally B > 0 implies that the
denominator of the expressions for the equilibrium adoption
levels (given in eqs. (13)) is negative (i.e., D < 0).

Therefore a valid, stable equilibrium in R6 must have:

A < 0 :

β(1− α1)− α2 < 2(q2 − q1)− q2

q1
(32)

D < 0 (B > 0) :

(q1 − 1)(β − q2) + (q1 − α1β)(q1 − α2) < 0 (33)
N1 ≤ 0 :

α1β(q2 − p2) ≥ β(q1 − p1) + p1q2 − p2q1 (34)
N2 ≤ 0 :

α2(q1 − p1) ≥ (1− q1)(q2 − p2) + q1(q1 − p1) (35)
N1 + N2

D
< 1 :

α1β(α2 + q2 − q1 − p2)

< β − p2 − p1(β − α2 − (q2 − q1)) (36)

Region R7 – Equilibrium: (1, 0)

Validity and Stability Conditions:

p1 ≤ 1 (37)
α2 < 1 + (p2 − p1)− (q2 − q1) (38)

Region R8 – Equilibrium: (p1−q1
1−q1

, 0)
Validity and Stability Conditions:

1 < p1 < q1 (39)
α2(q1 − p1) ≤ (1− q1)(q2 − p2) + q1(q1 − p1) (40)

Region R9 – Equilibrium: (0, 0)
By assumption, (0, 0) is not a feasible equilibrium.

D. Proofs of Propositions

Proof of Proposition 2:
In this proof we will show that the following pairs

of equilibria cannot coexist together as valid and stable
equilibria. Consequently, it is easy to verify that the only
combination of multiple equilibria that can coexist are the
ones mentioned in Proposition 2.
1. (1, 0) and x∗R8

2. (1, 0) and x∗R5

3. (0, 1) and x∗R2

4. (0, 1) and x∗R5

5. x∗R8
and x∗R5

6. x∗R8
and x∗R6

7. x∗R2
and x∗R6

8. x∗R5
and x∗R6

The following analysis will use the expressions for validity
and stability conditions for the different equilibria listed in the
Subsection C of the Appendix.

1. (1, 0) and x∗R8

This pair cannot coexist because the equilibrium (1, 0) in
R7 requires p1 ≤ 1 (eq. (37)) while the equilibrium x∗R8

requires p1 > 1 (eq. (39)).

2. (1, 0) and x∗R5

Eq.(38) for equilibrium (1, 0) in R7 and condition in eq.(29)
for x∗R5

have contradictory requirements, and therefore these
pair cannot coexist.

3. (0, 1) and x∗R2

The equilibrium (0, 1) can either exist in Region R1 or
R4. In either it requires β ≥ p2 for being a valid, stable
equilibrium. While this is explicit for Region R1 (refer to
eq.(22)), the relation is implicitly implied by the conditions
of Region R4. Note that eq.(26) and eq.(27) can be written
together as 0 ≤ α1β − p1 ≤ β − p2. Thus (0, 1) equilibria
requires β ≥ p2 which contradicts with the requirement in
eq.(24) for x∗R2

.
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4. (0, 1) and x∗R5

The equilibrium (0, 1) is valid in R4 if α1 ≤ p1
β +1− p2

β . It
is valid in R1 if the bound is stricter i.e., α1 ≤ p1

β + q1
q2

(
1− p2

β

)
(since q1

q2
< 1 and β ≥ p2).

However equilibrium x∗R5
requires α1 > p1

β + 1− p2
β from

eq.(28). Therefore the two equilibria cannot coexist.

5. x∗R8
and x∗R5

Equilibria x∗R8
requires q1 > p1 from eq.(39). When this

relation holds, the condition in eq.(40) for x∗R8
and eq.(29)

for equilibria x∗R5
can be written as:

(1− q1)(q2 − p2) + q1(q1 − p1)

q1 − p1
≥ α2

> 1− (q2 − q1) + p2 − p1

⇒ (q2 − q1 − (p2 − p1))

> p1(q2 − q1 − (p2 − p1)) (41)

Since (q2 − q1 − (p2 − p1)) ≥ 1 − α2 ≥ 0 from eq.(29), we
must have p1 < 1, which contradicts with the requirement in
eq.(39) for the equilibrium x∗R8

. Therefore this pair cannot
coexist.

6. x∗R8
and x∗R6

Condition in eqs.(39) and (40) when considered together
contradicts the requirement of eq.(35). Therefore these
equilibria cannot coexist as valid, stable equilibria.

7. x∗R2
and x∗R6

Eqs.(24) and (25) for x∗R2
together contradict the

requirement in eq.(34) for x∗R6
, and thus cannot coexist as

valid, stable equilibria pair.

8. x∗R5
and x∗R6

The condition in eq.(31) for x∗R5
and eq.(36) cannot hold

together and therefore these equilibria never coexists as a pair
of valid, stable equilibria.

Proof: No combination of three or more equilibria can
coexist as valid, stable equilibria in the presence of converters

Given Proposition 2, all but one combination of three equi-
libria can be excluded from further consideration as at least
a pair of equilibria in these combinations will not coexist as
per the proposition. The only combination of three equilibria
that can potentially coexist is {(0, 1), (1, 0), x∗R6

}. We will
show that the validity and stability conditions of these three
equilibria cannot be satisfied together. Thus since no pair of
three equilibria may coexist, it will directly follow that no
combination of four or more equilibria can therefore coexist,
thus proving the present proposition.

The equilibrium (0, 1) to exist in R4 can be shown to require
β ≥ p2 and α1β ≤ β + p1 − p2 from eqs.(26) and (27). For
(0, 1) to exist in R1 the constraint imposed by eq.(23) is even

more stringent than α1β ≤ β +p1−p2. Therefore the validity
and stability of (0, 1) requires at least α1β ≤ β + p1− p2 and
β ≥ p2. Using this and eq.(38) for (1, 0) in R7, we have:

(α1 − 1)β ≤ p1 − p2 ≤ 1− α2 − (q2 − q1)
⇒ (α1 − 1)β ≤ 1− α2 − (q2 − q1)

Using the above inequality and eq.(32), we get:

⇒ q2 − q1 − 1 ≤ β(1− α1)− α2

< 2(q2 − q1)− q2/q1

⇒ (q2 − q1)(q1 − 1) > 0
⇒ q1 > 1 (as q2 > q1)

Eq.(35) gives:

(α2 − q1)(q1 − p1) ≥ (1− q1)(q2 − p2)

Since we have 1 ≥ p1 from eq.(37) as a condition for the
(1, 0) equilibrium in R7 and we established that q1 > 1, we
get q1 > p1. This in addition to the relation q1 > 1 ≥ α2,
enforces q2 > p2 for the previous inequality expression.

Eq.(35) could also be rearranged as:

(α2 − q1 + q2 − p2)(q1 − p1) ≥ (q2 − p2)(1− p1)

The expression on the right hand side is positive since q2 > p2

and 1 ≥ p1 as discussed previously. Therefore the left hand
side expression also needs to be positive. Using eq.(36) and
q1 > p1, we must have α2 − q1 + q2 − p2 > 0.

Now using eqs.(34) and (36), and the facts q2 > p2 and
α2 − q1 + q2 − p2 > 0 as established above, we can write:

β(q1 − p1) + p1q2 − p2q1

q2 − p2
≤ α1β

<
β − p2 − p1(β − α2 − (q2 − q1))

α2 + q2 − q1 − p2

⇒ α2(q1 − p1) < (1− q1)(q2 − p2) + q1(q1 − p1)

It can be easily seen that the above inequality contradicts with
the condition in eq.(35).

Hence all the validity and stability conditions for the three
equilibria {(0, 1), (1, 0), x∗R6

} cannot be satisfied together.
Additionally, since no pair of three valid, stable equilibria

can coexist a set of given parameter values, it follows that
no combinations of four or more equilibria can coexist either,
thus completing the proof.

Proof of Proposition 3:
The proposition has two parts: converters can help a tech-

nology (i) alter market equilibrium from a scenario where it
has been eliminated to one where it coexist with the other
technology; (ii) and even succeed in nearly eliminating it.

Condition (i) is relatively easy to establish. Consider a
scenario where one of the technologies has been eliminated,
i.e., an equilibrium of the form (1, 0), (0, 1), (0, x∗2) or (x∗1, 0).
The validity conditions from Table III identify the minimum
converter efficiency required to invalidate that equilibrium.
From the table, such an invalidation is easily seen to corre-
spond to the re-emergence of the other technology (these are
the only equilibria whose validity conditions are compatible
with the invalidation of the previous equilibrium), and thus
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co-existence of the two technologies.
Turning to condition (ii), assume that for a given set of sys-

tem parameters, (0, 1) is the initial equilibrium in the absence
of converters. Users with the lowest technology valuation
(θ = 0) must, therefore, derive greater utility from Technology
2 than Technology 1 i.e., U1(θ = 0) < U2(θ = 0). This
implies

β > p2 − p1 (42)

Next, using perfect, symmetric converters (α1 = α2 = 1), we
show that is is possible to satisfy both eq. (42) and the validity
conditions of an equilibrium of the form (1 − x∗2, x

∗
2), with

x∗2 arbitrarily small. This identifies a configuration satisfying
condition (ii).

An equilibrium of the form (1− x∗2, x
∗
2) requires that users

of preference θ = 0 adopt Technology 1, i.e., U1(θ = 0) ≥ 0,
thus

x∗2 ≥
p1 − 1
β − 1

(43)

and users with preference θ = 1− x∗2 are to be indifferent to
the two technologies i.e., U1(1 − x∗2, x

∗
2) = U2(1 − x∗2, x

∗
2).

This gives

x∗2 = 1− p2 − p1

q2 − q1
(44)

From eq. (44), for Technology 2 to nearly disappear, i.e.,
x∗2 ≈ 0, we need p2 − p1 . q2 − q1. We also need β large
enough for eqs. (43) and (42) to continue holding. Combina-
tions of system parameters that allow these conditions to be
simultaneously satisfied are easily found, which establishes
that the introduction of converters can take the system from
an equilibrium of the form (0, 1) to one of the form (1− ε, ε),
where ε ≈ 0.

Consider now the reverse scenario, where the equilibrium
in the absence of converters is (1, 0) for α1 = α2 = 0. For
this, we need θ1

2 > 1 and θ1
0 < 0, i.e.,

1 + p2 − p1 > q2 − q1 (45)
p1 < 1 (46)

As before, we assume next perfect, symmetric converters,
and establish that with them it is possible to achieve a new
equilibrium of the form (x∗1, 1− x∗1), where x∗1 ≈ 0. The new
equilibrium requires that users with preference θ = 0 derive
positive utility from the Technology 1, i.e.,

(β − 1)x∗1 < β − p1, (47)

and that users with preference θ = x∗1 be indifferent to the
two technologies i.e., U1(x∗1, 1− x∗1) = U2(x∗1, 1− x∗1).

x∗1 =
p2 − p1

q2 − q1
(48)

It is again easy to find a combination of system parameters
that simultaneously satisfy eqs. (45) to (48), while ensuring
x∗1 ≈ 0.

Proof of Proposition 4:
We first consider Technology 1 hurting itself by introducing

or improving a converter. Converter efficiencies affect the
expressions of the adoption levels only for the equilibria in
R5 and R6 (eq.(12) and (13)). Region R5 is easily eliminated
from consideration as its validity conditions can be shown
to force a positive derivative of x∗1 w.r.t. α1. Therefore, the
remainder of the proof focuses on a stable equilibrium in R6.

As before, the numerators of x∗1R6
and x∗2R6

in eq. (13)
are denoted as N1 and N2 respectively, and with D as their
common denominator. The stability of the equilibrium can be
shown to imply that D < 0. The requirement D < 0 implies
N1 < 0 and N2 < 0, which has important consequences on
the impact of converter efficiency.

Specifically, better converters hurt Technology 1 if

∂x∗1R6

∂α1
=

(β − q2)N2

D2
< 0 (49)

Since N2 < 0, the derivative is negative only if β > q2.
As a result, for better converters to hurt the incumbent, the
condition β > q2 and one of the sets of stability conditions
in Table IV must be simultaneously satisfied. We use the
Mathematica symbolic manipulation software to establish that
the intersection of parameter sets satisfying these combinations
of conditions is non-empty. Figure 3 is an instance of one
combination of parameters in that intersection.

To prove that α1β > 1 is a necessary condition for this
behavior to arise, we will show that if α1β ≤ 1 then the
validity and stability conditions of R6 and the condition
β > q2, required for this behavior, cannot hold together. The
proof will proceed by considering several subcases depending
on the relationships between the parameters.

(A) Case: q1 > 1
From eq. (33) for D < 0 we have
(q1 − 1)(β − q2) + (q2 − α1β)(q1 − α2) < 0
Using the fact that β > q2 and q1 > 1 > α2, we find that

the above inequality can only hold if q1 < α1β ⇒ α1β > 1.

(B) Case: q1 ≤ 1
Here we will need to consider two subcases for q1 ≥ α2

and q1 < α2.

(B.1) Subcase: q1 ≥ α2

Since β > q2 and q1 ≥ α2, it implies β > α2 + q2 − q1.
Note that this is also the condition for the converter of
Technology 1 to hurt the overall market penetration. We
show in the proof of Proposition 5 that this condition for the
drop in overall penetration, can only be satisfied with the
validity and stability conditions for x∗R6 only if α1β > 1.
Therefore this particular subcase will require α1β > 1 to hold.

(B.2) Subcase: q1 < α2

For this subcase we will again need to consider two more
subcases: (a) q2 ≥ p2 and (b) q2 < p2.

(B.2.a) subcase: q2 ≥ p2

If q2 ≥ p2 and q1 < α2 then α2 + q2 − q1 − p2 > 0. From
eqs. (34) and (36) and using the fact that β > q2 ≥ p2, we
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have
β(q1 − p1) + p1q2 − p2q1

q2 − p2
≤ α1β

<
β − p2 − p1(β − α2 − (q2 − q1))

α2 + q2 − q1 − p2

⇒ α2(q1 − p1) < (1− q1)(q2 − p2) + q1(q1 − p1)

It can be easily seen that the above inequality contradicts the
condition in eq.(35). Therefore, the relationships considered
in this subcase cannot hold together.

(B.2.b) subcase: q2 < p2

In this subcase we again need to consider two further
subcases depending on the parameter relations: (i) q1 ≥ p1

and (ii) q1 < p1.
When q1 ≥ p1, using the facts that β > q2, q1 ≥ p1,

q2 < p2 and eq. (34), we get α1β ≤ q1. This also implies
α1q2 < q1 since β > q2. However, the relation, α1q2 < q1 <
α2 < 1, and eq.(32) together imply q1 > q2 which contradicts
the requirement q2 > q1 of the model. Therefore this subcase
cannot arise.

The subcase q1 < p1 also cannot arise by our assumption
that (0, 0) is an invalid equilibrium. When both q1 < p1

and q2 < p2 then both θ0
1(x1 = 0, x2 = 0) > 0 and

θ0
1(x1 = 0, x2 = 0) > 0, which makes (0, 0) a valid

equilibrium.

Technology 2 cannot hurt itself while improving its
converter efficiency, α2.

Proof: The only equilibrium outcomes where the adoption
level of Technology 2 varies as a function of α2 are those that
arise in regions R5 and R6 (as given by Eqs. (12) and (13)).
If the equilibrium is in R5 (i.e., the technologies coexist at
full market penetration) the derivative of the adoption level
x2 w.r.t. α2 is

∂x∗2R5

∂α2
=

(p2 − p1)− β(1− α2)
[(q2 − q1)− (1− α2)− β(1− α1)]2

(50)

This expression is always positive since (p2−p1) > β(1−α2)
is a required validity condition for the equilibrium in R5. thus
increasing α2 cannot hurt Technology 2 for an equilibrium in
R5.

Next we consider the effect of α2 on the equilibrium in
R6. In this region, the indifference points obey the relation
0 < θ0

1 ≤ θ0
2 ≤ θ1

2 < 1. To show that Technology 2 cannot
hurt itself by increasing α2, we will consider the two cases
α1β ≤ 1 and α1β > 1 separately.

For α1β ≤ 1, consider that x∗1R6
(0) and x∗2R6

(0) are the
initial equilibrium adoption levels. Since

U2 − U1 = θ(q2 − q1) + β(1− α1)x2 − (1− α2)x1 − (p2 − p1)

on increasing α2, the difference of U2 − U1 is increased.
Therefore a small fraction, say δ, of users of Technology 1
switch to Technology 2, thus making x∗1R6

(1) = x∗1R6
(0)− δ

and x∗2R6
(1) = x∗2R6

(0) + δ. The indifference point θ1
2 shifts

to the right to θ1
2(1) = θ1

2(0)− δ. The second order effect of
the switch-overs leads to changes in the adoption decisions of

the lower-end users of Technology 1. The indifference point
θ0
1 shifts to θ0

1(1) = θ0
1(0) − (α1β−1)δ

q1
. Since α1β ≤ 1, if

θ0
1 shifts, it will shift to the right; thus further decreasing x1.

The new adoption level of Technology 1, therefore, becomes
x∗1R6

(1) = x∗1R6
(0) − δ + (α1β−1)δ

q1
. Given these new values

for x∗1R6
(1) and x∗2R6

(1), a new value can be computed for
θ1
2:
θ1
2(1) = θ1

2(0)− δ − δ
q2−q1

[β + (1− α1β)(1 + 1
q1

)].
Since q2 > q1 and α1β ≤ 1, the change in θ1

2(1) − θ1
2(0)

is again negative i.e., θ1
2 shifts further to the left, leading

to more users switching from Technology 1 to 2. Thus, the
compounding of the first and second order effects of a small
increase in α2 leads to decreases in x1 decreases and increases
in x2. Both reinforce the initial increase in U2 − U1 after
increasing α2. As a result, as the process converges to a new
equilibria after an increase in α2, the final x2 value exceeds
the original one. Hence, improving its converter cannot hurt
Technology 2.

We consider next the case α1β > 1. In this scenario,
we know12 that the overall market penetration must increase
when increasing α2. Therefore, if Technology 2’s market
share were to drop upon increasing α2, then the market share
of Technology 1 must increase so that the overall market
share increases. We proceed to show that such a scenario is
infeasible.

Assume that α1β > 1 and Technology 2 hurts itself by
increasing α2, i.e., the indifference point θ1

2 moves to the
right to θ1

2 + ε1, (ε1 & 0), then a user with preference θ
is in the range θ1

2 < θ < θ1
2 + ε1 will switch from using

Technology 2 to using Technology 1. The switch-over of each
such users decreases the utility U1 of Technology 1 users by
an amount (α1β − 1) > 0. This affects the lower-end users
of Technology 1, i.e., users with preference in the range
θ0
1 < θ < θ0

1 + ε2, (ε2 & 0), whose utility then becomes
negative. These users, therefore, disadopt Technology 1.
These disadoptions imply that the overall market penetrations
decreases, which contradicts the fact that the overall market
cannot drop when α1β > 1. This establishes that it is not
possible for Technology 2 to hurt itself by increasing α2.

Proof of Proposition 5:
Using the same notation as in Proposition 4, decreasing

the overall market penetration by increasing the converter
efficiency of Technology 1 requires

∂(x∗1R6
+x∗2R6

)

∂α1
< 0.

∂(x∗1R6
+ x∗2R6

)
∂α1

=
β(β − α2 − (q2 − q1))N2

D2

Using the same reasoning as in the proof of Proposition 4,
a valid and stable equilibrium in R6 implies D < 0, and
consequently N2 < 0. The above derivative is, therefore,

12Using the notation form the proof of Proposition 5, note that N1 ≤ 0.

Therefore, for α1β > 1, the derivative
∂(x∗1R6

+x∗2R6
)

∂α2
=

(1−α1β)N1
D2 is

strictly positive for N1 < 0 while it equals zero for N1 = 0. However
N1 = 0 corresponds to the x∗1R6

= 0, i.e., Technology 1 has no users,
in which case an increase in α2 can never hurt x2. Therefore our present
discussion only requires us to consider the case where the derivative is strictly
increasing.
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negative only if β > (q2 − q1) + α2. There are many
combinations of parameters that simultaneously satisfy this
condition and the validity and stability conditions of an
equilibrium in R6. Figure 3 is again one such combination.
Furthermore, this condition β > (q2 − q1) + α2 can only
hold along with the validity and stability conditions for the
equilibrium in R6 only if α1β > 1. We now provide the
proof for this.

Proof: α1β > 1 is a necessary condition for the incumbent
to hurt the overall market

First consider the case when q1 ≤ 1. From eq. (32) and β >
(q2 − q1) + α2, we have

0 < β − α2 − (q2 − q1) < α1β + q2 − q1 − q2
q1⇒ α1β − q1 > q2

q1
(1− q1)

⇒ α1β−q1
1−q1

> q2
q1

> 1
Since q1 ≤ 1, we need α1β > 1.
Next consider the case when q1 > 1. For this case,

we will need to consider two subcases, corresponding to
α2 + q2 − q1 − p2 > 0 and α2 + q2 − q1 − p2 < 0.

Subcase (1): Let α2 + q2 − q1 − p2 > 0
When q1 > 1, the above condition implies

q2 − p2 > q1 − α2 > 0 (i.e., q2 > p2). However,
when α2 + q2 − q1 − p2 > 0 and q2 > p2, then eqs. (34)
and (36) together result an inequality that contradicts the
inequality in eq. (35). Since the conditions considered in this
subcase cannot hold together, we do not need to consider it
further.

Subcase (2): Let α2 + q2 − q1 − p2 < 0
Let us assume that α1β < 1. We show here that the

conditions for validity and stability of the R6 equilibrium, and
β > (q2 − q1) + α2 cannot hold together if α1β < 1. Using
eq.(36), we have

α2 + q2 − q1 − p2 < β − p2 − p1(β − α2 − (q2 − q1))
⇒ p1 < 1 < q1

From eq.(33) we have
(q1 − 1)(β − q2) < (q1 − α2)(α1β − q1) < 0
which implies β < q2 (since q1 > 1).
Using the condition β−α2−(q2−q1) > 0 needed for hurting

the overall market and eq.(35) and the condition p1 < 1 < q1

obtained previously, we get
β − (q2 − q1) > α2 > (1−q1)(q2−p2)+q1(q1−p1)

q1−p1⇒ (β − q2)(q1 − p1) > (1− q1)(q2 − p2)
⇒ q2 > p2 since β < q2 and q1 > 1 > p1.

Now using the condition of this subcase i.e., α2 +q2−q1−
p2 < 0 and eq. (35) we get p1 > 1, which contradicts the
previously obtained relation p1 < 1 < q1. Therefore when
α1β < 1, all these conditions do not hold together and the so
behavior will not arise for this case.

However, when α1β > 1, it can be shown using Mathe-
matica that for this subcase there exists numerical values for
the various parameters for which the overall market drops.
The above analysis of all the different cases establishes that
α1β > 1 is a necessary condition for this behavior to arise.

Similarly, when Technology 2 increases its converter effi-
ciency, the overall market penetration will drop if

∂(x∗1R6
+ x∗2R6

)
∂α2

=
(1− α1β)N1

D2
< 0 (51)

For a valid, stable equilibrium in R6, we have N1 < 0, and
therefore the above expression is negative only if α1β < 1.
This establishes the second part of Proposition 5.

Proof of Proposition 6:
In Figure 6 we identified a scenario where instabilities in

adoption dynamics arose for α1β > 1, and the parameter
values satisfied A2 − 4B < 0.

To prove that α1β > 1 is necessary for the formation of
cyclic instability, we proceed in two steps: (i) we show that if
A2 − 4B ≥ 0 then cycles (closed orbits) cannot arise in the
adoption trajectories, and (ii) if α1β ≤ 1 then A2 − 4B ≥ 0
always holds, and therefore there cannot be any closed orbits.

It may be noted that if any such ‘closed orbit’ or cycle
were to arise in the adoption process, then its locus must be
the equilibrium in R6. This follows from the Index Theory
which states that if J is a closed orbit13 of a system enclosing
an open set D (i.e., A = D∪J is a compact set), then the set
D must include an equilibrium point. Thus, every closed orbit
in the plane encloses an equilibrium point. In our adoption
process, a cyclic trajectory can either lie entirely inside the
S-plane or may touch its boundaries. Note that when the
trajectory touches or includes a portion of the boundary,
it is not possible to have an equilibrium on the boundary
itself because then the system would have attained stability
as soon as the trajectory reaches that equilibrium. Therefore
every closed trajectory must enclose an equilibrium that lie
exclusively in the interior of the S-plane. The equilibrium in
R6 is the only equilibrium that satisfies this requirement (as
all the others lie on the boundaries i.e., x1, x2-axes or the
line x1 + x2 = 1 by their definition). So the equilibrium in
R6 will be the focus for the proof of the two steps mentioned
earlier.

(i) Proof: If A2 − 4B ≥ 0 then cycles cannot arise in the
adoption trajectories

To show that cycles cannot arise in the adoption trajectories
when A2− 4B ≥ 0, we have to consider the two possibilities
that the equilibrium in R6 is either stable or unstable.

(a) A2 − 4B ≥ 0 and xR6
is stable.

We will prove that for this case, the entire R6 region is
the basin of attraction of the stable equilibrium xR6

and
therefore a closed trajectory cannot pass through (or be entirely
located in) R6 as it would have converged to that equilibrium.
Furthermore, we show that it is not possible to realize any
closed trajectory that has the R6 equilibrium as its locus but
does not ever pass through the Region R6. These statements
together eliminates the possibility of cycles in this case.

A stable equilibrium in R6 requires A < 0 and B > 0.
When A2 − 4B ≥ 0, we have A − √

A2 − 4B ≤ A +

13It is a trace of the trajectory of a non-trivial (i.e. not a point) periodic
solution [16]
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√
A2 − 4B < 0. Therefore once a trajectory enters R6,

the exponential terms in its expression (Table II) decrease
exponentially over time and converges to the equilibrium. In
other words, the entire R6 region is the basin of attraction of
the stable equilibria located in it. Hence a closed trajectory
cannot be realized if it were to pass through R6.

Recall that in order to necessarily eliminate the possibility
of (0, 0) being a valid equilibrium, the point P (in Figure 7)
cannot lie in the positive quadrant of the (x1, x2) plane. As
a result, the region R6 will always touch either the boundary
x1 or x2 axis. Recall that we previously established that if
a closed orbit were to arise in this system, the equilibrium
in R6 must lie in its interior. However, since the region R6

touches at least one of the axes, it is never possible to realize
a closed orbit that encircles the equilibrium in R6 as its
locus but doesn’t pass through this region. Therefore, cyclic
instabilities cannot be realized for this case.

(b) A2 − 4B ≥ 0 and xR6
is unstable.

In this proof we will need two more results from the Index
Theory. First, the index of a closed orbit, J , is +1 14. All
such closed orbits (trajectories) must encircle the equilibrium
in R6. Moreover, since the equilibrium xR6

is the only
equilibrium point enclosed by J , the index of this equilibrium
is I(xR6

)=+1 15. Therefore a closed contour, C, around xR6
in

its neighborhood set must also have the same index as I(xR6
)

i.e., +1.
However, C can have an index of +1 only if either

all the trajectories are pointing radially inward(outward)
towards(from) the equilibrium. But we show below that when
A2 − 4B ≥ 0 and the equilibrium is unstable, the trajectories
in R6 take the shape of hyperbolas, which implies that all
the trajectories are not directed consistently either inward or
outward from the equilibrium, and thus the index computed
for the closed contour, C, will not be +1. This contradiction
implies that a closed orbit J cannot be present, which will
therefore eliminate the possibility of cyclic instability in this
case.

Using the expressions for the trajectories in R6 provided in
Table II and the fact that A2− 4B ≥ 0 and the equilibrium is
unstable, the expressions for the trajectories around xR6

can
be rearranged in the following form to show their hyperbolic
shapes:

(x1 − x∗1R6
−K2(x2 − x∗2R6

))(x1 − x∗1R6
−K1(x2 − x∗2R6

))

= −c1c2(K1 −K2)
2eAγ(t−t0) (52)

Substituting x1 = x1 − x∗1R6
, x2 = x2 − x∗2R6

, a =
α2+β(1−α1)− q2

q1

(q2−q1)
√

A2−4B
, we have K1 = a− 1, K2 = a + 1.

Eqn. (52) can therefore be written as:

(x1 − ax2)
2 − x2

2 = −4b2c1c2e
Aγ(t−t0) (53)

The above expression clearly shows that at any time t, the
trajectories around the equilibrium have hyperbolic shapes.

14ref. [12], pp. 299, lemma 7.1(c)
15ref. [16], pp.50

Thus, when A2 − 4B ≥ 0, irrespective of whether the
equilibrium in R6 is stable or not, there cannot be any cyclic
trajectories in the adoption process.

(ii) Proof: If α1β ≤ 1 then A2 − 4B ≥ 0

Note that a2 + b2 ≥ 2ab for any real numbers a, b. Hence
we have

`
1− α2 + β(1− α1)

´2
(q2 − q1)2

+
1

q2
1

≥ 2(1− α2) + 2β(1− α1)

q1(q2 − q1)
> 0

since 0 < α1 < 1, 0 < α2 < 1, β > 0.

Using the expression for A2−4B and the above inequality,
we get:

A2 − 4B ≥ 4(1− α1β)(1− α2)
q1(q2 − q1)

≥ 0 if α1β ≤ 1

Since we can only have cyclic instability in the system when
A2−4B < 0 and that this condition can only be satisfied when
α1β > 1, it also becomes necessary that β > 1 (as α1 < 1).

E. Discussion on Separatrices

Table VI provides the characterization of the separatrices
in each region when the unstable equilibrium that it passes
through lies in that region. The regions R1, R3, R7, R9

are not included in the table as no separatrix can arise in
them because by definition these equilibria are always stable
whenever they are valid.

We briefly illustrate how the expressions for the separatrices
may be derived. Consider the separatrix of Region R2 passing
through the unstable equilibrium (0, x∗2R2

). Note that the
equilibrium is valid but unstable, and thus q2 < β from Table
II. From the expressions of trajectory in R2 it is clear that
if q2 < β, x2(t) increases if c2 > 0 while it decreases if
c2 < 0. Depending on the sign of c2, the trajectory diverges
in opposite directions. Thus c2 = 0 separates the trajectories
with different convergence behaviors and is the candidate for
the local separatrix in R2, which gives

x2 =
p2 − q2

β − q2
− α2

β
x1

as the expression for the boundary separating different basins
of attraction.

TABLE VI
CANDIDATES FOR LOCAL SEPARATRIX

Region Candidate of local separatrix
R2 x2 = −α2

β
x1 + p2−q2

β−q2

R5 x2 = 1−α2
β(1−α1)

(x1 − x∗1R6
) + x∗2R5

R6 x2 =
2(1−α2)(x1−x∗1R6

)

α2+β(1−α1)− q2
q1

+(q2−q1)
√

A2−4B
+ x∗2R6

R8 x2 = − 1
βα2

x1 + p1−q1
βα2(1−q1)
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F. Robustness to Alternative Models

In the paper we have identified several interesting behaviors
that arise in presence of converters for a model where users are
heterogeneous in their evaluation of the technology’s quality
and benefit from linear externality. However, many of the
behaviors identified in this work will be present in a wide
range of alternative models.

To show this robustness of our findings we first show
that quantitatively similar behaviors arise for more generic
distribution of heterogeneous user preferences. We do so by
considering Beta-distribution of the user preference with pos-
itive and negative skewness. Following this, we also consider
some different types of network externality benefits, namely,
sub-linear, super-linear and logarithmic network benefits and
provide examples that demonstrate similar behaviors as well.
We also consider the case where user heterogeneity is extended
to network benefits in addition to the technology’s quality.
Again for all these scenarios we present illustrative examples
for qualitatively similar behaviors of interest.

1) Beta-distribution of User preference: We consider the
same user utility functions as those in eqs.(1) and (2), but the
heterogeneous user preferences are assumed to follow a Beta-
distribution on [0, 1] as opposed to an Uniform distribution.
The density of Beta-distribution is given by xa−1(1−x)b−1

B(a,b)

where B(a, b) is the beta function with parameters a and b.
Its skewness is given by 2(b−a)

√
a+b+1

(a+b+2)
√

ab
. We show qualitatively

similar behaviors for both beta distributions with positive and
negative skewness in the following cases.

(i) Positively skewed Beta-distributions
Figure 9 shows that instabilities can arise even with such

alternative distributions where a = 1.45, b = 2 with a positive
skewness of 0.25.

Figure 10 shows that Technology 1 can hurt itself as well
as the overall market penetration as it improves its converter
efficiency from 0.85 to 1. For the scenario shown in the
figure, the beta distribution has a = 0.65, b = 1 and a positive
skewness of 0.3872.

(ii) Negatively skewed Beta-distributions
Figure 11 shows that instabilities can arise even for nega-

tively skewed (−0.3205) beta-distributions where a = 2.2, b =
1.45.

Figure 12 shows that Technology 1 can hurt itself as well
as the overall market penetration as it improves its converter
efficiency from 0.85 to 1 as shown in the figure with a beta
distribution for parameters a = 2, b = 1.5 and a negative
skewness of −0.2227.

2) Other Externality Functions:

U1 = θq1 + (x1
ρ + α1βx2

ρ)− p1 (54)
U2 = θq2 + (βx2

ρ + α2x1
ρ)− p2 (55)

(i) Sub-linear network benefits
The plot on the left in Figure 13 shows an example

of instability in the adoption process when the externality
benefits are of the form xi

0.7, i = {1, 2}. The plot on the

right provides an example where Technology 1 on improving
its converter efficiency from 0.85 to 0.9 hurts its own
market as well as the overall market levels across the two
technologies.

(ii) Super-linear network benefits
The plot on the left in Figure 14 shows an example

of instability in the adoption process when the externality
benefits are of the form xi

1.4, i = {1, 2}. Once again, even
for the superlinear externalities, we find that the plot on the
right shows that Technology 1 can potentially harm itself as
well as the overall market. In this figure, the Technology 1
improves its converter efficiency from 0.87 to 0.91 leading to
a drop in its own market by about 0.16.

(iii) Logarithmic network benefits
We also considered the case where the externality benefits

are of the form log2(xi + 1), i = {1, 2}.

U1 = θq1 + (log2(x1 + 1) + α1β log2(x2 + 1))− p1 (56)
U2 = θq2 + (β log2(x2 + 1) + α2 log2(x1 + 1))− p2 (57)

The plot on the left in Figure 15 shows an example of the
instabilities that arise in presence of converters in case of
a logarithmic externality function. Technology 1 may again
hurt itself as well as the overall market while improving its
converter efficiency as shown on the plot on the right. Such a
behavior is shown in this plot as Technology 1 improves its
converter efficiency from 0.9 to 0.99.

3) Extending User Heterogeneity to Network Benefits: If
the users have similar heterogeneous preferences over both
the intrinsic (stand-alone) quality of the technology and the
network externality benefit, then their utility from the two
alternative technologies are:

U1 = θ(q1 + x1 + α1βx2)− p1 (58)
U2 = θ(q2 + βx2 + α2x1)− p2 (59)

For this utility form, we again identify that deployment and
improvement in converters can lead to behaviors like drop in
overall market penetration and adoption instability.
(i) Drop in overall market penetration

The plot on the right in Figure 16 considers a case where
p1 = 0.6, p2 = 3.9, q1 = 0.5, q2 = 4.2, β = 7, α2 = 0 i.e.,
Technology 1 is cheaper and lower in quality than Technology
2, which also provides larger network benefits. In this plot,
when Technology 1 introduces a converter of 0.45 efficiency
then the overall market penetration at equilibrium is about
0.54. However if the first technology introduces a converter,
it improves its own market but the overall penetration drops
to 0.3737. Therefore even for this utility form, the overall
market penetration across the two technologies can be hurt
by the converters.

(ii) Creation of instability in adoption process
We also find that instabilities may be arise in the adoption

process when converters are present. The plot on the left in
Figure 16 shows such a scenario for α1 = 0.9, α2 = 0, p1 =
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Fig. 9. Positively skewed Beta-distribution showing Instability.
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Fig. 14. Effects of superlinear network benefits.
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Fig. 15. Instability for logarithmic network benefits.

0.5, p2 = 1.3, q1 = 0.3, q2 = 1.4, β = 10. Thus the behavior
for instability in adoption dynamics may also arise for this
alternative utility form.

(iii) Special Case: User’s only value network benefits

U1 = θq1(x1 + α1βx2)− p1 (60)
U2 = θq2(βx2 + α2x1)− p2 (61)

In this case as well we find instances where deployment of
converters can hurt the overall market. Figure 17 illustrates
such a scenario.

G. Switching Costs
Network technologies often try to introduce switching costs

by implementing contracts with penalty and by developing
‘lock-in’ strategies. For example, ISPs such as AOL practice
‘lock-in’ by restricting their users to send instant messages
only to other fellow subscribers, thus preventing a user who
switches to another ISP from messaging to his/her previous
network. Another such strategy is the lowering of provider
specific email addresses (e.g., Comcast, AOL). In spite of such
efforts, the annual customer turnover in the ISP market remain
very high at above 72%, suggesting that consumers in the ISP
market still have sufficiently low switching costs [4], [14]. In
other online markets, the use of ‘lock-in’ strategies based on
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0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
: Fraction of Technology 1 users

x 2: F
rac

tion
 of 

Te
chn

olo
gy 

2 u
ser

s

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
: Fraction of Technology 1 users

x 2: F
rac

tion
 of 

Te
chn

olo
gy 

2 u
ser

s

Eqb:(0.1937, 0.4654)
Over. mkt=0.6591
α

2
=1

Eqb:(0.2681,0.4690)
Over. mkt=0.7371
α

2
=0.9

Fig. 17. Drop in overall market penetration.(α1 = 0.185, p1 = 0.4, p2 = 1.8, q1 = 4.65, q2 = 7.3, β = 0.7)

proprietary IT are also on the decline due to the emergence of
web browsers and technologies like XML that lower switching
costs by allowing interoperability between disparate systems
[4]. However, some amount of switching costs may indeed
continue to exist through contractual commitments, learning
curve, specialized formats and customer loyalty programs.

Our model may be extended to include such switching costs,
but it will introduce non-trivial complexity in the modeling
effort because of the “memory” it adds to the individual users
behavior. Additionally, there are different possible types of
switching cost configurations one may need to consider, each
requiring different utility forms for user decision. For example,
the learning costs may significantly affect non-adopters when
they join a technology, while contract- breaking cost affect
only the users who disadopt or switch technologies. Also, the
lack of a clear answer as to when and how many times such
costs can affect switching behavior, adds complexity from a
modeling standpoint. Therefore, a general analytical solution
with switching costs quickly becomes intractable. However, it
is possible in some cases to formulate generalized expressions
for the indifference thresholds introduced in the paper and
derive results in the way outlined next.

Assume that when a user switches from one technology to
the other, or becomes a non-adopter, he/she incurs a symmetric
switching cost of S due to prior contractual commitments, and
that the learning costs for all users are negligible (L = 0).

Then utilities U1 and U2 for the current non-adopters remain
the same as before and so does the corresponding expressions
for the indifference points (cite Eqns.). The utilities of the
current adopters of Technology 1 become

U0 = −S
U1 = θq1 + (x1 + α1βx2)− p1

U2 = θq2 + (βx2 + α2x1)− (p2 + S)
which give the indifference points as
θ0
1(1) = p1−S−(x1+α1βx2)

q1

θ0
2(1) = p2−(βx2+α2x1)

q2

θ1
2(1) = (1−α2)x1−β(1−α1)x2+p2−p1+S

q2−q1

Similarly, the utilities of the current adopters of Technology
2 will be

U0 = −S
U1 = θq1 + (x1 + α1βx2)− (p1 + S)
U2 = θq2 + (βx2 + α2x1)− p2

which give the indifference points as
θ0
1(2) = p1−(x1+α1βx2)

q1

θ0
2(2) = p2−S−(βx2+α2x1)

q2

θ1
2(2) = (1−α2)x1−β(1−α1)x2+p2−p1−S

q2−q1

Note that the indifference points will now need to be repre-
sented as as θi

j(k), where the additional index k, k = {0, 1, 2}
will be used to represent the user category. Additionally,
for any values of x1(t) and x2(t) and S > 0, the set of
indifference points for the above three categories of users must
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satisfy the following relationships:

θ0
1(1) < θ0

1(0) = θ0
1(2)

θ0
2(2) < θ0

2(0) = θ0
2(1)

θ1
2(2) < θ1

2(0) < θ1
2(1) (62)

Therefore if at time t, the set of indifference points are
represented by θi

j(t), the new values at t+1 i.e., θi
j(t+1) will

have to calculated based on the relative positions of θi
j(k)(t+

1) with respect to θi
j(t). In other words,

θi
j(t + 1) = F (θi

j(k)(t), θi
j(t)), for k = {0, 1, 2}, i, j =

{0, 1, 2}, i < j, i 6= j.
where the function F needs to be carefully determined by

considering the possible arrangements of these indifference
points. For example, in the above case if we consider that
the initial arrangement of the indifference point followed the
order θ0

1(t) < θ0
2(t) < θ1

2(t), then the function F for the
new position of the indifference point θ1

2(t + 1) (based on
relationships in eqn.(62)) will be given by:

θ1
2(t + 1) = θ1

2(2)(t + 1) if θ1
2(2)(t + 1) ≥ θ1

2(t)

= θ1
2(1)(t + 1) if θ1

2(1)(t + 1) ≤ θ1
2(t)

= θ1
2(t) if θ1

2(2)(t + 1) < θ1
2(t) < θ1

2(1)(t + 1)

Given the complexity of the cases, solutions that account for
switching costs need to resort to either numerical solutions
(when it is possible to generalize equations for indifference
thresholds) or simulations. We have investigated using both
approaches to demonstrate that the results that our analytically
tractable simplified model allow us to explicitly identify,
namely the possible presence of instability in technology adop-
tion and that better converters can hurt the incumbent as well
as the overall market level etc., remain present across different
switching cost configurations. Figure 18 and Figure 19 show
these behaviors using the numerical solution. For clarity of the
plots only the adoption paths for initial penetration levels of
x1 = 0.5, x2 = 0 in Fig. 18 and x1 = 1, x2 = 0 in Fig. 19
are shown.

In the next section we provide more evidence of these
behaviors under different cost configurations (learning cost,
contract-termination cost etc.) through simulation results to
establish that the results are robust to the introduction of a
broad range of switching costs.

Fig. 18. Instability in presence of Switching Costs

1) Simulation Results: We consider three types of
configurations for the purpose of our simulation to show the
robustness of the observed behavior under different switching

Fig. 19. Market Level drops in presence of Switching Costs

cost configurations. The simulations consider a population
size of N = 500, each with a type value θ that is uniformly
distributed between 0 and 1. The plots for that (i) presence of
instability and (ii) incumbent’s converter hurting itself as well
as the overall market, are shown only for initial penetration
levels of x1 = 0.3, x2 = 0 and x1 = 1, x2 = 0 respectively
for the purpose of clarity.

Case (A): Switching Cost due to Contract breaking
In this scenario we consider that a user of either technology

who decides to become a non-adopter or switches to the other
technology incurs a certain cost as penalty for breaking a
contract. It is assumed in this case that there is no learning
cost for the users. The instability plot in Fig 20 shows the
sample diffusion trajectories for switching cost of S = 0.05.
But as the switching cost increases, the outcome stabilizes
(e.g., , S = 0.3) since the high switching cost makes it difficult
for users to infinitely switch back and forth between the two
technologies. Fig 21 shows the drop in the overall market
and incumbent’s market as its converter efficiency is increased
from 0.9 to 1.

Fig. 20. Instability in presence of Switching Costs

Case (B): Switching Cost due to Contract breaking &
Learning Costs for new adopters

This scenario considers both the presence of learning and
switching costs. A non-adopter incurs a learning cost of L
on joining either technology while an existing user of a
technology incurs a switching cost of S for either becoming
a non-adopter or switching over to the competing technology.
As before, Figures 22 and 23 demonstrate the presence of the
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Fig. 21. Market Level drops in presence of Switching Costs

interesting behaviors.

Fig. 22. Instability in presence of Learning & Switching Costs

Fig. 23. Market Level drops in presence of Learning & Switching Costs

Case (C): Switching Cost due to ‘Lock-In’ but no contract
breaking costs

In this scenario we consider a case where a user only incurs
a switching cost when he/she has to move from one technology
to its competitor but not if he/she becomes a non-adopter.
This situation arises mainly when the switching cost is not
in the form of a contract but due to ‘lock-in’ strategies. For
example, if a user of a online music service with customization
options decides to migrate to a competing site, he/she incurs a
switching cost due to ‘lock-in’, but however if the person gets
disinterested in the technology and becomes a non-adopter
he/she does not incur this cost. Again, Figure 24 and 25
provide examples of the noticed behaviors for this scenario.

Fig. 24. Instability in presence of only ‘Lock-in’ Costs

Fig. 25. Market Level drop in presence of only ‘Lock-in’ Costs

These simulation results therefore demonstrate that the
results we identified with the help of our simplified model
are quite robust, and they provide insights into the possible
interesting adoption behaviors that can arise in a wide variety
of switching cost configurations.
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