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Toward a Cosmological Dual to Inflation

Abstract
We derive all single-field cosmologies with unit sound speed that generate scale invariant curvature
perturbations on a dynamical attractor background. We identify three distinct phases: slow-roll inflation; a
slowly contracting adiabatic ekpyrotic phase, described by a rapidly varying equation of state; and a novel
adiabatic ekpyrotic phase on a slowly expanding background. All of these yield identical power spectra. The
degeneracy is broken at the 3-point level: unlike the nearly Gaussian spectrum of slow-roll inflation, adiabatic
ekpyrosis predicts large non-Gaussianities on small scales.
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We derive all single-field cosmologies with unit sound speed that generate scale invariant curvature

perturbations on a dynamical attractor background. We identify three distinct phases: slow-roll inflation;

a slowly contracting adiabatic ekpyrotic phase, described by a rapidly varying equation of state; and a

novel adiabatic ekpyrotic phase on a slowly expanding background. All of these yield identical power

spectra. The degeneracy is broken at the 3-point level: unlike the nearly Gaussian spectrum of slow-roll

inflation, adiabatic ekpyrosis predicts large non-Gaussianities on small scales.

DOI: 10.1103/PhysRevD.84.023511 PACS numbers: 98.80.Cq

The observational evidence for primordial density per-
turbations with nearly scale invariant and Gaussian statis-
tics is compatible with the simplest inflationary scenarios.
But is inflation unique? Are there dual cosmologies with
indistinguishable predictions? Such questions are critical
to our understanding of the very early Universe.

Inflation not only generates scale invariant and Gaussian
density perturbations, it does so on an attractor back-
ground. On superhorizon scales, the curvature perturbation
on comoving hypersurfaces [1,2], denoted by � , measures
differences in the expansion history of distant Hubble
patches [2]. In single-field inflation, � approaches a con-
stant at long wavelengths. In the strict k ! 0 limit,
� ! �a=a, so the perturbation simply renormalizes the
scale factor of the background solution; such a perturbation
can be removed by an appropriate rescaling of global
coordinates. For finite k, the perturbation cannot be com-
pletely removed, but different Hubble patches experience
the same cosmological evolution, up to a shift of local time
coordinates and a rescaling of local spatial coordinates. See
[3] for a detailed discussion.

Achieving both scale invariance and dynamical attrac-
tion in alternative scenarios has proven challenging. The �
equation of a contracting, matter-dominated universe is
identical to that of inflation [4], but � grows outside the
horizon, indicating an unstable background. The contract-
ing phase in the original ekpyrotic scenario [5–10], with

Vð�Þ ¼ �V0e
��=M, is an attractor [11,12], but the result-

ing spectrum is strongly blue [11–13]. A scale invariant
spectrum can be obtained through entropy perturbations
[14,15], as in the New Ekpyrotic scenario [14], but this
requires two scalar fields.

The adiabatic ekpyrotic mechanism [16–20] proposed
recently offers a counterexample: a single-field model for
which the background is a dynamical attractor and gener-
ates a scale invariant � . The mechanism obtains for fairly

simple potentials, such as Vð�Þ ¼ V0ð1� e��=MÞ with
V0 > 0 and M � MPl. Scale invariant perturbations are
generated during the transition when � � � _H=H2 ¼
3ð1þ wÞ=2 rises rapidly from � � 1, where the constant

term dominates, to � � M2
Pl=2M

2 � 1, where the negative
exponential term dominates.
Another counterexample proposed recently relies on a

rapidly varying, superluminal sound speed csð�Þ [21–23].
See [24,25] for earlier work. Even though the background
is noninflationary, � is amplified because the sound horizon
is shrinking. The growing mode is � ! constant, and the
resulting 2-point function is scale invariant.
The key lesson of these results is that relaxing some of

the standard assumptions, such as w, cs � constant, opens
up new possibilities for generating perturbations.
In this paper, we derive the most general single-

field cosmologies with cs ¼ 1 that: i) yield a scale
invariant power spectrum for � ; and ii) are dynamical
attractors, in the sense that � ! constant is the growing
mode solution. These conditions imply a second-order
differential equation for að�Þ whose exact solutions we
classify.
The question of uniqueness is more than academic. If the

Planck mission corroborates the predictions of the simplest
single-field inflationary models, namely, scale invariance
and Gaussianity, then the onus will be on theorists to
determine whether inflation is unique in making these
predictions. This work is an important first step in answer-
ing this critical and timely question.
We find only three possibilities: inflation, with að�Þ �

1=j�j and � � constant; the adiabatic ekpyrotic phase
[16,18], with �� 1=�2 on a slowly contracting back-
ground; and a novel adiabatic ekpyrotic phase on a back-
ground that first slowly expands, then slowly contracts
[19]. At the 2-point level, therefore, the adiabatic ekpyrotic
phases are dual to inflation. The degeneracy is broken at
the 3-point level: adiabatic ekpyrosis generically predicts
strongly scale-dependent non-Gaussianities, which limits
the range of scale invariant modes that can be generated
within the perturbative regime [18]. Thus, if Planck finds
no deviations from Gaussianity, our work will imply that
any alternative theory must either invoke multiple degrees
of freedom or use an altogether different mechanism to
generate density perturbations.
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Any portion of these phases can be used to devise novel
early-universe models. Such scenarios should explain
the observed flatness and homogeneity, either through in-
flation or through an ekpyrotic phase with � � 1 [5,26].
Moreover, a reheating mechanism must be specified. In
cases where the Universe is contracting, the Null Energy
Condition must be violated to bounce to an expanding
phase, for instance within 4d effective theories [27].

For the purposes of this paper, however, we are solely
interested in identifying all cosmological phases that gen-
erate, with a single degree of freedom, superhorizon per-
turbations compatible with observations—the candidate
duals to inflation. The idea of cosmological duals is not
new [4,11,28], but we focus here on � instead of the
Newtonian potential [11,28] and specialize to attractor
solutions by demanding that � ! constant.

I. SETUP

Our starting point is the quadratic action for � , assuming
cs ¼ 1:

S ¼ M2
Pl

Z
d�d3xz2fð� 0Þ2 � ð ~r�Þ2g; (1)

where z � a
ffiffiffiffiffiffi
2�

p
and primes denote derivatives with re-

spect to conformal time �. This yields the mode function
equation for the canonically-normalized variable v ¼ z� :

v00
k þ

�
k2 � z00

z

�
vk ¼ 0; (2)

where k is the comoving wave number. To generate a scale
invariant spectrum from adiabatic initial conditions, it is
sufficient for z to satisfy

z00

z
¼ 2

�2
: (3)

Indeed, the solution to (2) in this case is

vk ¼ 1ffiffiffiffiffi
2k

p
MPl

e�ik�

�
1� i

k�

�
; (4)

which implies that k3=2j�kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2�2

p
=

ffiffiffi
2

p
MPlzj�j. As

� ! 0, k3=2j�kj is independent of k, as desired.
In addition to generating a scale invariant �k, our back-

ground must be a dynamical attractor. Since �k � 1=zj�j as
k ! 0, the desired solution to (3) is

z �
ffiffiffi
2

p
mj�j ; (5)

wherem is an arbitrary scale. Combining (4) and (5) yields

k3=2j�kj ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2�2

p
=2MPl, which is both scale invari-

ant as � ! 0 and constant as k ! 0. The observed ampli-
tude of � � 10�5 fixes m� 10�5MPl.

We pause to note that in an inflationary context the
freeze-out or �-horizon j�j is usually identified with the
comoving Hubble horizon, h�1 � 1=aH ¼ a=a0, but that

more generally (e.g., when � varies rapidly) the Hubble
horizon and the �-horizon can differ greatly.

Using the definition z ¼ a
ffiffiffiffiffiffi
2�

p
, (5) implies

� ¼ 1

a2m2�2
: (6)

Moreover, we can rewrite � ¼ � _H=H2 ¼ dH�1=dt in
terms of the comoving Hubble horizon h�1 ¼ 1=aH as

ðh�1 þ �Þ0 ¼ �: (7)

Combining (6) and (7) then gives a second-order differen-
tial equation for að�Þ. Instead, wewill cast these as a pair of
coupled first-order equations. By differentiating (6),

ðlog ffiffiffi
�

p Þ0 ¼ ���1 � h: (8)

Once we specify the signs of h and �, (7) and (8) become
coupled ordinary differential equations (ODEs) for jh�1j
and �. The behavior of (8) will depend strongly on the
relative magnitude of the Hubble horizon jh�1j and the
�-horizon j�j. We will therefore say that the Hubble hori-
zon is inside the �-horizon when jh�1j< j�j, and outside
the�-horizon when jh�1j> j�j.
To solve these coupled equations, hfid and �fid must be

specified at some fiducial time �fid < 0. To obtain a solu-
tion for að�Þ, we can set afid ¼ 1 by a spatial rescaling
a ! �a, � ! �=�. The equation of state is of course
invariant, so �fid fixes �fid through (6). In practice, we
will specify not jh�1

fid j but the ratio jh�1
fid j=j�fidj, which is

invariant under the above spatial rescaling.

II. SOLUTIONS

While it is straightforward enough to integrate (7) and
(8) numerically, as we have done, to guide our intuition we
also provide a series of simple, analytical arguments that
explain the general features of the solutions. By varying
over all possible initial conditions, we find three families of
solutions, each of which is indexed by a single parameter
and has finite duration, �i < �< �f . See Fig. 1 for a sketch
of the solutions.

A. Contracting branch

This case obtains if the Universe is assumed contracting
(hfid < 0) at some fiducial time �fid < 0. Then, as long
as h < 0 and � < 0, (8) implies ðlog ffiffiffi

�
p Þ0 > 1=j�j, hence

� increases monotonically. Meanwhile, (7) reduces to
jh�1j0 ¼ 1� �, thus jh�1j increases whenever � < 1, and
decreases whenever � > 1. In fact, the bound from (8)
implies that � must pass through � ¼ 1, at which point
jh�1j hits a global maximum. A global maximum is a good
point to specify a solution, so we denote the fiducial time in
this case as �fid ! �max � �m�1 , where we set amax ¼ 1
and �max ¼ 1. All contracting solutions can therefore be
indexed by the single parameter
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c � jh�1
maxj

j�maxj ¼ mjh�1
maxj> 0: (9)

Before �max, a > 1, so � < 1=m2�2; after �max, a < 1, so
� > 1=m2�2. Integrating (7) therefore yields

mjh�1j � fð�Þ � c; (10)

where fð�Þ � cþ 2�mj�j �m�1j�j�1, with the inequal-
ities saturated at �max. Since mjh�1j � c, this implies that
h cannot change sign for � < 0. Moreover, since fð�Þ
vanishes at m�� ¼ �ðcþ 2� ffiffiffi

c
p ffiffiffiffiffiffiffiffiffiffiffiffi

cþ 4
p Þ=2, h must di-

verge at finite � in both the past and the future of �max.
Denoting the time of past and future divergences by
�i and �f , respectively, (10) implies �þ < �i < �max <
�f < �� < 0. Over the interval �i � � � �f , að�Þ contracts
from1 to 0, so �f marks a big crunch singularity; from (6),
we conclude that � grows monotonically from 0 to 1.

The range of modes thus generated spans a factor of
kmax=kmin ¼ j�ij=j�fj< j�þj=j��j. From the definition of
�� above, we have j�þj=j��j ¼ ðm�þÞ2 < ðcþ 2Þ2, hence
large values of c are required to generate a sufficiently
broad range of scale invariant modes. From (9), this means
that jh�1j must venture far outside the �-horizon, as
sketched by the dotted line in Fig. 1. In this regime,
� � 1=m2�2 and a � 1, which is recognized as the adia-
batic ekpyrotic phase proposed recently in [16].

Nearly all scale invariant modes are produced while
jh�1j is outside the �-horizon. Integrating (7) assuming
� � 1=m2�2 gives mjh�1j � fð�Þ, or

mjh�1j � cþ 2�mj�j �m�1j�j�1: (11)

For large c, horizon-equality (jh�1j ¼ j�j) occurs at

�eqþ � � c

2m
; �eq� � � 1

mc
; (12)

hence this phase generates Nek ¼ logj�eqþj=j�eq�j �
2 logc e-folds of modes.

Because jh�1j is outside the �-horizon during mode
production, perturbations freeze out while inside the
Hubble horizon and eventually exit Hubble by �eq�,
when jh�1j reenters the �-horizon. If a finite portion of
this solution is used in a broader scenario, then some other
dynamics must push these modes outside Hubble while
maintaining scale invariance. In [16], this is achieved
through an ekpyrotic scaling phase with � � c2=2 � 1.

B. Expanding branch

Suppose instead that the Universe is expanding
(hfid > 0) at some fiducial time �fid < 0. It is helpful to
rewrite (7) and (8) in terms of the gap � � jh�1j � j�j
between the Hubble horizon and the �-horizon. As long as
h > 0 and � < 0, (7) implies

�0 ¼ � > 0: (13)

Thus, when jh�1j is inside the �-horizon, corresponding to
�< 0, the gap between the horizons narrows; when jh�1j
is outside the �-horizon, corresponding to �> 0, the gap
between the horizons widens. Meanwhile, in this regime
(8) becomes

ðlog ffiffiffi
�

p Þ0 ¼ j�j�1 � ðj�j þ �Þ�1: (14)

Unlike Case i), the evolution of � is no longer necessarily
monotonic: when jh�1j is inside the �-horizon, corre-
sponding to �< 0, � decreases; when jh�1j is outside
the �-horizon, corresponding to �> 0, � increases.
It is straightforward to show that all solutions in this case

must have emerged from a big bang singularity (where
jh�1j ¼ 0) a finite time �i < �fid in the past. In particular,
jh�1j is guaranteed to lie within the �-horizon at early
times. Whether this remains the case subsequently depends
on initial conditions. Qualitatively, if jh�1j remains within
the �-horizon, the solution describes a universe that ex-
pands forever. This case, which includes the inflationary
solution, is described below. If jh�1j instead exits the
�-horizon, the expansion inevitably comes to a halt at
� ¼ 0, and the Universe enters a collapsing phase which
terminates in a big crunch singularity. This apex solution is
described in Case iii).
Let us now focus on the case where jh�1j stays inside

the �-horizon, i.e. �< 0. Since jh�1j< j�j< j�fidj for
�fid < �< 0, h cannot change sign as long as � < 0, hence
a increases monotonically. From the discussion below
(14), � shrinks monotonically. In fact, since jh�1j< j�j
by assumption, jh�1jmust hit zero at some �f < 0. In other
words, this case spans a finite time interval �i � � � �f ,
during which að�Þ expands from 0 to 1, while � shrinks
from 1 to 0. When � ¼ 1, jh�1j reaches a global maxi-
mum, and, as in the contracting case, we can choose this as
our fiducial time: �fid ! �max � m�1, where amax ¼ 1 and
�max ¼ 1. The solutions can once again be indexed by c
defined in (9).

FIG. 1. Sketch of jh�1j for the contracting (dotted line), ex-
panding (dashed line) and apex (thick dashed line) branches of
solutions.
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Unlike the contracting case, c is bounded from above:
jh�1

maxj lies inside the �-horizon by assumption, hence
c < 1. For jh�1j to remain within the �-horizon subse-
quently, we numerically find a tighter bound c � c0 �
0:52. As c approaches c0, �f comes arbitrarily close to 0.

In fact, c � c0 is desirable to generate a broad range
of modes, since kmax=kmin ¼ j�ij=j�fj. In this limit, jh�1j
grazes the �-horizon, corresponding to � � 1 and j�j �
H�1jd ln�=dtj � 1. In other words, this case relies on a
phase of slow-roll inflation to generate a broad range of
modes. (Because we focus on exact scale invariance, this is
a special case of slow-roll inflation. In particular, at linear
order � and � are related in such a way that ns � 1 ¼
�2�� � ¼ 0.) The inflationary phase thus generates
Ninf � logð1=mj�fjÞ e-folds of scale invariant modes,
whereas mode production prior to the onset of the infla-
tionary phase is negligible. Since jh�1j< j�j throughout,
modes exit Hubble before they freeze-out.

C. Apex branch

In this case jh�1j exits the �-horizon at some time
�exit < 0 after the Universe emerges from the big bang
singularity. Once this happens, there is no turning back—
� becomes positive, and from (13) the gap keeps on
growing for � < 0.

From the discussion below (14), � attains a local mini-
mum at horizon equality. The exit, defined by
jh�1

exitj=j�exitj ¼ 1, happens only once, so it is a convenient

place to set aexit ¼ 1. This family of solutions can therefore
be indexed by a single parameter, �exit > 0.

After horizon equality, the expansion inevitably comes
to a halt at � ¼ 0, at which time (the ‘‘apex’’) the Universe
enters a phase of contraction. The subsequent evolution
can be deduced by noting that (7) and (8) are manifestly
invariant under h ! �h, � ! ��. In other words, evolv-
ing forward in time when h > 0 and � < 0 is the same as
evolving backwards in time when h < 0 and � > 0. It
follows that jh�1j is guaranteed to reenter the �-horizon,
after which it will hit zero at finite �f > 0, corresponding to
a big crunch.

To get a broad range of super-Hubble modes, we need
�exit � 1 (corresponding to c � c0). This leads to a slow-
roll inflationary phase, which occurs as before while jh�1j
grazes the �-horizon, followed by an expanding adiabatic
ekpyrotic phase [19], during which jh�1j � j�j, �� 1=�2

and að�Þ is slowly expanding. This solution thus includes
two distinct phases of appreciable mode production.

The inflationary phase generates Ninf � ��1
exit e-folds of

scale invariant modes. Rescaling coordinates to set a ¼ 1
when � ¼ 0, outside the �-horizon h�1 satisfies

mh�1 � �m�1��1 �mð1� �exitÞ�þ ��1=2
exit : (15)

Substituting in (7), we see that the ekpyrotic phase with

� � 1=m2�2 begins at �ek-beg � �m�1��1=2
exit . This phase

ends when Hubble reenters the �-horizon, which from (15)
occurs at �ek-end � m�1 ffiffiffiffiffiffiffiffiffi

�exit
p

.

The apex marks the end of mode generation. For � > 0,
modes begin to reenter the �-horizon, spoiling their scale
invariance. Modes with k�ek-end > 1 end up not scale in-
variant. The adiabatic ekpyrotic phase thus generates
Nek ¼ logj�ek-begj=j�ek-endj � log��1

exit e-folds of scale in-

variant, super-Hubble modes. (Arbitrarily many e-folds
can be obtained by ending this phase near � ¼ 0 while
the modes remain within Hubble, but a subsequent phase
would be necessary to push these modes outside Hubble
while preserving their spectrum [19].)

III. NON-GAUSSIANITIES

While the two noninflationary branches which rely on a
rapidly varying �ðtÞ yield power spectra identical to that of
inflation, the degeneracy with inflation is broken by non-
Gaussianities. The 3-point amplitude for the contracting
adiabatic ekpyrotic mechanism was calculated in detail in
[18]. The resulting non-Gaussianities are strongly scale-
dependent and peak on small scales, with the dominant
contribution growing as k2. Since the 3-point calculation of
[18] ignored the time-dependence of the scale factor, to a
good approximation the result applies equally well to the
contracting or apex case. For completeness, we reproduce
here the salient points of the 3-point amplitude calculation
in the contracting case.
To make contact with the results in [18], we introduce

the parameter H0 � �m=c, where c was defined in (9). To
see the physical significance of H0, note that (11) implies
that during the adiabatic ekpyrotic phase, �c=2m � � �
�2=mc, h�1 is within about a factor of two of its maxi-
mum value, h�1

max ¼ H�1
0 . It follows that h�1 is nearly

constant and

h�1 �H�1
0 (16)

until near the very end of the phase. The parameter H0 is
thus the characteristic Hubble parameter during this phase.
Furthermore, the end points of the contracting adiabatic
ekpyrotic phase, �eqþ to �eq�, are given by

�eqþ � 1

2H0

; �eq� � 1

c2H0

: (17)

Thus the long-wavelength cutoff for our calculations is
�eqþ �H�1

0 . The short-wavelength cutoff is �eq�, which
is suppressed by a factor of 1=c2 � 1 relative to the long-
wavelength scale.
The cubic action for � corresponding to a canonical

scalar field with unit sound speed is given by, up to a field
redefinition, [29]

S3 ’
Z

dtd3xf�2� _�2 þ �2�ð ~r�Þ2 � 2� _� ~r � 	 ~r�

þ �

2
_��2 _� þ �

2
~r� 	 ~r�r2�þ �

4
r2�ð ~r�Þ2g; (18)
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where spatial derivatives are contracted with the Euclidean

metric �ij, and � is defined as r2� ¼ � _� . Moreover,

following [18] we have ignored the time-dependence of
the scale factor and set a ’ 1. At first order in perturbation
theory and in the interaction picture, the three-point
function is

h�ðt;k1Þ�ðt;k2Þ�ðt;k3Þi
¼ �i

Z t0

�1
dt0h½�ðt;k1Þ�ðt;k2Þ�ðt;k3Þ; Hintðt0Þ
i; (19)

where Hint ¼ �L3, up to interactions that are higher-order
in the number of fields, and t0 is chosen to be sufficiently
late that all modes of interest have frozen out by this time.
A natural choice in our case is

t0 ¼ �eq� � 1

c2H0

: (20)

As usual it is convenient to express the three-point function
by factoring out appropriate powers of the power spectrum
and defining an amplitude A as follows

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ ð2	Þ7�3

�X
ki

�
P2
�

AQ
j
k3j

; (21)

where P� � k3j�kj2=2	2 is the power spectrum for the

curvature perturbation.
The three-point function receives contributions from

each interaction term in (18). The dominant contributions,
as shown in [18], are the last two terms in (18), both of
which are Oð�3Þ. The next-to-leading contribution is the _�
term. We briefly review the calculation of these two con-
tributions and refer the reader to [18] for further details.

The �3 terms give the combined interaction Hamiltonian

Hint ¼ � �3

4

Z
d3x

�
r2�

~r
r2

_�
~r
r2

_� þ 2 _� ~r �
~r
r2

_�

�
: (22)

Applying the canonical commutation relations, the three-
point correlation function (19) in this case reduces to

h�ðk1Þ�ðk2Þ�ðk3Þi�3
¼ ið2	Þ3�3

�X
ki

�Y
�kið0Þ

Z t0

�1þi"
dt

�
�
�3

4

�
k21
k22

��k1ðtÞ
d��k2ðtÞ
dt

þ 2
d��k1ðtÞ
dt

��k2ðtÞ
�

�
~k2 	 ~k3
k23

d��k3ðtÞ
dt

þ permþ c:c:

�
;

where the small imaginary part at t ! �1 projects onto
the adiabatic vacuum state. Using the mode functions (4)
and substituting �ðtÞ ’ 1=m2t2, it is easy to show that the
integrand is a total derivative:

Z t0
dt

3� iKt

t4
eiKt ¼ �

Z t0
dt

d

dt

�
eiKt

t3

�
¼ �c6H3

0 ;

(23)

where in the last step we have used (20) and taken the
long wavelength limit K � j�eq�j�1 � c2jH0j, which is

appropriate for the modes of interest. Putting everything
together, the three-point amplitude is [18]

A �3 ¼
K2

32H2
0

�X
i

k3i �
X
i�j

kik
2
j þ 2k1k2k3

�
: (24)

As claimed, the 3-point amplitude is strongly scale-
dependent and peaks on small scales.
The next-to-leading order contribution comes from the

_� vertex in (18):

Hint ¼ �
Z

d3x
1

2
� _��2 _�: (25)

Using the fact that _� ’ �2m�1t�2, the three-point ampli-
tude is given by, in the long wavelength (K � c2jH0j)
limit, [18]

A _� ¼ �	

8

K

H0

�
K

2

X
i

k2i �
X
i�j

kik
2
j þ k1k2k3

�
: (26)

This contribution scales as K=jH0j and is therefore sub-
dominant relative to (23) on scales K * jH0j. All other
contributions to the three-point amplitude are suppressed
by 1=c2 � 1 relative to (23).
Following standard conventions, the three-point

amplitude translates into a value for fequilNL , defined at the
equilateral configuration:

f
equil
NL � 30

Aki¼K=3

K3
’ � 5

144

K2

H2
0

: (27)

Unlike the power spectrum, the three-point function is thus

strongly scale-dependent: fequilNL is & Oð1Þ on the largest
scales (K � jH0j) and grows as K2. Hence, as advocated,
the degeneracy with inflation is badly broken by non-
Gaussianities.
Since the perturbative parameter is fNL� , with

� � 10�5, perturbation theory breaks down for

K * 105=2jH0j. In fact, on even smaller scales,
K * 105jH0j, quantum corrections dominate the classical
answer, signaling strong coupling [18]. As argued in [18],
however, these pathologies can be circumvented by mod-
ifying the �� 1=t2 behavior before the dangerous modes
are generated. In that case, the power spectrum for � tilts
strongly to the red and then flattens out at an exponentially
smaller amplitude with an acceptable non-Gaussianity
(fNL� � 1) throughout. This results in a finite window
(jH0j & K & 105jH0j) of scale invariant modes, which is
sufficient to account for large scale structure and micro-
wave background observations.
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VI. CONCLUDING REMARKS

We have uncovered three distinct cosmological phases
that yield a broad range of scale invariant modes: infla-
tionary expansion, adiabatic ekpyrotic contraction [16],
and adiabatic ekpyrotic expansion [19]. All three phases
generate identical power spectra for � , and each is an
attractor background.

The degeneracy is broken at the 3-point level. The
rapidly varying equation of state characteristic of adiabatic
ekpyrotic phases results in strongly scale-dependent non-
Gaussianities [18]. Our results imply that inflation is the
unique single-field mechanism with unit sound speed

capable of generating a broad range of scale invariant
and Gaussian modes.
Forthcoming work [19] will extend the analysis to in-

clude a general sound speed csð�Þ, the other degree of
freedom at our disposal [25].
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