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Diffuse Optical Monitoring of Blood Flow and Oxygenation in Human
Breast Cancer During Early Stages of Neoadjuvant Chemotherapy

Abstract
We combine diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) to
noninvasively monitor early hemodynamic response to neoadjuvant chemotherapy in a breast cancer patient.
The potential for early treatment monitoring is demonstrated. Within the first week of treatment (day 7) DOS
revealed significant changes in tumor/normal contrast compared to pretreatment (day 0) tissue
concentrations of deoxyhemoglobin (rctHHbT/N=69±21%), oxyhemoglobin (rctO2HbT/N=73±25%), total
hemoglobin (rctTHbT/N=72±17%), and lipid concentration (rctLipidT/N=116±13%). Similarly, DCS found
significant changes in tumor/normal blood flow contrast (rBFT/N=75±7% on day 7 with respect to day 0).
Our observation suggest the combination of DCS and DOS enhances treatment monitoring compared to
either technique alone. The hybrid approach also enables construction of indices reflecting tissue metabolic
rate of oxygen, which may provide new insights about therapy mechanisms.
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Abstract. We combine diffuse optical spectroscopy �DOS� and dif-
fuse correlation spectroscopy �DCS� to noninvasively monitor early
hemodynamic response to neoadjuvant chemotherapy in a breast
cancer patient. The potential for early treatment monitoring is dem-
onstrated. Within the first week of treatment �day 7� DOS revealed
significant changes in tumor/normal contrast compared to pretreat-
ment �day 0� tissue concentrations of deoxyhemoglobin �rctHHbT/N
=69±21% �, oxyhemoglobin �rctO2HbT/N=73±25% �, total hemo-
globin �rctTHbT/N=72±17% �, and lipid concentration �rctLipidT/N
=116±13% �. Similarly, DCS found significant changes in tumor/
normal blood flow contrast �rBFT/N=75±7% on day 7 with respect to
day 0�. Our observations suggest the combination of DCS and DOS
enhances treatment monitoring compared to either technique alone.
The hybrid approach also enables construction of indices reflecting
tissue metabolic rate of oxygen, which may provide new insights
about therapy mechanisms. © 2007 Society of Photo-Optical Instrumentation Engi-
neers. �DOI: 10.1117/1.2798595�

Keywords: breast cancer; diffuse correlation spectroscopy; blood flow; diffuse op-
tical spectroscopy; neoadjuvant chemotherapy; early monitoring; oxygen
metabolism.
Paper 07037SSRR received Jan. 29, 2007; revised manuscript received Jul. 12,
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1 Introduction

Near-infrared �NIR� diffuse optical spectroscopy �DOS� and
tomography �DOT� have been employed quantitatively by
several groups to characterize breast cancers.1–10 In clinical
investigations, DOS and DOT have revealed tumor contrast in
total hemoglobin concentration,1,4,6–9,11–17 hemoglobin oxygen
saturation,4,11,12,14,17 water and lipid concentration,14,17,18 and
tissue scattering.2,16,18 Furthermore, DOS and DOT have also
shown promise for therapeutic monitoring of breast cancer

patients.14–17,19,20 Studies during neoadjuvant chemotherapy
�chemotherapy prior to surgery� have shown that tumor meta-
bolic response can precede anatomical changes �e.g., size�
accessible to traditional imaging and clinical palpation
methods.21 Thus, new diagnostic methodologies focusing on
physiological properties of the tumor, for example, hemody-
namic response, may offer benefits beyond those of traditional
imaging and palpation during the early course of chemo-
therapy. In a recent case study, for example, Jakubowski
et al.14 used DOS and observed significant changes in total
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hemoglobin concentration and water fraction within 5 days of
the start of treatment.

Another important hemodynamic parameter is blood flow.
Measurements of blood flow provide insight about oxygen
delivery and the clearance of metabolic by-products, comple-
mentary to information about tissue chromophores and scat-
tering available to DOS. In vivo diffuse optical measurement
of blood flow has recently been explored using diffuse corre-
lation spectroscopy22–25 �DCS� in brain,26–31 muscle,32,33 and
in the tumor tissues34–37 of animal models and humans. A
recent DCS study in human breast tumors37 showed increased
blood flow contrast in tumor regions relative to adjacent
healthy tissue, consistent with results from ultrasound,38 pos-
itron emission tomography39 �PET�, and magnetic resonance
imaging40 �MRI�. In some cases, the DCS technique has been
validated33,34 with ultrasound and MRI, and in a few cases the
therapy monitoring capability of hybrid DCS/DOS instru-
ments has been demonstrated.34–36 The latter instruments are
particularly exciting because, in principle, the oxygen deliv-
ery information derived from blood flow can be used in com-
bination with blood oxygenation measurements to estimate
the metabolic rate of oxygen consumption in tissue.

In this paper, we describe a case study of a breast cancer
patient during the early stages of neoadjuvant chemotherapy.
In contrast to previous optical measurements of breast tumors,
the current work used both DOS and DCS in the same patient
to derive information about tumor chromophores, tumor scat-
tering, and tumor blood flow. Significant changes in tissue
hemodynamic parameters were detected as early as 3 days
post-therapy. To date, several studies have focused on mea-
surements of parameters related to cancer metabolism and
blood flow after few cycles of chemotherapy, i.e., after several
weeks.39,41–45 The present study has focused on daily mea-
surements within the first week. The observations of blood
flow changes are the first of their kind during early stage
chemotherapy. The combined DOS/DCS information provides
a more complete picture of tumor tissue hemodynamics and
enables us to construct new indices reflecting changes in oxy-
gen metabolism that require knowledge about flow and oxy-
and/or deoxyhemoglobin concentrations.

2 Materials and Methods
2.1 Protocol
The patient measurements were conducted at the Beckman
Laser Institute of the University of California, Irvine �UCI�,
and were approved by the Internal Review Board at UCI. The
subject was a 45-year-old premenopausal Caucasian woman
undergoing neoadjuvant chemotherapy treatment; she pro-
vided informed written consent for Human Subjects protocol
95-563. The patient was diagnosed by core biopsy revealing
invasive ductal carcinoma in the left breast. Clinical palpation
identified an 11-cm�5-cm area at 3 o’clock �Fig. 1�a��. Dy-
namic contrast-enhanced MRI �DCE-MRI� detected several
strongly enhanced masses within this area. The outer edge of
the tumor was located 0.5 to 1 cm underneath the skin. In
addition, the patient had multiple benign lesions at 1 o’clock
�by ultrasound�. The tumor position was identified by palpa-
tion and ultrasound and was marked with a surgical pen to
ensure the scans on different days were performed at the same
location. The surgical pen marks were visible after day 3, and

they were redrawn every day afterward. The accuracy for re-
drawing was within 2 to 3 mm. The optical probe reposition-
ing accuracy was of similar order �i.e., 2 to 3 mm�. Measure-
ments were made with the patient in the supine position. DOS
and DCS measurements were acquired using handheld probes
at 10 discrete points in a line along the curved surface at 1-cm
intervals across the tumor and surrounding tissue �“line
scan”�. The same measurement pattern was used on the con-
tralateral breast for comparison. Figures 1�a� and 1�b� show
the tumor position and line-scan directions on the patient,
where the tumor center was located at the 5-cm position. One
line scan took about 10 �8� min per breast for DOS �DCS�,
respectively, resulting in a measurement time of about 40 min
per session. Extra care was taken during the DCS measure-
ment to gently press the probe on the patient’s breast; the
operator attempted to keep that pressure relatively constant
and the probe stable.

The patient was treated with neoadjuvant chemotherapy
delivered in multiple stages. The initial treatment stage con-
sisted of doxorubicin �Adriamycin� and cyclophosphamide
�Cytoxan, A/C� therapy. A/C treatments were administered
once per cycle for four cycles, with each cycle lasting 2
weeks. Doxorubicin is a cytoxic anthracycline antibiotic, and
its mechanism of action is thought to prevent DNA and pos-
sibly RNA synthesis by intercalation. Doxorubicin was ad-
ministered at a dose of 60 mg/m2 once per cycle. Cyclophos-

Fig. 1 �a� Tumor position and line-scan directions. Starting from point
1 in the upper outer quadrant, optical measurements were performed
at 1-cm intervals, ending at point 10 in the lower outer quadrant. �b�
Illustration of the line scans over the tumor. �c� Timing diagram for
chemotherapy monitoring.
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phamide is biotransformed principally in the liver to activate
alkylating metabolites, which cross-link to tumor cell DNA.
Cyclophosphamide was administered at a dose of 600 mg/m2

once per cycle. DOS and DCS measurements were performed
on the same day prior to the therapy �day 0�, and every day
between 3 to 7 days after the first A/C cycle �day 3 to day 7,
Fig. 1�c��. Additional stages using other therapies were ad-
ministered, but no DOS/DCS measurements were recorded
during these treatment stages �DOS/DCS measurements
ended on day 7�. The most relevant radiologic assessment was
the DCE-MRI study done 12 days after the first A/C therapy,
which showed shrinkage of multiple lesions, the largest lesion
of which shrunk by 1.7 cm �in diameter�. Ultrasound mea-
surements were performed after the completion of all four
A/C cycles �8 weeks� and detected an irregular hypoechoic
lesion of 1.3 cm in diameter, indicating a partial response to
A/C therapy. At the end of chemotherapy, DCE-MRI showed
several tiny enhanced foci. The surgical pathology from
lumpectomy at the conclusion of chemotherapy revealed re-
sidual intraductal and invasive ductal carcinoma with exten-
sive fibrosis.

2.2 Instrumentation

2.2.1 DOS
A broadband DOS system developed46 at UCI was utilized to
determine tissue optical properties and tissue blood oxygen-
ation in vivo. The system combined a steady state �SS�
tungsten-halogen light source and spectrophotometer operat-
ing in the 600 to 1000-nm range and a frequency-domain
photon migration �FDPM� component �based on a network
analyzer� consisting of six laser diodes �operating at discrete
wavelengths in the 660 to 850-nm range�. The combination of
the cw and discrete spectral components enabled determina-
tion of complete �a and �s� spectra from 600 to 1000 nm.
Measurements were made using a handheld probe consisting
of the SS and FDPM source fibers, one avalanche photodiode
�APD� detector and one spectrometer detector fiber. The
source-detector separation was 2.8 cm and the time to per-
form SS and FDPM measurements at a single position was
typically about 30 to 45 s. A detailed description of the per-
formance of this device in 58 breast cancer patients has re-
cently been reported.10

2.2.2 DCS
A portable two-channel DCS instrument �18�28�33 cm�
was built at the University of Pennsylvania and transported to
UCI for the measurements of blood flow. Briefly, a compact
cw 785-nm long coherence laser �coherence length �50 m,
Crystalaser, Reno, Nevada� was used as the light source. Two
fast-photon-counting APDs �Perkin-Elmer, Canada� were
used to register the photons collected with single-mode fibers.
A custom-built two-channel correlator board �www.correlator-
.com, New Jersey� took the transistor-to-transistor logic
�TTL� output from the APDs and calculated normalized tem-
poral intensity autocorrelation functions of the detected light,
g2���= �I�t�I�t+��� / �I�t��2, where I�t� is the measured inten-
sity at time t, � is the correlation delay time, and the angle
brackets �� denote an average over time. A single source fiber
and two detector fibers were used in the handheld probe with
2.5-cm source-detector separations. Thus, the DCS measure-

ment probed approximately the same volume of breast tissue
as the DOS measurement and a typical photon count rate of
�30 kHz was obtained from the breast measurement. Each
temporal autocorrelation curve was averaged for 2.5 s, and
multiple DCS measurements �typically �10� were performed
at a single position to ensure a good signal-to-noise ratio
�SNR�.

2.3 Data Analysis

2.3.1 DOS Measurements
The algorithm for analyzing the DOS data was described in
detail by Bevilacqua et al.46 Briefly, the frequency domain
measurements at six discrete wavelengths were used to extract
the reduced scattering coefficient ��s�� at each wavelength. A
power law function,47–49 �s����=A�−b, was then fit to the
wavelength-dependent �s� to estimate the scattering informa-
tion at all other wavelengths. With �s���� input from the
frequency-domain measurements, the data measured with the
spectrometer system was employed to extract accurate ab-
sorption coefficients �a���� over the whole spectral range. As
a result, tissue concentrations of oxy-, deoxy-, and total he-
moglobin �ctO2Hb, ctHHb and ctTHb�, water �ctH2O� and
lipid �ctLipid� were reconstructed by decomposing the ab-
sorption spectra.46 Note that our notation is designed to com-
ply with Zander and Mertzlufft,50 where the prefix “ct” indi-
cates tissue-level concentration �see Table1�.

2.3.2 DCS Measurements
We used the intensity temporal autocorrelation curves mea-
sured with the DCS instrument to extract tissue blood flow
information. The decay rate of the correlation curves is cor-
related with the blood flow, e.g., faster decay reflects higher
blood flow. In our analysis, the photon correlation diffusion
equation24,25 was used to model the propagation of the electric
field autocorrelation function, G1�r ,��= �E�r , t�E*�r , t+���,
inside tissues,

��D � G1�r,��� − �v�a� +
1

3
v�s�k0

2���r2����	G1�r,�� =

− vS�3�r − rs� . �1�

Here, E�r , t� is the electric field at position r and time t, � is
the correlation delay time, v is the light speed in the media,
D
v /3�s� is the light diffusion constant, k0 is the optical
wave vector, ��r2���� is the mean-square displacement of the
moving scatters in time �, and S�3�r−rs� is the point source
term located at rs. The normalized electric field autocorrela-
tion function g1�r ,��=G1�r ,�� /G1�r ,0� is related to the
measured intensity autocorrelation function g2�r ,�� through
the Siegert relation51:

g2�r,�� = 1 + 	�g1�r,���2, �2�

where 	 depends on the detection optics �e.g., it is inversely
proportional to the number of detected speckles�. We deter-
mined 	 for each measurement. The decay of the correlation
function depends on tissue �a and �s�, the mean square dis-
placement ��r2����, of the moving scatterers inside the tissue,
and a unitless factor � that represents the fraction of scatterers
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that are moving �i.e., red blood cells�. A semi-infinite solution
to Eq. �1� �Ref. 25� was used in our data analysis. We have
observed that a diffusion model, i.e., ��r2����=6Db�, fits the
autocorrelation curves rather well over a broad range of tissue
types, including the present experiments.26,32,34,52 Here, Db is
the effective Brownian motion coefficient of the scatterers
�distinct from the well known thermal Brownian motion co-
efficient due originally to Einstein53�. Although the units of
�Db �square centimeters per second� is different from the tra-
ditional blood perfusion unit �milliliters per minute per
100 g�, we have verified that changes in �Db are proportional
to the changes in tissue blood flow in a wide range of
measurements.32–34,52,54 Determination of � is difficult. There-
fore in the current study, we report �Db as the blood flow
index �BFI=�Db�. Bulk optical properties of the breast, �a

and �s� at 785 nm, were obtained from the DOS measure-
ments and used in the DCS data analysis to minimize the
influence of optical property changes on the accuracy of BFI.
In our fitting process, the noise in the correlation curve 
���
was estimated as a function of delay time �, and was used in
calculating �2, e.g., �2= �g2m���−g2c��� /
����, where g2m���
and g2c��� are the measured and calculated intensity autocor-
relation curves, respectively. A more stable BFI is usually
obtained from the fitting by minimizing �2 as defined in this
way.30

2.3.3 Tissue Optical Index
The tissue optical index �TOI� is a multiparameter contrast
function created to maximize both the contrast and the speci-
ficity of the optical measurement. The TOI is defined as10,19

TOI =
ctHHb · ctH2O

ctLipid
. �3�

The parameters in this contrast function were chosen based
on a statistical study of 58 malignant breast lesions.10 In this
study, deoxy-hemoglobin was identified as the single best dis-
criminator between malignant tumors and normal tissue, and
it was found that addition of water and lipid concentrations
further improved malignant/normal discrimination. The sim-
plest index combining these parameters used ctHHb and
ctH2O in the numerator and ctLipid in the denominator. As
such, increased TOI reflects a higher chance of tumor malig-
nancy. Conceptually, the TOI takes into account functional
�ctHHb and ctH2O� and structural �ctLipid and ctH2O� infor-
mation. TOI is also related to metabolic activity since in-
creases in deoxy-hemoglobin are often a symptom of unmet
metabolic demand.

2.3.4 Oxygen Metabolism
Another, and perhaps more direct, estimate of tissue oxygen
metabolism can be calculated by combining information
about blood flow �delivery of oxygen� measured by DCS with
chromophore concentration information such as blood oxygen
saturation �i.e., oxygen availability� measured by DOS. This
approach is often employed in studies of cerebral metabolic
rate of oxygen55–60 �CMRO2�. In the simplest model,
CMRO2 is proportional to the tissue arterial-venous oxygen-
ation difference or oxygen extraction fraction �OEF� as well
as the rate of oxygen delivery �i.e., the cerebral blood flow,
CBF�. Several assumptions are typically made in the steady-
state model, including constant vasculature compartmentaliza-
tion. The CMRO2 model has been fairly well studied, vali-
dated and its limits examined.27,28,55–61

In this paper, we construct a mammary oxygen metabolism
model that closely follows the CMRO2 approach in brain �see
the appendix�. We define the tumor/normal contrast of the
mammary metabolic rate of oxygen �MMRO2�T/N�� as,

Table 1 Table of abbreviations.

Name Symbol Units

Deoxy-hemoglobin concentration ctHHb �M

Oxy-hemoglobin concentration ctO2Hb �M

Total hemoglobin concentration ctTHb �M

Hemoglobin oxygen saturation stO2 %

Water concentration ctH2O % �with respect to pure substance�

Lipid concentration ctLipid % �with respect to pure substance�

Blood flow index BFI cm2/s

Tissue optical index TOI �M

Mammary metabolic rate of oxygen MMRO2 �M/100 g min−1

Tumor/normal contrast T/N folds

Relative change compared to day 0 r %

Notes on nomenclature: �1� a prefix ct indicates tissue-level concentration of the parameter; �2� subscripts T and N indicate values of tumor and normal tissues,
respectively, where a subscript T/N indicates the tumor/normal contrast; �3� a prefix r indicates relative change compared to prechemotherapy value �day 0�.

Zhou et al.: Diffuse optical monitoring of blood flow and oxygenation…

Journal of Biomedical Optics September/October 2007 � Vol. 12�5�051903-4

Downloaded from SPIE Digital Library on 10 May 2011 to 130.91.117.41. Terms of Use:  http://spiedl.org/terms



MMRO2�T/N� =
�T

�N
·

ctHHbT

ctHHbN
·  ctTHbT

ctTHbN
�−1

·
BFIT

BFIN
, �4�

where T and N represent the values for tumor and normal
breast tissue �i.e., normal tissues within the same breast�, and
�T�N�= �ctHHbvT�N� /ctTHbvT�N�� / �ctHHbT�N� /ctTHbT�N�� is
the ratio of tumor �or normal� deoxy-to total-hemoglobin in
the venous compartment �v� compared to the ratio of deoxy-to
total-hemoglobin in the total vasculature �see the appendix�.
The simplest approximation, which we adopt here, assumes
the ratio of �T/�N to be 1 and constant over time. The relative
tumor/normal contrast of mammary metabolic rate of oxygen
�rMMRO2�T/N�, see Table 1� can now be estimated from our
measurements. We note, however, that these assumptions are
unverified. The precise quantification of �T and �N requires
better understanding of the microcirculation in tumor and nor-
mal tissues, and such precision is beyond the scope of the
current study.

2.3.5 Characterization of Responses
To quantify tumor response to chemotherapy, the tumor/
normal contrast for the parameters at each time point was
determined. Tumor/normal contrast was calculated as the ratio
of the average tumor value �positions 3 to 7 in the line scans�
to the average value of the normal tissue on the same side of
the breast �i.e., positions 8 to 10�, for example, BFT/N
=BFIT/BFIN, ctTHbT/N=ctTHbT/ctTHbN, etc. The positions
were chosen based on palpation, and positions 1 and 2 were
excluded as normal tissue because they were too close to
other benign lesions. This calculation effectively accounts for
the global variations in response to chemotherapy by normal-
izing to the daily normal tissue values. Thus, the tumor spe-
cific responses of each parameter are “pulled” out of the mea-
surement. The tumor/normal contrast for each time point was
then normalized to prechemotherapy values �day 0� to reflect
relative changes, indicated by a prefix “r” for each parameter
�see Table 1�. Wilcoxon rank-sum tests were conducted com-
paring the optically measured differences between tumor and
normal on day 0. Significant changes were observed and
marked in the figures with an ‘*’, representing a significance
level of p0.05 compared to prechemotherapy values.

3 Results and Discussion
Figure 2 exhibits representative DCS temporal autocorrelation
curves measured on the tumor before and after the first A/C
treatment �days 0, 3, and 7�. The figure also shows data from
normal tissue from both breasts on day 0. The symbols are
raw data and the solid lines are fitted curves. The correlation
curves measured on the tumor have significantly faster decay
rates compared to those from normal breast tissues, indicating
higher blood flow in the tumor. The measurements from the
tumor on different days are clearly distinguishable from one
another with good SNR, thus enabling us to quantify tumor
blood flow changes due to chemotherapy.

Figure 3 shows line scans of blood flow index �BFI
=�Db, Fig. 3�a�� and total hemoglobin concentration �ctTHb,
Fig. 3�b�� from both the tumor breast and the contralateral
breast before and after the first chemotherapy treatment �days
0, 3, and 7�. Error bars in the figures represent the standard
deviation of repeated measurements. The measurements con-

ducted on different days were reproducible, which can be seen
from the scans on the contralateral breast and the normal tis-
sues on the tumor-bearing breast �positions 8 to 10�. BFI ex-
hibited significant increases in the tumor breast �i.e.,
10.6±1.8 folds� relative to the heterogeneity of normal breast
tissue on the contralateral side �i.e., 2.1±0.7�. ctTHb also
showed clear tumor/normal contrast �i.e., 2.1±0.3�. For clar-
ity, line–scans for other hemodynamic parameters, such as
ctHHb, ctO2Hb, and water and lipid concentrations, are not
plotted. The observed tumor/normal contrast of these param-
eters is consistent with previous reports,10,14 i.e., ctHHb had a
contrast of 2.1±0.2, ctO2Hb had a contrast of 2.0±0.3, water
had a contrast of 1.9±0.3, ctLipid had a contrast of 0.8±0.05,
and �s� at 785 nm had a contrast of 0.96±0.03 prior to the
A/C treatment.

Neoadjuvant chemotherapy can induce hemodynamic
changes in both tumor and normal tissues.14,16 To investigate
the tumor specific changes in response to the chemotherapy,
relative tumor/normal contrast of ctHHb, ctO2Hb, and ctTHb
with respect to pretherapy values �rctHHbT/N, rctO2HbT/N,
and rctTHbT/N� were calculated and are plotted in Fig. 4.
Notice that significant changes in these hemodynamic param-
eters were observed as early as 4 days after the start of A/C
therapy �p0.05�, i.e. rctHHbT/N dropped to 68±12% of its
original value �day 0�; rctO2HbT/N dropped to 63±10%; and
rctTHbT/N dropped to 63±10%. By the end of the monitoring
period �day 7�, there were continued small hemodynamic re-
ductions and all values remained substantially lower than pre-
treatment levels �day 0�: rctHHbT/N dropped to 69±21% �p
0.05�; rctO2HbT/N dropped to 73±25% �p0.05�; and
rctTHbT/N dropped to 72±17% �p0.05�.

Relative tumor/normal contrast of blood flow �rBFT/N�,
concentration of water �rctH2OT/N� and lipid �rctLipidT/N�,
and reduced scattering coefficient �r�s�T/N�� � in response to the
chemotherapy are plotted in Fig. 5. Blood flow measured with
DCS showed good SNR ratio and substantial tumor-to-normal
contrast. rBFT/N increased initially on day 3 after the A/C
therapy �130±13% , p0.05�, followed by a sharp and sus-

Fig. 2 Raw �symbols� and fitted intensity autocorrelation curves �solid
lines� measured from the patient before and after chemotherapy �day
0, day 3, and day 7�. Both 	 and the BFI �BFI=�Db� were fit. Similar
	 values were obtained for both normal and tumor breast tissues. The
correlation curves measured on the tumor have larger decay rates
compared to the curves measured on the contralateral breast, indicat-
ing higher blood flow in the tumor.
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tained drop on days 4 �72±7% , p=0.13�, 5 �68±7% , p
0.05�, and 7 �75±7% , p=0.13�. rctLipidT/N increased sig-
nificantly from day 5 �108±6% , p0.05� to day 7
�116±13% , p0.05�. Since the lipid concentration in tumor
was lower than in the normal breast tissues before the therapy,
the increase in rctLipidT/N suggests that lipid concentration in
the tumor is normalized over time. The r�s�T/N�� at 785 nm
had a small increase within the week �7% , p�0.05�, de-
spite the increase on day 5, which was significant
�106±4% , p0.05�. No significant changes for the relative
contrast of water concentration �rctH2OT/N� were observed
within the first week. However, the subject was also enrolled
in a separate study for DOS, wherein significant decrease in
water contrast was observed after 4 months �i.e., rctH2OT/N
decreased to 68±7% , p0.01�.

Note, the optical properties ��a and �s�� of the breast tissue
at 785 nm were measured by the DOS instrument. Measured
absorption and scattering effects are incorporated into the
DCS data analysis. As a result, the influence of oxygenation
state of the breast should not influence our blood flow results.
On the other hand, probe contact pressure and the movement

of fiber optics could have an effect on our DCS measure-
ments. In a previous experiment,32 we have carried out tests
that suggest the movement of fiber optics do not influence the
DCS measurements after the optical probe was secured in
place. An indication that the pressure and motion effects are
minimal can be seen from the relatively small variations mea-
sured on the contralateral side of the breast �Fig. 3�, i.e., the

Fig. 3 Line scans of �a� BFI and �b� ctTHb before and after the first
chemotherapy cycle �day 0, day 3, and day 7�. On the tumor side of
the breast, BFI showed clear contrast, which was much larger than the
heterogeneity of the breast tissue on the contralateral side. The ctTHb
also showed clear contrast on the tumor. Tumor contrasts changed in
response to the chemotherapy. For clarity, line scans of other hemo-
dynamic parameters, such as ctHHb, ctO2Hb, and water and lipid
concentrations, are not plotted. Error bars represent the standard de-
viation of repeated measurements. Plots were slightly offset along the
x axis for better illustration of the error bars.

Fig. 4 Relative tumor/normal ctHHb, ctO2Hb, and ctTHb contrast
�rctHHbT/N, rctO2HbT/N and rctTHbT/N� in response to chemotherapy.
The contrasts were calculated as the ratio of the average tumor value
�positions 3 to 7 in the line scans� to the average value of the normal
tissue on the same side of the breast �positions 8 to 10�. The contrasts
were then normalized to the pre-chemotherapy values to reflect rela-
tive changes. Significant decreases in the contrast occurred in all three
parameters 4 days after the chemotherapy. Asterisks �*� denote the
data points significantly different from the pre-chemotherapy values
�day 0, p0.05�. Plots were slightly offset along the x axis for better
illustration of the error bars.

Fig. 5 Relative tumor/normal blood flow index, water, lipid and �s�
contrast �rBFT/N, rctH2OT/N, rctLipidT/N, and r�s�T/N�� � in response to
chemotherapy. The contrasts were calculated as the ratio of the aver-
age tumor value �positions 3 to 7 in the line scans� to the average
value of the normal tissue on the same side of the breast �positions 8
to 10�. The contrasts were then normalized to the pre-chemotherapy
values to reflect relative changes. rBFT/N showed an significant initial
increase �p0.05� on day 3 and a significant decrease on day 5 �p
0.05�. Water contrast did not change significantly in response to the
chemotherapy, while lipid contrast increased significantly after day 5
�p0.05�. Asterisks �*� denote the data points significantly different
from the pre-chemotherapy values �day 0, p0.05�. Plots were
slightly offset along the x axis for better illustration of the error bars.
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day-to-day tumor contrast and variation were large compared
to the combination of measurement noise, physiological
noise, motion artifact noise, and pressure related variations
experienced on the contralateral breast.

Chemotherapy treatment alters tumor angiogenesis.62

Therefore, optical properties of the tumor are expected to
change due to chemotherapy, which is observed in our mea-
surements. Although chemotherapy may also induce changes
of other kinds of microscopic motions inside the tumor, we
believe such an effect is likely small compared to the changes
in tumor vasculature and blood flow. In our previous study of
photodynamic therapy treatment of mouse tumors,34 blood
flow changes measured with both ultrasound Doppler and
DCS showed comparable results, indicating the tumor re-
sponses measured with DCS are mainly due to blood flow.
The relative tumor blood flow reduction in response to neo-
adjuvant chemotherapy observed in the current study ��25%
within the first week� is also consistent with results from PET
studies,39,63 wherein a 30% to 50% blood flow decrease after 2
months of chemotherapy was reported. Yet blood flow
changes exhibit distinct features compared to other hemody-
namic parameters measured with DOS. For example, we have
observed an �30% initial increase in rBFT/N on day 3 in this
patient �Fig. 5�, accompanied by an �20% decrease in
rctHHbT/N �Fig. 4�. Although the mechanism is not clear, this
may be due to an early tumor vascular response to cellular
damage. The �20% decrease in rctHHbT/N on day 3 could be
consistent with reduced oxygen extraction given that
rctTHbT/N remained roughly constant and flow was elevated.
By day 4, A/C therapy has continued to damage both cells and
vasculature; rBFT/N, rctHHbT/N, and rctHHbT/N all decreased
because of significant damage to tumor cells. A similar initial
increase followed by a significant decrease of blood flow was
observed during the first few days after radiation therapy in
patients with breast tumors.64 In patients with head and neck
tumors,36,65 and rectal carcinoma,66 similar patterns of blood
flow changes were also reported in the early weeks after ra-
diation therapy. Further studies involving more patients are
underway to confirm the observations in this case study.

As described in Sec. 2.3, the combination of DCS and
DOS measurements enable oxygen metabolic changes in the
tumor to be calculated using Eq. �4�. Compared to flow, he-
moglobin concentrations, and other tissue parameters alone,
this relative metabolism index is a potentially more direct
indicator of tumor metabolic activities that integrates many
factors and may provide further insight about tumor physi-
ological responses to therapy. Figure 6 displays the relative
changes in tumor/normal contrast of mammary metabolic rate
of oxygen and the tissue optical index based on chromophore
concentrations �i.e., rMMRO2�T/N� and rTOIT/N�. Values of
relative tumor/normal contrast for all the optically derived
parameters are listed in Table 2. rMMRO2�T/N� and rTOIT/N

differed on day 3, e.g. rTOIT/N had an initial drop
�72±16% , p=0.13� and rMMRO2�T/N� had an initial in-
crease �118±13% , p=0.68�, but both parameters were only
marginally different from day 0. The initial increase observed
in rMMRO2�T/N� is most probably a result of the initial in-
crease of blood flow, although further evidence is needed for
this hypothesis to be confirmed. However, after day 4, both
metabolic indices dropped significantly �rTOIT/N=60±9%,

p0.05 and rMMRO2�T/N�=78±7%, p0.05 on day 4� and
then stabilized at this level until the end of the monitoring
period. We note that although both TOIT/N and MMRO2�T/N�
are considered to be related to tumor metabolic responses,
TOIT/N provides information about tumor cellular metabolic
activities,19,67 while MMRO2�T/N� provides an estimation of
tumor oxygen metabolic changes. Note that tumors have ab-
normal vasculatures and the input and output circulations to
and from the tumor are not well characterized. Our assump-
tion of saO2T=1 �see the appendix� may not be true, but in
the absence of more information, we believe this is a reason-
able starting assumption. MMRO2�T/N� �Eq. �4�� functions
more as a relative index of oxygen consumption than as a
quantitative measure of true oxygen metabolism. We have in-
troduced MMRO2�T/N� as a potentially useful index for moni-
toring cancer physiology accessible to the optical method. Its
utility, however, must be determined by more clinical studies.
To date only a few in vivo studies on human tumors have
probed oxygen metabolism.68–71 Further studies and valida-
tion in animal models using methods presented in this paper
may be useful to improve the oxygen metabolism model in
tumors, to reveal the connections between TOI and oxygen
metabolism, and to provide potential diagnostics for chemo-
therapy efficacy.

4 Conclusion
We reported a case study wherein we monitored hemody-
namic and tissue optical property changes in a breast tumor
patient undergoing neoadjuvant chemotherapy. Our approach
employed a combination of DOS and DCS to measure simul-
taneously blood oxygenation, lipid, water, and blood flow. We
demonstrated the feasibility of this methodology and detected
significant changes in tissue parameters as early as day 3 fol-
lowing the first chemotherapy infusion. This study introduced

Fig. 6 Relative tumor/normal tissue optical index and mammary
metabolic rate of oxygen contrast �rTOIT/N and rMMRO2�T/N�� in re-
sponse to chemotherapy. The contrasts were calculated as the ratio of
the average tumor value �positions 3 to 7 in the line scans� to the
average value of the normal tissue on the same side of the breast
�positions 8 to 10�. The contrasts were then normalized to the pre-
chemotherapy values to reflect relative changes. Significant decreases
were observed in both rTOIT/N and rMMRO2�T/N� after day 4. Asterisks
�*� denote the data points significantly different from the pre-
chemotherapy values �day 0, p0.05�. Plots were slightly offset along
the x axis for better illustration of the error bars.
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optical measurement of blood flow as a new parameter for
therapy monitoring along with multiparameter indices that
may provide further physiological insight, such as tissue
metabolic rate of oxygen. Overall, the hybrid diffuse optical
approach shows promise for therapy monitoring, optimiza-
tion, and personalization by potentially detecting physiologi-
cal changes that may precede anatomical changes accessible
to traditional radiological diagnostics procedures.

Appendix
In this section, we derive the equation for the calculation of
the tumor/normal contrast of the mammary metabolic rate of
oxygen �MMRO2�T/N�� following the steps in deriving the
cerebral metabolic rate of oxygen �CMRO2�.27,55–60

Using Fick’s law, the tumor �or normal� mammary meta-
bolic rate of oxygen �MMRO2T�N�� can be calculated as

MMRO2T�N� = OEFT�N� · BFT�N� · �O2�aT�N�. �5�

The tumor �or normal� oxygen extraction factor �OEFT�N��
is by definition the fractional conversion of oxygen from ar-
terioles to venules, i.e., OEFT�N�= ��O2�aT�N�
− �O2�vT�N�� / �O2�aT�N�, where �O2�aT�N� and �O2�vT�N� are the
tumor �or normal� arteriolar and venous concentrations of
oxygen. BFT�N� is the tumor �or normal� blood flow. In
steady-state, assuming a balance between oxygen concentra-
tion and oxyhemoglobin saturation in the arteriolar and
venous compartments �saO2T�N� and svO2T�N��, we have

OEFT · �O2�aT

OEFN · �O2�aN
=

�O2�aT − �O2�vT

�O2�aN − �O2�vN
=

saO2T − svO2T

saO2N − svO2N
. �6�

As a result, the tumor/normal contrast of mammary meta-
bolic rate of oxygen �MMRO2�T/N�� can be expressed as

MMRO2�T/N� =
saO2T − svO2T

saO2N − svO2N

BFT

BFN
=

saO2T − svO2T

saO2N − svO2N

BFIT

BFIN
,

�7�

given the assumption that the changes of BFI are proportional
to the changes of tissue blood flow �see Sec. 2.3�. Assuming
saO2T=saO2N=1, we will have

MMRO2�T/N� =
1 − svO2T

1 − svO2N
·

BFIT

BFIN

=
�ctHHbvT/ctTHbvT�
�ctHHbvN/ctTHbvN�

BFIT

BFIN

=
ctHHbvT

ctHHbvN
 ctTHbvT

ctTHbvN
�−1 BFIT

BFIN
. �8�

The diffuse optical signal originates from the hemoglobin
in the tissue within the view of the probe, and represents a
mixture of arterial, capillary and venous blood. The mixed
tissue compartment �MTC� viewed by the optical probe is a
weighted average of the arterial �a�, capillary �c�, and venous
�v� compartments, and the weight is proportional to the opti-
cal cross section of the corresponding compartment. For ex-
ample, ctHHb=k1 ·ctHHba+k2 ·ctHHbc+k3 ·ctHHbv, where
k1, k2, and k3 are the respective weights and k1+k2+k3=1. If
we further assume the quantities in the venous compartment
are proportional to the MTC values, i.e.,

ctHHbvT = r1T · ctHHbT,ctTHbvT = r2T · ctTHbT,

ctHHbvN = r1N · ctHHbN,ctTHbvN = r2N · ctTHbN. �9�

We can further simplify by defining �T�N�=r1T�N� /r2T�N�
= �ctHHbvT�N� /ctHHbT�N�� / �ctTHbvT�N� /ctTHbT�N��
= �ctHHbvT�N� /ctTHbvT�N�� / �ctHHbT�N� /ctTHbT�N��, which
is the ratio of deoxy to total hemoglobin in the venous com-

Table 2 Tumor/normal contrast changes normalized to day 0 values of all parameters within the first week of chemotherapy.

Day 0 Day 3 Day 4 Day 5 Day 6 Day 7

rctHHbT/N 1.00±0.09 0.81±0.12 0.68±0.12* 0.71±0.17* 0.72±0.14* 0.69±0.21*

rctO2HbT/N 1.00±0.16 0.95±0.17 0.63±0.10* 0.75±0.14* 1.00±0.28 0.73±0.25*

rctTHbT/N 1.00±0.15 0.92±0.16 0.63±0.10* 0.75±0.15* 0.94±0.24 0.72±0.17*

rctH2OT/N 1.00±0.16 0.97±0.14 1.02±0.15 1.04±0.16 1.01±0.19 1.04±0.22

rctLipidT/N 1.00±0.06 1.04±0.07 1.13±0.08 1.08±0.06* 1.19±0.07* 1.16±0.13*

rBFT/N 1.00±0.17 1.30±0.13* 0.72±0.07 0.68±0.07* 0.91±0.10 0.75±0.07

r�s�T/N�� 1.00±0.03 1.02±0.05 1.04±0.04 1.06±0.04* 1.06±0.03 1.07±0.04

rTOIT/N 1.00±0.16 0.72±0.16 0.60±0.09* 0.65±0.23* 0.59±0.13* 0.59±0.18

rMMRO2�T/N� 1.00±0.17 1.18±0.13 0.78±0.07 0.66±0.08* 0.67±0.11* 0.73±0.11*

Asterisks �*� denote the data points significantly different from the prechemo therapy values �day 0, p0.05�.
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partment compared to the ratio of deoxy to total hemoglobin
in the total mixed vasculature. As a result, we will have

MMRO2�T/N� =
r1T · ctHHbT

r1N · ctHHbN
 r2T · ctTHbT

r2N · ctTHbN
�−1 BFIT

BFIN

=
r1T/r2T

r1N/r2N

ctHHbT

ctHHbN
 ctTHbT

ctTHbN
�−1 BFIT

BFIN

=
�T

�N

ctHHbT

ctHHbN
 ctTHbT

ctTHbN
�−1 BFIT

BFIN
, �10�

where �T and �N are two unknowns. The ratio of �T/�N
reflects the relative oxygen extraction ability of the vascula-
ture. For example, a �T/�N ratio larger than 1 means a higher
tumor deoxyhemoglobin fraction in the venous compartment
relative to the total mixed vasculature compared to the normal
tissue, reflecting a larger portion of oxygen is extracted from
the tumor tissue.
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