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Two-dimensional freezing criteria for crystallizing colloidal monolayers

Abstract
Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-
tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into
polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the
first time: the Hansen–Verlet freezing rule, the Löwen–Palberg– Simon dynamical freezing criterion, and two
other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution
of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of
single crystals, were demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we
also observed a peak in the fluctuations of the orientational order parameter and a percolation transition
associated with caged particles. Speculation about these percolated clusters of caged particles casts light on
solidification mechanisms and dynamic heterogeneity in freezing.
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Video microscopy was employed to explore crystallization of colloidal monolayers composed of
diameter-tunable microgel spheres. Two-dimensional �2D� colloidal liquids were frozen
homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally
tested in thermal systems for the first time: the Hansen–Verlet freezing rule, the Löwen–Palberg–
Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of
the radial distribution function and on the distribution of the shape factor of Voronoi polygons.
Importantly, these freezing criteria, usually applied in the context of single crystals, were
demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we also
observed a peak in the fluctuations of the orientational order parameter and a percolation transition
associated with caged particles. Speculation about these percolated clusters of caged particles casts
light on solidification mechanisms and dynamic heterogeneity in freezing. © 2010 American
Institute of Physics. �doi:10.1063/1.3372618�

I. INTRODUCTION

Over the years, phenomenological freezing criteria de-
rived from experiment and simulation have proved important
for assignment of freezing points.1,2 One famous example is
the Lindemann criterion3 which has been widely used in
three-dimensional �3D� melting and freezing, and its gener-
alized version4 has been employed in studies of two-
dimensional �2D� melting. Simulations in 2D suggest four
empirical criteria useful for identification of the freezing
transition, none of which require free-energy calculations.
They are, respectively, the 2D version of Hansen–Verlet
�HV� freezing rule,5 the 2D dynamic Löwen–Palberg–Simon
�LPS� criterion,6,7 the split second peak of the radial distri-
bution function,8,9 and the bimodal distribution profile of the
shape factor of Voronoi polygons.10 The 2D HV and LPS
criteria have never been tested in experiment; however, they
have been demonstrated in both equilibrium and
nonequilibrium11 simulations with various particle interac-
tions. The latter two criteria are not as well tested as HV and
LPS; they have been verified in simulations of hard disks
and, experimentally, in a qualitatively different nonthermal
vibrating granular system.12

Besides empirical criteria, fundamental theories of
freezing/melting in 2D have been formulated. Kosterlitz-
Thouless-Halperin-Nelson-Young �KTHNY� theory13–16 and
other 2D melting theories,17–19 however, address single-
crystal melting. In principle, these melting theories can be
applied to freezing, but in practice homogenous nucleation at
finite quench rates most often produces polycrystalline solids
upon freezing. Grain boundaries in polycrystalline solids

break both translational and orientational order, and the
single-crystal melting criteria from KTHNY theory cannot be
directly applied to this case. Indeed, it is interesting to note
that the freezing transition from 2D liquid to 2D polycrystal-
line solids has hardly been studied by comparison to 2D
single-crystal melting20 and 2D glass/jamming
transitions.21–23

In this contribution we explore the freezing transition
from 2D liquid to 2D polycrystalline solid, and we explore
the utility of various empirical freezing criteria for prediction
of freezing in this common thermal situation. In particular,
we measure polycrystalline solidification in a colloidal
monolayer, and we find that the four freezing criteria de-
scribed above are useful to varying degrees for defining the
freezing transition point. Moreover, we observe a peak in the
fluctuations of the orientational order parameter at the freez-
ing point, and a percolation transition of caged particles at
the freezing point. These latter two observations led us to
further speculations about freezing mechanisms in this col-
loidal system and could become useful empirical freezing
criteria in their own right.

Colloids are outstanding model systems for melting and
freezing studies, because the trajectories of individual par-
ticles in the samples are measurable by video microscopy.
More often than not, however, colloids self-assemble to
polycrystalline solids instead of monocrystals, especially if
special annealing schemes are not employed. Thus an asym-
metry exists between melting and freezing studies of 2D sys-
tems. In tests of theories of 2D single-crystal melting,20 ex-
perimenters typically anneal polycrystalline solids into very
large crystalline domains using magnetic fields24 or shear.25

Subsequent observations are made only in the central areas
of these large crystalline domains.24–27 Freezing experimentsa�Electronic mail: yilong@ust.hk.
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are much more difficult than melting experiments, because
polycrystalline solids cannot be annealed by external fields
in advance nor can a central area of a crystalline domain be
chosen a priori. Thus, most colloidal crystallization experi-
ments involve polycrystalline solids and some nonequilib-
rium processes. Among these experiments are studies in 3D
during recrystallization after shear melting28,29 and in a
gravitational field,30 studies in 2D with electrohydrodynamic
flows,31 studies with tunable depletion forces,32 and studies
in rapidly quenched monolayers of magnetic spheres.33 2D
freezing has also been studied in dusty plasmas34,35 and
driven granular systems.12

The thermally sensitive microgel spheres used in the
present study generally freeze homogenously into polycrys-
talline solids. Their short-ranged particle interactions require
long equilibration times to find global free-energy minima.
The present work employs a high-resolution camera to study
polycrystalline solidification over large areas ��23 000 par-
ticles� with typical polycrystalline solid domain sizes of
about 1000 particles, see Fig. 1.

II. MATERIALS AND METHODS

Uniform ��3% polydispersity� rhodamine-labeled fluo-
rescent N-isopropyl acrylamide �NIPA� spheres were synthe-
sized and suspended in 1 mM acetic acid buffer solution. The
resultant particles were sterically stabilized with short-ranged
repulsive interactions.25 Their electrostatic repulsions were
negligible in the buffer solution. Samples consisted of a
monolayer of �0.8 �m diameter NIPA microgel spheres
confined between two glass walls separated at about 1 �m.
The spheres floated around midplane of the cell because the
density of sphere matches with the solution very well and
because particle interactions with the sample cell walls are
repulsive. Note, the gravitational height of the microgel par-
ticles, h=kBT / �mg��100 �m, is much larger than the cell
thickness. Here, T is the room temperature, and mg is the
buoyant weight of the microgel particle, which is quite small
since water occupies more than 90% of the particle volume.
The glass surfaces were rigorously cleaned so that particles

did not stick to the walls. The samples were sealed and a
fixed sample cell thickness was thereby frozen in. The wall
separation varied by about 2 �m over the 18�18 mm2

sample area. Thus the walls can be considered to be parallel
over the �0.1 mm field of view. The uniform monolayer
nucleated homogenously, and flow was not detected during
the experiment.

A 14-bit low-noise charge-coupled-device �CCD� cam-
era was employed to record the motions of �23 000 spheres
at 3.57 frame/sec in a 1392�1040 pixel2 �i.e., 147.3
�110.2 �m2� field of view. To obtain the best spatial reso-
lution, we used confocal microscopy. Confocal microscopy
avoided small image artifacts characteristic of bright-field
microscopy and fluorescent bleaching problems endemic to
traditional fluorescence microscopy. The temperature control
�Bioptechs� on the microscope had 0.1 °C resolution. We
decreased temperature from 29.5 to 24.1 °C in 0.3 °C /step
and recorded 20 min video at each temperature after several
minutes of equilibration. One-minute and 1-h equilibration
times appeared to produce little difference. The particle po-
sitions in each frame were identified using standard image
analysis algorithms.36

Diameters of soft spheres cannot be defined unambigu-
ously. In order to estimate sphere packing fraction, we mea-
sure the particle diameter from the direct image data and
calibrate at the close-packing area fraction. The diameter de-
termined from the image analysis varied linearly with the
temperature, consistent with the hydrodynamic particle di-
ameter measured by light scattering. Note, however, the hy-
drodynamic diameter is obviously an overestimate of the true
particle diameter, and the diameter from image analysis need
not be perfectly accurate either. Hence we calibrated the
sphere diameter at the close-packing state, defined as the
position of the measured first peak of the radial distribution
function g�r� at the close-packing point. Figures 2�a�–2�c�
show that the close-packing state at 26.2 °C has the best
crystalline structure, i.e., it is characterized by the highest
peak in the structure factor S�k�, minimum defect density,
and maximum mean local orientational order parameter. The
local 2D orientational order parameter20 of particle j is

�6j =
1

nn
�
k=1

nn

e6i�jk, �1�

where � jk is the angle of the bond between particle j and its
neighbor k. nn is the number of nearest neighbors identified
from the Delaunay triangulation. Below 26.2 °C, ���6j�	 and
S�k� decrease slightly and the defect density increases
slightly as shown in Figs. 2�a�–2�c�, due in part to small
out-of-plane buckling and soft-sphere lattice deformation.
Combining the slope of the diameter-versus-temperature
curve from image analysis and the calibrated diameter de-
rived from g�r� at 26.2 °C in the close-packing state, we find
that the effective diameter � varies linearly to good approxi-
mation from 0.71 �m at 29.5 °C to 0.92 �m at 24.1 °C.
The resultant particle area-fraction-versus-temperature curve
is shown in Fig. 2�d�. Here we use the more popular defini-
tion of the area fraction, �=n�2, without the factor 	 /4. n is
the number density.

FIG. 1. A typical Voronoi diagram of the polycrystalline sample in 1/3 of
the full field-of-view at 26.2 °C. Light green polygons: 5-neighboring par-
ticles; dark black: 7-neighboring particles; blue: 4-neighboring particles;
orange: 8-neighboring particles.
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In the polycrystalline freezing, grain boundaries break
up quasilong-ranged orientational order and, therefore, un-
ambiguous identification of a hexatic phase is not possible.
Thus, the freezing transition we have measured in our poly-
crystalline samples appears to be a first-order process, with-
out hexatic phase. A similar behavior has been observed in
the freezing of polycrystalline monolayers of magnetic
spheres with dipolar interactions,33 wherein freezing ap-
peared to be a first-order process evolving from solid to a
coexistence phase at the melting point, and from liquid to a
coexistence phase at the freezing point. In our samples, the
coexistence phase was characterized by crystalline patches
coexisting with fluid, similar to the coexistence phase ob-
served in the monolayers of magnetic spheres.33 We note,
however, that such patches do not unambiguously imply a
first-order transition, because patches can also arise in dense
fluid phases.2,25,37 Nevertheless, our measurements lead us to
assign melting and freezing points at 26.8 and 27.7 °C, re-
spectively. The difference in temperature suggests that a
solid-liquid coexistence regime exists, and that the “transi-
tion” process is first-order. Freezing points are derived and
discussed in Sec. III; they are the main subject of this con-
tribution.

The melting point can be derived from the dynamic Lin-
demann parameter,4 L, defined as

L2 =
��
rrel�t��2	

2a2 =
��
ui�t� − 
u j�t��2	

2a2 , �2�

where 
rrel is the relative nearest neighbor-neighbor dis-
placement; 
ui is the displacement of particle i, and particles
i and j are nearest neighbors. This definition represents a
slightly modified version of the traditional Lindemann pa-
rameter, because the traditional Lindemman parameter di-
verges in 2D due to strong long-wavelength fluctuations.

Figure 3 shows that the melting point falls within the tem-
perature �and corresponding area fraction� range of
26.8–27.1 °C wherein L is becoming divergent. At 26.8 °C,
L saturates at 13%, close to the simulation result of 12% for
2D dipole and 2D Lennard-Jones crystals.4

III. RESULTS AND DISCUSSION

A. HV 2D freezing criterion

To identify the freezing point, we first apply the 2D HV
criterion, which is demonstrably robust in both equilibrium
and weak nonequilibrium simulations.11 The 2D version of
the HV freezing rule5 states that a 2D liquid freezes when the
amplitude of the first peak of the structure factor S�k� ex-
ceeds a critical value of approximately 5. For different par-
ticle interactions, this critical value varies from 4.4 to
5.5.5,8,38 In 3D, the critical values of the HV criterion is
2.85.39 Based on this freezing criterion, Fig. 2�a� shows a
freezing point of 27.7�0.1 °C. Notice, at this temperature,
the slope of the curve is steepest. Such “steepest slopes”
have also been observed in simulations at the freezing points
of systems with Lennard-Jones and r−12 potentials.5,8 At
27.7 °C, the area fraction �=0.95, is comparable to 0.89 for
hard disks and 0.986 for r−12-potential particles5 at the freez-
ing point.

Figure 4 shows that the second peak of S�k� starts split-
ting at the freezing point of 27.7 °C. Such a split has been
observed in simulations of the freezing of repulsive r−12 and
r−6 particles,5,8 but not in hard disks and Yukawa
particles.38,40 Hence this latter feature is not considered a
general freezing criterion.

FIG. 2. �a� The height of the first peak of the structure factor S�k�. Accord-
ing to the HV freezing rule, the freezing transition is at 27.7 °C. The close
packed state with best crystalline structure is at 26.2 °C. �b� Solid circles:
the mean global orientational order parameters �6; Open squares: the mean
local orientational order parameter ��6� �see Sec. III E�. �c� Defect fractions
as a function of temperature. Defects are defined as particles without six
nearest neighbors. �d� Area fractions �=n�2 as a function of temperature.

FIG. 3. The time-dependent dynamic Lindemann parameters plotted as a
function of temperature. This criterion can be used to estimate the sample
melting point. �Note, irrespective of its last time-point, the Lindemann pa-
rameter at 27.1 °C is too high for the system to be considered a solid.�

FIG. 4. Structure factors, S�k�, near the freezing point. At the freezing point,
27.7 °C, the first peak height reaches its critical value of 5 and satisfies the
HV freezing rule, and the second peak develops a split peak structure.

154501-3 2D freezing criteria J. Chem. Phys. 132, 154501 �2010�

Downloaded 13 Oct 2010 to 130.91.117.41. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



B. LPS 2D dynamical freezing criterion

The second freezing criterion is the dynamic LPS crite-
rion for Brownian particles:6,7 a liquid freezes when the ratio
of the averaged long-time diffusion coefficient to the aver-
aged short-time diffusion coefficient, Dl /Ds, is larger than a
critical value ranging between 0.07 and 0.1 in 2D, depending
on particle interaction.7,41 This criterion is fairly well estab-
lished by simulation in both equilibrium and weak nonequi-
librium systems.11 In 3D, the critical value of Dl /Ds is 0.1,6

a number that has been experimentally tested in the freezing
of a 16-layer supercooled colloidal fluid.28

Here, we test the LPS criterion in 2D. Figure 5 shows
that the empirically derived freezing point is also at
27.7�0.1 °C. Although our Dl and Ds have large error bars
�because of limited short-time resolution and finite total ob-
servation time�, the freezing point can still be accurately as-
certained due to the steep slope at Dl /Ds
0.08.

C. Second peak shoulder of the radial distribution
function

The third and the fourth �see Sec. III D� freezing criteria
are less well tested than the first two criteria. They have
mainly been studied in hard-disk simulations. The third cri-
terion states that the second peak of the radial distribution
function g�r� should start to exhibit a shoulder within about
5% of the freezing point.8,9 The shoulder corresponds to the
formation of hexagonally close-packed four-particle
arrangements.9 The radial distribution function is defined as

g�r = �r�� =
1

n2 ���r� + r,t���r�,t�	 , �3�

where �=� j=1
N�t��r−r j�t�� is the distribution of N particles in

the field of view with area A, n= ��	= �N	 /A is the average
particle number density. The angle bracket denotes an aver-
age over time and space. Figure 6 shows that the shoulder in
g�r� emerges at about 28.0 °C, instead of the freezing point
of 27.7 °C predicted by most of the other criteria. The area
fractions of 28.0 and 27.7 °C, however, are different by only
3%, see Fig. 2�d�. Hence the third criterion roughly holds for
the polycrystalline freezing of soft microgel spheres. This

criterion has been numerically tested in hard disks9 and
Lennard-Jones systems8 with about 5% accuracy.

D. Bimodal shape factor probability distribution

The fourth criterion states that the probability distribu-
tion of the shape factors, �, of Voronoi polygons in the
sample becomes bimodal near the freezing point.10 The
shape factor is defined as

�i = Ci
2/�4	Si� , �4�

where Si is the area and Ci the perimeter of the Voronoi
polygon of the ith particle.10 Note, �i=1 for circles, and �i

�1 for all other shapes. The peak at small � corresponds to
the presence of regular hexagons in the sample, whereas the
peak at large � corresponds to pentagons and distorted hexa-
gons in the sample.10

This criterion has been confirmed to be useful in hard-
disk simulations10 and in a vibrating nonthermal granular
hard-disk experiment.12 Figure 7 shows that the bimodal

FIG. 5. The ratio of the averaged long-time diffusion coefficient to the
short-time diffusion coefficient Dl /Ds. According to the LPS freezing crite-
rion, the freezing point is at 27.7 °C where Dl /Ds
0.08.

FIG. 6. The radial distribution function g�r� near the freezing point. Accord-
ing to the third freezing criterion, the freezing area fraction is around
28.0 °C, where the second peak of g�r� begins to split.

FIG. 7. The distributions of the shape factors � of Voronoi polygons. Ac-
cording to the fourth freezing criterion, the bimodal distribution at 28.3 °C
should be �and is� within 5% of the freezing point.

154501-4 Wang et al. J. Chem. Phys. 132, 154501 �2010�
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distribution10 forms at about 28.4 °C; the area fraction at this
temperature is about 6% lower than that at 27.7 °C. This
observation is thus consistent with previous work about hard
disks;10,12 in previous work the bimodal distribution at
	n�2 /4=0.65 also appeared at area fractions 6% lower than
the hard-disk freezing point of 0.69. At the hard-disk freez-
ing point, the second peak in the shape factor distribution
almost disappears in Refs. 10 and 12, thereby corresponding
quite well to the observed shape at 27.7 °C in Fig. 7. Hence,
observations in our polycrystalline system agree reasonably
well with simulations.

E. Orientational susceptibility at the freezing point

We observed two other interesting behaviors at the freez-
ing point which could potentially serve as freezing criteria, if
they are found to hold universally for different particle inter-
actions. The first observation is that the freezing transition
occurs at the apparent divergence point of the orientational
order-parameter susceptibility. The orientational susceptibil-
ity is defined as

�6 = A����6
2�	 − ���6�	2� . �5�

Here �6= ��6j	= �� j=1
N �6j� /N is the total order parameter av-

eraged over all N particles in the area A. �6 is 0 in liquid and
is close to unity in a single crystal. The susceptibility diver-
gence has been used previously to identify 2D melting phase
transitions in simulations42,43 and experiments.25 In previous
work, the susceptibility method �assuming sufficient signal-
to-noise� has been shown to be superior in many respects to
measurements of space- and time-correlation functions for
assignment of transition points, primarily because the former
method has little finite-size/time ambiguity.25 Until now the
susceptibility technique has only been applied to single-
crystal melting and freezing.

For polycrystalline solids, the complex numbers �6j of
particles from different domains cancel in the averaging pro-
cess, so that �6 and �6 approach 0 in the infinite sample-size
limit. Figure 2�b� shows that �6 of the polycrystalline solid
in the field of view is only about 0.15, much less than 1.
However �6 in Fig. 8 still exhibits a clear peak at the
27.7 °C freezing point. If we use ��6j� instead of �6j for each

particle j, then ��6�= ���6j�	 will more readily distinguish
polycrystalline solids from liquids. In a polycrystalline solid,
most particles have six ordered neighbors and are not located
at grain boundaries, and thus ��6� is close to 1 �see Fig. 2�b��.
The corresponding ��6�= ����6��2	− ����6��	2 also peaks at
27.7 °C, see Fig. 8. Note, the peak temperature remains un-
changed for �6 and ��6� measured from different sized subar-
eas. Hence, the susceptibility parameters can be used as
freezing criteria. �As an aside, it should be noted that we
cannot apply the same approach for the translational suscep-
tibility, since the primary reciprocal lattice vector of a poly-
crystalline solid is not unique.�

F. Caged particle percolation at the freezing point

The last interesting feature we have discovered at the
freezing point is a percolation transition of caged particles.
Caging is a key concept in the cell model for the freezing
transition.44 The cell model is based on free volume calcula-
tions, and it has successfully predicted the free energies,45

the dynamical Lindemann parameter, and the equation of
state46 at freezing. The definition of caging has evolved from
six-neighbor caging in the conventional cell model47 to four-
neighbor caging in the correlated cell model46 to the recent
three-alternating-neighbor caging48 defined in Fig. 9�a�.

Briefly, a central particle is said to be caged if any three
alternating neighbors out of the six nearest neighbors satis-
fies the following two conditions: �1� the center of the central
particle lies inside the triangle of the three neighbors; �2� the
center-to-center distances of the three neighbors, dAB, dBC,
dCA, are smaller than two particle diameters �i.e., the central
particle cannot squeeze out of the triangle�. We further gen-
eralize this caging definition to any three neighbors out of an
arbitrary number of neighbors so that a small fraction of
particles without six neighbors can also be accounted for. For

FIG. 8. Solid squares: The orientational susceptibility �6, i.e., the fluctuation
of the order parameter �6. Open squares: the fluctuation of ��6�.

A

BC

O

d

d d

BC

AC AB

D

( A ) ( B )

( C ) ( D )

FIG. 9. �a� The central disk is caged by the three neighbors if O is in 
ABC
and 2��max�dAB ,dBC ,dCA�. � is the particle diameter. �b� The Voronoi
diagram of a subarea at 28.3 °C below the percolation point. Caged par-
ticles are colored in green. �c� Voronoi cells of caged particles percolate
through the field of view at 28.0 °C. �d� Above the finite-area percolation
point. In fact, 27.7 °C is the true percolation point after the extrapolation to
the infinite area �see inset of Fig. 10�c��.

154501-5 2D freezing criteria J. Chem. Phys. 132, 154501 �2010�
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example, if a particle has five nearest neighbors, choosing
three out of five results in 10 possible triangles. If any one of
the ten triangles can cage the central particle, then we say the
central particle is caged and color its Voronoi polygon green
�see Fig. 9�b��. The above construction is mathematically
precise without ambiguity. Note, this caging definition is
based purely on local static structure, i.e., rather than caging
defined by the dynamic mean square displacement.49

The number of caged particles was found to increase
with area fraction, and the Voronoi cells of the caged par-
ticles were found to percolate through the finite field of view
at 28.0 °C. After extrapolation to infinite area �see below for
details of the extrapolation procedures�, the percolation point
shifts to 27.7 °C. The percolation point in the finite field of
view was obtained by all of the following three methods as
shown in Figs. 10�a�–10�c�.

The first method measured the radius of gyration of the
largest cluster in each frame. The radius of gyration Rg is
defined as Rg

2=�n=1
s �rn−r0�2 /s where rn is the position of the

nth particle in the cluster with s particles; r0 is the position of
the center of mass. Figure 10�a� shows the mean values of Rg

averaged over all video frames and the error bars represent
standard deviations. At temperatures above 28.0 °C, the
mean largest-cluster size becomes less than the size of the
field of view, suggesting that the percolation temperature is
at 28.0 °C.

The second method is based on polydispersity of cluster-
size. Results are indicated in Fig. 10�b� which shows that the
cluster-size polydispersity peaks at the percolation point. The
cluster-size polydispersity is defined as �s2	 / �s	2 where �s	 is

the mean cluster size averaged over all clusters in all frames.
This polydispersity reflects the size fluctuation of all clusters,
not just the largest clusters in each frame. In fact the inter-
polated peak in Fig. 10�b� is between 28.0 and 28.3 °C. We
found that the interpolated peak is reflective of percolation
through the finite sample-size, and that this point shifted con-
tinuously to higher temperature when the size of the sample
subarea was decreased.

A third method derives the percolation temperature from
the distribution, n�s�, of cluster size s, see Fig. 10�c�. In the
percolation theory,50 n�s��s−�e−cs where the constant � is the
Fisher exponent. When approaching the percolation transi-
tion, c→0 and n�s��s−�.50 The data in Fig. 10�c� suggest
that the percolation point is about 28.0 °C, wherein n�s� ex-
hibits power-law decay. This observation is further con-
firmed by the emergence of a small peak of large clusters at
28.0 °C, see the s�104 regime in Fig. 10�c�. Such a peak of
large clusters is a direct evidence of percolation in a finite
box. Empirically, we have found that this third method is
very accurate when the field of view contains more than
5000 particles and, therefore, when the statistics of n�s� are
good. Since smaller areas percolate more easily, we repeated
the above three measurements in different subareas of the
sample and then extrapolated to the infinite-size limit. In this
way we obtained the “truer” percolation point of 27.7 °C,
see the inset of Fig. 10�c�.

The percolation of caged particles qualitatively agrees
with the notion of a solidification transition at the freezing
point, even in polycrystalline samples. A caged particle can-
not move much unless one of its three confinement neighbors
moves, i.e., the caged particle must move in a correlated
manner with its neighbor. At the percolation point, it be-
comes very difficult to collectively move many caged par-
ticles. Therefore, the system freezes. This general idea shares
similarities with the ideas of dynamic heterogeneity in glass
formation.

Lastly, we explored the potential fractal properties of the
percolation clusters. A cluster is a fractal when its radial
distribution of mass from the center of the cluster satisfies
the power law N= �r /Rg�d, where d is the Hausdorff fractal
dimension; the “mass” N is the number of particles inside the
circular box with radius r from the center of mass of the
cluster. In order to identify whether the largest cluster of
caged particles in each frame is a fractal or not, we
measured 10 masses in 10 circular boxes with radii
r=Rg /10,2Rg /10, ¯ ,Rg. We repeated these measurements
on the 3500 largest clusters in 3500 frames at each tempera-
ture. Therefore, each plot in Fig. 11 contains 3500�10 data
points.

At 27.7 and 28.0 °C, all the 3500 clusters have similar
Rg’s and similar mass distributions so that the 3500�10 data
points collapse onto the 10 discrete points, see Figs. 11�b�
and 11�c�. The power-law mass distributions in Figs. 11�b�
and 11�c� indicate that the percolation clusters at 27.7 and
28.0 °C are good fractals. From the slope of Fig. 11�c�, we
obtained the fractal dimension d=1.97�0.016 at the perco-
lation point, close to the d=1.91�0.04 result for the con-
tinuum percolation of 2D random hard disks.51 At 28.3 °C,
the 3500�10 data points in Fig. 11�a� are not fractal; the

( C )

( B )( A )

Cluster SizeCluster Size

FIG. 10. �a� The radius of gyration of the largest clusters averaged over all
frames. Error bars are the standard deviations of the largest-cluster radii in
different frames. �b� The polydispersity of the size of all clusters in all
frames. �c� The histogram of cluster size distributions at different tempera-
tures. The arrow indicates decreasing temperature. Inset: Finite-area perco-
lation temperatures at different sub-boxes with area A0 /L2, where A0 is the
area of the whole field of view and 1 /L is the contraction factor of the box.
The real percolation temperature is extrapolated to the infinite-sized �L=0�
limit by a quadratic fit.
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3500 Rg’s fluctuate too strongly. In percolation theory, a ran-
dom percolation cluster is a fractal.50 However the caged
particles are not totally random, because they have underly-
ing polycrystalline structures. Interestingly Fig. 11 shows
that the percolation clusters of caged particles are still good
fractals.

Similar fractal structures of different types of percolation
clusters were reported in 2D glass transitions and such fractal
structures were used to explain many hallmark properties of
glassy dynamics.52,53 We speculate that it will be interesting
to explore whether the fractal structures of caged particles
are related to the dynamics near the polycrystalline solid �or
single-crystal� freezing point. Structure heterogeneity in 2D
single-crystal melting has been discussed in terms of a dis-
order parameter and density fluctuations,54 but, to our knowl-
edge, percolation and fractal structure have not been re-
ported. For example, if we apply the caging concept to 2D
melting, then the percolation transition of caged particles
might be found to play a role during the melting.

IV. CONCLUSIONS

We measured the polycrystalline freezing of microgel
colloidal monolayers. The freezing appeared to be a first-
order process, without hexatic phase. This work provides the
first experimental tests of four simulation-derived empirical
criteria for freezing of thermal 2D liquids into 2D polycrys-
talline solids. Although the four criteria were originally pro-
posed from simulations of single-crystal melting, the experi-
ments demonstrate that these criteria also hold for the
freezing into polycrystalline solids. Thus the results are use-
ful, in part, because most experimental systems directly
freeze into polycrystalline solids rather than single crystals.
The observation also provides another point of view for
study of the glass transition, e.g., by analyzing polycrystal-
line freezing of different domain sizes and then extrapolating
to the small-domain limit. The HV and the LPS freezing
criteria have been experimentally tested in 2D for the first
time, and they appeared to be more accurate than criteria 3
and 4. The HV criterion depends on the global structure,
while the criteria 3 and 4 only depend on local structures in
real space. Since freezing is a collective arrangement of par-
ticles, the 2D HV freezing rule associated with global struc-
ture might have been expected to be the more accurate cri-
terion, as observed in the experiment. We observed peaking

of the susceptibilities, �6 and ��6�, at the same freezing point,
even though the orientational order parameter is small after
averaging over many domains. Another apparent signature at
the freezing transition is the percolation of caged particles.
The fractal structures of percolation clusters reflect structural
and dynamical heterogeneities in 2D freezing.54,55 Further-
more, the caging definition is readily generalized to 3D
where one sphere is caged by a tetrahedron of four neigh-
bors. In the future, it may be interesting to study the preva-
lence of caged-particle percolation in 3D freezing and at the
glass transition.
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