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Microfluidic Rheology of Soft Colloids above and below Jamming

Abstract
The rheology near jamming of a suspension of soft colloidal spheres is studied using a custom microfluidic
rheometer that provides the stress versus strain rate over many decades. We find non-Newtonian behavior
below the jamming concentration and yield-stress behavior above it. The data may be collapsed onto two
branches with critical scaling exponents that agree with expectations based on Hertzian contacts and viscous
drag. These results support the conclusion that jamming is similar to a critical phase transition, but with
interaction-dependent exponents.
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The rheology near jamming of a suspension of soft colloidal spheres is studied using a custom

microfluidic rheometer that provides the stress versus strain rate over many decades. We find non-

Newtonian behavior below the jamming concentration and yield-stress behavior above it. The data may be

collapsed onto two branches with critical scaling exponents that agree with expectations based on Hertzian

contacts and viscous drag. These results support the conclusion that jamming is similar to a critical phase

transition, but with interaction-dependent exponents.

DOI: 10.1103/PhysRevLett.105.175701 PACS numbers: 64.60.�i, 47.57.Qk, 47.60.Dx, 83.80.Kn

The concept of jamming [1] aims for a unified under-
standing of dense soft matter such as granular media,
colloids, foams, emulsions, and glassy liquids. Such sys-
tems are considered to be jammed if the relaxation time is
longer than the observation window, so that the particles
appear stuck in a fixed configuration and the sample ap-
pears to have a yield stress. At zero temperature and zero
applied stress, this transition occurs at a critical volume
fraction of particles, �c, and is known as ‘‘point J’’ on the
jamming phase diagram [2]. The discovery of growing
dynamical length and time scales on approach to point J
suggests that it is a critical point [2–6].

To extend these ideas to driven systems, the shear stress
� has been studied theoretically as a function of both
imposed strain rate _� and of distance j���cj to the
critical packing fraction [7–10]. The rheology was found
to collapse onto separate branches above and below �c

when plotted as �=j���cj� versus _�=j���cj�. For
Hertzian particles in a viscous liquid, conflicting exponents
have been reported as f� ¼ 1:8� 0:1;� ¼ 2:4� 0:1g [8],
f� ¼ 1:5;� ¼ 2:75g [9], and f� ¼ 2;� ¼ 4g [10].
However there has been no experimental test of these
predictions. In part this is because most experiments are
restricted to hard spheres, which cannot be packed above
�c � 0:64. Also, conventional rheometers can give mis-
leading results for yield-stress materials due to wall slip
and shear banding. Here, we circumvent both issues by
using soft gel particles and a custom microfluidic rheology
technique. We demonstrate critical behavior by the col-
lapse of scaled stress versus strain rate, with exponents that
can be understood in terms of particle-particle interaction
forces in best agreement with Ref. [10].

The experimental system is a dense aqueous suspension
of colloidal N-isopropylacrylamide (NIPA) gel particles
[11,12], which are swollen with water and hence are nearly
index and density matched. By changing the temperature,
the amount of swelling and hence the volume fraction

can be readily controlled. As characterized by dynamic
light scattering for dilute samples, the diameter is of
order 1 �m and the volume varies with temperature as
VðTÞ ¼ ð2:93 �m3Þ½1� T=ð39:6 �CÞ� for our temperature
range, 19 �C � T � 25 �C. The polydispersity is about
10%. Here we study a single sample with particle number
density of 4:55� 1017=m3, such that the empirical fit
translates to �ðTÞ ¼ 1:34� T=ð29:4 �CÞ for our tempera-
ture range.
The mechanical properties of the particles are charac-

terized by centrifugal compression; see Ref. [13] for full
details. At rest, the particles sediment to a total packing
height Hc corresponding to random close packing of
spheres at �c � 0:64. When spun at angular speed !, the
packing compresses to a smaller height H, and the volume
fraction varies with depth such elastic and centrifugal
forces balance everywhere. Data for H=Hc are plotted vs

ð!2Hc=gÞ2=3 in Fig. 1(a), where g ¼ 9:8 m=s2, for three
different temperatures and for samples with a range of Hc

values. The choice of x axis is both so that the data collapse
for different Hc, and so that the initial decay are linear for
Hertzian spheres and can be used to deduce the elastic
modulus E of the sphere material [13]. This holds well;
final results for E are plotted vs temperature in Fig. 1(b),
and will used to scale rheology data. The solid black curves
in Fig. 1(a) represent fits based on a constitutive elastic
model where the compressive stress is Hertzian at small
strains and diverges at a finite strain [13]. The striking
feature is that these fits all asymptote to Ha=Hc � 0:64
at high centrifugal acceleration. Since the average volume
fraction is inversely proportional to height, then Ha=Hc ¼
�c=�a. The asymptotic normalized compression in
Fig. 1(a) therefore gives an asymptotic packing fraction
of �a ¼ 1. This suggests that the NIPA particles deform
under compression without deswelling, so that packing
fractions above �c also may be reliably computed from
the dilute suspension particle size data.
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The steady shear flow rheology is measured with
the microfluidic device sketched in Fig. 2(a). It consists
of a rectangular PDMS channel, 25 �m wide� 100 �m
deep� L ¼ 2 cm long, fabricated with standard soft li-
thography [14] and bonded to a glass microscope slide.
The fluid is forced through the channel using pressurized
air and inlet/outlet tubing of sufficient diameter that the
imposed pressure drop �P occurs only along the length L
of the channel. Force balance therefore allows the shear
stress at distance y from the center of the channel to
be computed as �ðyÞ ¼ ð�P=LÞy. The corresponding
strain rate at y is found by numerical differentiation of
the velocity profile, _�ðyÞ ¼ dvxðyÞ=dy [15]. For this, we
collect video data with a Phantom CMOS camera
(1–10 000 fps) connected to a Zeiss Axiovert 200 micro-
scope with 100� objective focused at midheight. Since the
channel is tall, the observed flow is equivalent to that
between parallel plates [15]. An objective-cooling collar

(Bioptechs) and cooling plate above the sample are con-
trolled to about 0.1 C in order to vary the volume fraction.
An example video frame in Fig. 2(c) displays bead-scale
intensity variations, so thatparticle image velocimetry may
be implemented with custom LABVIEW code. Example
velocity profiles are superposed on the still image of
Fig. 2(c). Altogether, for a single pressure drop, the �ðyÞ
and _�ðyÞ data may thus be combined to give stress vs strain
rate shear rheology. The dynamic range is typically two
decades in _�, and may be extended by varying the imposed
pressure drop.
This rheology concept has been realized previously

[16,17], and is related to experiments [18–20] where the
shape of a velocity profile is used to characterize shear
rheology. Microfluidics is an ideal platform, since the
channels are long compared to width so that entrance or
exit effects are easily avoided. And owing to the small
scale, high strain rates may be achieved at low Reynolds
numbers, so that inertial flow instabilities are avoided.
Furthermore, the local strain rate is directly measured,
and hence no problems arise from wall slip or shear band-
ing as typically hamper use of conventional rheometers for
materials with a yield stress.
Results for the stress vs strain rate are collected in Fig. 3.

Good agreement is found for multiple pressure drops at the
same volume fraction. This demonstrates the reproducibil-
ity and level of uncertainty in our data; it also implies the
absence of nonlocal effects, by contrast with Refs. [17,20].
Note that the data show a clear distinction in functional
form above and below �c. For low �, the stress tends
towards zero at low strain rates. For higher �, the stress
extrapolates toward a nonzero yield stress �y. We find

qualitatively similar results using a conventional rheome-
ter. To analyze the flow curves, we first fit the stress data to
the phenomenological Herschel-Bulkley form:

FIG. 1 (color online). Characterization of NIPA particles.
(a) Normalized height of a column of particles vs dimensionless
combination of angular rotation speed !, initial height Hc, and
g ¼ 9:8 m=s2; colors distinguish different Hc. (b) Elastic modu-
lus of the particles vs temperature, deduced from the initial
slopes shown as dashed lines in (a), plus empirical fit corre-
sponding to E� 1=V3 where V is particle volume. Particle
diameters are indicated along the curve.

FIG. 2 (color online). The experimental setup. (a) The fluid is
driven through the microfluidic channel by setting the inlet and
outlet pressures. (b) Video data of the suspension flow is taken
at midchannel height. (c) An image taken from a video showing
the particles. Example velocity profiles are superimposed for a
Newtonian fluid (red) and for NIPA samples at � ¼ 0:56 (blue)
and � ¼ 0:64 (green).

FIG. 3 (color online). Shear stress versus strain rate for several
different volume fractions, as labeled. Symbol types distinguish
runs at different driving pressures. The dashed curves represent
fits to the Herschel-Bulkley equation.
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� ¼ �y½1þ ð _��Þ�� ¼ �y þ K _��; (1)

where � is the shear-thinning exponent, � is a time con-
stant, andK is called the consistency. The quality of the fits
is satisfactory, as shown by the dashed curves in Fig. 3 for
�>�c. The results for � displayed in Fig. 4(a) exhibit
no apparent dependence on �, and have average and
standard deviation 0:48� 0:03. For other microgel sys-
tems, Ref. [21] discusses yield-stress behavior and
Ref. [22] finds � ¼ 0:45, while Refs. [23–26] fit to forms
that cross between different limiting viscosities at low and
high strain rates. The value � ¼ 1=2 is predicted near
jamming for viscously-interacting athermal particles
[10]. For simplicity, and so that K has constant units, we
henceforth fix � ¼ 1=2 and repeat the fits.

The fitting parameters�y and � are collected in Figs. 4(b)

and 4(c) as a function of�. Both the yield stress and the time
constant have been rendered dimensionless by appropriate
factors of the elasticity E of the particulate material and
the viscosity �0 of the suspending fluid. This also serves to

eliminate the spurious � dependence originating from the
variation ofEwith particle swelling.WhileK is alwayswell
defined, �y and � exist only above jamming and, respec-

tively, appear to vanish and diverge on approach to �c. As
shown in the main plots, the results may be fitted to power-
law forms�y=E� ð���cÞ� and �E=�0 � 1=ð���cÞ�,
giving f�c ¼ 0:633� 0:002;� ¼ 2:2� 0:4g and f�c ¼
0:637� 0:002;� ¼ 3:8� 0:6g. The two values for �c are
in agreement and average to 0:635� 0:003, consistent with
random close packing of spheres. Fixing�c to this value, we
plot�y=E and �E=�0 vs���c on log-log axes as insets in

Figs. 4(b) and 4(c). These demonstrate power-law behavior,
and give the final refined scaling exponents as � ¼ 2:1�
0:2 and � ¼ 4:1� 0:3. However, we will conservatively
take the final statistical uncertainties to be twice as large,
as given by fits where�c floats. The systematic errors based
on the allowed range of � are 0.1 and 0.4 for � and �,
respectively. Note that � ¼ �� holds within uncertainty,
which is required so that K remains finite and nonzero
at �c and so that at high strain rates the stress scales as

ð�0 _�Þ�Eð1��Þ independent of �. Also, the very same expo-
nents are found within experimental uncertainty for NIPA
particles about 8 times less massive [15].
Our experimental value of � agrees with that simulated

in Ref. [8], and our full suite of f�;�;�g values are in
remarkably good agreement with those predicted in
Ref. [10]. The observed value of the yield-stress exponent
may be understood physically in terms of the scaling of the
shear modulus G and the yield strain �y. For repulsive

particles with interaction energy proportional to overlap
raised to the power �, numerical simulations find

G� ð���cÞ��3=2; this differs from the naive expecta-
tion �� 2 due to �-dependent nonaffine motion [2,4]. If
the yield strain scales as �y � ð���cÞ, and if the yield

stress scales as �y � G�y � ð���cÞ��1=2, then � ¼
�� 1=2 [10]. For Hertzian elastic particles, � ¼ 5=2,
this predicts � ¼ 2 and � ¼ �=� ¼ 4 as seen here.
The ‘‘distance’’ ���c to jamming thus controls the

yield stress �y and the time constant � appearing in the

Herschel-Bulkley form of stress vs strain rate, Eq. (1),
according to respective scaling exponents � and �.
Therefore, for volume fractions above �c, the shear rheol-
ogy data should all collapse onto a single master curve
when plotted dimensionlessly as �=ðEj���cj�Þ vs
�0 _�=ðEj���cj�Þ. This construction and the required
collapse for �>�c are demonstrated in Fig. 5. A note-
worthy feature of this plot is that collapse also occurs for all
data below jamming, for �<�c, onto a distinct branch.
Note that the two branches merge close towhere the dimen-
sionless scaled stress and strain rate are both near 1, which is
reassuring. The collapse along a second branch need not
have happened, and serves to emphasize that behavior is
controlled by distance to point J—just as second order
phase transitions are controlled by distance to criticality.
The quality of the collapse is only slightly better using

FIG. 4 (color online). Fitting parameters vs volume fraction�:
(a) the exponent �, (b) the dimensionless yield stress �y=E, and

(c) the dimensionless time scale �E=�0; E is the particulate
material elastic modulus and �0 ¼ 0:01 g=ðcm sÞ is the fluid
viscosity. The large symbols are for the main system of particles,
as in Figs. 1 and 3; the small symbols in part (a) are for particles
about 8 times less massive.
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� ¼ 0:48 rather than � ¼ 1=2 [15]. As first discussed in
Ref. [7], plots such as Fig. 5 represent the measurement of
universal scaling functions; here, the distinct branches are
approximately Herchel-Bulkley above �c and approxi-
mately power-law below �c. Recently, it was argued that
collapse may be unique to Hertzian particles [10].

Before closing we note that an alternative collapse
procedure was also explored, using polynomials rather
than the Hershel-Bulkley form for stress vs strain rate
[15]. The best collapse to two distinct branches is found
for � ¼ 2:2� 0:4, � ¼ 5:2� 0:8, and �c ¼ 0:64� 0:01.
This is consistent with the previous analysis, marginally so
for �, and indicates the extent to which our analysis of
scaling behavior is model independent.

In summary, we have used a custom microfluidic rhe-
ometer to obtain reliable stress vs strain rate data for
thermoresponsive NIPA particle suspensions above and
below jamming, free from shear-banding and wall-slip
artifacts. Furthermore, we have characterized the mechani-
cal properties of the particles themselves using centrifugal
compression, both to account for the change in elasticity
with temperature and to demonstrate that the particles do
not deswell when packed above �c and hence have a well-
known volume fraction. Above jamming, we find that the
yield-stress scales approximately as ð���cÞ2. For all
volume fractions examined, we find that the stress in-

creases with strain rate approximately as ð _��Þ1=2 where
the time scale � grows on approach to �c as j���cj�4.
This represents the first experimental measurement of the
full set of shear rheology exponents on both sides of the
jamming transition. The observed scaling of stress as
power laws of the ‘‘distances’’ j���cj and _� to point-J
in the jamming phase diagram supports the notion that
jamming is similar to criticality at phase transitions but
in a nonequilibrium system.
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