

University of Pennsylvania **ScholarlyCommons**

Department of Physics Papers

Department of Physics

4-21-2011

Structure of 2^+ , T = 2 States in A = 12 Nuclei

H. Terry Fortune University of Pennsylvania, fortune@physics.upenn.edu

Rubby Sherr Princeton University

Follow this and additional works at: http://repository.upenn.edu/physics_papers

Part of the Physics Commons

Recommended Citation

Fortune, H. T., & Sherr, R. (2011). Structure of 2^+ , T=2 States in A=12 Nuclei. Retrieved from http://repository.upenn.edu/ physics papers/153

Suggested Citation:

H.T. Fortune and R. Sherr. (2011). Structure of 2^+ , t = 2 states in A = 12 Nuclei. Physical Review C 83, 044313.

© 2011 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.044313

 $This \ paper \ is \ posted \ at \ Scholarly Commons. \ http://repository.upenn.edu/physics_papers/153$ For more information, please contact repository@pobox.upenn.edu.

Structure of 2^+ , T = 2 States in A = 12 Nuclei

Abstract

Using a reasonable but simple model, properties of 2^+ states in 12 Be and 12 O are calculated and compared with results of experiments.

Disciplines

Physical Sciences and Mathematics | Physics

Comments

Suggested Citation:

H.T. Fortune and R. Sherr. (2011). Structure of 2^+ , t = 2 states in A = 12 Nuclei. *Physical Review C* **83**, 044313.

© 2011 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.044313

PHYSICAL REVIEW C 83, 044313 (2011)

Structure of 2^+ , T=2 states in A=12 nuclei

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

R. Sherr

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA (Received 29 December 2010; published 21 April 2011)

Using a reasonable but simple model, properties of 2⁺ states in ¹²Be and ¹²O are calculated and compared with results of experiments.

DOI: 10.1103/PhysRevC.83.044313 PACS number(s): 21.10.Jx, 21.10.Sf, 21.10.Tg, 27.20.+n

I. INTRODUCTION

Excitations into the 2s1d shell are important at quite low excitation energies in 12 Be. Several different experiments have demonstrated a large $(sd)^2$ component in the 12 Be ground state (gs). In the past, we have used a simple model to describe low-lying states in nucleus A+2 in terms of two neutrons in the sd shell coupled to a p-shell core A. This description has been successful for 14,16 C [1], 17 N [2], 15 C [3], 13 B [4], 11 Be [5], and the 0^+ states of 12 Be [6,7]. Here, we apply it to the 2^+ states of 12 Be (and, by isospin invariance, to 12 C and 12 O).

The model is not meant to be rigorous, but it does contain the principal elements of the nuclear structure. It uses "local" single-particle energies (spe's) and "global" two-body residual interaction matrix elements. In the present case, we take the spe's for $2s_{1/2}$ and $1d_{5/2}$ from the $1/2^+$ and $5/2^+$ states of ¹¹Be [8]. We know those are not pure single-particle (sp) states, but this represents the simplest approach. The $(sd)^2$ two-body matrix elements (listed in Ref. [7]) are the same as we have used throughout this mass region. They first arose in a description of two-particle (2p) and four-particle, two-hole (4p-2h) states in ^{18}O [9]. Here, for the sd shell, we allow only the $1d_{5/2}$ and $2s_{1/2}$ orbitals, abbreviated d and s, respectively. After diagonalizing the $(sd)^2$ Hamiltonians, the wave functions for the two 0⁺ and two 2⁺ states are as listed in Table I. The $(sd)^2$ states are then allowed to mix with the p-shell ones, for which we use the results of Cohen-Kurath [10].

In 10 Be(t,p) [11], the cross section of the first 2^+ state is about 20 times larger than that calculated for the p-shell 2^+ state, but is consistent with the state being predominantly of $(sd)^2$ character. In 14 C(p,t) [12], a peak at 2.06 MeV above the lowest 0^+ T=2 state appears to contain contributions from both 0^+ and 2^+ states. Fitting the angular distribution to the sum of 0^+ and 2^+ suggests [7] that the 2^+ cross section is $19 \pm 9\%$ of that expected for the p-shell 2^+ state, using amplitudes from Cohen-Kurath [10]. Even with core excitation in 14 C(gs) [13], the 2n pickup is all from the p shell [7]. So, we take as given that 2^+_1 contains about $19 \pm 9\%$ of the p-shell 2^+ state.

Our calculated energy of the lowest 2⁺ state (3.63 MeV, Table I) is significantly higher than the experimental value of 2.1 MeV. This is also true of other calculations. Blanchon *et al.* [14] get the first two 2⁺ states at 3.86 and 4.59 MeV. In Ref. [15], the lowest is at 3.8 MeV. The fact that the

calculated energy of the 2_1^+ state is significantly higher than the experimental energy is perhaps an indication that some collective component has not been included. The most obvious candidate is ${}^{10}\text{Be}(2^+) \times (sd)_0^2$. Nunes et al. [16] showed that including this configuration does indeed bring the 2^{+}_{1} energy down. However, that configuration cannot be a major component because it has no direct one-step route in ${}^{10}\text{Be}(t,p)$ and (as noted above) the state is very strong there. We ignore this component for now, even though we expect it to be present at some level in all the 2⁺ states. We will return to this point later. Hamamoto and Shimoura [17] reproduce the 2⁺ energy with deformation. For ¹¹Be, they assume the lowest $1/2^+$, $5/2^+$, and (supposed) $3/2^+$ states are members of a decoupled 1/2⁺ rotational band built on the Nilsson deformed orbital $[220]1/2^+$. These energies allow them to compute the moment-of-inertia and decoupling parameters for ¹¹Be. They then scale the former to get a value for ¹²Be, leading to a 2⁺ energy of 2.09 MeV. So, fixing the 2⁺ energy is not a problem, but the fixes are outside the present scope.

In our work, we assume isospin invariance, namely that the wave-function amplitudes are the same for different T_z members of an isospin multiplet. The effect of the Coulomb interaction is merely to change the radial-wave function. We note, however, that Grigorenko *et al.* [18] found significant isospin violation, namely an s^2 intensity in $^{12}\text{O}(gs)$ that is 1.5–2.0 times the value in $^{12}\text{Be}(gs)$. Even without isospin conservation, a value of about 50% s^2 in $^{12}\text{O}(gs)$ is necessary to explain its Coulomb energy.

We described the two lowest 0^+ states as linear combinations of the first $(sd)^2$ state and the p-shell one [6,7]. If we take the first 2^+ state to be a mixture of the lowest $(sd)^2$ 2^+ state and the p-shell 2^+ and use the 14 C(p,t) results of $19 \pm 9\%$ of the p-shell component in the first 2^+ , then the wave function of this state is

$$2_1^+ = 0.84 \, ds + 0.32 \, dd + 0.44 \, p \text{ shell},$$

where we temporarily ignore the uncertainty in the last term. In this simple description, the second and third 2^+ states then should be linear combinations of

$$0.41 ds + 0.16 dd - 0.90 p$$
 shell, and $0.41 ds - 0.93 dd$.

Takashina [19] states that the lowest 0^+ and 2^+ states are mostly $(sd)^2$. Because the second $(sd)^2$ 2^+ and the

TABLE I. Energies and wave-function intensities in ¹²Be.

J^{π}	Space	State	E_x (MeV)	s^2	d^2	p shell
0+	$(sd)^2$	0_{1}^{+}	0.20	0.78	0.22	
	$(sd)^2$	0_{2}^{+}	4.35	0.22	0.78	_
	$(sd)^2 + p$ shell	gs		0.53	0.15	0.32
				ds	d^2	
2+	$(sd)^2$	2_{1}^{+}	3.63	0.87	0.13	_
	$(sd)^2$	2_2^+	5.42	0.13	0.87	_
	$(sd)^2 + p$ shell	2.11 MeV		0.71	0.10	0.19

p-shell 2^+ state are close together, the mixing of the two could be considerable. However, the lowest 2^+ state should be reasonably stable to that mixing. And, of course, the $^{10}\text{Be}(2^+) \times (sd)_0^2$ configuration provides another 2^+ state, and this strength is probably spread among all the 2^+ levels.

II. 12O

We now use this 2_1^+ wave function to calculate the expected energy and width in 12 O. Pure configuration energies are listed in Table II. With our admixture, the resulting 12 O(2^+) energy is 1.80 MeV. The $\pm 9\%$ uncertainty in the 19% p-shell intensity provides an uncertainty of ± 15 keV in this energy. From other work, we have found that our Coulomb energy calculations produce energies in mirror nuclei with deviations of <40-70 keV from experimental values. It is well known that a state with a large $s_{1/2}$ component will have much lower energy in the proton-rich member of a mirror pair (the so-called Thomas-Ehrman effect). Here, both the gs and first-excited states have large $s_{1/2}$ admixtures, so their energy difference in 12 O is not significantly less than in 12 Be.

In 12 O, the ds component in the first 2^+ state can decay to the 11 N(gs) via $\ell=2$ emission, and the p-shell component can decay to the $1/2^-$ first-excited state via $\ell=1$. The spectroscopic factor for the pure p-shell 2^+ state is very small—S = 0.0376 [20]. Thus, if the p-shell component of the physical state is only 19(9)%, then the value of S for p-wave decay is 0.0071(35). We have computed $\ell=1$ and 2 single-particle widths $\Gamma_{\rm sp}$ in a potential well with r_0 , a=1.25, 0.65 fm. (The same potential was used to compute the Coulomb energies.) The well depth was adjusted to provide an energy of 1.80 MeV. We integrated over the natural width of the 11 N states. The expected widths are then obtained from

TABLE II. Excitation energy (MeV) in ^{12}O of the mirror of ^{12}Be (2⁺, 2.1 MeV).

Configuration	E_x
ds	1.68 ^a
dd	2.33
p shell	1.94
p shell Mixed ^b	1.80

 $a(5/2^+ \times s + 1/2^+ \times d)/2$.

TABLE III. Widths (keV) for decay of ¹²O (2⁺, 1.8 MeV).

¹¹ N	ℓ	$\Gamma_{ m sp}$	S	$\Gamma_{ m calc}$
gs 1/2 ⁺	2	150	0.52	78
gs 1/2 ⁺ 1/2 ⁻	1	180	0.007	1.3

 $\Gamma_{\rm calc} = S\Gamma_{\rm sp}$. They are listed in Table III. The upshot is that this 2^+ state near 1.8 MeV should be quite narrow. Earlier, we had predicted the $^{12}{\rm O}$ energy of 0_2^+ to be 1.95 MeV [7]. A recent $^{14}{\rm O}(p,t)$ experiment [21] observed a peak at 1.8(4) MeV, with a total width of 1.6(3) MeV, where the resolution width was 1.0(5) MeV. Because the $^{14}{\rm C}(p,t)$ reaction populated both 0_2^+ and 2_1^+ states, the same should be true here. By isospin invariance, the $0_2^+/2_1^+$ cross-section ratio should be roughly equal in the two reactions. Suzuki *et al.* [21] analyzed their peak as a single state, but we expect it contains both states. Even though narrow, the 2^+ peak would have been about 1 MeV wide from the resolution, making it very difficult to resolve the two states.

III. 12Be

We return now to the case of 12 Be. In 10 Be(t,p), a candidate for a second 2⁺ state was observed at an excitation energy of 4.56 MeV. Millener [20] has suggested this might instead be a 3^- state, or a $2^+/3^-$ doublet, because it is too strong to be 2^+ . Indeed, given the observed (t,p) cross section for the first 2^+ state, we find that the 4.56-MeV cross section is significantly larger than the remaining 2⁺ strength expected for the entire $d_{5/2}$, $s_{1/2}$, p-shell space. At these negative Q values, 2^+ and 3⁻ angular distributions are very similar [22], making them difficult to distinguish. However, the cross section appears to be slightly too large for a single 3⁻ state, even if this state had a pure $(1p_{1/2})(1d_{5/2})$ configuration. If it is a doublet, then the two states are quite close together and have about the same width [107(17) keV], or one of them has most of the strength. (The 3^- could be strong and the 2^+ weak.) If it is all 3^- , then the other 2⁺ state(s) are too weak to observe or are above 6 MeV. Fortune, Liu, and Alburger [11] placed an upper limit of 30 $\mu b/sr$ for an unobserved narrow state below 6 MeV. However, a broad state could have had a significantly larger cross section and have been missed. One possible candidate is near 5.4 MeV, and another is on the low-energy side of the 5.70-MeV 4⁺ state. If one 2⁺ state contains the bulk of the remaining p-shell configuration, it should be quite strong in 14 C(p,t), but no candidate was observed. At this time, we are unable to say anything further about other possible 2⁺ states.

Earlier, we estimated the amount of s^2 in 12 Be (and 12 O) ground states by computing the 12 Be- 12 O mass difference, which is quite sensitive to this component. Our result was 53% for the s^2 intensity [6]. With a reasonable, but simple, shell-model calculation, we suggested an s^2/d^2 ratio of 0.78/0.22, and hence 68% (sd)², 32% p shell for 12 Be(gs). Navin *et al.* [23], in a subsequent experiment, coincidentally suggested the identical configuration admixture—68% (sd)², 32% p shell. If 11 Be(gs) were pure $2s_{1/2}$, the spectroscopic factor for 12 Be(gs) would be just twice this s^2 intensity, and for 2^+ , S would be equal to the ds intensity. However, 11 Be(gs) is only about 74%

^bConfiguration in last line of Table I.

TABLE IV. Spectroscopic factors in $^{11}\mathrm{Be}(d,p)$ for lowest three states.

State	$S_{\rm exp}$ (Ref. [24])	Calculated (present)		
		Simple	Reduced	
gs	$0.28^{+.03}_{07}$	1.06	0.78	
gs 0 ₂ ⁺ 2 ₁ ⁺	$0.73^{+0.27}_{-0.40}$	0.50	0.37	
2_{1}^{+}	$\begin{array}{c} 0.28^{+.03}_{07} \\ 0.73^{+.27}_{40} \\ 0.10^{+.09}_{07} \end{array}$	0.70	0.52	

 10 Be $\times 2s_{1/2}$. So, the *S*'s above need to be reduced by this factor. These numbers are listed in the Simple and Reduced columns in Table IV.

A very recent experiment [24] investigated the ${}^{11}\text{Be}(d,p)$ reaction in inverse kinematics, at a center-of-mass bombardment energy of 8.5 MeV. They measured S for the lowest three states of 12 Be. Because the $0_2^+/2_1^+$ states were not resolved, they used χ^2 -squared minimization to fit the doublet angular distribution to a sum of $\ell = 0$ and 2 distorted-wave curves. Their spectroscopic factors are also listed in Table IV. We note that the experimental S's for the gs and 2⁺ are significantly smaller than the calculated ones, while $S(0^+_2)$ is larger than calculated. All reasonable shell-model calculations predict $S(2_1^+)$ to be ~ 0.5 , in rough agreement with our value of 0.52. Various theoretical values in Ref. [24] are 0.41, 0.50, and 0.55. It is extremely difficult to envision a scenario in which this spectroscopic factor could be as small as 0.10 (1σ upper limit 0.19), found in Ref. [24]. Part of the problem could be an incorrect separation of the $0^+_2/2^+_1$ components of the unresolved doublet. However, the authors state that at the 2σ level, all the doublet strength could be 2^+ , and they arrive at S = 0.25—still a very small value. If isospin is not conserved and 12 Be(gs) has a smaller s^2 occupancy than 12 O(gs), the gs spectroscopic factor would be smaller than the calculated value in Table IV. However, the dominance of $(sd)^2$ over p-shell components is established from the ${}^{10}\text{Be}(t,p)$ reaction (and confirmed by other work). So, we would not expect a great reduction from the values in Table IV.

IV. SUMMARY

For the first 2^+ state at 2.1 MeV in 12 Be, the large cross section observed in the 10 Be(t,p) reaction is totally incompatible with the small spectroscopic factor claimed for it in the 11 Be(d,p) reaction. As both the gs and 2^+_1 spectroscopic factors in Ref. [24] are smaller than expected in most models, it is conceivable that something is wrong with the absolute cross-section scale in Ref. [24]. We encourage another look at this reaction, difficult though it may be.

The supposed 2^+ state at 4.56 MeV has too much strength in (t,p) for another 2^+ state. It is more likely to be 3^- .

In 14 C(p,t), the data are consistent with the first 2^+ T=2 state having about 20% of the strength expected for the pure p-shell 2^+ . There is no evidence in that reaction for another 2^+ state with most of the remaining p-shell strength.

In 12 O, the first 2^+ state is expected near 1.8 MeV and should be narrow (width $\sim 80 \text{ keV}$). The second 0^+ state should be near 1.95 MeV, with a width of about 800 keV. A better 14 O(p,t) experiment might be able to separate the two.

Kanungo *et al.* [24] state that "no experimental information exists on the detailed configurations of the excited states in 12 Be." Of course, the 10 Be(t,p) reaction does provide such information. The gs cross section is seven times as large as it would be if it were a pure p-shell state, and the 2^+ is 20 times as strong as the p-shell 2^+ should be. The absolute magnitude of the gs cross section requires the s^2 intensity to be significantly larger than d^2 . The extreme weakness of 0_2^+ in (t,p) puts a rigorous constraint on its configuration. The 2_1^+ cross section requires significantly more ds than d^2 in its wave function. (For 2^+ , the pure ds cross section is about four times that for pure d^2 .) Also, the d^2 reaction limits the d^2 shell component of the first d^2 state to about d^2 in the gs and more ds than d^2 in d^2 in the gs and more ds than d^2 in d^2 in the p-shell part. Takashina and Kanada-En'yo [19] agree.

H. T. Fortune, M. E. Cobern, S. Mordechai, G. E. Moore, S. LaFrance, and R. Middleton, Phys. Rev. Lett. 40, 1236 (1978).

^[2] H. T. Fortune, G. E. Moore, L. Bland, M. E. Cobern, S. Mordechai, R. Middleton, and R. D. Lawson, Phys. Rev. C 20, 1228 (1979).

^[3] S. Truong and H. T. Fortune, Phys. Rev. C 28, 977 (1983).

^[4] H. T. Fortune and R. Sherr, Phys. Rev. C 68, 024301 (2003).

^[5] G.-B. Liu and H. T. Fortune, Phys. Rev. C 42, 167 (1990).

^[6] R. Sherr and H. T. Fortune, Phys. Rev. C 60, 064323 (1999).

^[7] H. T. Fortune and R. Sherr Phys. Rev. C 74, 024301 (2006).

^[8] F. Ajzenberg-Selove, Nucl. Phys. A **506**, 1 (1990).

^[9] R. D. Lawson, F. J. D. Serduke, and H. T. Fortune, Phys. Rev. C 14, 1245 (1976).

^[10] S. Cohen and D. Kurath, Nucl. Phys. A 141, 145 (1970).

^[11] H. T. Fortune, G.-B. Liu, and D. E. Alburger, Phys. Rev. C 50, 1355 (1994).

^[12] D. Ashery et al., Phys. Rev. C 13, 1345 (1976).

^[13] H. T. Fortune and G. S. Stephans, Phys. Rev. C 25, 1 (1982).

^[14] G. Blanchon, N. V. Mau, A. Bonaccorso, M. Dupuis, and N. Pillet, Phys. Rev. C 82, 034313 (2010).

^[15] C. Romero-Redondo, E. Garrido, D. V. Fedorov, and A. S. Jensen, Phys. Rev. C 77, 054313 (2008).

^[16] F. M. Nunes, I. J. Thompson, and J. A. Tostevin, Nucl. Phys. A 703, 593 (2002).

^[17] I. Hamamoto and S. Shimoura, J. Phys. G 34, 2715 (2007).

^[18] L. V. Grigorenko, I. G. Mukha, I. J. Thompson, and M. V. Zhukov, Phys. Rev. Lett. 88, 042502 (2002).

^[19] M. Takashina and Y. Kanada-En'yo, Phys. Rev. C 77, 014604 (2008).

^[20] J. D. Millener (private communication).

^[21] D. Suzuki et al., Phys. Rev. Lett. 103, 152503 (2009).

^[22] S. Mordechai, H. T. Fortune, G. E. Moore, M. E. Coben, R. V. Kollarits, and R. Middleton, Nucl. Phys. A 301, 463 (1978).

^[23] A. Navin et al., Phys. Rev. Lett. 85, 266 (2000).

^[24] R. Kanungo et al., Phys. Lett. B 682, 391 (2010).