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Abstract
Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and
entanglement entropy in strongly coupled field theories in d = 2, 3, and 4 to probe the scale dependence of
thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement
entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth
rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger
volumes. In this setting, the UV thermalizes first.
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Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and

entanglement entropy in strongly coupled field theories in d ¼ 2, 3, and 4 to probe the scale dependence

of thermalization following a sudden injection of energy. For homogeneous initial conditions, the

entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality

bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes

but slows for larger volumes. In this setting, the UV thermalizes first.

DOI: 10.1103/PhysRevLett.106.191601 PACS numbers: 11.25.Tq, 11.25.�w, 52.27.Gr

It is widely believed that the observed nearly inviscid
hydrodynamics of relativistic heavy ion collisions at col-
lider energies is an indication that the matter produced in
these nuclear reactions is strongly coupled [1]. Some such
strongly coupled field theories can be studied by using the
holographic duality between gravitational theories in
asymptotically anti–de Sitter (AdS) space-times and quan-
tum field theories on the boundary of AdS. The thermal
state of the field theory is represented by a black brane in
AdS, and near-equilibrium dynamics is studied in terms of
perturbations of the black hole metric. A key remaining
challenge is to understand the far from equilibrium process
of thermalization. The AdS/CFT correspondence relates
the approach to thermal equilibrium in the boundary theory
to black hole formation in the bulk.

Recent works studied the gravitational collapse of en-
ergy injected into AdS5 and the formation of an event
horizon [2]. These works started from locally anisotropic
metric perturbations near the AdS boundary and studied
the rate at which isotropic pressure was established by
examining the evolution of the stress tensor. By studying
gravitational collapse induced by a small scalar perturba-
tion, the authors of Ref. [3] concluded that local observ-
ables behaved as if the system thermalized almost
instantaneously. Here we model the equilibrating field
configuration in AdS by an infalling homogeneous thin
mass shell [4,5] and study how the rate of thermalization
varies with spatial scale and dimension. We consider 2d,
3d, and 4d field theories dual to gravity in asymptotically
AdS3, AdS4, and AdS5 space-times, respectively. Our
treatment of 2d field theories is analytic.

Expectation values of local gauge-invariant operators,
including the energy-momentum tensor and its derivatives,

provide valuable information about the applicability of
viscous hydrodynamics but cannot be used to explore the
scale dependence of deviations from thermal equilibrium.
Equivalently, in the dual gravitational description these
quantities are sensitive only to the metric close to the
AdS boundary. Nonlocal operators, such as Wilson loops
and 2-point correlators of gauge-invariant operators, probe
the thermal nature of the quantum state on extended spatial
scales. In the AdS language, these probes reach deeper into
the bulk space-time, which corresponds to probing further
into the infrared of the field theory. They are also relevant
to the physics probed in relativistic heavy ion collisions,
e.g., through the jet quenching parameter q̂ [6] and the
color screening length.
A global probe of thermalization is the entanglement

entropy SA [7,8] of a domain A, measured after subtraction
of its vacuum value. In the strong coupling limit, it has
been proposed that SA for a region A with boundary @A in
the field theory is proportional to the area of the minimal
surface � in AdS whose boundary coincides with @A: SA ¼
Areað�Þ=4GN , where GN is Newton’s constant [8]. Thus,
for a (d ¼ 2)-dimensional field theory, SA is the length of a
geodesic curve in AdS3 (studied in Ref. [9]); for d ¼ 3, SA
is the area of a 2d sheet in AdS4 (studied in Ref. [10]); and
for d ¼ 4, SA is the volume of a 3d region inAdS5. In d¼3
the exponential of the area of the minimal surface that
measures SA also computes the expectation value of the
Wilson loop that bounds the minimal surface. Wilson loops
in d ¼ 4 correspond to 2d minimal surfaces as well.
First, we consider equal-time 2-point correlators of

gauge-invariant operators O of large conformal dimension
�. In the dual supergravity theory this correlator can be
expressed, in the semiclassical limit, in terms of the length
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Lðx; tÞ of the bulk geodesic curve that connects the end
points on the boundary: hOðx; tÞOð0; tÞi�exp½��Lðx; tÞ�
[11]. When multiple such geodesics exist, one has to con-
sider steepest descent contours to determine the contribu-
tion from each geodesic.

We consider a (dþ 1)-dimensional infalling shell ge-
ometry described in Poincaré coordinates by the Vaidya
metric

ds2 ¼ 1

z2
f�½1�mðvÞzd�dv2 � 2dzdvþ dx2g; (1)

where v labels ingoing null trajectories, and we set the AdS
radius to 1. The boundary is at z ¼ 0, where v coincides
with the observer time t. The mass function of the infalling
shell is

mðvÞ ¼ ðM=2Þ½1þ tanhðv=v0Þ�; (2)

where v0 determines the thickness of a shell falling along
v ¼ 0. The metric interpolates between vacuum AdS in-
side the shell and an AdS black brane geometry with

Hawking temperature T ¼ dM1=d=4� outside the shell.
2-point functions agree with those of a boundary field
theory at thermal equilibrium only if they are dominated
by geodesics that stay outside the shell.

The geodesic length L diverges due to contributions
near the AdS boundary. We introduce an ultraviolet
cutoff z0 and define a renormalized correlator �L ¼
Lþ 2 lnðz0=2Þ by removing the divergent part of the cor-
relator in the vacuum state (pure AdS). The renormalized
equal-time 2-point function is hOðx; tÞOð0; tÞiren�
exp½���Lðx;tÞ�. We compute the renormalized correla-
tor as a function of x and t in a state evolving towards
thermal equilibrium and compare it to the corresponding
thermal correlator. In the bulk, this amounts to computing
geodesic lengths in a collapsing shell geometry and com-
paring them to geodesic lengths in the black brane geome-
try (�Lthermal) resulting from the collapse.

We study geodesics with boundary separation ‘ in the x
direction in AdS3, AdS4, and AdS5 modified by the infal-
ling shell. The end point locations are denoted as
ðv; z; xÞ ¼ ðt0; z0;�‘=2Þ, where z0 is the UV cutoff. The
lowest point of the geodesic in the bulk is the midpoint
located at ðv; z; xÞ ¼ ðv�; z�; 0Þ. Geodesics are obtained by
solving differential equations for the functions vðxÞ and
zðxÞ with these boundary conditions and are unique in the
infalling shell background. The length of the geodesics is

Lð‘; t0Þ ¼ 2
R‘=2
0 dxz�zðxÞ�2: In empty AdS, this gives the

renormalized geodesic length �LAdS ¼ 2 lnð‘=2Þ.
A numerical solution for the length of geodesics cross-

ing the shell in the d ¼ 2 (AdS3) case was obtained in
Ref. [9]. We checked that physical results do not depend
significantly on the shell thickness when v0 is small and
then derived an analytical solution in the v0 ! 0 limit:

�Lð‘; t0Þ ¼ 2 ln

�
sinhð ffiffiffiffiffi

M
p

t0Þffiffiffiffiffi
M

p
sð‘; t0Þ

�
; (3)

where sð‘; t0Þ 2 ½0; 1� is parametrically defined by

‘ ¼ 1ffiffiffiffiffi
M

p
�
2c

s�
þ ln

�
2ð1þ cÞ�2 þ 2s�� c

2ð1þ cÞ�2 � 2s�� c

��
;

2� ¼ cothð ffiffiffiffiffi
M

p
t0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2ð ffiffiffiffiffi

M
p

t0Þ � 2c

cþ 1

s
;

(4)

with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
and � ¼ ð ffiffiffiffiffi

M
p

zcÞ�1. Here zc is the radial
location of the intersection between the geodesic and the
shell. For any given ‘, at sufficiently late times, the geo-
desic lies entirely in the black brane background outside
the shell. In this case the length is

�Lthermalð‘Þ ¼ 2 ln½ð1= ffiffiffiffiffi
M

p Þ sinhð ffiffiffiffiffi
M

p
‘=2Þ�; (5)

representing the result for thermal equilibrium.
We use these analytic relations in d ¼ 2 and find

�Lð‘; t0Þ in d ¼ 3; 4 by numerical integration. We mea-
sure the approach to thermal equilibrium by comparing �L
at any given time with the late time thermal result (see
Fig. 1). In any dimension, this compares the logarithm of
the 2-point correlator at different spatial scales with the
logarithm of the thermal correlator. For d ¼ 2, the same
quantity measures by how much the entanglement entropy
at a given spatial scale differs from the entropy at thermal
equilibrium.
Various thermalization times can be extracted from

Fig. 1. For any spatial scale we can ask for (a) the time
�dur until full thermalization (measured as the time when
the geodesic between two boundary points just grazes the
infalling shell), (b) the half-thermalization time �1=2, which
measures the duration for the curves to reach half of their
equilibrium value, and (c) the time �max at which thermal-
ization proceeds most rapidly, namely, the time for which
the curves in Fig. 1 are steepest. These are plotted in Fig. 2.
In d ¼ 2 we can analytically derive the linear relation
�dur � ‘=2, as also observed in Ref. [9].
The linearity of �durð‘Þ in 2d is expected from general

arguments in conformal field theory [7], and the coefficient
is as small as possible under the constraints of causality.
The thermalization time scales �1=2 and �max for 3d and 4d
field theories (Fig. 2, middle and right) are sublinear in the
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FIG. 1 (color online). � ~L� � ~Lthermal (
~L � L=‘) as a func-

tion of boundary time t0 for d ¼ 2; 3; 4 (left, right, middle)
for a thin shell (v0 ¼ 0:01). The boundary separations are
‘ ¼ 1; 2; 3; 4 (top to bottom curve). All quantities are given in
units of M. These numerical results match analytical results for
d ¼ 2 as v0 ! 0.
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spatial scale. In the range we study, the complete thermal-
ization time �dur deviates slightly from linearity and is
somewhat shorter than ‘=2. We will later discuss whether
a rigorous causality bound for thermalization processes
exists or not.

In 2d ‘‘quantum quenches’’ where a pure state prepared
as the ground state of a Hamiltonian with a mass gap is
followed as it evolves according to a different, critical
Hamiltonian, a nonanalytic feature was found where ther-
malization at a spatial scale ‘ is completed abruptly at
�durð‘Þ [7,9]. An analogous feature is evident in Fig. 1 (left)
as a sudden change in the slope at �dur, smoothed out only
by the small nonzero thickness of the shell or, equivalently,
by the intrinsic duration of the injection of energy. We find
a similar (higher-order) nonanalyticity for d ¼ 3; 4 (Fig. 1,
middle and right) and expect this to be a general conse-
quence of abrupt injection of energy in any dimension.

Figure 2 shows that complete thermalization of the
equal-time correlator is first observed at short length scales
or large momentum scales (see also [5]). While this behav-
ior follows directly in our setup with a shell falling in from
the (‘‘UV’’) boundary of AdS, this ‘‘top-down’’ thermal-
ization contrasts with the behavior of weakly coupled gauge
theories even with energy injected in the UV. In the
‘‘bottom-up’’ scenario [12] applicable to that case, hard
quanta of the gauge field do not equilibrate directly by
randomizing their momenta but gradually degrade their
energy by radiating soft quanta, which fill up the thermal
phase space and equilibrate by collisions among them-
selves. This bottom-up scenario is linked to the infrared
divergence of the splitting functions of gauge bosons and
fermions in perturbative gauge theory. It contrasts with the
‘‘democratic’’ splitting properties of excitations in strongly
coupled super Yang-Mills theory that favor an approxi-
mately equal sharing of energy and momentum [13].

The thermal limit of the Wightman function that we
studied above is a necessary but not a sufficient condition
for complete thermalization. To examine whether thermal-
ization proceeds similarly for other probes, we also studied
entanglement entropy and spacelike Wilson loop
expectation values in 3d (following [10]) and 4d field
theories. Entanglement entropy in 3d field theories is holo-
graphically related to minimal surfaces in AdS4 and hence

to the logarithm of the expectation value of Wilson loops.
We considered circular loops of radius R in d ¼ 3; 4. The
minimal spacelike surface in AdSdþ1 whose boundary is
this circular loop extends into the bulk space radially and
into the past. The tip occurs at ðv�; z�;x ¼ 0Þ. The cross
section at fixed z and v is a circle, and thus the surface is
parameterized in terms of the radii � of these circles. The
overall shape minimizes the action for the two functions
zð�Þ and vð�Þ:

A ½R�¼2�
Z R

0
d�

�

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�½1�mðvÞzd�v02�2z0v0

q
; (6)

where z0ð�Þ ¼ dz=d�, etc. The resulting Euler-Lagrange
equations can be numerically integrated. We regularize the
area by subtracting the divergent piece of the area in
‘‘empty’’ AdS: �A½R� ¼ A½R� � ðR=z0Þ. Entanglement
entropy of spherical volumes in d ¼ 4 is similarly com-
puted in terms of minimal volumes in AdS5 by minimizing
an equation similar to (6) and defining �V½R� by subtract-
ing the divergent volume in empty AdS.
The deficit area �A� �Athermal for Wilson loops in

d ¼ 3; 4 and the deficit volume �V � �Vthermal are plotted
in Fig. 3 for several boundary radii R as a function of the
boundary time t0. By subtracting the thermal values, we
can observe the deviation from equilibrium for each spatial
scale at a time t0. Comparing the three thermalization times
defined earlier as a function of the loop diameter (Fig. 4),
we find that for the entanglement entropy in d ¼ 3; 4, the
complete thermalization time �durðRÞ is close to being a
straight line with unit slope over the range of scales that we
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FIG. 2 (color online). Thermalization times (�dur, top line;
�max, middle line; �1=2, bottom line) as a function of spatial

scale for d ¼ 2 (left), d ¼ 3 (middle), and d ¼ 4 (right) for a
thin shell (v0 ¼ 0:01). All thermalization time scales are linear
in ‘ for d ¼ 2 and deviate from linearity for d ¼ 3; 4.
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FIG. 3 (color online). � ~A� � ~Athermal (
~A � A=�R2; left

and middle panels) and � ~V � � ~V thermal [ ~V � V=ð4�R3=3Þ; right
panel] as a function of t0 for radii R ¼ 0:5; 1; 1:5; 2 (top curve to
bottom curve) and mass shell parameters v0 ¼ 0:01, M ¼ 1, in
d ¼ 3 (left panel) and d ¼ 4 (middle and right panel) field
theories.
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FIG. 4 (color online). Thermalization times (�dur, top line;
�max, middle line; �1=2, bottom line) as a function of the diameter

for circular Wilson loops in d ¼ 3; 4 (left, middle) and for
entanglement entropy of spherical regions in d ¼ 4 (right).
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study (as observed in [10] for d ¼ 3). On the other hand,
for Wilson loops in d ¼ 4, �durðRÞ deviates somewhat from
linearity and is shorter than R.

Our thermalization times for Wilson loop averages and
entanglement entropy seem remarkably similar to those for
2-point correlators (after noting that R here is the radius of
the thermalizing region and ‘ in Fig. 2 is the diameter).
Slightly ‘‘faster-than-causal’’ thermalization, possibly due
to the homogeneity of the initial configuration, seems to
occur for the probes that do not correspond to entanglement
entropy in each dimension. For the latter, the thermalization
time is linear in the spatial scale and saturates the causality
bound.As the actual thermalization rate of a system is set by
the slowest observable, our results suggest that in strongly
coupled theories with a gravity dual, thermalization occurs
‘‘as fast as possible’’ at each scale, subject to the constraint
of causality. Taking the thermal scale ‘� @=T as the length
scale, this suggests that for strongly coupled matter
�dur � 0:5@=T, in particular, �dur � 0:3 fm=c at heavy ion
collider energies (T � 300–400 MeV), comfortably short
enough to account for the experimental observations.

The average growth rate of the coarse grained entropy in
nonlinear dynamical systems is measured by the
Kolmogorov-Sinaı̈ (KS) entropy rate hKS [14], which is
given by the sum of all positive Lyapunov exponents. For a
classical SU(2) lattice gauge theory in 4d, hKS has been
shown to be proportional to the volume [15]. For a system
starting far from equilibrium, the KS entropy rate generally
describes the rate of growth of the coarse grained entropy
during a period of linear growth after an initial dephasing
period and before the close approach to equilibrium [16].
Here we observe similar linear growth of entanglement
entropy density in d ¼ 2; 3; 4 [Figs. 1(a), 3(a), and 3(c)].
For small boundary volumes, the growth rate of entropy
density is nearly independent of the boundary volume
[almost parallel slopes in Figs. 1(a), 3(a), and 3(c) and
nearly constant maximal growth rate in Fig. 5(a)].
Equivalently, the growth rate of the entropy is proportional
to the volume—suggesting that entropy growth is a local
phenomenon. However, in d ¼ 2where our analytic results
enable study of large boundary volumes ‘, we find that the
growth rate of the entanglement entropy density changes
for large ‘, falling asymptotically as 1=‘ [Fig. 5(b)].
Equivalently, the entropy has a growth rate that approaches

a constant limiting value for large ‘ [Fig. 5(c)] and thus
cannot arise from a local phenomenon. This behavior
suggests that entanglement entropy and coarse grained
entropy have different dynamical properties.
We have investigated the scale dependence of thermal-

ization following a sudden injection of energy in 2d, 3d,
and 4d strongly coupled field theories with gravity duals.
The entanglement entropy sets a time scale for equilibra-
tion that saturates a causality bound. The relationship
between the entanglement entropy growth rate and the
KS entropy growth rate defined by coarse graining of the
phase space distribution raises interesting questions.
We thank V. Hubeny for helpful discussions and

E. Lopez for comments on an earlier version of the manu-
script. This research is supported by the Belgian Federal
Science Policy Office, by FWO-Vlaanderen, by the
Foundation of Fundamental Research on Matter (FOM),
by the DOE, by the BMBF, and by the Academy of
Finland.
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FIG. 5 (color online). (Left) Maximal growth rate of entangle-
ment entropy density vs radius of entangled region for d ¼
2; 3; 4 (top to bottom). (Middle) The same plot for d ¼ 2, larger
range of ‘. (Right) Maximal entropy growth rate for d ¼ 2.
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