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A Block Slipping on a Sphere with Friction: Exact and Perturbative
Solutions

Abstract
A well studied problem in elementary mechanics is the location of the release point of a particle that slides on
the surface of a frictionless sphere when it is released from rest at the top. We generalize this problem to
include the effects of sliding friction and solve it by a perturbation expansion in the coefficient of sliding
friction and by an exact integration of the equation of motion. A comparison of the two solutions identifies a
parameter range where the perturbation series accurately represents the motion of the particle and another
range where the perturbative solution fails qualitatively to describe the motion of the particle.
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A block slipping on a sphere with friction: Exact and perturbative solutions
Tom Prior and E. J. Mele
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
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A well studied problem in elementary mechanics is the location of the release point of a particle that
slides on the surface of a frictionless sphere when it is released from rest at the top. We generalize
this problem to include the effects of sliding friction and solve it by a perturbation expansion in the
coefficient of sliding friction and by an exact integration of the equation of motion. A comparison
of the two solutions identifies a parameter range where the perturbation series accurately represents
the motion of the particle and another range where the perturbative solution fails qualitatively to
describe the motion of the particle. © 2007 American Association of Physics Teachers.

�DOI: 10.1119/1.2410018�

I. INTRODUCTION

A classic problem in introductory mechanics1,2 is to deter-
mine the release point for a block of mass m that slides
without friction on the surface of a sphere or cylinder of
radius R starting from rest �that is, with an infinitesimal ve-
locity� at the top �see Fig. 1�. The answer is that the release
point, the point at which the block first loses contact with the
sphere, occurs when it has fallen a vertical distance h=R /3.
The result is interesting because it is independent of both the
particle mass m and the gravitational acceleration g.

It is useful to extend this analysis to include frictional
effects, which we model by the frictional force Ff =�FN op-
posing the motion in the tangent plane of the sphere; FN is
the normal force and � is the coefficient of �kinetic� friction.
This problem is much more challenging because the normal
force depends on the particle speed, which in turn depends
on the history of the descent of the particle up to its release
point.

In this paper we discuss approximate and exact solutions
to this problem. We assume that the solution with friction is
analytic in the coefficient of friction � and use this assump-
tion to develop a perturbation expansion in powers of � for
the particle motion up to the release point. It is not generally
appreciated that the equation of motion for this problem with
friction can be integrated exactly. In the following we de-
velop the perturbation expansion to second order in � to
illustrate its structure.

A comparison of the exact and approximate solutions
identifies a parameter regime where the solutions are nearly
identical. The comparison also identifies the regime where
the solutions are appreciably different and the perturbation
solution is no longer meaningful. In particular, the block
needs a critical initial impulse to avoid stopping on the sur-
face of the sphere, a situation that is inaccessible by pertur-
bation theory. The discrepancy between the approximate and
exact solutions increases as the frictional effects increase, but
decreases as more terms are included in the approximate so-
lution.

We used this problem in the context of an honors level
introductory course in mechanics to illustrate the application
of a perturbation theory to a familiar �though challenging�
problem. In Sec. II we present the geometry of the problem,
the equation of motion describing the descent of the particle
on the surface of the sphere, and summarize its solution for a
frictionless sphere using conservation of energy. In Sec. III

we formulate the problem in the presence of friction as an
integro-differential equation of motion. In Sec. IV we de-
velop a solution by a method of successive approximations
in powers of �. In Sec. V we formulate the original problem
as a first-order inhomogeneous ordinary differential equa-
tion, which has an exact solution. In Sec. VI we compare the
exact and approximate solutions and discuss the features of
the motion that fall outside the applicability of the perturba-
tion theory.

II. SOLUTION WITHOUT FRICTION

We first pose a “warm-up” problem before studying the
effects of friction. A block of mass m is released at the top of
a fixed sphere of radius R with initial velocity v0 tangent to
the surface of the sphere. At what vertical displacement from
the top of the sphere does the block lose contact with the
sphere?

To solve this problem we use Newton’s second law Fnet
=ma, where Fnet is the net force on the particle and a is its
acceleration. We will also use the work-energy theorem
�r1

r2F dr= 1
2mv2

2− 1
2mv1

2. We treat the block as a point particle.
It is helpful to introduce a coordinate system whose origin

is at the center of the fixed sphere. Let the initial position of
the block be r0, the position of the block at some time later
be r, and the angle between the two be �. While the block is
on the sphere, its distance from the center of the sphere is
always R. Because the position of the block is contained in
the plane of g, and v0, where g is the acceleration due to
gravity and v0 is the initial velocity of the block, two scalar
variables are enough to completely describe the position of
the block. One of these variables, R, is fixed for the section
of motion we are considering, so the position of the block
can be completely parameterized as a function of �.

If we resolve forces along the surface normal and define
FN= �FN�, we have

mg cos � − FN =
mv2

R
. �1�

The application of conservation of energy yields the relation

2gR�1 − cos �� = v2 − v0
2. �2�
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To solve for the position at which the block loses contact
with the sphere, we combine Eqs. �1� and �2�, with the con-
dition FN=0, and solve for h=R−R cos �:

h =
R

3
�1 −

v0
2

gR
� . �3�

For the case v0, as in the original problem posed in Sec. I,
h=R /3. If v0�0, h decreases with the square of v0.

III. A MODEL WITH FRICTION

If we include frictional effects, there are three forces act-
ing on the block during the time of interest. These are the
force of gravity, the normal force of the sphere on the block,
which is always along r, and the force of friction on the
block, which is always perpendicular to r. Because there is
no component of the frictional force F f along r, we still have
the following relation �after rearranging Eq. �1��:

FN = mg cos � −
mv2

R
. �4�

The work-energy theorem yields the following relation,
where W is the work done on the block due to friction:

1
2mv2 − 1

2mv0
2 = mgR�1 − cos �� + W . �5�

To proceed we need to calculate W. Recall that the force
of friction opposes the direction of motion with magnitude
�FN, giving

W =	 F f dr = �− �R� 	 FN d� . �6�

If we substitute FN from Eq. �4�, we have

W = �− �R� 	 �mg cos � −
mv2

R
� d� . �7�

We now return to Eq. �5� and substitute Eq. �7� for W and
then divide both sides by m. That is, the height at which the
block leaves the sphere is independent of its mass.

v2 − v0
2 = 2gR�1 − cos �� + �− 2�R� 	 �g cos � −

v2

R
� d� .

�8�

We proceed by solving Eq. �8� for v. As in the no friction
case, we will solve Eq. �8� for z���=v2, whose positive
square root can be taken to give v. Thus we rewrite Eq. �8� in
terms of z���:

z��� − z0 = 2gR�1 − cos �� + �− 2�gR�

�	
0

� �cos � −
z���
gR

� d� . �9�

IV. APPROXIMATE SOLUTION WITH
FRICTION

The solution to Eq. �9� can be approximated by assuming
that � is small and that there exists a series expansion for z
in powers of � about �=0. We solve for the first few terms
of this series expansion:

z 
�z��=0 +� �z

��
�

�=0
� +

1

2!
� �2z

�2�
�

�=0
�2 + . . . , �10�

or

z��,�� 
 z��=0 + a� + b�2 + . . . , �11�

where a and b are functions of �. The relation obtained after
substituting the right-hand side of Eq. �11� for z in Eq. �9� is
valid for all � only if

z��=0 = 2gR�1 − cos �� + z0. �12�

We can now solve for the function a��� in the series expan-
sion of Eq. �11�, giving

a = �− 2gR sin �� + 2	
0

�

�2gR�1 − cos �� + z0� d� �13a�

=4gR� − 6gR sin � + 2z0� . �13b�

Given a��� we can solve for b���:

b = 2	 a d� = 4gR��2 + 3 cos � − 3� + 2z0�2. �14�

We can continue this process for an arbitrary number of
terms, finding each successive term by multiplying the defi-
nite integral of the result from the previous iteration by two.
For example,

c = 2	 b d�, d = 2	 c d� , �15�

where the approximate solution for v is given by

v 
 �z0 + 2gR�1 − cos �� + ��4gR� − 6gR sin � + 2z0�� + ¯ . �16�

Fig. 1. A block sliding on the surface of a stationary sphere of radius R. the
block is approximated as a point particle, and its motion parametrized by the
polar angle �.
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V. EXACT SOLUTION WITH FRICTION

Equation �9� can also be solved exactly. This solution is
cited in an analysis of the speed of a sled sliding through a
valley in Ref. 3. Here we provide some details to allow a
quantitative comparison with Eq. �17�. We differentiate both
sides of Eq. �9� with respect to � and rearrange terms to
obtain

dz

d�
+ �− 2��z = �2gR sin � − 2�gR cos �� . �17�

Equation �17� is a first-order, linear differential equation of
the form

dy

dx
+ p�x�y = q�x� , �18�

with y=z and x=�. Equation �18� is solvable by introducing
the integrating factor4 f�x�=e�p�x� dx. The following equation
holds generally for this choice of f and is solvable by inte-
grating both sides with respect to x:

d

dx
�f�x�y� = f�x�q�x� . �19�

This method is now applied to solve Eq. �17�. We choose the
integrating factor

f��� = e��−2�� d� = e−2��. �20�

In analogy to Eq. �19�, we have

d

d�
�f���z� = f���q��� , �21�

d

d�
�e−2��z� = e−2���2gR sin � − 2�gR cos �� , �22�

z =
2gR�2 cos ��2 − 3 sin �� − cos ��

4�2 + 1
+ Ce2��. �23�

Equation �23� is the solution for z with C as an integration
constant. We can solve for this constant with z��=0=v0

2:

C = v0
2 + gR� 3

4�2 + 1
− 1� . �24�

If we replace C in Eq. �23� by its solution in Eq. �24�, we
obtain the following solution for z=v2:

z =
2gR�2 cos ��2 − 3 sin�� − cos ��

4�2 + 1

+ �z0 + gR 3

4�2 + 1
− 1��e2��. �25�

Equivalently, z can be replaced by v2 in Eq. �25�, which can
then be solved for v:

v =�2gR�2 cos ��2 − 3 sin �� − cos ��
4�2 + 1

+ �v0
2 + gR 3

4�2 + 1
− 1��e2��. �26�

If the argument of the square root is positive, Eq. �26� gives
the speed of the particle as a function of its angular displace-
ment �.

VI. COMPARISON OF PERTURBATIVE
AND EXACT SOLUTIONS

By setting �=0 in Eq. �25� we can verify that z reduces to
Eq. �2�. The exact solution for z can be expanded in powers
of � to give the same terms that were obtained from the
perturbation expansion for z:

z 
 z0 + �� �z

��
�

�=0
�� + �� 1

2!

�2z

�2�
�

�=0
��2 + ¯ , �27�

�z

��
=

1

�4�2 + 1�2 �4e2��gR� − 6gR sin �

+ 2e2���z0 + O���� . �28�

If �z /�� is evaluated at �=0, the resultant expression is the
same as that obtained for a in Eq. �13�.

Figures 2 and 3 show plots of the speed of the block as a
function of the angular displacement from its starting posi-
tion on the sphere. Figure 2 illustrates the behavior for low
friction �=0.5, and Fig. 3 illustrates the behavior for �
=1.0. The bold curves represent the exact solution, and the

Fig. 2. Solutions for the velocity v of a block as a function of its angular
displacement � from the top of a sphere with free fall acceleration g and the
effect of friction with a coefficient of friction �=0.5. The velocity is plotted
in units of �gR, the critical velocity for the particle to lose contact with the
sphere at �=0. The dashed curve labeled “release condition” gives the criti-
cal velocity for the block to leave the sphere. The thin curve is a perturbative
solution to the equation of motion for v2 to first order in � �see Eq. �16��.
The bold curve is the exact solution to the equation of motion, Eq. �26�. The
intersections of these curves with the dashed curve give the predicted release
angles. Note that in either solution the block first slows under the influence
of friction before speeding up due to the gravitational acceleration.
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thin curves represent the solution corresponding to the first-
order approximation. The release condition for the particle is
indicated as the dashed curve, so that the particle leaves the
sphere at the angle at which the dotted line intersects the
solution curve. The block is predicted to stop at the angle at
which the solution curves intersect the � axis �at which the
velocity of the block is zero�.

In both the exact and approximate solutions for low fric-
tion the particle initially slows under the influence of friction
before speeding up due to the gravitational force. As ex-
pected, the speed at a given angle without friction exceeds
the speed with friction, and the particle remains in contact
with the sphere longer. Because the particle initially slows
under the influence of friction, v0 must exceed a critical
value for the particle to avoid stopping on the surface. The
exact solution is undefined for angles greater than the angle
at which the block has already stopped.

For �
1 the approximation becomes very poor. In Fig. 3
the approximation predicts that the block will slow down,
then speed up, and then leave the sphere at �
0.87 rad. The
exact solution for the velocity of the block predicts that the
block will slow down, then stop and remain at �
0.26 rad.

By extending the perturbation theory to higher order in �,
we can improve the agreement between the approximate and
exact solutions over the range where the block is slipping.
This improvement is illustrated in Fig. 4, which shows that
better agreement for �
1 is obtained by extending the ex-
pansion to second order in �. However, at this order the
perturbation theory still contains an anomalous branch at
larger � where the block satisfies the release condition. Note

that when the block comes to rest on the sphere, the coeffi-
cient of friction undergoes a nonanalytic change, reverting to
the coefficient of static friction. This feature cannot be re-
lated to our unperturbed solution at any finite order of the
perturbation theory, which treats only the effect of sliding
friction.

VII. SUGGESTED PROBLEMS

Problem 1. Perform the iterated series for z in Eq. �15� to
obtain z��� through second order in �. Verify that your result
agrees with the quadratic dependence on � obtained from the
exact solution in Eq. �25�.

Problem 2. The exact solution can be used to construct a
phase diagram in the �-v0 plane separating the region where
the block sticks to the sphere from the region where the
block continues to slip on the sphere and is released. The
critical line is the locus of zeros of z in Eq. �25�. Write a
computer program to evaluate z�� ,z0� and search for its zero
crossings to construct the phase diagram.

1D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics �Wiley,
New York, 2005�, 7th extended ed., Chap. 8, Prob. 36.

2D. Kleppner and R. J. Kolenkow, An Introduction to Mechanics
�McGraw-Hill, Boston, 1973�, Prob. 4.6.

3G. E. Hite, “The sled race,” Am. J. Phys. 72, 1055–1058 �2004�.
4H. Anton, Calculus: A New Horizon, 6th ed. �Wiley, New York, 1999�,
pp. 583–584.

Fig. 3. Same as Fig. 2 with �=1. Here the first-order perturbative solution
predicts that the block slows and then speeds up before reaching the release
point given by the intersection with the dashed curve. The exact solution has
the block slowing and coming to rest on the surface of the sphere.

Fig. 4. Same as Fig. 3. The second-order perturbative solution �dashed
curve� is in reasonable agreement with the exact solution �bold curve� for
small angular displacement, but contains an anomalous branch at larger
angles that satisfies the release condition at larger displacement. A final state
with the block stationary on the surface of the sphere is inaccessible to any
order of perturbation theory in �.
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