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We numerically study the ground states of particles interacting via a repulsive Yukawa potential on two rigid
substrates shaped as isolated and periodically arranged bumps characterized by a spatially varying Gaussian
curvature. Below a critical aspect ratio that describes the substrate deformation, the lattice is frustrated, but
defect free. A further increase of the aspect ratio triggers defect unbinding transitions that lower the total
potential energy by introducing dislocations either in isolation or within grain boundaries. In the presence of
very strong deformations, isolated disclinations are nucleated. We show that the character and spatial distribu-
tion of defects observed in the ground state reflect the symmetries and periodicity of the two model surfaces
investigated in this study.
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I. INTRODUCTION

The study of crystalline arrays of particles on curved sur-
faces has a rich history starting approximately over 100 years
ago with the well-known Thomson problem �1�. The original
problem of determining the ground state of classical elec-
trons confined on a sphere has fueled a broader interest in the
influence of geometric constraints on particle packings. A
variety of experimental realizations have been discovered in-
cluding viral architecture �2�, flower pollen like the Morning
Glory, cytoplasmic acidification on a clathrin lattice mor-
phology �3,4�, colloidal encapsulation for drug delivery
�5,6�, and multielectron bubbles on the surface of liquid he-
lium �7�. Other experimentally ordered structures on nonuni-
form curved surfaces including lipid bilayers �8�, Langmuir
films, wrinkled surfaces �9�, and liquid crystal thin films are
of great scientific interest.

The properties of two-dimensional crystals constrained on
surfaces of constant curvature have been the object of exten-
sive theoretical studies. The main focus remains, however,
on spherical geometry with the advantage of experimental
interest and uniform, well-defined positive curvature
�10–15�, but also more abstract surfaces of constant negative
curvature have been analyzed often in connection with mod-
els of glasses �16�. The study of the ground state of large
numbers of particles on a sphere has proven to be very chal-
lenging and is still under investigation. The major complica-

tion, from an analytical as well as from a simulation stand-
point, is the vast configurational space riddled with local
minima having very small differences in energy. A crucial
simplification follows from the fact that the integrated
Gaussian curvature K�r� of the substrate constrains the net
topological charge of the defects according to the following
relation �17,18�:

�
z

�6 − z�Nz =
3

�
� �

s

�g d2r K�r� , �1�

where Nz is the number of particles with coordination z in the
region s and g is the determinant of the metric tensor of the
surface. A sphere has a constant Gaussian curvature K= 1

R2 ,
where R is the radius of the sphere, and the right-hand side of
Eq. �1� can be evaluated to yield 12. A sphere, covered with
a hexagonal lattice containing more than 12 particles, will
exhibit 12 more fivefold than sevenfold disclinations due to
the integrated Gaussian curvature of the confining manifold.
In the ground state, the fivefold defects are sitting at the
vertices of a regular icosahedron. In flat space, disclinations
are expensive energetically; their energy grows with the size
of the system squared �Edisclination�R2, where R is the char-
acteristic size of the system�. The main contribution to the
energy comes from the elastic stretching of the lattice, in
addition to a core energy of the disclination. Isolated discli-
nations are, therefore, never observed for larger systems in
the ground state of a flat surface in contrast to curved space,
where disclinations may be forced in by topological require-
ments. Furthermore, if the ratio R

� of the sphere radius to
lattice constant � is increased above a critical value, the
ground state contains grain boundaries attached to the 12
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disclinations to screen the lattice strain �13,14,16�. The criti-
cal ratio is a balance between the decrease in strain energy of
the lattice caused by incorporating the grain boundaries and
the energy required to create them.

Less work has been done on surfaces of varying Gaussian
curvature �19,20�. A simple illustration is provided by de-
forming a plane into a bump so that positive Gaussian cur-
vature is generated near the top of the hill and negative
Gaussian curvature in the outskirts at radial distances greater
than its inflection point. Such a curved substrate could be
engineered by using a template of melted colloidal particles
later coated with a hexagonal array of spheres generated by
the self-assembly of block copolymers �21�.

Since the integrated Gaussian curvature of such a bumpy
landscape is zero, an equal number of fivefold and sevenfold
disclinations is expected from Eq. �1�. The interesting aspect
is the long-range interaction between the defects and the
varying curvature of the substrate that acts as a source for the
topological charges in analogy with the more familiar case of
electrostatic particles in a smeared out charge distribution
�10,19,22,23�. This geometric potential extends well beyond
the range of the interparticle interaction because it is con-
trolled by the length scale over which the Gaussian curvature
varies and it is naturally absent in flat space. Recent theoret-
ical work has explored various aspects of frustrated hexago-
nal lattices confined on a model surface shaped as an isolated
Gaussian bump �19�. For small deformations �i.e., below a
critical aspect ratio of the bump height a over variance ��, a
hexagonal lattice of particles wraps defect free over the de-
formed substrate. The curvature is accommodated by induc-
ing a nonuniform strain in the lattice.

The creation of defects, screening the Gaussian curvature,
is governed by the frustration in the lattice and the energy
penalty for creating a defect. A frustrated lattice is character-
ized by the fact that the individual interparticle distance dif-
fers from its relaxed constant value in the flat-space ground
state. Upon increasing the aspect ratio above a critical value
�c �controlled mainly by the underlying geometry�, a new
ground state emerges characterized by two dislocations
placed at a radial distance of approximately 1.1� on opposite
sides of the Gaussian bump so that the total Burgers vector is
equal to zero. �In Fig. 1, the common defects in hexagonal
lattices are shown along with the Burgers vector for the dis-
locations �24�.� The exact equilibrium separation of the de-
fect pair was calculated by finding the minimum of the geo-
metric potential between each dislocation and the curvature
with a small correction arising from the interaction between
the two dislocations. These analytical results were corrobo-
rated by numerical calculations using a fixed connectivity
model �19�.

The purpose of this study is to numerically investigate via
Monte Carlo simulations the distribution of two or more de-
fects in the ground state of crystalline monolayers confined
on surfaces of varying Gaussian curvature and compare the
results retrieved to the calculations of Ref. �19�. The method
we present can be easily employed to determine the defected
ground states of complex surface deformations, with no azi-
muthal symmetry without the artificial restrictions inherent
in the previous fixed connectivity minimizations in which the
local coordination was constrained to be sixfold by construc-

tion except at the locations of isolated defects �19�. We first
test the theoretical predictions for an isolated Gaussian bump
and later proceed to study numerically a rigid substrate de-
scribed by perpendicular intersecting sine waves. Novel de-
fect morphologies are generated from breaking the azimuthal
symmetry of an isolated bump.

The organization of this paper is as follows. In Sec. II, we
describe the numerical method adopted in this investigation.
Details of the algorithms are relegated to the Appendix. Our
results for the zero-temperature distribution of defects for the
two substrate morphologies considered are presented in Sec.
III and compared to previous analytical theories, which we
briefly review.

II. METHODS

A. System

Consider a system of N particles constrained to move on a
two-dimensional �2D� surface embedded in a 3D space. The
simulations were performed in a square simulation cell of
area A=b2, where b is the side length of the 2D projection of
the surface onto the x-y plane. An embedded surface can be
described in the Monge form z= f�x ,y� �25�. We investigate
two different surfaces that are obtained from deforming a 2D
flat plane. The first surface is created by two perpendicular
intersecting sine waves, shown in Fig. 2�a�.

The analytic representation is

fs�x,y,b,a� = a sin�x/b�2���sin�y/b�2��� �2�

=a sin�xq�sin�yq� , �3�

where a is the amplitude of the sine wave and q= 2�
b the

wave vector. The area element is given by

FIG. 1. �Color online� �a� Fivefold disclination, in red, showing
the Voronoi cell with five nearest neighbors. �b� Sevenfold discli-
nation, in blue, showing the Voronoi cell with seven nearest neigh-

bors. �c� Burgers vector b� and the corresponding dislocation shown
by the green arrow.
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d� =�1 + � � fs

�x
	2

+ � � fs

�y
	2

dx dy �4�

and the Gaussian curvature is

K =

�2fs

�x2

�2fs

�y2 −
�2fs

2

�x � y


1 + � � fs

�x
	2

+ � � fs

�y
	2�2 . �5�

A plot of the Gaussian curvature for this surface is shown in
Fig. 2�b�. The second surface is a Gaussian bump located at
the center of the simulation cell. A height plot is shown in
Fig. 2�c�, adjacent to a plot of the Gaussian curvature for this
surface shown in Fig. 2�d�. The Monge representation of the
surface reads

fe�x,y,�,a� = ae−�x2+y2�/2�2
, �6�

where the standard deviation � is equal to 1
�40

for all simu-
lations. This value was used to ensure a smooth height func-
tion at the boundary of the simulation box. The fs and fe
surfaces show negative and positive Gaussian curvature,
with a total Gaussian curvature ��AK d�=0� equal to zero.
The fe surface has azimuthal symmetry, and the region of
negative curvature encloses a circle of positive curvature
whose radius is determined from the position of the inflec-
tion point. The fs surface, instead, displays a characteristic
checkerboard pattern with the maximum absolute values of
the negative and positive Gaussian curvature being equal.

The particles confined to the curved surface interact via
an effective Yukawa pair potential V�r�. To a first approxi-
mation, a Yukawa potential describes the interaction between
particles with surface charges dispersed in a solvent with
counter-ions. In reduced units of E�= E

Q2/4��0
, where Q is

charge and �0 is the permittivity, it reads

V�r� =
exp�− �r�

r
�1/b0� , �7�

where the constant � is the inverse of the Debye-Hückel
radius. The value for � is kept constant at 100 1

b0
. The dis-

tance r between particles was calculated with Pythagoras’s
theorem in three dimensions, and not along the surface. This
procedure has a closer resemblance to a diblock copolymer
system or colloidal system in experiments. The added benefit
is an increase in speed of the calculations due to the simpler
expressions for r.

We start by laying down on a flat plane a hexagonal lattice
of interacting particles. It is necessary to restrict the number
of particles to integers so that the full hexagonal lattice can
be accommodated in a square-shaped simulation cell. Table I
shows the number of unit cells in the x and y directions
where each unit cell contains two particles.

The density of the particles was kept constant for a given
particle number. Since the deformation of the flat plane in-
creases the surface area, the side length b was reduced to
accommodate the change in total area, keeping the ratio
�number of particles�/�area� constant. The total surface area
of the surface is the integral over the simulation cell using
the area element introduced in Eq. �4�. The relation between
the area and b is

�area� = �
−b/2

b/2 �
−b/2

b/2

d� . �8�

The area was chosen to be equal to 1, and b was changed
accordingly.

B. Zero-temperature calculations

Elastic moduli of a Yukawa lattice

The elastic moduli of a lattice of particles interacting via a
Yukawa potential can be directly derived from the pair po-
tential itself. It has been shown by Medina-Noyola and Ivlev
�26,27� that the Lamé constants 	 and 
 can be related to the
Yukawa potential by using the two elements c11 and c66 from
the elastic moduli matrix. Equations �9� and �10� describe the
relation between the shear modulus c66=	 and the compres-
sion modulus c11=
+2	 and their relation to the pair-
interaction potential V. The summations are taken over all
crystal sites l, where V� denotes the first derivative and V�
the second derivative of the potential energy with respect to
the interparticle distance r:

FIG. 2. �a� Contour plot of the height function of the sine-wave
surface �fs surface�. �b� Gaussian curvature of the sine-wave surface
shown in �a�. �c� Corresponding plot for the isolated Gaussian bump
�fe surface� and its Gaussian curvature shown in �d�.

TABLE I. Number of particles accommodating a hexagonal lat-
tice for a square simulation cell.

Unit cells
in the x
direction

Unit cells
in the y
direction

Total
number

26 15 780

19 11 418
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c66 =
N

16�
l

�rl
2V��rl� + 3rlV��rl�� , �9�

c11 =
N

16�
l

�3rl
2V��rl� + rlV��rl�� , �10�

where N is the two-dimensional particle density and rl is the
distance to the neighbor at crystal site l. The values in Table
II are approximate values that consider only interactions out
to third nearest neighbors. In terms of Lamé constants, the
Young’s modulus reads �28�

Y =
4	�	 + 
�

2	 + 

. �11�

Table II shows a summary of the elastic coefficients for a
Yukawa potential with �=100 for the two different values of
N=418 and N=780.

III. ZERO-TEMPERATURE DISTRIBUTION OF DEFECTS

In contrast to a sphere where an excess of 12 positive
disclinations are present, no such constraints exist for the
appearance of defects on a distorted plane due to the overall
vanishing total Gaussian curvature. The vanishing total
Gaussian curvature implies that in order to minimize the en-
ergy, two requirements must be satisfied. The sum over the
coordination has to be conserved and equal to zero; this is a
direct result of Eq. �1�, �z�6−z�Nz=0. Furthermore, the sum
of all Burgers vectors arising from the dislocations has to be
equal to zero for a crystal in the ground state. The ground
state of a flat plane exhibits a defect-free hexagonal lattice,
while even for a weakly distorted surface, the Gaussian cur-
vature induces defects in the lattice to decrease the deforma-
tion energy. The deformation energy is described as the po-
tential energy of the lattice on the distorted surface minus the
potential energy of the defect-free hexagonal lattice on a flat
plane.

Analytic work done in Ref. �19� predicts the critical as-
pect ratio �c= a

� for the fe surface, describing the point of
transition from a defect-free to a defective lattice. A Gaussian
bump with aspect ratio below �c consists of a hexagonal
lattice that wraps around the surface with considerable local
distortion of the equilibrium bond distance while avoiding
the creation of defects. Above �c, a lattice with a finite num-
ber of defects becomes favorable over a defect-free lattice.
The defects screen the Gaussian curvature from the rest of
the lattice and, therefore, lower the deformation energy. The
intuitive reason can be grasped by observing the behavior of
parallel lines on surfaces of different curvature; see Fig. 3. In

Fig. 3�a� parallel lines are plotted on a flat plane and by
definition intersect at infinity. In the case of positive curva-
ture, straight lines, which appear parallel along the equator of
the sphere, do intersect at the poles. Negative Gaussian cur-
vature will cause parallel lines to diverge as is shown in Fig.
3�c�.

Curving a hexagonal lattice introduces strains that can be
relieved by the introduction of defects at the price of some
energy cost. The strain in the lattice caused by the geometric
constraints associated with the curved substrate acts as a uni-
form external field that controls the equilibrium position of
the dislocations. In Fig. 3�d�, a three-dimensional view of a
Delaunay triangulation �29� of a lattice on a curved surface is
plotted. The blue polygons correspond to sevenfold disclina-
tions and the red pentagons to fivefold disclinations. The
yellow green lines are a guide to the eye, emphasizing the
effect of disclinations on parallel lines in the lattice. The
fivefold disclination focuses the green lines just as positive
Gaussian curvature focuses parallel lines. The green lines on
the right of Fig. 3�d� are caused to diverge due to the influ-
ence of the sevenfold disclination just as negative Gaussian
curvature causes parallel lines to diverge. The effect of grain
boundaries containing an uneven number of disclinations is
similar to that of isolated disclinations and the inserted half
rows can better relieve the frustration of weakly curved sur-
faces.

A. Gaussian bump surface

We will begin the investigation with a substrate shaped as
an isolated Gaussian bump labeled the fe surface, which is
similar to the surface studied in Ref. �19� using 780 particles.
A study with only 418 particles yielded similar results. A
frustrated defect-free lattice embedded on a gently curved
surface will exhibit a deformation energy increasing as a
power law with the magnitude of the deformation. An ana-

TABLE II. Elastic moduli of a Yukawa lattice for 418 and 780
particles.

N 	�1 /b0
3� 
�1 /b0

3� Y�1 /b0
3�

418 347 1137 1126

780 1911 8679 6476

FIG. 3. �Color online� �a� Parallel lines on a flat plane. �b� Lines
parallel on the equator merge on the poles of the positive Gaussian
curvature surface. �c� Initially equidistant lines diverge on a saddle
surface with negative Gaussian curvature. �d� Three-dimensional
view of the triangulation of a lattice overlapped by the Voronoi cells
of fivefold �red� and sevenfold �blue� disclinations. �e� Grain
boundaries. The green lines are guides to the eye.
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lytic expression derived within continuum elastic theory
reads �30�

F0 

Y��2�4

64
, �12�

where F0 is the deformation energy, � the variance of the
Gaussian bump, and �= a

� the aspect ratio of the bump. Equa-
tion �12� is completely determined with no fitting param-
eters, and it is derived in the limit ��1. A similar deforma-
tion energy can be extracted from the smart Monte Carlo
�SMC� simulations discussed in the Appendix. The solid line
in Fig. 4 shows the value of Eq. �12� as a function of �, while
the open circles ��� are obtained from SMC simulations.

The value F0 for the simulations is calculated by subtract-
ing the potential energy of a relaxed hexagonal lattice in a
flat plane from the potential energy of a defect-free hexago-
nal lattice wrapped on the surface of a given aspect ratio �.
The defect density was monitored by determining the two-
dimensional Voronoi diagram of particle positions in the x-y
plane �31�. The Voronoi diagram was calculated in MATLAB

using the QHULL sweep algorithms �29�. The isotropic initial
state relaxed into a defect-free arrangement only up to a criti-
cal aspect ratio discussed below. Determining the value of F0
for higher aspect ratios was achieved by seeding the simula-
tions with an ordered initial condition. The seed was a hex-
agonal lattice in the x-y plane. The third dimension of each
lattice point was added using Eq. �6�. A SMC simulation was
performed for 200 000 MC steps, while the temperature cho-
sen suppressed the creation of defects, but still allowed
movement of the particles. The SMC simulations were fol-
lowed by a regular Metropolis algorithm at zero temperature
for 200 000 MC cycles. It was possible to measure F0 up to
�=1.6. For values above ��1.6 the creation of defects could
not be suppressed with the scheme described above. While
there is qualitative agreement between the simulations and
Eq. �12� in the regime ��1 �for which its derivation holds�,
we observe systematic deviations as the deformation of the
substrate measured by � becomes larger. The analytic value
for F0 increases as �4, whereas the value calculated from

simulations can be fit closely to a �3 dependence. The inset
of Fig. 4 shows the deformation energy in a log-log plot. We
note that the continuum theory employed to derive Eq. �12�
assumes that the scale on which the curvature changes is
much larger than the lattice spacing, a regime that is not
accessible to our simulations.

In Fig. 5 the deformation energy of a defect-free lattice is
plotted �open circles ���� versus the aspect ratio of the de-
formed surface fe. The energy of a defective lattice is over-
laid with crosses ���. In the region of low aspect ratio, a
defect-free lattice yields the lowest deformation energy for
the surface.

Three sources contribute to the energy of a lattice that
contains defects: the potential energy of the lattice in flat
space including the energy due to defects, the deformation
energy from strain due to deformation of the lattice caused
by the Gaussian curvature, and a third potential energy from
the interaction between the Gaussian curvature and the de-
fects. The deformation energy in the flat plane includes the
elastic strain energy of individual defects, the core energies
of these defects, and the defect interaction energy. The inter-
action energy between defects is also modified by the pres-
ence of a Gaussian curvature. For dislocations, this correc-
tion, which is proportional to the Burgers vector squared, is
small in comparison to the direct interaction of each disloca-
tion with the Gaussian curvature, which is linear in the Bur-

gers vector b� . The interaction between Gaussian curvature
and defects is generally a one-body potential energy of
purely geometric origin that describes the coupling of an
isolated defect to the Gaussian curvature.

An analytic form for the geometric potential of a disloca-
tion is �30�

D�r,
� = − Y��
�2

8
sin�
�
�1 − e−r2

r
	 − ��

R
	2

r� , �13�

where � is the variance of the Gaussian bump and 
 the
angle between the Burgers vector of the dislocation and the
gradient of the fe surface. We have set the magnitude of the
Burgers vector equal to the lattice spacing �. For angles 

�the angle is measured in clockwise direction� smaller than
zero, the geometric potential becomes positive and the en-

FIG. 4. Deformation energy F0 �solid line� derived from the
analytic expression in Eq. �12�. Open circles ��� show the energy
from deformation of hexagonal lattice calculated from Monte Carlo
simulations. The inset shows the deformation energy in a log-log
plot.

FIG. 5. Deformation energy of a lattice with 780 particles on a
fe surface. Open circles ���: F0 for a defect-free lattice. Crosses
���: F0 for a lattice that contains defects.
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ergy of the dislocation increases. For alignment of the Bur-
gers vector parallel to the gradient �
=0�, the geometric po-
tential is equal to zero and the dislocation does not interact
with the Gaussian curvature. The potential becomes attrac-
tive if the angle between the Burgers vector and the gradient
is positive. This is the case if the fivefold disclination faces
the area of positive curvature and the sevenfold disclination
the opposite direction toward the area of negative Gaussian
curvature. The second term in Eq. �13� �� �

R
�2r� is a finite-size

correction where R is the radius of the circular boundary of
the system on which free boundary conditions are assumed.
In the case of periodic boundary conditions, we estimate this
term by setting R= b

2 where b is the size of the simulation
square. The geometric potential is plotted for the fe surface
in Fig. 6 and exhibits a minimum at r0=1.1�, pulling the
dislocations close to the inflection point of the Gaussian
bump.

Above a critical aspect ratio of 0.76 for 780 particles on a
fe surface, isolated dislocations reduce the deformation en-
ergy of the lattice. The analytic value for the critical aspect
ratio reads �30�

�c
2 � c

�

r0
ln� r0

b�
	 , �14�

where b�= �
2 e−8�Ec/Y�2

, r0 is the position of the minimum of
the geometric potential, and c�1 /2. The equation yields a
value of �c=0.49 for a vanishing dislocation core energy
Ec=0. A core energy of 1.15 1

b0
for each of the two disloca-

tions is required to match the value observed in the simula-
tions. A reasonable estimate for the Yukawa lattice yields a
value of Ec�0.1Y�2=0.96 1

b0
.

In Fig. 7, the arrangements of 780 particles on surfaces
with three increasing aspect ratios are presented. In Fig. 7�a�
two defects are observed. The center of the image coincides

with the center of the Gaussian bump. They are rotated 180°
with respect to each other, yielding a total Burgers vector of
approximately zero. In Fig. 7�b� a three-dimensional side
view is shown, illustrating how the defects arrange around
the area of positive Gaussian curvature. The center of the
dislocations is at 1.46� with respect to the center of the
bump and therefore farther away from the maximum Gauss-
ian curvature than anticipated, but only by 1.5 lattice sites.
The Burgers vectors of the dislocations make an angle of 90°
with the gradient of the surface, minimizing the energy of the
geometric potential.

In Figs. 7�c� and 7�d� the aspect ratio is 1.01. Three dis-
locations are observed, rotated 120° with respect to each
other. The Burgers vectors are arranged clockwise around the
center location of the Gaussian bump at an angle 
=90° with
respect to the gradient of the fe surface. A green circle marks
the inflection point �r=�� of the curvature, while the light
blue circle highlights 1.1�, the location of minimum geomet-
ric potential as calculated in Eq. �13�. The good agreement
between the angle 
 and the theoretical prediction is due to
the glide motion �parallel to the Burgers vector� of disloca-
tions. During the cooling process of the Monte Carlo simu-
lation, the defect can glide into the lowest-energy orientation
with respect to the surface gradient without overcoming a
large energy barrier.

Two of the three dislocations, however, are not in close
proximity to the predicted distance from the top of the bump
�1.1��. One is deep inside the area of positive Gaussian cur-
vature, while the other is in the region of negative Gaussian

FIG. 6. �Color online� Geometric potential from Eq. �13� for 

=90°.

FIG. 7. �Color online� Delaunay triangulation of a 780-particle
lattice on a curved fe surface. �a� Top view of a lattice containing
two defects with aspect ratio equal to 0.82. �b� Three-dimensional
view of �a�. �c� Three dislocations arranged around a Gaussian
bump and the three-dimensional view in �d�, the aspect ratio being
equal to 0.95. �e� and �f� Top view and the corresponding three-
dimensional view of a higher aspect ratio equal to 1.58.
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curvature. In order to understand if the observed state is a
trapped state due to the presumed high-energy barrier for the
dislocation climb necessary to place the defects at the pre-
dicted position or represents a true equilibrium, three dislo-
cations were placed at the positions predicted to yield the
lowest energy. The distance between the dislocations was
kept constant at seven lattice spacings. The 30 particles in-
volved in the three dislocations were excluded from the dis-
placement step during the Monte Carlo simulations. The
Monte Carlo simulations resulted in a hexagonal lattice con-
taining two additional dislocations besides the three disloca-
tions placed around the top of the Gaussian bump. After
removing the constraint on the 30 particles involved in the
three dislocations, the number of total defects decreased to
three dislocations arranged around the Gaussian bump with
an angle of 120° with respect to each other. The distance r
between the top of the bump and one of the dislocations was
two lattice spacings larger than the predicted distance 1.1�.
Similar results were obtained after placing three dislocations
around the bump with a distance between dislocations of six
lattice spacings, thus placing the dislocations slightly closer
to the top of the bump than predicted. It seems therefore that
the deviation of the three dislocations from the position,
1.1�, of lowest predicted energy from the continuum model
corresponds to a minimum energy and does not result from
kinetic trapping. It seems likely that the finite size of the
system does not allow placement of three dislocations in
close proximity to the predicted distance �r=1.1�� from the
top of the bump.

A lattice confined on a deformed surface fe with aspect
ratio equal to 1.58 is plotted in Fig. 7�e� and the three-
dimensional view in Fig. 7�f�. The arrangement and number
of the dislocations for the high aspect ratio of 1.58 are gov-
erned by three factors. The total number of disclinations �a
dislocation is made of two disclinations� is proportional to
the aspect ratio and thus dependent on the amount of Gauss-
ian curvature. The proportionality is shown in the inset of
Fig. 5. The number of disclinations is an increasing function
of the Gaussian curvature. A circular arrangement of dislo-
cations as shown in Fig. 7�c� is energetically expensive for a
large amount of dislocations. The more dislocations there are
arranged in a ring around the center, the smaller the distance
between individual dislocations with similar Burgers vectors
becomes. The repulsive interaction between defects with
similar Burgers vectors will increase the potential energy of
the lattice. A transition to grain boundaries will occur when
the repulsive interaction between dislocations at �=1.10 ex-
ceeds the decrease in energy due to placing the dislocations
at the minimum of the geometric potential. The transition to
grain boundaries is observed in the Monte Carlo simulations
for more than four dislocations surrounding the Gaussian
bump. In Figs. 7�e� and 7�f� nine dislocations are observed
arranged in grain boundaries around the center of the Gauss-
ian bump. The grain boundaries are not parallel to the gradi-
ent of the surface, but exhibit branching. The branching al-
lows the dislocations to lower their potential energy. The
closer each dislocation is to 1.1r0, the distance at which the
geometric potential is a minimum, the lower their potential
energy.

The dislocations and disclinations reduce the variance
�NN of nearest-neighbor distances as illustrated in Fig. 8�a�,

in agreement with the arguments of Travesset �13�, that find-
ing the ground state of particles is equivalent to finding the
particle distribution that is closest to a perfect equilateral
triangulation.

B. Sine-wave surface

We now turn to discuss the fs surface which is generated
by two sine waves intersecting perpendicularly to each other
�see Eq. �2��. As a result of the cubic symmetry of this sub-
strate, the resulting defect configurations are more difficult to
describe analytically than in the case of an isolated Gaussian
bump. The discussion in the previous section can nonetheless
provide a guide to understand the defect arrangements ob-
served on the fs surface. As a dimensionless parameter that
describes the substrate deformation, we choose the product
of the amplitude a times the magnitude of the wave vector, q,
of the periodic surface �aq�.

The ground state for a lattice on the fs surface that has
only a small deformation �i.e., below a critical value �aq�c� is
characterized by a defect-free hexagonal arrangement of par-
ticles. The critical value �aq�c will depend on the Young’s
modulus of the array, the core energy of the disclinations
created, the defect interaction energy, and the deformation
stress induced by the Gaussian curvature. Figures 9 and 10
show the deformation energy of a defect-free lattice and a
defective lattice for 418 particles and 780 particles, respec-
tively.

The deformation energy F0 of the defect-free lattice was
determined as described in the previous section and follows a
power law with the same exponent equal to 3 as in the case
of the fe surface. Above a critical value �aq�c=0.8, a lattice
that contains defects has a lower deformation energy. Its en-
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FIG. 8. �a� Variance �NN of the distribution of nearest-neighbor
distances of a lattice confined on a fe surface as a function of aspect
ratio. �b� Variance �NN for a lattice on a fs surface. Both graphs are
for 780 particles. Open circles ��� are for a defect-free lattice and
solid circles ��� for a defective lattice.
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ergy, however, does not increase monotonically. The value of
F0 actually goes through a minimum around aq=1.1 for sys-
tems containing both 418 particles and 780 particles.

The absence of the radial symmetry of the deformation
generates a directionality dependence of the geometrical po-
tential D�r� ,
� that depends on the position of r�, not just the
radial distance from a chosen point �e.g., the fe surface�. The
fivefold disclinations will be attracted by the regions of posi-
tive Gaussian curvature, and the sevenfold disclinations will
be attracted by the regions of negative Gaussian curvature.
The line of shortest distance between the area of maximum
positive and negative curvature, Ls, minimizes the distance
between the disclinations and their preferred Gaussian cur-
vature and, therefore, minimizes the potential energy of the
dislocation. The exact locus of the minimum dislocation po-
tential energy lies exactly along the curve separating positive
from negative Gaussian curvature on the surface, unlike the
fe surface discussed above where the point of lowest geomet-
ric potential is at 1.1�. In the case of the fs surface, the
absolute value of the Gaussian curvature is symmetric across
the zero-Gaussian-curvature boundary. A dislocation inside
an area of positive Gaussian curvature is exposed to an at-
tractive interaction between the fivefold disclination and the
Gaussian curvature and a repulsive interaction of the seven-
fold disclination with positive Gaussian curvature. The repul-
sion is stronger than the attraction pushing the dislocation
out of the area of positive Gaussian curvature. The forces are

equally strong in the negative Gaussian curved areas due to
symmetry and, therefore, they center the dislocation between
the area of positive and negative Gaussian curvature.

The positions of free dislocations for aq=0.81 in a lattice
containing 418 particles are shown in a three-dimensional
rendering in Fig. 11. The lattice is shown triangulated as
black lines, overlaid with light-red and light-blue areas, cor-
responding to areas of positive and negative Gaussian curva-
ture. The dislocations are highlighted with their Voronoi
cells. The white lines mark the shortest line connecting the
maximum positive and maximum negative Gaussian curva-
ture, Ls. Red cells correspond to fivefold disclinations and
blue cells to sevenfold disclinations. The dislocations align
very close to the boundary between the positive and negative
curved areas, the line of the zero Gaussian curvature. A top
view of the configuration is shown in Fig. 12�a� and for 780
particles in Fig. 13�a�.

Figure 11 shows that the exact position for some of the
dislocations is not exactly on top of the zero-Gaussian-
curvature line, but rather shifted along Ls, the line of shortest
connection between maximum positive and negative Gauss-
ian curvature. These configurations may not represent the
equilibrated ground state. A lower-energy state from the cur-
rent configuration can only be reached by a climb motion,
which is energetically expensive.

An increase in aq leads to an increase in defects necessary
to screen the stronger Gaussian curvature. In Figs. 12�c� and
12�d� the number of dislocations has doubled, going from
aq=0.81 to aq=0.89. The dislocations cluster to form short
grain boundary segments, as shown schematically in Fig.
14�a� rather than splitting up and screening the Gaussian cur-
vature as in the case of the Gaussian bump. The short grain
boundary �Fig. 14�a�� screens the Gaussian curvature better
than the single dislocation �Fig. 14�b��. Unlike the Gaussian
bump where grain boundaries had to occur symmetrically to

FIG. 9. Deformation energy of a lattice with 418 particles on a
fs surface. Open circles ���: F0 for a defect-free lattice. Solid
circles ���: F0 for a defected lattice.

FIG. 10. Deformation energy of a lattice with 780 particles on a
fs surface. Open circles ���: F0 for a defect-free lattice. Solid
circles ���: F0 for a defected lattice.

FIG. 11. �Color online� Three-dimensional view of a triangula-
tion of a lattice with 418 particles on a fs surface with aq=0.81.
Dark red pentagons show the Voronoi cells of fivefold disclinations
attached to dark blue sevenfold disclinations forming a dislocation.
The white lines mark the shortest segments connecting the regions
of maximum positive and maximum negative Gaussian curvature,
Ls. The light red �blue� patches are areas of positive �negative�
Gaussian curvature. The curvature is not constant inside the blue
and red patches; see Fig. 2 for details.
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surround the point of maximum curvature, the symmetry of
the fs surface forces the dislocations to occupy the same side
of the simulation cell in order to ensure that the total Burgers
vector vanishes. However, there are two degenerate orienta-
tions of this dislocation array: one as shown in Fig. 11 and
the second that is obtained from the first by a 90° rotation.
An alternative arrangement with grain boundaries rotated 90°
with respect to each other was also observed, but yielded
higher deformation energy.

The low density lattice with 418 particles shows a very
narrow range of aq where dislocations or short grain bound-
aries are stable, above which an arrangement of disclinations
at the location of maximum Gaussian curvature yields the
minimum energy. The critical value of aq for this transition
from dislocations to free disclinations is at aq�0.89. There
are no dislocations present for values above the critical value
for 418 particles. A top view is shown in Fig. 12�e� and the
three-dimensional view in Fig. 12�f� for aq=1.08. The value
of 0.89 coincides with the onset of a decrease in deformation
energy �see Fig. 9�. It is apparent from the continuing de-
crease in deformation energy as free disclinations are formed
that the free disclinations better accommodate the higher
Gaussian curvature. Seung and Nelson �32� examined a two-
dimensional surface embedded in three-dimensional space
containing a single positive or negative disclination and
showed that buckling reduces the energy of the disclination
compared to flat space. In reverse, a lattice forced to conform
to a curved surface reduces its deformation energy by intro-

ducing a disclination. The minimum at �aq�=1.02 may there-
fore resemble the closest match between the fs surface and
an unconstrained surface buckling under the stress induced
by a single disclination.

A similar transition from free dislocations to free discli-
nations is seen for the surface with 780 particles, but it does
not occur as abruptly with increasing Gaussian curvature as
it does for the 418-particle case. Grain boundaries extend
along the entire length of the segment Ls, connecting the
areas of maximum positive and negative curvature. Each
grain boundary is terminated with a disclination of matching
preference, fivefold for positive and sevenfold for negative
Gaussian curvature. The transition to free disclinations for
the case of 780 particles occurs by the separation of discli-
nations or a disclination attached to a dislocation from the
ends of the grain boundary, see Fig. 13�c� as a top view and
Fig. 13�d� as a three-dimensional view. The grain boundaries
screen the strain induced in the lattice by the disclinations.
The difference between the 418- and 780-particle samples
is consistent with previous studies of crystallography on
spheres of increasing radius. For small radius, the topologi-
cal constraint of Eq. �1� on the total number of disclinations
is satisfied by placing 12 isolated disclinations at the vertices
of an icosahedron �inscribed in the sphere�. As the radius is
increased, grain boundaries arise in the ground state to re-
duce the deformation energy of the lattice �5,6,10,13�.

In Fig. 15 the total number of defects is plotted as solid
circles ��� and the total number of free disclinations with

FIG. 12. �Color online� Delaunay triangulation of a 418-particle
lattice on a curved fs surface; fivefold disclinations are highlighted
in red and sevenfold disclinations in blue. �a� Top view of a lattice
containing four dislocations at aq=0.81. �b� Three-dimensional
view of �a�. �c� Eight dislocations symmetrically arranged along the
zero-Gaussian-curvature line and �d� three-dimensional view of �c�
at aq=0.89. �e� and �f� Top view and the corresponding three-
dimensional view of free disclinations at aq=1.13.

FIG. 13. �Color online� Delaunay triangulation of a 780-particle
lattice on a curved fs surface; fivefold disclinations are highlighted
in red and sevenfold disclinations in blue. �a� Top view of a lattice
containing four dislocations at aq=0.81. �b� Three-dimensional
view of �a�. �c� Eight dislocations symmetrically arranged along the
zero-Gaussian-curvature line and �d� three-dimensional view of �c�
at aq=0.97; �e� and �f� Top view and the corresponding three-
dimensional view of free disclinations at aq=1.32.
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open circles ��� for 780 particles on a fs surface. The total
number of free disclinations shows a slow increase for 780
particles, while the total number of disclinations for 418 par-
ticles shows a sharp steplike function, presented in Fig. 16.
Figures 13�e� and 13�f� show a structure equivalent to the
free disclination arrangement seen in Figs. 12�e� and 12�f�,
just with grain boundary scars still present. The scars in Figs.
13�e� and 13�f� are concentrated around the fivefold discli-
nations, corroborating a trend seen in Figs. 13�c� and 13�d�.
At aq=1.32 free sevenfold disclinations are present, while
the fivefold defects are still attached to a dislocation, forming
a small scar. All of the sevenfold disclinations in Figs. 13�e�
and 13�f� are free disclinations, whereas only one out of four
fivefold disclinations is isolated. This is somehow surprising,
since the Gaussian curvature for negative and positive discli-

nations is equal in absolute value. Seung and Nelson calcu-
lated the deformation energy, and unlike in flat space where
positive and negative disclinations have the same energy, the
negative disclination exhibits higher deformation energy than
the positive disclination. It is not clear if the small scars
around the fivefold disclinations are a trapped state or result
from the interplay between the fivefold disclinations and the
Gaussian curvature. As in the case of the isolated bump, the
dislocations and disclinations reduced the variance of
nearest-neighbor distances shown in Fig. 8�b�.

IV. CONCLUSION

We developed a Monte Carlo algorithm to study ground
states of Yukawa particles on weakly curved surfaces. The
scheme is easily adopted to different potentials as well as
different surface deformations. We find good agreement with
analytical predictions of deformation energy and defect po-
sitions made in Ref. �19�. A critical aspect ratio is observed,
above which the incorporation of defects in the lattice lowers
the deformation energy as well as the width of the distribu-
tion of nearest-neighbor distances. A surface shaped as a
Gaussian bump shows a wide variety of arrangements for
dislocations as the aspect ratio is increased as well as an
increase in the numbers of the dislocations. The orientation
of single defects is governed by the Gaussian curvature, such
that the Burgers vectors of the dislocations are parallel to the
circle of zero Gaussian curvature. The radial distance of the
dislocations away from the center of the bump is close to the
circle of zero Gaussian curvature, matching closely the
minima of the geometric potential located at 1.1�, calculated
in Ref. �19�. We did not observe isolated disclinations on the
fe surface for the aspect ratios investigated. A defect-free
lattice was also observed below a critical value of �aq�c for
particles confined on a surface described by two perpendicu-
larly intersecting sine waves. The dislocations align along

FIG. 14. �Color online� Two possible defect configurations that
satisfy the requirement of zero net Burgers vector. Configuration �a�
characterized by short grain boundaries is favored energetically
over the arrangement of isolated dislocations shown in configura-
tion �b�.

a q

FIG. 15. Solid circles ���: n, the total number of disclinations.
Open circles ���: nf, the number of free disclinations for 780
particles.

a q
FIG. 16. Solid circles ���: n, the total number of disclinations.

Open circles ���: nf, the number of free disclinations for 418 par-
ticles. The number of dislocations is equal to �n−nf� /2 since a
dislocation is a bound pair of a fivefold and a sevenfold
disclination.
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the shortest line Ls connecting the maximum positive and
maximum negative Gaussian curvature. The symmetry be-
tween the positive and negative Gaussian curvature positions
the dislocations at the line of zero Gaussian curvature. Grain
boundary scars grow along Ls with increasing aq, until they
connect the areas of maximum positive and negative Gauss-
ian curvature. Since no further growth of grain boundary
scars is possible to screen the Gaussian curvature, the ground
state evolves to produce free disclinations. The disclinations
in the case of the larger particle numbers are attached to
grain boundary scars, thus reducing the strain in the lattice
due to the disclinations, in a similar way to the grain bound-
ary scars observed on surfaces of large spheres.
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APPENDIX: SMART MONTE CARLO SCHEME

The results presented in this paper were calculated using a
“smart Monte Carlo” scheme devised by Rossky, Doll, and
Friedman �33,34�. The trial displacement of a particle i from
position m to position n can be written as

�ri
nm = �Afi

m + �ri
G, �A1�

where A is an adjustable parameter to control the acceptance
rate of the trial move, �= 1

T� , where T� is in units of kBT �kB

is the Boltzmann’s constant and T the absolute temperature
in kelvin�, fi

m is the force acting on particle i at position m,
and �ri

G is a random displacement whose components are
chosen from a Gaussian distribution, with zero mean and
variance ���rix

G�2�= ���riy
G�2�=2A, which was computed using

a polar form of the Box-Muller transformation �35�. A trial
displacement �ri

xyG is performed in the x-y plane, while the
actual displacement vector �ri

G lies in the local tangent plane
of the particle i �36,37�. We therefore corrected the trial
move �ri

xyG as shown in Eq. �A5� for the x direction and Eq.
�A6� for the y direction of the fe surface. The expressions
�rix

xyG and riy
xyG are the components of the trial move in the x

and y directions of the flat plane. For the fe surface the cor-
rection factor u�x ,y� is shown in Eq. �A3� and the correction
factor v�x ,y� in Eq. �A4�:

fe�x,y� = a exp�−
�x2 + y2�

2�2 	 , �A2�

u�x,y� =
1

�1 + � f�x,y�
�2 x	2

, �A3�

v�x,y� =
1

�1 + � f�x,y�
�2 y	2

�A4�

⇒��rix
xyG�c = �rix

xyGu�x,y� , �A5�

��riy
xyG�c = �riy

xyGv�x,y� . �A6�

A similar calculation for the fs surface is presented in Eqs.
�A7�–�A9� below:

fs�x,y� = a sin�xq�sin�yq� , �A7�

u�x,y� =
1

�1 + a2q2 cos�xq�sin�yq�
, �A8�

v�x,y� =
1

�1 + a2q2 sin�xq�cos�yq�
. �A9�

The force fi
m acting on a particle i at position m on the curved

surface is calculated in three dimensions and projected
straight down onto the x-y plane for the trial displacement
contribution. The force was calculated from the Yukawa po-
tential

f = − ��V�x,y,z�� , �A10�

and for the force between particle i and particle j we obtain

fij =
V�r�
r2 �1 + �r�r , �A11�

where r=�x2+y2+z2 and r=xêx+yêy +zêz are the distance
and vector, respectively, in three dimensions between particle
i and a neighboring particle j. The total force acting on par-
ticle i, fi

m, is the sum over the particles labeled by j that are
neighbors to particle i, � jfij. The trial displacement in the x-y
plane then can be written as follows:

�rixy
nm = �A�f ix

m, f iy
m,0� + ��rix

xyG�cêx + ��riy
xyG�cêy , �A12�

where �rixy
nm is the two-dimensional trial displacement in the

flat x-y plane and f ix
m the x component of the total force acting

on particle i. The particle move is accepted with the prob-
ability min�1,�nm�n /�mn�m�, where the ratio is �34�

�nm�n

�mn�m
= exp
− ���Vnm +

1

2
�fi

n + fi
m� · �ri

nm + �WSMC	� ,

�A13�
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�nm is the stochastic matrix going from state m to state n
with equal probability, �n /�m is the acceptance probability,
and

�WSMC =
�A

4
���fi

nm�2 + 2fi
m · �fi

nm� . �A14�

For the zero-temperature study, the initial condition was a
hexagonal lattice. The system was then annealed at suffi-

ciently high temperature T� to completely melt the system.
The following cooling process into the crystalline phase was
taken over 1�106 Monte Carlo steps. To retrieve the poten-
tial energy, the system was sampled for an additional 70 000
MC steps at zero temperature using a regular Metropolis al-
gorithm �38� to avoid divergences in the trial displacements.
This procedure was repeated at least 40 times, and the
lowest-energy configuration was then analyzed.
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