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Instabilities of spherical solutions with multiple Galileons and SO(N)
symmetry

Abstract
The 4-dimensional effective theory arising from an induced gravity action for a codimension greater than one
brane consists of multiple Galileon fields π1, I = 1,...,N, invariant under separate Galilean transformations for
each scalar, and under an internal SO(N) symmetry. We study the viability of such models by examining
spherically symmetric solutions.We find that for general, nonderivative couplings to matter invariant under
the internal symmetry, such solutions exist and exhibit a Vainshtein screening effect. By studying
perturbations about such solutions, we find both an inevitable gradient instability and fluctuations
propagating at superluminal speeds. These findings suggest that more general, derivative couplings to matter
are required for the viability of SOðNÞ Galileon theories.
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Instabilities of spherical solutions with multiple Galileons and SOðNÞ symmetry
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The 4-dimensional effective theory arising from an induced gravity action for a codimension greater

than one brane consists of multiple Galileon fields �I, I ¼ 1; . . . ; N, invariant under separate Galilean

transformations for each scalar, and under an internal SOðNÞ symmetry. We study the viability of such

models by examining spherically symmetric solutions. We find that for general, nonderivative couplings to

matter invariant under the internal symmetry, such solutions exist and exhibit a Vainshtein screening

effect. By studying perturbations about such solutions, we find both an inevitable gradient instability and

fluctuations propagating at superluminal speeds. These findings suggest that more general, derivative

couplings to matter are required for the viability of SOðNÞ Galileon theories.

DOI: 10.1103/PhysRevD.83.044042 PACS numbers: 04.50.�h

I. INTRODUCTION

There has been much recent interest in theories of
gravity arising from scenarios with extra spatial dimen-
sions. Many examples of these are based on the Dvali-
Gabadadze-Porrati (DGP) model [1,2]—a 4þ 1 dimen-
sional theory with action consisting simply of separate
Einstein-Hilbert terms in the bulk and on a codimension-
1 brane, to which standard model particles are also con-
fined. The model results in a 4D gravitational force law at
sufficiently small scales, which transitions to a 5D gravi-
tational force law at a crossover length scale rc �M2

Pl=M
3
5,

determined by the 5D and 4D gravitational couplings M5

and MPl respectively. To yield interesting cosmological
dynamics, this crossover scale is usually chosen to be of
order the horizon size.

Much of the phenomenology of the DGP model is
captured by its decoupling limit MPl, M5 ! 1 with the
strong-coupling scale �5 �M2

5=MPl kept fixed [3,4]. In

this limit, the difference between DGP gravity and general
relativity is encoded in the behavior of a scalar degree of
freedom,�. The dynamics of this scalar are invariant under
internal Galilean transformations � ! �þ cþ b�x

�,

with c a constant and b� a constant vector. This symmetry

proves to be extremely restrictive, with a leading order
self-interaction term which is a higher-derivative coupling
cubic in �, and yet which yields second-order equations of
motion. Higher order couplings with these properties were
derived independently of the DGPmodel [5–8] and dubbed
‘‘Galileons.’’ See [9–17] for cosmological studies of
Galileon theories.

It is natural to explore induced gravity models in
codimension greater than one [18–26], and recently

multi-Galileon actions arising in the relevant
4-dimensional decoupling limit have been derived
[27–30]. The theories studied in [30] are invariant under
individual Galilean transformations of the � fields, and
also under an internal SOðNÞ symmetry rotating the fields
into one another, thus forbidding the existence of terms
containing an odd number of � fields, in contrast to the
codimension one DGP case.
In this paper we explore the nature of spherically sym-

metric solutions in theories with an SOðNÞ internal sym-
metry among the Galileon fields, and couplings to matter
that respect this symmetry. Spherical solutions for a more
general bi-Galileon action were discussed in [31], for the
specific case of a linear coupling ��T to matter, where T
is the trace of the matter energy momentum tensor. This
form of coupling arises from decoupling limits of DGP-
like theories, because � arises through a conformal mixing
with the graviton. However, while this coupling is there-
fore the natural form to consider in the case of a single
Galileon field, it breaks the new internal symmetry satis-
fied by multiple Galileons (and breaks the Galilean sym-
metry if the matter is dynamical). We instead study general
nonderivative couplings to matter fields which respect the
SOðNÞ internal symmetry.
At the background level, our solution can always be

rotated to lie along a single field direction, say �1, while
the other field variables remain trivial, thus exhibiting
spontaneous symmetry breaking. The solution exhibits
Vainshtein screening [32,33], characteristic of Galileon
theories: we find �1 � r sufficiently close to the source,
whereas �1 � 1=r far away, with the crossover scale de-
termined by a combination of the Galileon self-interaction
scale and the coupling to the source. However, when we
turn to the stability of spherically symmetric solutions
under small perturbations, we find that, sufficiently close
to the source, perturbations in �1 suffer from gradient
instabilities along the angular directions. Moreover, they
propagate superluminally both along the radial and angular
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directions (in the regime that angular perturbations are
stable). Perturbations in the remaining N � 1 Galileon
fields are stable but propagate superluminally in the radial
direction.

The gradient instability and superluminal propagation
found here for the �1 field are multifield generalizations of
single Galileon instabilities [5]. Our findings thus present
significant hurdles for SOðNÞ Galileon models with non-
derivative matter coupling. One of the main lessons to be
drawn is that more general matter couplings, including
derivative interactions, are necessary for the phenomeno-
logical viability of SOðNÞ multi-Galileon theories. For
instance, the coupling �@��

I@��IT
�� naturally arises

from brane-world constructions [30,34] and maintains
both the Galilean and the internal rotation symmetries.

II. THE MODEL

In codimension N, the 4-dimensional effective theory
contains N fields �I, I ¼ 1 � � �N, representing the N
brane-bending modes of the full 4þ N-dimensional the-
ory. The extended symmetry of the vacuum Lagrangian is

��I ¼ !I
�x

� þ �I þ!I
J�

J; (1)

where !I
�, �

I and !I
J are constant transformation pa-

rameters. (See [30] for the geometric setup and origin of
this symmetry). This transformation consists of a Galilean
invariance acting on each of the �I fields, and an SOðNÞ
rotation symmetry under which �I transforms as a vector.
The unique four dimensional Lagrangian density respect-
ing this is [28,30]

L� ¼ � 1

2
@��

I@��I

� �½@��I@��
Jð@�@��J@

�@��I � @�@��Ih�JÞ�;
(2)

where � is a coupling with dimension ½mass��6, containing
the strong interaction mass scale. The I, J indices are
raised and lowered with �IJ.

It remains to couple this theory to matter. The natural
coupling we might consider, the lowest dimension cou-
pling that preserves the Galilean and internal rotation
symmetries, is �@��

I@��IT
��. This is the coupling that

naturally arises from brane matter in the construction of
[30,34]. However, for static nonrelativistic sources T�� �
���

0 �
�
0 , and since @0� ¼ 0 for static solutions there are no

nontrivial spherically symmetric solutions with this
coupling.

Linear couplings Llinear � �T arise naturally from
DGP-like setups, since the �’s conformally mix with the
graviton. These lead to spherical solutions [31], but break
the SOðNÞ internal symmetry.

We therefore do not consider these couplings further,
and instead concentrate on the most general nonderivative
coupling that preserves the SOðNÞ symmetry.

L coupling ¼ T

2
Pð�2Þ; (3)

where P is an arbitrary function of the invariant
�2 � �I�I.

III. SPHERICALLY SYMMETRIC SOLUTIONS

Our focus is on the existence and viability of spherically
symmetric solutions sourced by a delta function mass
distribution1

T ¼ �M�3ðrÞ: (4)

The equations of motion, including the coupling (3), are

h�I � �½h�Ið@�@��J@
�@��J �h�Jh�JÞ

þ 2@�@��
Ið@�@��Jh�J � @�@��J@

�@��JÞ�
¼ MP0ð�2ð0ÞÞ�Ið0Þ�3ð~rÞ; (5)

where P0ðXÞ � dP=dX. Restricting to spherically symmet-
ric configurations �IðrÞ, this reduces to

1

r2
d

dr
½r3ðyI þ 2�yIy2Þ� ¼ MP0ð�2ð0ÞÞ�Ið0Þ�3ð ~rÞ; (6)

where

yI � 1

r

d�I

dr
; (7)

and y2 � yIyI. Note that, due to the shift symmetry of the
Lagrangian, the equations of motion of Galileon fields
always take the form of a total derivative. Thus we can
integrate once to obtain the equations of motion

yI þ 2�yIy2 ¼ M

4�r3
P0ð�2ð0ÞÞ�Ið0Þ: (8)

Dividing these equations by each other, we obtain the
relations

d�I=dr

d�J=dr
¼ �Ið0Þ

�Jð0Þ ; (9)

which, when integrated from the origin, gives

�IðrÞ
�JðrÞ ¼ �Ið0Þ

�Jð0Þ : (10)

The various components of the solution are therefore al-
ways proportional to each other. Thus, by a global SOðNÞ
rotation, we can rotate the solution into one direction in
field space, say the I ¼ 1 direction, so that the solution
takes the form �1 � � and �I ¼ 0 for I � 1. This model
therefore exhibits a kind of spontaneous symmetry break-
ing of the internal SOðNÞ symmetry, since any nontrivial
solution must pick a direction in field space.

1Note that stable, nontrivial solutions without a source do not
exist [35].
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Equation (8) now takes the form

yþ 2�y3 ¼ M

4�r3
P0ð�2ð0ÞÞ�ð0Þ: (11)

As r ranges from zero to infinity, the left-hand side is
monotonic, and is positive or negative depending on the
sign ofP0ð�2ð0ÞÞ�ð0Þ. For there to be a continuous solution
for y as a function of r, the left-hand side must be invertible
when it is positive (negative). For a solution to exist, this
requires (for nontrivial �)

� > 0: (12)

Thus y is also positive (negative), is monotonic with r, and
ranges from zero to (negative) infinity as r ranges from
infinity to zero. This in turn implies that d�=dr does not
cross zero, and hence � is monotonic.

Equation (11) yields a solution for y, and hence d�=dr,
as a function of r and the parameters of the theory.
Integrated from r ¼ 0 to infinity, this will give a relation
between �ð0Þ and the asymptotic value of the field �ð1Þ.
The asymptotic field value is essentially a modulus of the
theory—it will be set by whatever cosmological expecta-
tion value is present. It is a physically meaningful parame-
ter as it affects the coupling to the source by determining
�ð0Þ.

Near the source, where the nonlinear term dominates,
the solution is linear in r,

�r�r� ðrÞ � �ð0Þ þ
�

M

8��
P0ð�2ð0ÞÞ�ð0Þ

�
1=3

r; (13)

whereas far from the source, where the linear term domi-
nates, the solution goes like 1=r,

�r�r� ðrÞ � �ð1Þ � M

4�
P0ð�2ð0ÞÞ�ð0Þ 1

r
; (14)

where the transition between these regimes occurs at the
radius

r� � ð�M2½P0ð�2ð0ÞÞ�ð0Þ�2Þ1=6: (15)

Note that this crossover radius, and hence the distance at
which nonlinearities become important, depends on the
modulus �ð0Þ. The equation of motion for �ðrÞ is readily
solved numerically, and the solution obtained is plotted
schematically in Fig. 1.

IV. PERTURBATIONS: STABILITYAND
SUBLUMINALITY

While the existence of static, spherically-symmetric
configurations is encouraging, there are, of course, other
important checks that our solution must pass to be physi-
cally viable. Specifically, following [5], we must study the
stability of these spherically symmetric solutions and de-
termine the speed at which fluctuations propagate, since
superluminal propagation can be an obstacle to finding an
ultraviolet completion of the effective theory [36].
We expand the field in perturbations around the back-

ground solution �I
0,

�I ¼ �I
0 þ ��I: (16)

Away from the source, the linearized equations of motion
for the perturbations are of the form

�Kt
IðrÞ@2t ��I þ 1

r2
@rðr2Kr

I ðrÞ@r��IÞ þ K�
I ðrÞ@2���I ¼ 0;

(17)

where the coefficients Kt
IðrÞ, Kr

I ðrÞ and K�
I ðrÞ depend on r

through the background field �IðrÞ. We find

Kt
1 ¼

1

3r2
d

dr
½r3ð1þ 18�y2Þ�;

Kr
1 ¼ 1þ 6�y2;

K�
1 ¼ 1

2r

d

dr
½r2ð1þ 6�y2Þ�;

Kt
I�1 ¼

1

3r2
d

dr
½r3ð1þ 6�y2Þ�;

Kr
I�1 ¼ 1þ 2�y2;

K�
I�1 ¼

1

2r

d

dr
½r2ð1þ 2�y2Þ�:

(18)

Applying the implicit function theorem to the function
Fðy; rÞ ¼ yþ 2�y3 � M

4�r3
P0ð�2ð0ÞÞ�ð0Þ ¼ 0, we have

dy

dr
¼ � @rF

@yF
¼ � 3

r

yþ 2�y3

1þ 6�y2
: (19)

This allows us to eliminate dy=dr from (18):

Kt
1 ¼

ð1� 6�y2Þ2
1þ 6�y2

; Kr
1 ¼ 1þ 6�y2;

K�
1 ¼ 1� 6�y2

1þ 6�y2
; Kt

I�1 ¼
1þ 12�2y4

1þ 6�y2
;

Kr
I�1 ¼ 1þ 2�y2; K�

I�1 ¼
1þ 2�y2

1þ 6�y2
:

(20)

FIG. 1. Schematic sketch of the solution for �ðrÞ.
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Stability of the spherically symmetric background solu-
tions against small perturbations requiresK > 0 for allK’s.
The I � 1 directions in field space are stable, but the �1

direction exhibits a gradient instability sufficiently close to
the source along the angular directions. In other words,
K�

1 < 0 near the source. Therefore, localized perturbations
can be found near the source that lower the energy of the
solution through their gradients. This instability plagues
very short-wavelength fluctuations, right down to the UV
cutoff, so decay rates are dominated by the shortest dis-
tances in the theory and cannot be reliably computed
within the effective theory.

Equations (20) also allow us to compute the speeds of
propagation of our small perturbations, in both the radial
and angular directions. These are given by

ðc2Þr1 ¼
Kr

1

Kt
1

¼
�
1þ 6�y2

1� 6�y2

�
2
;

ðc2Þ�1 ¼ K�
1

Kt
1

¼ 1

1� 6�y2
;

ðc2ÞrI�1 ¼
Kr

I�1

Kt
I�1

¼ ð1þ 2�y2Þð1þ 6�y2Þ
1þ 12�2y4

;

ðc2Þ�I�1 ¼
K�

I�1

Kt
I�1

¼ 1þ 2�y2

1þ 12�2y4
:

(21)

Note that ðc2Þr1 > 1, and hence these perturbations always
propagate superluminally. The same is true of ðc2Þ�1 , in
regions where these perturbations are stable. The speed
ðc2ÞrI�1 is always superluminal, and ðc2Þ�I�1 is always sub-

luminal. Whether superluminal propagation of signals is
problematic for a low-energy effective theory is still an
arguable issue, but it seems that at the least it may preclude
the possibility of embedding the theory in a local, Lorentz-
invariant UV completion [36].

A. Other constraints

It is interesting to note in passing that if a mechanism
exists to tame the instabilities we have identified, then
precision tests of gravity within the solar system already
place useful constraints on multi-Galileon theories. The
Galileon is screened at radii below the Vainshtein radius r�,
given by Eq. (15), restoring the behavior of general rela-
tivity. Requiring the solar system to be screened to
r� 1016 m thus yields a constraint on � and �ð0Þ.
However, lunar laser ranging data constrain the departure
from the gravitational potential predicted by GR to satisfy
��
� < 2:4	 10�11 (at radius r ¼ 3:84	 1010 cm), and we

may translate this into a constraint on a different combi-
nation of � and �ð0Þ

For example, consider the choice of PðXÞMPl �
ffiffiffiffiffiffiffiffiffiffiffi
�I�I

p
,

giving a linear coupling between the radial � field and
matter. In the interesting case when the constraints are

saturated, and detection of an effect is therefore imminent,
the relevant constraint simply becomes

1

�1=6
& 10�9 eV: (22)

Note that this is an extremely low cutoff for the effective
theory, as is also found in the DGP model.

V. DISCUSSION

We have derived spherically symmetric solutions in an
SOðNÞ multi-Galileon theory with general, nonderivative
couplings to matter. These solutions exhibit a Vainshtein
screening effect, characteristic of Galileon models.
However, a study of the behavior of fluctuations around
these solutions shows that one of the fields has imaginary
sound speed along the angular directions, signaling an
instability to anisotropic modes of arbitrarily short wave-
length. Moreover fluctuations inevitably propagate
superluminally.
These results raise serious concerns about the phenome-

nological viability of SOðNÞ multi-Galileon theories. (Of
course, this does not preclude their effectiveness in early
universe physics [15,37], for instance during inflation, as
long as they become massive or decouple before the
present epoch.) A key input in our analysis is the restriction
to nonderivative coupling to matter. The main lesson to be
drawn is that more general, derivative couplings are neces-
sary. For instance, the lowest-dimensional coupling invari-
ant under the Galilean and internal rotation symmetries is
�@��

I@��IT
��. This coupling in fact naturally arises in

the higher-codimension brane picture [34]. As mentioned
earlier, the Galileon fields are oblivious to static,
spherically-symmetric sources in this case; thus exhibiting
a screening mechanism. However, they will be excited by
orbital motion, and we leave a study of the phenomeno-
logical implication of this coupling to future work.
Our analysis also highlights a distinct advantage to

explicitly breaking the symmetry (1), for example, through
the introduction of a sequence of regulating branes of
different codimensions, as in the cascading gravity case
[21,22,38]. The explicit breaking of SOðNÞ symmetry
allows for more general terms in the action, which can
lead to a healthier phenomenology [31].
Finally, should a creative cure for our instabilities be

found, then we have demonstrated that precision solar
system tests of gravity set interesting constraints on
multi-Galileon theories.
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