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Speed Dependence of Atomic Stick-Slip Friction in Optimally Matched
Experiments and Molecular Dynamics Simulations

Abstract
The atomic stick-slip behavior of a Pt tip sliding on a Au(111) surface is studied with atomic force microscopy
(AFM) experiments and accelerated (i.e., reduced sliding speed) molecular dynamics (MD) simulations. The
MD and AFM conditions are controlled to match, as closely as possible, the geometry and orientation, load,
temperature, and compliance. We observe clear stick-slip without any damage. Comparison of bothMDand
AFM results with the thermally activated Prandtl-Tomlinson model shows that MD results at the highest
speeds are not in the thermally activated regime. At lower speeds, within the thermally activated regime, AFM
and MD provide consistent energetics, but attempt frequencies differ by orders of magnitude. Because this
discrepancy lies in attempt frequencies and not energetics, atomistic details in MD simulations can be reliably
used in interpreting AFM data if the MD speeds are slow enough.
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The atomic stick-slip behavior of a Pt tip sliding on a Au(111) surface is studied with atomic force

microscopy (AFM) experiments and accelerated (i.e., reduced sliding speed) molecular dynamics (MD)

simulations. The MD and AFM conditions are controlled to match, as closely as possible, the geometry

and orientation, load, temperature, and compliance. We observe clear stick-slip without any damage.

Comparison of bothMD andAFM results with the thermally activated Prandtl-Tomlinsonmodel shows that

MD results at the highest speeds are not in the thermally activated regime. At lower speeds, within the

thermally activated regime, AFM and MD provide consistent energetics, but attempt frequencies differ by

orders of magnitude. Because this discrepancy lies in attempt frequencies and not energetics, atomistic

details in MD simulations can be reliably used in interpreting AFM data if the MD speeds are slow enough.

DOI: 10.1103/PhysRevLett.106.126101 PACS numbers: 68.35.Af, 02.70.Ns, 46.55.+d, 62.20.Qp

Atomic stick-slip friction, where sliding surfaces stick
and then slip with atomic periodicity, is a beautiful yet
imperfectly understood phenomenon [1,2]. Atomic stick-
slip friction involves instabilities caused by the downward
gradient of the lateral tip-sample interaction force in the
sliding direction approaching or exceeding the lateral
stiffness of the system [3]. The characteristic repeating
‘‘sawtooth’’ pattern emerges if the lateral interaction is
spatially periodic in systems with finite stiffness; this is
referred to as the Prandtl-Tomlinson (PT) model [4,5].
The PT model with thermal activation (PTT model) pre-
dicts that friction increases nearly logarithmically with
speed because at higher speeds there is less time per
unit cell for thermally assisted hopping [6–8], a trend
observed in several atomic force microscope (AFM) ex-
periments. Atomic stick-slip behavior is also predicted
by analytical models and molecular dynamics (MD)
simulations [9], but direct comparison with experiment
have been hindered by significant differences between
model and experimental conditions. Here we present
results from MD simulations and AFM where the materi-
als, load, contact size, system compliance, temperature,
crystallographic orientations, and sliding direction are
identical within experimental uncertainty. Most crucially,
the sliding speeds in the simulations are greatly reduced
using accelerated MD [10], enabling measurements and
simulations to be quantitatively compared within the same
physical regime.

We choose to examine a platinum-coated tip sliding
against a Au(111) surface [Fig. 1(a)]; these are both
relatively inert materials with a large miscibility gap
[11], inhibiting surface and interfacial chemical reactions.
Au(111) surfaces were prepared by thermally evaporating
gold onto freshly cleaved mica discs under high vacuum

followed by annealing with a hydrogen flame in air [12]
resulting in unreconstructed (111) terraces [Fig. 1(a)],
and then immediately transferred into a RHK-UHV 350
AFM. To desorb surface contaminants, films were heated
to 400 �C for 5 minutes under vacuum (1� 10�6 Torr).
The chamber was then backfilled and continuously purged
with the clean, dry nitrogen vapor from a liquid nitrogen
dewar. All measurements were performed at room tem-
perature with a Pt-coated silicon cantilever (AppNano).
Transmission electron microscopy (TEM) images
[Fig. 1(a)] show that the thermally evaporated Pt coating
is polycrystalline; the tip end consists of a single nano-
crystalline grain. The effective radius of curvature of the
tip end is R � 14 nm according to the blind reconstruction
technique [13]. The normal spring constant, kn ¼
0:13 N=m, was calibrated using Sader’s method [14], and
the optical sensitivity obtained from force-displacement
measurements. Lateral forces were calibrated using the
diamagnetic lateral force calibration method [15]. Unless
otherwise noted, the normal load was kept constant at
Fn ¼ 0:6 nN, and the scan size at 5 nm (except for the
two highest speeds where the scan sizes were 10 and
20 nm, respectively). Scanning speed was primarily varied
by changing the scanning frequency.
Gold films were stable upon contact with the Pt tip;

no sample damage was observed unless loads exceeded
�10 nN, at which point sudden increases in friction
and adhesion occurred and regular stick-slip motion
disappeared. Cold welding of the bimetallic interface
was likely responsible for this [16,17]. While a few recent
papers [16,18,19] report friction on metal surfaces, all
using Si tips, no experimental papers report elastic
stick-slip behavior for a metal tip in contact with a metal
surface. The behavior of the Au-Pt contacts, supported
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by the MD simulation, indicates that stable metal-metal
contact and sliding exists for these low-energy surfaces.

Typical lateral force images exhibit a clear threefold
symmetric atomic stick-slip pattern with a period of
0:29� 0:02 nm [Fig. 1(c)], consistent with the 0.288 nm
nearest-neighbor spacing of the Au(111) surface. The sli-
ding direction, by design, is within 2.5� of the [110]
direction [Fig. 1(c)]. The lateral force [Fig. 1(e)] shows
the usual closed loop for sliding forward (black) and back
(red). The ‘‘mean’’ and ‘‘peak’’ friction refer to half the
difference between forward and backward sliding values
for the average lateral force and the average local peak
lateral forces, respectively. In this Letter, friction refers to
mean friction unless otherwise specified.

For the simulations, the platinum tip was a truncated
cone to mimic the presence of an oriented grain which is
suggested by the TEM observations [Fig. 1(a)]. The tip was
assumed to have a (111) termination (nearest-neighbor
distance 0.277 nm), which is the lowest surface energy
plane of Pt [Figs. 1(b) and 1(d)]. Because of the constraint
of limited computational power, only the apex of the tip is
modeled. The embedded atom method (EAM) was em-
ployed for all interatomic interactions [20]. The treatment
is similar to the one we have reported for a Cu-Cu system
[21]. Compliance of the cantilever and the upper body of
the tip is modeled by coupling harmonic springs to the top

layers of the tip (as described in [22]). We prescribed the
lateral spring stiffness in the model such that the resultant
total lateral stiffness is consistent with that observed in
the experiments (� 6 N=m). The gold substrate, 2.2 nm
thick and 5 nm wide, was subjected to periodic boundary
conditions in the lateral direction. Simulations were run
using parallel replica (ParRep) dynamics, an accelerated
MD method that extends the time scale accessible to atom-
istic simulations of activated dynamics through a timewise
parallelization strategy, enabling scanning speeds to be
greatly reduced [10].
For the simulations, the tip and sample materials, ap-

plied load (0.6 nN), temperature (293 K), surface orienta-
tions, system compliance, and sliding direction were
consistent with the experiments. The remaining parame-
ters, i.e., contact area and tip rotation relative to the
substrate, were optimized to match the experiments as
illustrated in Figs. 2(a) and 2(b), respectively.
Contact area is at best measured indirectly in AFM [9]

and thus extremely challenging to match with simulations.
For all relative surface alignments, peak and average fric-
tion both increase as the contact area is increased. There-
fore, we attribute the small but finite increase in peak
friction with load observed experimentally (� 0:4 nN in-
crease in friction over a 7 nN load range) to the increase in
contact area resulting from elastic deformation of the tip
and sample. We further assume that the peak friction is
linearly proportional to the contact area through a constant
friction shear stress, as seen in many experiments [9] and in
simulations for incommensurate contacts [23]. We then fit
the experimental peak friction vs normal load data with the
Maugis-Dugdale continuum adhesive contact mechanics
model [24] using the experimentally determined effective
tip radius of 14 nm and the bulk elastic constants for gold
(E ¼ 77:2 GPa, � ¼ 0:42) and platinum (E ¼ 177 GPa,
� ¼ 0:39), giving a contact radius of 1:5� 0:1 nm
(7:1� 0:6 nm2 contact area) at 0.6 nN load. Based on this,
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FIG. 1 (color online). (a) Schematic of the AFM experiment,
and a 100� 100 nm2 topographic AFM image of the Au(111)
surface showing large terraces separated by monatomic steps.
Inset above: TEM image of the Pt-coated probe. Scale bar
is 20 nm. (b) Snapshot of the atomistic tip-substrate model.
(c) Lateral force image on Au(111) at 0.6 nN load with a speed
of 149 nm=s. Inset: Fourier low-pass filtered image. (d) Top view
of the simulated Au(111) substrate.White arrows in (c),(d) denote
the fast scanning direction. Scale bars are 1 nm. (e),(f) Variation
of the experimental (e) and simulated (f) lateral force along the
black horizontal line shown in (c) and (d), respectively. The
simulation results in (f) are obtained for a relative surface
orientation of 30� and a contact area of 7:32 nm2 (91 atoms)
under same normal load as in (c), and sliding speed 1 m=s.
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FIG. 2 (color online). (a) Peak friction vs contact area in the
simulations for different relative orientations. In all cases, fric-
tion increases with contact area. (b) Mean friction force as a
function of tip-substrate orientation for a load of 0.6 nN with a
tip apex 91 atoms in size.
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we selected the model tip of the closest size (7:32 nm2 or
91 atoms). While this is a challenging aspect of matching
experiment and simulation, errors in absolute friction val-
ues are likely minor since the dependences of friction on
load in the experiment, and on area in the simulations of
incommensurate contacts [Fig. 2(a)], are small.

Figure 2(b) illustrates the effect of relative tip-sample
crystallographic orientation. Because of their close lattice
constants, friction is large when the close-packed h100i
directions of the tip and sample are aligned, but falls by
�10 when they are not aligned, consistent with the ex-
pected effect of commensurability [25]. It is not possible
to determine the atomic structure of our Pt tip’s surface
experimentally, but the two surfaces are very likely mis-
aligned since the Pt tip does not necessarily have a perfectly
flat (111) orientation, and high friction is the exception in
the simulations, only occurring for a very limited range of
relative orientations. As friction is only weakly dependent
on orientation in that regime, we select a mismatch angle of
30� as a representative value.

We prescribed the lateral spring stiffness in the model to
be �6 N=m, matching the value of the total experimental
lateral stiffness determined from the slope of the friction
trace during the ‘‘stick’’ phase [Figs. 1(e) and 1(f)].

The speed dependence of mean friction is shown in
Fig. 3. The gap between the AFM and MD scanning
speeds, while substantial (a factor of �5000), is orders of
magnitude smaller than any previous work, allowing us
to explore whether results are consistent between the
two methods. Single stick-slip is clearly resolved under
all conditions. We consider the predictions from the PTT
model in the quasistatic, single slip regime [6–8,19,26].
Mean friction FL is related to speed v through the non-
linear implicit equation [6]

1

�kBT
ðFc � FLÞ3=2 ¼ ln

v0

v
� 1

2
ln

�
1� FL

Fc

�
; (1)

where T is the temperature, kB is Boltzmann’s constant, Fc

the mean friction force at zero temperature, � a parameter
determined by the shape of the lateral potential pro-
file, and v0 is a characteristic speed given by v0 ¼
ð2f0�kBTÞ=ð3ktot

ffiffiffiffiffiffi
Fc

p Þ, where f0 is the characteristic at-
tempt frequency, and ktot the total lateral stiffness [6,26].
For a sinusoidal potential with periodicity a and barrier

height E0, Fc ¼ �E0=a and � ¼ 3�
ffiffiffiffiffiffi
Fc

p
=ð2 ffiffiffi

2
p

aÞ. Well
below v0, friction increases nearly logarithmically with
speed because the tip has less time and thus fewer oppor-
tunities to use thermal energy to overcome the local energy
barrier to slip. Well above v0, thermal energy will not assist
slip anymore, and friction approaches the plateau value of
Fc. Several AFM experiments are consistent with Eq. (1)
[6,7,18,26]. Furthermore, the statistical distribution of
friction forces was measured to match predictions from
the PTT model [8]. These results provide strong evi-
dence that atomic stick-slip in AFM is attributable to
thermally activated slip out of a local minimum as de-
scribed by the PTT model.
Within the experimental range of speeds, 1 to

1000 nm=s, friction followed the low speed trend very
well (cf. Fig. 3). With the fit parameters (Fc ¼ 0:55 nN,

� ¼ 3:0� 105 N3=2=J, and f0 ¼ 49 kHz), the PTT model
predicts that friction reaches the plateau at �10 �m=s.
While a fit to the PTTmodel is somewhat underconstrained
without a direct observation of the force plateau, signifi-
cantly postponing its onset would imply a drastic increase
of f0 into the tens of MHz, which is difficult to rationalize
both in terms of low-frequency torsional modes of the
cantilever (observed in other AFM measurements [6,26])
or in terms of apex bending modes (which are expected
to be in the GHz [27]).
Using ParRep simulations, we numerically probed

speeds from 5� 106 to 2� 109 nm=s (Fig. 3). Friction
at higher speeds (> 108 nm=s) clearly deviates from the
trend expected for thermally activated sliding. This behav-
ior is mostly determined by dissipative athermal dynamical
processes, so the sliding is not governed by thermally
activated stick-slip. Thermally activated stick-slip friction
is only seen in MD at sufficiently low speeds, which are so
far only achievable through accelerated MD. This severely
limits the regime of validity of comparisons MD simula-
tions to AFM experiments, because the AFM experiments
are in a fundamentally different regime of sliding. This
important limitation has been discussed only recently in
the case of grain boundary sliding [28].
We estimate the high-speed limit Fc through molecular

statics by finding the force required to cause a slip insta-
bility without the assistance of thermal activation. This
additional calculation of Fc is used to constrain the fit of
the MD results to the PTT model’s prediction, yielding

Fc ¼ 0:85 nN, � ¼ 3:6� 105 N3=2=J, and f0 ¼ 40 GHz.
Both Fc and � are remarkably consistent with those from
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FIG. 3 (color online). Mean friction measured experimentally
in two different runs (black squares, black circles) for speeds
between 1 and 1000 nm=s, and predicted via accelerated MD
(blue stars) for speeds between 0:005 m=s to 2 m=s. The black
dashed curve and blue dash-dotted curve are fittings with the
PTT model [6,7] for experimental and simulation data, respec-
tively. The fit to the MD data uses Fc ¼ 0:85 nN as obtained
from molecular statics, and is only fit to data at speeds below
0:1 m=s; higher speeds cannot be fit to the curve due to athermal
dissipative contributions to friction.
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the experiment. The modest difference in Fc can be attrib-
uted to a slight overestimation of the contact area or to
differences in relative tip-sample orientation angle. This
agreement is consistent with previous observations that
the main features of the energetics of the stick-slip process
can be captured by fully atomistic, or even effective low-
dimensional, models [29].

The discrepancy between theMDandAFM results lies in
the attempt frequency. This difference, being unrelated to
energetic aspects, cannot be attributed to elastic or plastic
effects. Experimentally, the activation of a slip usually
involves the motion of both the tip and cantilever; the slip
rate prefactor is thus coupled to the low-frequency me-
chanical response of the apparatus, which extends down
to the range of kHz. However, due to computational limi-
tations inherent to fully atomistic methods, MD models
explicitly contain only a limited number of atoms from
the tip and substrate; the cantilever’s compliance is instead
introduced through effective springs, but its colossal inertia
is usually ignored. While this rather aggressive coarse-
graining procedure is adequate in terms of energetics, it
fails to reproduce the richness of the mechanical response
of the cantilever, in particular, with respect to low frequen-
cies that are effectively raised from kHz up to GHz because
of the small effective mass of the cantilever in the simula-
tions, leading to artificially high attempt frequencies. In
principle, this can be alleviated by reintroducing the inertia
of the cantilever in an effective fashion, but only if driven
at very low speeds (<104 nm=s) to avoid exciting spurious
resonances. This is a challenging task even when relying
on accelerated MD algorithms [29]. Direct comparison
with experiment is more likely to be achieved by fully
parametrizing a rate theory approach from a representation
of the AFM experiment that is either atomistic, in the
manner of Perez et al. [30], or multiscale. This is promising
because it allows the full atomistic details provided in MD
simulations, particularly at the sliding interface, to be used
in interpreting experimental stick-slip phenomena.

In conclusion, optimally matched experiments and ac-
celerated MD simulations of atomic stick-slip friction for
Pt tips on the Au(111) surface show that atomic stick-slip
is thermally activated at low speeds. The consistent com-
parison was not possible with conventional MD as the high
speeds lead to dynamic athermal effects not described
by thermal activation. Remarkably similar parameters for
the energy barrier and effective potential shape based on
fitting the PTT model to the experiments and simulations
are found for the thermally activated regime. Disparity still
exists in the mean friction values due to the vastly different
effective masses, and hence slip-attempt frequencies, in the
two systems. However, because this discrepancy lies in
attempt frequencies and not energetics, the rich atomistic
details in MD simulations at slow speeds can indeed be
reliably used in interpreting AFM data.
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