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MECHANISMS OF THE DOWNREGULATION OF PROLACTIN
RECEPTOR AND THEIR ROLE IN CELL PROLIFERATION

Abstract
Cells react to diverse stimuli by expressing specific receptors that recognize these stimuli and initiate specific
signaling pathways that enable a cell to change with the environment. Downregulation of these signaling
receptors represents the most direct method for limiting the magnitude and duration of downstream signal
transduction. For cell surface transmembrane receptors, ligand-stimulated endocytosis is a major mechanism
by which the ability of a cell to react to a ligand is restricted. In order to investigate the downregulation of the
prolactin receptor (PRLr), we investigated the mechanism and key determinants in the endocytosis and
downregulation of PRLr. In Chapter 2, we show that the endocytosis of PRLr is a ligand-induced process
which requires the catalytic activity of the constitutively bound Janus kinase Jak2. In Chapter 3, we show that
PRLr is internalized by a clathrin-dependent mechanism which requires phosphorylation of the conserved
phosphodegron motif (DS349GRGS) at Ser 349 and an active SCFβ-TrCP E3 ligase complex. Optimal PRLr
endocytosis is shown to be achieved via K63-linked polyubiquitination of the receptor. In Chapter 4, we show
that PRL signaling promotes cell growth in 2-D and 3-D culture systems where PRLr levels are increased/
stabilized. In Chapter 5, we identify pyruvate kinase M2 (PKM2), a glycolytic enzyme whose role in
tumorigenesis has been described, to be a novel interactor of PRLr. We show that prolactin (PRL) signaling
works to inhibit PKM2 activity by the propagation of tyrosine-phosphorylated proteins. This inhibition of
PKM2 prevents progression through glycolysis and allows PKM2 to take a pro-tumorigenic role. We show
that the interaction between PRL signaling and PKM2 is required for optimal prolactin-dependent cell
growth. In this thesis (model shown in Model 1), we show that there is a defined mechanism of PRLr
downregulation which works to limit PRL signaling. If this mode of receptor downregulation is not properly
executed, it can result in aberrant signaling whereby prolactin-mediated inhibition of pyruvate kinase M2
mediates the pro-tumorigenic effect of prolactin.
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ABSTRACT 

 

MECHANISMS OF THE DOWNREGULATION OF PROLACTIN RECEPTOR AND 

THEIR ROLE IN CELL PROLIFERATION 

 

Bentley Varghese 

 

Dr. Serge Y. Fuchs, M.D., PhD. 

 

Cells react to diverse stimuli by expressing specific receptors that recognize these stimuli 

and initiate specific signaling pathways that enable a cell to change with the environment. 

Downregulation of these signaling receptors represents the most direct method for 

limiting the magnitude and duration of downstream signal transduction.  For cell surface 

transmembrane receptors, ligand-stimulated endocytosis is a major mechanism by which 

the ability of a cell to react to a ligand is restricted.  In order to investigate the 

downregulation of the prolactin receptor (PRLr), we investigated the mechanism and key 

determinants in the endocytosis and downregulation of PRLr.  In Chapter 2, we show 

that the endocytosis of PRLr is a ligand-induced process which requires the catalytic 

activity of the constitutively bound Janus kinase Jak2.  In Chapter 3, we show that PRLr 

is internalized by a clathrin-dependent mechanism which requires phosphorylation of the 

conserved phosphodegron motif (DS
349

GRGS) at Ser 349 and an active SCF
β-TrCP

 E3 

ligase complex.  Optimal PRLr endocytosis is shown to be achieved via K63-linked 

polyubiquitination of the receptor.  In Chapter 4, we show that PRL signaling promotes 
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cell growth in 2-D and 3-D culture systems where PRLr levels are increased/stabilized.  

In Chapter 5, we identify pyruvate kinase M2 (PKM2), a glycolytic enzyme whose role 

in tumorigenesis has been described, to be a novel interactor of PRLr.  We show that 

prolactin (PRL) signaling works to inhibit PKM2 activity by the propagation of tyrosine-

phosphorylated proteins.  This inhibition of PKM2 prevents progression through 

glycolysis and allows PKM2 to take a pro-tumorigenic role.  We show that the interaction 

between PRL signaling and PKM2 is required for optimal prolactin-dependent cell 

growth.  In this thesis (model shown in Model 1), we show that there is a defined 

mechanism of PRLr downregulation which works to limit PRL signaling.  If this mode of 

receptor downregulation is not properly executed, it can result in aberrant signaling 

whereby prolactin-mediated inhibition of pyruvate kinase M2 mediates the pro-

tumorigenic effect of prolactin.       
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Chapter 1 

Introduction 

1.1 Abstract 

Cells react to diverse stimuli by expressing specific receptors that recognize these 

stimuli and initiate specific signaling pathways that enable a cell to change with the 

environment. Downregulation of these signaling receptors represents the most direct 

method for limiting the magnitude and duration of downstream signal transduction.  

For cell surface transmembrane receptors, ligand-stimulated endocytosis is a major 

mechanism by which the ability of a cell to react to a ligand is restricted.  In order to 

investigate the downregulation of the prolactin receptor (PRLr), we investigated the 

mechanism and key determinants in the endocytosis and downregulation of PRLr.  In 

Chapter 2, we show that the endocytosis of PRLr is a ligand-induced process which 

requires the catalytic activity of the constitutively bound Janus kinase Jak2.  In 

Chapter 3, we show that PRLr is internalized by a clathrin-dependent mechanism 

which requires phosphorylation of the conserved phosphodegron motif 

(DS
349

GRGS) at Ser 349 and an active SCF
β-TrCP

 E3 ligase complex.  Optimal PRLr 

endocytosis is shown to be achieved via K63-linked polyubiquitination of the 

receptor.  In Chapter 4, we show that PRL signaling promotes cell growth in 2-D 

and 3-D culture systems where PRLr levels are elevated/stabilized.  In Chapter 5, 

we identify pyruvate kinase M2 (PKM2), a glycolytic enzyme whose role in 

tumorigenesis has been described, to be a novel interactor of PRLr.  We show that 

prolactin (PRL) signaling works to inhibit PKM2 activity by the propagation of 
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tyrosine-phosphorylated proteins.  This inhibition of PKM2 prevents progression 

through glycolysis and allows PKM2 to take a pro-tumorigenic role.  We show that 

the interaction between PRL signaling and PKM2 is required for optimal prolactin-

dependent cell growth.  In this thesis (model shown in Model 1), we show that there 

is a defined mechanism of PRLr downregulation which works to limit PRL 

signaling.  If this mode of receptor downregulation is not properly executed, it can 

result in aberrant signaling whereby prolactin-mediated inhibition of pyruvate kinase 

M2 mediates the pro-tumorigenic effect of prolactin. 

       

1.2 Introduction 

PRLr is a homodimerized receptor that elicits intracellular effects through 

engaging the peptide hormone prolactin (PRL).  Upon ligand binding, PRLr 

undergoes a conformational change which leads to activation of several kinases 

including protein tyrosine kinases (JAK2 and Src), serine/threonine kinases (such as 

Erk and Nek3), and lipid phosphoinositol 3 kinase. Depending on the context, this 

signal transduction program can result in normal mammary gland development and 

lactation or promote uncontrolled proliferation and increased survival of breast 

epithelium that contributes to a malignant phenotype (Clevenger et al., 2003; 

Clevenger et al., 2009; Clevenger et al., 2008; Swaminathan et al., 2008a; Wagner & 

Rui, 2008). Examples of altered PRL‐PRLr action in human breast cancers include 

elevated levels of PRL (Hankinson SE et al., 1999; Tworoger SS et al., 2004; 

Tworoger SS and Hankinson SE, 2008), accumulation of PRLr due to its impaired 
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proteolysis (Li et al., 2006; Plotnikov et al., 2008; Plotnikov et al., 2009; 

Swaminathan et al., 2008a), and mutations that yield a constitutively active PRLr 

(Bogorad RL et al., 2008; Canbay E et al., 2004). 

Endocytosis of signaling receptors is a major mechanism used by cells to restrict 

the magnitude and duration of signal transduction induced by extracellular ligands. 

Often times, receptor-mediated signaling can result in a feedback loop which limits 

signaling when it becomes aberrant or it is advantageous for the cell to halt signaling 

via the given receptor.  In some cases, such as with the nerve growth receptor TrkA, 

internalized receptors can still signal within the endosomes (Geetha T et al., 2005).   

Various factors regulate the internalization of signaling receptors, including 

receptor ubiquitination.  For several receptors (such as epidermal growth factor 

receptor, growth hormone receptor, interferon α receptor chain 1 (IFNAR1)), 

ubiquitination is stimulated by the ligand. This stimulation is mediated by the ligand-

induced transduction of a signal initiated by a kinase activity that is either intrinsic to 

the receptor itself (as for epidermal growth factor receptor (Galcheva-Gargova Z et 

al., 1995)) or provided by a receptor-associated kinase (as for growth hormone 

receptor, IFNAR1, and PRLr (Marijanovic Z et al., 2006; Deng L et al., 2007; Rui H 

et al., 1994;)).   

Posttranslational modifications, such as ubiquitination have emerged as an 

important determinant in the endocytosis and sorting of cell surface receptors. 

Ubiquitin is a 76-amino acid protein that forms an isopeptide bond between its 

terminal glycine and a lysine residue of a target substrate. Each ubiquitin moiety 
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harbors seven lysine residues (K6, K11, K27, K29, K33, K48, K63) allowing for the 

formation of ubiquitin chains linked through its internal lysine residues. Ubiquitin 

can form ubiquitin chains of uniform or mixed linkage through these lysine residues, 

primarily Lys 29, Lys 48, and Lys 63 (Pickart CM and Fushman D, 2004).  

Monoubiquitination and multi-monoubiquitination have both been shown to play a 

role in endocytosis.  Monoubiquitination can also signal for membrane trafficking, 

DNA repair, and histone regulation (Haglund K et al., 2003a).  Substrates that are 

K48-polyubiquitinated typically are targeted for degradation by the 26S proteasome.  

K29- and K63- polyubiquitination often target substrates for involvement in DNA 

repair or receptor-mediated endocytosis (Haglund K et al., 2003a).       

Ubiquitination has been found to be important for mediating the internalization 

of many yeast receptors (Bonifacino JS and Weissman AM, 1998; Hicke L and Dunn 

R, 2003), the nerve growth factor receptor TrkA [K63-linked polyubiquitination] 

(Geetha T et al., 2005), MHC class II proteins [K63-linked polyubiquitination] 

(Duncan LM et al., 2006), EGF receptor (Waterman H et al., 2002; Bonifacino JS 

and Traub LM, 2003), and Growth Hormone receptor (van Kerkhof P et al., 2001).   

A report by Lu JC et al. (Lu JC et al., 2005) used the Chinese hamster lung 

cell line ts20, which contains a thermolabile ubiquitin-activating enzyme E1, and 

stably expressed wild type human PRLr in these cells.  These stable lines were 

cultured at the permissive temperature (30
o
C; active E1 enzyme) or the non-

permissive temperature (42
o
C; inactive E1 enzyme) and treated with radiolabeled 

and unlabeled bovine placental lactogen.  The ratio of radiolabeled ligand that 
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internalized was determined and based on their results, they determined that the 

internalization of human PRLr is not dependent on ubiquitination.  However, it has 

been shown that receptor internalization can be very cell type-specific so the study of 

human PRLr internalization in Chinese hamster lung cells does not replicate what 

occurs in human cells.  Furthermore, the measurement of internalized radiolabeled 

ligand (which in this case is further complicated by the use of bovine placental 

lactogen instead of human prolactin) is not an accurate way to measure the 

internalization of a given receptor. Radiolabeled ligand can internalized due to 

phagocytosis or non-specific interaction of the ligand with a cell surface protein 

different than the receptor of interest.  Instead, the disappearance of PRLr from the 

cell surface should be directly measured to get an accurate estimation of the amount 

of PRLr that has internalized.  Due to these valid caveats, the conclusion made by the 

authors stating that ubiquitination is not important for PRLr endocytosis must be 

discounted.  Instead, other work, including that from our lab, has established that 

PRLr ubiquitination is necessary for the efficient internalization and degradation of 

PRLr.     

Pioneering studies in the early 1980s showed that prolactin was able to 

facilitate the lysosomal degradation of its receptor (Djiane J et al., 1979; Djiane J et 

al., 1981; Djiane J et al., 1982; Genty N et al., 1994; Hicke L, 1999).  It was 

demonstrated that following stimulation of PRLr with its cognate ligand, PRL, the 

receptor gets phosphorylated on Ser349 within a well-conserved phosphodegron, 

DS
349

GRGS
353

 Activation of PRLr by ligand leads to Ser 349 and Ser 353 
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phosphorylation, likely following activation of Jak2, promoting interaction of the 

SCF
β-TrCP 

E3 ligase complex with the well-conserved phosphodegron 

(DS
349

GRGS
353

) of PRLr.  This interaction leads to receptor ubiquitination and 

subsequent lysosomal degradation (Li Y et al., 2004).  The stabilization and 

accumulation of PRLr in breast cancer occurs as a consequence of impaired PRL-

induced phosphorylation of the receptor and its subsequent escape from ubiquitin-

mediated downregulation (Li Y et al., 2004; Li Y et al., 2006).  This results in the 

continuous availability of receptor on the surface for ligand engagement and signal 

propagation.  Recent work by Lu et al. demonstrated that inhibitors of both 

lysosomal pathway and of proteasomes impede the ligand-induced degradation of 

endogenous PRLr in PRL-deficient MCF7 breast cancer cells (Lu JC et al., 2005). 

While interpretation of these data is confounded by a known fact that many 

proteasome inhibitors suppress overall protein trafficking into the lysosomes 

indirectly by depleting the intracellular ubiquitin pool, it was proposed that, in this 

system, proteasomal function was required for limited cleavage of the receptor and 

generation of a receptor ECD-containing fragment, post internalization. It is 

currently unclear if this fragment represents an intermediate degradation product or a 

signaling unit, or whether this manner of receptor processing is cell-type specific (Lu 

JC et al., 2005).   

The amount of PRLr on the cell surface controls both intensity and duration 

of PRL signals in cells and thereby cellular response to PRL. Alterations in PRLr 

levels can 
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therefore lead to aberrant downstream signaling in response to PRL resulting in 

disruption of cellular homeostasis. Early work examining the relative levels of PRLr 

in different breast cancer lines in comparison to a normal breast cell line indicated 

that the number of receptors per cell was high as 25,800 in T47D cells versus 1,700 

in immortalized HBL-100 cells (Shiu RP, 1979). Subsequently, several studies have 

reported increased expression of PRLr mRNA in tumor tissue (corresponding to 

surrounding normal tissue) and in breast cancer cell lines (Laud K et al., 2000; Peirce 

SK and Chen WY, 2001; Touraine P et al., 1998).  Similar results were obtained 

following analysis of PRLr protein levels by immunohistochemistry (Gill S et al., 

2001; Reynolds C et al., 1997).  Taken together, these observations and other 

experimental data obtained from cancer cell lines and primary tumor samples have 

postulated a positive link between increased receptor levels and breast cancer 

incidence, demonstrating the need to unravel the regulation of PRLr expression on 

the cell surface. The density of receptor on the surface is a cumulative consequence 

of events affecting de novo synthesis and subsequent fate of the receptor pre- and 

post- ligand binding. 
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Model 1 

 

 

 

 

 

               
 

 

 

 

 

 

Model 1: This model shows the proposed relationship and key determinants which 

modulate the downregulation of PRLr and the consequences thereof.  Each bold 

number indicates the numbered chapter in which each step is addressed. 
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Chapter 2 

PRL and Jak2 promote internalization of PRLr 

2.1 Abstract 

Downregulation of signaling receptors represents the most direct method for 

limiting the magnitude and duration of downstream signal transduction.  For cell 

surface transmembrane receptors, ligand-stimulated endocytosis is a major 

mechanism by which the ability of a cell to react to a ligand is restricted.  PRLr has 

been shown to be degraded in an ubiquitination-dependent manner whereby 

phosphorylation of the phosphodegron motif (DS
349

GRGS) on Ser 349 after ligand 

stimulation results in recruitment of the SCF
β-TrCP

 E3 ligase complex.  This E3 ligase 

complex ubiquitinates PRLr at target lysine residues that have yet to be 

characterized; this ubiquitination results in degradation of the receptor by the 

lysosome (Li Y et al., 2004).  However, it was not known what determinants regulate 

the phosphorylation of Ser 349.  Previous work from our lab established that PRLr is 

degraded in an ubiquitin-dependent manner but did not address the mechanism of 

internalization.  As has been shown with other cell surface receptors, PRLr may be 

regulated in a feedback loop whereby the cell underwent a regulated program to 

restrict PRLr levels and thereby limit PRL signaling.  In such a mode of 

downregulation, what role does ligand treatment and downstream effectors of PRL 

signaling play in limiting PRLr levels?  In Chapter 2, we show that the endocytosis 

of PRLr is a ligand-induced process which requires the catalytic activity of the 

constitutively bound Janus kinase Jak2. 
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2.2 Introduction 

The main signaling networks downstream of PRL/PRLr include the Jak-STAT, 

Ras-MAPK and PI3K-Akt pathways.  These pathways impact crucial cellular 

processes like proliferation, survival, cytoskeletal effects and differentiation with 

well-established roles in the initiation and progression of cancer including mammary 

tumors. PRLr, analogous to other cytokine receptors, lacks intrinsic kinase activity 

and the receptor-Jak2 module acts to transmit signals downstream of ligand binding 

(Rui H, Lebrun JJ et al., 1994; Rui H, Kirken RA et al., 1994). PRL-mediated 

activation of the Jak-STAT signaling pathway results in transcriptional induction of 

milk protein genes and genes involved in cell proliferation like cyclin D1 (Chilton 

BS et al., 2005; Clevenger CV and Kline JB, 2001; Clevenger CV et al., 2003).  PRL 

has been shown to activate the Ras-Raf-MAPK pathway in several mammary tumor 

cell lines, which promotes cell proliferation via multiple mechanisms. This is 

mediated in some cells by increased association of Shc with Jak2, as well as by the 

Grb2 and Sos complex (Das R and Vonderhaar BK, 1996). PRL has also been 

implicated in the activation of other MAPK such as JNK, which impact proliferation 

and apoptosis in cell systems like T47D, Nb2 and PC12 cells (Cheng Y et al., 2000; 

Olazabal I et al., 2000; Schwertfeger KL et al., 2000). Other kinases like c-Src, 

which is important in normal cellular physiology as well as mammary carcinoma, are 

activated in response to PRL and interface with PRLr- mediated signaling. Src 

functions upstream of PI3K or focal adhesion kinase (FAK)-Erk activation in PRL-
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stimulated breast cancer cell lines (Acosta JJ et al., 2003).  The activation of PI3K 

occurs by either the direct binding of the p85 subunit to PRLr or downstream of Src 

or Ras activation. The phosphoinositides generated by PI3K activate Akt, which 

transmits prosurvival and proliferatory signals by modulating cell-cycle regulators 

and also enable the recruitment of pleckstrin homology containing guanine 

nucleotide exchange factor (GEF), Vav, which activates the Rho family GTPases, 

leading to cytoskeletal rearrangements required for cell adhesion and migration.  

Moreover, PRLr signaling can transactivate other receptors involved in 

tumorigenesis. PRL treatment has been shown to induce tyrosine phosphorylation of 

human epidermal growth factor receptor (EGFR), leading to the activation of MAPK 

in breast cancer cell lines, suggesting that these pathways work in concert during the 

development of disease. This has implications for cancer therapeutics as it has been 

recently shown that a combination of anti-EGFR mAb, herceptin, and the PRL 

antagonist, PRL
G129R

 additively inhibited cell proliferation of T47D and BT474 cells 

as well as their growth in xenografts in athymic mice (Scotti ML et al., 2007).  In 

addition to positive signal transduction, PRL/PRLr binding stimulates regulatory 

molecules capable of attenuating PRL generated signals. Included in this category 

are the SOCS family proteins, SOCS1 and 3, PIAS, CIS, and protein tyrosine 

phosphatases, PTP1B1 and TC-PTP which target the Jak-STAT pathway (Aoki N 

and Matsuda T, 2000; Aoki N and Matsuda T, 2002; Dif F et al., 2001; Tomic S et 

al., 1999; Tonko-Geymayer S et al., 2002). 
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2.3 Materials and Methods 

Cell lines, constructs, and gene delivery 

Human breast cancer T47D cells were kindly provided by Dr Z. Ronai (Burnham 

Institute, San Diego, CA, USA).  Cells were cultured as previously described (Melck 

D et al., 2000).  Negative control shRNA (Sigma, #SHC002) is a lentiviral pLKO.1-

puro vector containing an irrelevant shRNA insert that does not target human and 

mouse genes.  ShPRLr (Open Biosystems, #RHS3979-98492771) contains shRNA 

against human PRLr in the context of the same vector.  Stable mass cultures of T47D 

containing these shRNAs were generated using viruses packaged in 293T cells co-

transfected with indicated shRNA, VSV-G, and 8.2DeltaR plasmids.  Mass cultures 

were selected in medium containing puromycin (2 µg/mL). CISH promoter-driven 

firefly luciferase reporter (Hankinson SE et al., 1999) was kindly provided by CV 

Clevenger (Northwestern University, Chicago, IL).  Renilla luciferase expression 

vector was purchased (Promega).  For luciferase assays, 2x10
5
 of T47D cells 

(shControl and shPRLr) were seeded into 24-well plates.  Cells were transfected 

using LTX Lipofectamine reagent with pGL4-CISH reporter 9100 ng) and renilla 

luciferase reporter (1 ng).  The transfected cells were starved for 24 h and treated or 

not with PRL (150 ng/mL) for an additional 24 hr.  Luciferase reporter assay was 

performed using dual luciferase assay Promega kit according to manufacturer’s 

instructions.  

Human embryo kidney 293T cells, Jak2-null γ2A cells (Kohlhuber et al. 1997), 

and their derivatives were maintained and transfected as described elsewhere (Li et 
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al. 2004, Deng et al., 2007). Plasmids for expression of flag-tagged (Li et al. 2004) 

PRLr, as well as Jak2
WT

 or Jak2
K882D

 (Huang et al. 2001) were previously described.  

Plasmids for expression of hemagglutinin (HA)-tagged PRLr have been previously 

described (Swaminathan G et al., 2008b).  

Reagents, antibodies, and immunotechniques 

Antibodies against FLAG tag (M2, Sigma), HA tag (12CA5, Roche), beta-

actin (Sigma), Jak2 (Upstate Biotech, Lake Placid, NY, USA), and PRLr (Zymed, 

San Francisco, CA, USA and Santa Cruz, Santa Cruz, CA, USA) were purchased. 

Human PRL was purchased from the National Hormone and Peptide program (AF 

Parlow). PRLr antagonist PRL
∆1–9-G129R 

was produced and purified as previously 

described (Bernichtein et al., 2003). AG490 and PP1 (Calbiochem, San Diego, CA, 

USA) were purchased. Immunoprecipitation and immunoblotting were performed as 

described previously (Li et al., 2004).  Transfections were performed with 

Lipofectamine Plus or Lipofectamine 2000 (Invitrogen Corporation, Carlsbad, CA) 

or FuGENE 6 (Roche) and analyzed after 48 h according to the manufacturer’s 

recommendations.  

Fluorescence-based internalization assay 

This assay measures the loss of cell-surface immunoreactivity of epitope 

tagged or endogenous receptors using an ELISA assay as described previously 

(Barriere et al., 2006) with the following modifications. Briefly, 293T or γ2A cells 

transfected with HA-PRLr (or no receptor construct if studying endogenous PRLr) in 

addition to other constructs as indicated were serum starved and chilled on ice. 



 

 

 14 

Internalization was initiated by incubation of cells with serum-free DMEM for 

indicated time periods at 37°C and terminated by placing the plate on ice. Levels of 

cell surface HA-PRLr or endogenous PRLr were analyzed by ELISA using anti-HA 

or anti-PRLr (Zymed, San Francisco, CA) primary antibodies respectively and 

horseradish peroxidase-conjugated goat anti-mouse secondary antibody (Molecular 

Probes, Eugene, OR, USA) followed by incubation with Amplex Red Ultra Reagent 

(Molecular Probes). Resulting fluorescence was measured (530 nm for excitation and 

590 nm for emission) and expressed after subtracting the value obtained with mock 

transfected (endogenous receptor experiments used cells with a non-relevant control 

primary antibody) cells as percentage of fluorescence registered prior to 

internalization.  Where indicated, pretreatment with monensin (100 µM in ethanol 

for 30 min prior to initiation of internalization) was used to prevent receptor 

recycling as described elsewhere for EGF receptor (Wang Y et al., 2002).  In these 

cases, control cells received equal volumes of vehicle (ethanol). 

 

2.4 Results 

Elucidating the mechanism and identifying the determinants of PRLr 

downregulation is key to understanding how the cell limits PRL signaling and how 

these mechanisms can become aberrant and result in a disease state.   

To determine the mode of regulation of PRL signaling, we first sought out to see 

if PRL signaling is affected by PRLr levels.  For a given mode of receptor-based 

signaling in the face of decreased receptor levels, downstream signaling could be 
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maintained within the cell by increasing ligand amounts or by increasing the 

abundance of downstream effectors.  Alternatively, decreasing the levels of the 

receptor may cause reduced signaling.  In the case of PRLr, if a reduction in PRLr 

levels results in decreased PRL signaling, then the cell may look to degrade the 

receptor in cases where PRL signaling has become aberrant and must be controlled.  

If PRL signaling is dependent on receptor levels, then conditions whose pathogenesis 

is PRL signaling-dependent could be prevented by keeping PRLr levels in check.  To 

address this question, we decided to use a breast cancer cell model where PRL 

signaling has been shown to be abundant.  By altering PRLr levels in this 2-D culture 

system, we can study the effect of PRLr levels on PRL signaling.  For this purpose, 

we chose the T47D breast cancer cell line due to its abundant PRL signaling.  To this 

end, we created T47D stable lines that stably express a control shRNA or a PRLr-

specific shRNA and asked whether shRNA-mediated knockdown of PRLr would 

result in decreased PRL signaling.  Knockdown of PRLr in T47D stable cell lines 

halted the activation of a PRL-responsive CISH promoter (Figure 2.1), showing that 

the maintenance of receptor level is crucial for normal downstream signal 

transduction.  Since PRL signaling is dependent upon PRLr levels, it is crucial to 

understand how the cell may limit the levels of PRLr.  Deregulation of PRLr levels 

may explain disease states where PRL signaling has become aberrant.  

In order to understand how the cell regulates receptor levels, we must investigate 

the mechanism of receptor endocytosis.  Once the receptor is endocytosed, it can 

then enter the endosome and ultimately be degraded by the lysosome.  However, the 
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question remains, what initiates the internalization of PRLr?  In the case of a 

feedback loop, the upregulation or activation of downstream effectors or ligand-

receptor binding works to initiate the attrition of signaling.  To test this possibility, 

we sought to investigate the role of PRL and how it may affect receptor 

internalization.  To study the mechanisms of receptor internalization, our lab has 

developed a novel method to directly study the disappearance of cell surface PRLr 

using a fluorescence-based internalization assay (described in Materials and 

Methods). By analyzing the rate of PRLr endocytosis using a highly sensitive 

fluorescence-based endocytosis assay that allows for the analysis of the 

internalization of receptor itself and not the internalization of radiolabeled ligand, we 

are able to more accurately study the endocytosis of PRLr.  Other labs have 

commonly studied receptor internalization by observing the internalization of a 

radiolabeled ligand.  However, this radiolabeled ligand could conceivably enter the 

cell independent of its interaction with internalizing receptors by general 

phagocytosis or by non-specific interactions with other cell surface molecules.  By 

using our fluorescence-based method, we are accurately and directly studying the 

internalization of the PRLr.   

To study the role of PRL in the internalization of PRLr, we expressed amino-

terminally HA-tagged PRLr in 293T cells and observed the internalization kinetics 

(using our fluorescence-based internalization assay) in response to no treatment, the 

PRLr antagonist PRL
∆1–9, G129R

, PRL, or PRL in conjunction with the PRLr 

antagonist.  In our initial studies, we found that PRL significantly increased the 



 

 

 17 

initial internalization rate of its receptor in 293T cells. Treatment with the PRLr 

antagonist (PRL
∆1–9,G129R

), which allows for receptor dimerization but does not allow 

for downstream signal transduction, had no effect alone but reversed the stimulation 

of PRLr internalization by wild type PRL (Figure 2.4). These results indicate that 

PRL-induced signaling is a prime driving force behind the internalization of PRLr.   

Since we established that PRL stimulation is crucial for the optimal 

internalization of PRLr, we wanted to investigate which signaling steps of the PRL 

signaling transduction pathway are necessary for PRLr endocytosis.  One of the first 

events after PRL-PRLr binding is the phosphorylation and activation of the 

constitutively bound Janus kinase Jak2.  Jak2 has a kinase activity which is required 

for PRL signaling. The importance of Jak2 activity is evidenced by the necessity of 

Jak2 for the phosphorylation of intracellular tyrosines of PRLr (Figure 2.2).  These 

tyrosine phosphorylation events are necessary for effective PRL signaling.  

Furthermore, Jak2 activity is necessary for effective Ser 349 phosphorylation (Figure 

2.2) and subsequent ubiquitination (Figure 2.3) of PRLr which leads to lysosomal 

degradation of the receptor (Swaminathan G et al., 2008b; Varghese B et al., 2008).  

PRLr is phosphorylated on Ser 349 which is part of a conserved phosphodegron 

motif (DS
349

GRGS).  Upon phosphorylation of the phosphodegron motif, the SCF
β-

TrCP
 E3 ligase complex is recruited to PRLr and ubiquitinates it at target lysines 

within the receptor.   

Since Jak2 is important for the ubiquitination of PRLr which leads to receptor 

degradation, we sought to determine the role of Jak2 in PRLr internalization.  To 
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determine the role of Jak2 kinase activity in PRLr endocytosis, we sought to 

pharmacologically inhibit Jak2 and see how this affected receptor internalization.  

Pharmacological inhibition of Jak2 is a preferred method since we can maintain the 

presence of the Jak2 protein while decreasing its catalytic activity, thus giving us an 

idea of the importance of Jak2 catalytic activity in PRLr endocytosis.  For this 

purpose, 293T cells were pretreated with either Jak inhibitor AG490 or Src inhibitor 

PP1 and we measured the internalization of PRLr in the absence or presence of 

ligand using the fluorescence-based internalization assay.  The usage of Src inhibitor 

PP1 was chosen to serve as a control since Src is a downstream effector of PRL 

signaling and we want to discover if any effect upon PRLr endocytosis is due to 

decreased Jak2 activity or because we are decreasing PRL signaling by decreasing 

the activity of a downstream effector.  In these experiments, we found that while 

neither inhibitor affected basal PRLr endocytosis, the ligand-stimulated endocytosis 

of PRLr was impaired in cells treated with AG490 (Jak inhibitor) but not with the 

Src inhibitor PP1 (Figure 2.5).  These data indicate that Jak2 activity is needed for 

efficient PRL-mediated PRLr internalization while decreased Src activity did not 

seem to significantly affect PRLr endocytosis.  These data propose Jak2 as a key 

regulator of ligand-dependent PRLr internalization.   

We further wanted to confirm the importance of Jak2 in regulating the 

internalization of PRLr.  We sought to determine whether the addition of Jak2 could 

promote PRLr endocytosis.   To this end, we decided to use γ2A cells which lack 

endogenous Jak2 and serve as a good system whereby we can add Jak2 and observe 
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the effects upon PRLr internalization by using our fluorescence-based internalization 

assay.  Our studies of PRLr internalization in γ2A-derived cells (which lack 

endogenous Jak2) showed that expression of wild type Jak2 significantly increased 

the endocytic rate of the receptor, while this effect was neither observed in cells 

expressing inactive Jak2 nor in cells that lacked Jak2 protein (Figure 2.6). Given that 

inactive Jak2 has been implicated in the maturation and cell surface delivery of PRLr 

and EpoR (Huang et al. 2001), these data also suggest that, unlike for receptor 

maturation, Jak2’s role in internalization does require its protein kinase activity.  

Taken together, these data suggest that the catalytic activity of Jak2 is necessary for 

ligand-facilitated acceleration of the initial rate of PRLr internalization. 

 

2.5 Discussion 

We established that PRL signaling is dependent upon receptor level, indicating 

that the study of PRLr downregulation and its key determinants is a valuable 

endeavor in that it will allow us to have insights into how PRL signaling becomes 

aberrant and subsequently can promote tumorigenesis.  The relationship between 

enhanced PRL signaling and malignancies of the breast have been well-established 

but poorly understood.  Our studies on the role of PRL signaling in the 

downregulation of PRLr have shown that treatment with PRL promotes Jak2 activity 

which works to promote the phosphorylation of the intracellular tyrosines of PRLr 

(crucial step for PRL signaling) and phosphorylation of Ser 349 of PRLr’s 

phosphodegron motif (see Model 1).  However, previous studies from our lab have 



 

 

 20 

established that Jak2 is not the direct kinase which phosphorylates Ser 349 (data not 

shown).  This phosphorylation event is necessary for PRLr degradation as 

phosphorylated Ser 349 of the conserved phosphodegron motif works to recruit the 

SCF
β-TrCP

 E3 ligase complex which binds to PRLr and ubiquitinates the receptor on 

its target lysines.  Additionally, we have shown that the ubiquitination of PRLr 

occurs in response to PRL in a manner dependent on Jak2 activity.  Since Jak2 

promotes the phosphorylation of the phosphodegron motif and the subsequent 

ubiquitination of the PRLr, both of which are necessary for effective ligand-mediated 

degradation of PRLr, we have therefore established Jak2 to play an important role in 

PRLr downregulation (see Model 1).  These results may implicate Jak2 in the 

phosphorylation and activation of the yet to be identified kinase which 

phosphorylates PRLr on Ser 349 of the phosphodegron motif.  This possible action 

of Jak2 would explain the importance of Jak2 in regulating the Ser 349 

phosphorylation and ubiquitination of PRLr.  Future studies aimed at identification 

of the PRLr Ser 349 kinase should focus on a Jak2-activated kinase. 

Furthermore, in the investigation of PRLr downregulation, we have looked to see 

how the PRLr is internalized and what factors initiate its internalization by using a 

reliable and highly sensitive fluorescence-based internalization assay which directly 

studies the rate of receptor that becomes endocytosed as opposed to indirect studies 

using radiolabeled ligand.  These elegant studies showed that PRLr internalization is 

largely a ligand-induced process.  Ligand-induced internalization of PRLr could be 

abrogated by treatment with a PRLr antagonist which competes with PRL for the 
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ligand binding site of PRLr.  However, treatment with the PRLr antagonist alone did 

not promote PRLr endocytosis, indicating that PRL-PRLr binding is not sufficient to 

promote receptor internalization.  Furthermore, activation of PRL signaling is needed 

to activate the internalization of PRLr.  Using this fluorescence-based internalization 

assay, we also identified Jak2 kinase activity, and not Src kinase activity, to be 

crucial for PRL-mediated internalization of the PRLr (see Model 1).  Internalization 

studies using gamma2A cells, which lack endogenous Jak2, showed that optimal 

PRLr endocytosis was achieved when wild-type Jak2, and not a kinase inactive 

version, was introduced into the cell system.   

Conclusions of Chapter 2: 

- PRL signaling is dependent on levels of PRLr 

- Active Jak2 promotes the tyrosine phosphorylation of PRLr in response 

to PRL 

- Active Jak2 promotes the phosphorylation of Ser 349 of the 

phosphodegron motif of PRLr in response to PRL 

- Active Jak2 is needed for the efficient PRL-induced ubiquitination of 

PRLr 

- The internalization of PRLr is largely a PRL-driven process 

- PRLr antagonist can prevent PRL-induced endocytosis of PRLr 

- Jak2 activity is required for the efficient PRL-mediated internalization of 

PRLr 
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- Src activity is not required for the efficient PRL-mediated internalization 

of PRLr 

- Active Jak2 protein promotes the PRL-mediated endocytosis of PRLr 

 

Active Jak2 promotes and is necessary for the internalization of PRLr.  The 

importance of Jak2 in the Ser 349 phosphorylation and ubiquitination of PRLr imply 

that the kinase which phosphorylates PRLr on Ser 349 is likely a Jak2-activated 

kinase.  Identification of this kinase would be a useful next step in the elucidation of 

the mechanisms by which PRLr levels are regulated.   

While Jak2 plays an important role in the downregulation of PRLr, it also is 

crucial for normal PRL signaling.  In cancers driven by aberrant PRL signaling, 

pharmacological inhibition of Jak2 may not be a viable treatment as this would 

interfere with IL-3 and GM-CSF signaling, both of which utilize Jak2.  This would 

be counterproductive and hinder the host’s immunological response against the 

tumor. 

The studies contained in Chapter 2 are significant because they show that PRLr 

downregulation is a mainly a PRL-mediated process that is dependent on active Jak2.  

This is counter to the work by Piazza TM et al. that claimed PRLr endocytosis is a 

Src-dependent process (Piazza TM et al., 2009).  However, these studies were 

performed using radiolabeled ligand and did not directly study the endocytosis of 

PRLr.  Our studies, using the fluorescence-based internalization assay, accurately 

and reproducibly study the direct internalization of the receptor, allowing us to gain 
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accurate insights into the regulation of PRLr endocytosis.  Our work showed that the 

PRL-mediated internalization of PRLr is Jak2-dependent and not Src-dependent.  

The presence of a minimal rate of PRLr endocytosis in the absence of ligand raises 

the possibility of an alternative yet minor ligand-independent internalization 

mechanism which may be Src-dependent.  Such an alternative mechanism may allow 

for the slow turnover and subsequent renewal of cell surface PRLr even in the 

absence of active PRL signaling.  In spite of any alternative internalization 

mechanisms, our studies show that ligand-mediated PRLr endocytosis is a Jak2 

dependent process.  These data propose Jak2 to not only be crucial for signaling 

downstream of the PRLr, as has been previously established, but also to be a key 

regulator of PRLr levels.  We propose that upon hyperactive PRL signaling, the 

activation of Jak2 works to promote PRLr downregulation and thereby keep aberrant 

signaling in check.  Jak2 is both needed for active PRL signaling and for the 

effective execution of a negative feedback loop. 

PRL treatment and subsequent activation of Jak2 both work to promote receptor 

endocytosis and these events both promote Ser 349 phosphorylation, receptor 

ubiquitination, and receptor degradation.  These facts lead us to believe that receptor 

ubiquitination may be the key linking factor which connects PRL and Jak2 to 

receptor internalization and subsequent degradation.  While it has been previously 

shown that PRLr is ubiquitinated, the importance, nature, and specificity of PRLr 

ubiquitination and its importance for the internalization of PRLr have not been 
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established.  These questions must be properly answered so that we may understand 

how the cell maintains and regulates PRLr levels.   

Elucidating the mechanism by which PRLr levels are regulated will help us to 

understand how this regulation may go awry, resulting in aberrant PRL signaling and 

the induction of a disease state.  Therefore, we will seek to investigate the nature of 

PRL-mediated PRLr endocytosis and the role of ubiquitination in this process in 

Chapter 3. 
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Figure 2.1 

 

 

 

 

 

 
 

 

 

 

Figure 2.1: PRL-induced CISH promoter–driven luciferase activity in indicated 

T47D cell lines was performed as described in Materials and Methods. 
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Figure 2.2 

 

 

 

 

                  
 

 

 

 

 

Figure 2.2: Phosphorylation of PRLr on Tyr residues (pY, upper panel) or on Ser349 

(pS349, middle panel) in gamma2A cells expressing indicated Jak2 and treated as 

indicated with PRL (200 ng/ml for 30 min) was analyzed by immunoprecipitation of 

Flag-PRLr using anti-Flag antibody followed by immunoblotting using indicated 

phospho-specific antibodies. Ratios between pS349 and Flag signals corresponding 

to cell types and treatments are calculated as an average from four independent 

experiments (GS.E.M.) and depicted in the graph below. Asterisk denotes P<0.05 in 

the t-test relative to untreated Jak2
WT

 cells.  Experiment performed by Gayathri 

Swaminathan. 
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Figure 2.3 

 

 

 

                         
 

 

 

 

 

 

 

Figure 2.3: Flag-PRLr stringently immunopurified from denatured lysates of 

gamma2A cells expressing the indicated Jak2 and treated where indicated with PRL 

(200 ng/ml for 30 min) was analyzed by immunoblotting using either anti-ubiquitin 

(upper panel) or anti-Flag (lower panel) antibodies. Experiment performed by 

Gayathri Swaminathan. 
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Figure 2.4 

 

 
 

 

 

Figure 2.4: PRL signaling via Jak2 regulates initial internalization of PRLr.  Effect of 

PRL (open squares and open triangles) or PRLr antagonist (PRL
∆1-9,G129R

, closed and 

open triangles) on the initial rate of internalization of amino-terminally HA-tagged 

PRLr expressed in 293T cells measured by a fluorescent assay as described in 

Materials and Methods. 
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Figure 2.5 

 

 

 

 

 

 
 

 

 

Figure 2.5: Effect of Jak inhibitor AG490 (50 mM, diamonds) or Src inhibitor PP1 

(10 mM, squares) on the initial rate of internalization of PRLr in 293T cells in the 

presence (closed symbols) or absence (open symbols) of PRL (50 ng/ml) measured 

by a fluorescent assay. Inhibitors were added to cells 40 min before the 

internalization start. Controls are represented by treatment of cells with vehicle 

(DMSO, closed or open circles). 
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Figure 2.6 

 

 
 

 

                                                  
 

 

Figure 2.6: Effect of transient expression of Jak2
WT

 (circles) or Jak2
KD

 (squares) on 

the initial rate of internalization of PRLr in γ2A cells in the presence (closed 

symbols) or absence (open symbols) of PRL (50 ng/ml) measured by a fluorescent 

assay. Controls are represented by internalization of PRLr in cells that did not 

receive any Jak2 (closed or open diamonds circles). Bottom panel depicts 

immunoblotting analysis of Jak2 expression in these cells. 
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Chapter 3 

Endocytosis of PRLr is dependent on  

K63-linked polyubiquitination of the receptor 

3.1 Abstract 

PRLr has been shown to be degraded in an ubiquitination-dependent manner 

whereby phosphorylation of the phosphodegron motif (DS
349

GRGS) on Ser 349 after 

ligand stimulation results in recruitment of the SCF
β-TrCP

 E3 ligase complex (Li Y et 

al., 2004).  This E3 ligase complex ubiquitinates PRLr at target lysine residues that 

have yet to be characterized and results in degradation of the receptor by the 

lysosome (Li Y et al., 2004).  Both PRL treatment and active Jak2 both work to 

promote receptor internalization and subsequent degradation.  They also promote 

receptor ubiquitination.  This leads us to believe that there is a connection between 

PRLr ubiquitination and the regulation of PRLr internalization.  To characterize 

PRLr endocytosis, we sought to determine whether it was a caveolae- or clathrin- 

dependent process and whether ubiquitination conveyed specificity to the 

internalization of the receptor as has been shown for other cell surface receptors.  In 

our studies to investigate these matters in Chapter 3, we determined that PRLr is 

internalized in a clathrin-dependent manner that requires phosphorylation of the 

phosphodegron motif (Model 2), intact β-TrCP (Model 2), and K63-linked receptor 

polyubiquitination (Model 2) for the optimal endocytosis of the PRLr. 
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3.2 Introduction 

Cells react to diverse stimuli by expressing specific receptors that recognize these 

stimuli and initiate specific signaling pathways that enable a cell to change with the 

environment. Downregulation of these signaling receptors represents the most direct 

method for limiting the magnitude and duration of downstream signal transduction.  

For cell surface transmembrane receptors, ligand-stimulated endocytosis is a major 

mechanism by which the ability of a cell to react to a ligand is restricted.  

Furthermore, basal internalization independent of the ligand determines how 

responsive a naive cell would be to ligand stimulation.  Mechanisms regulating the 

internalization of signaling receptors involve a dynamic exchange within the plasma 

membrane, which can result in bulk endocytosis and a cargo-specific clathrin-

dependent endocytosis.   

Endocytosis is the process by which molecules at the cell surface are trafficked 

into vesicular compartments within the cell.  Once a molecule is endocytosed, it is 

trafficked to the early endosome and subsequently sorted.  This sorting process can 

result in the endocytosed molecule to be recycled back to the cell surface or to 

progress through the endosome pathway and can ultimately be degraded by the 

lysosome.  The vesicles of the endosome decrease in pH with vesicles of the early 

endosome being basic compared to the acidic environment of the lysosome. 

Degradative enzymes within the lysosome are activated upon this low pH and can 

work to degrade the internalized molecule/receptor.  Alternatively, internalized 

receptors can be recycled back to the cell surface.  Internalized receptors that get 
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recycled back to the cell surface first enter the early endosome and then bud off in a 

recycling endosome which fuses with the plasma membrane.  In the case of receptor-

mediated endocytosis, recycling can restore cell responsiveness to ligand and restore 

the signaling downstream of the receptor.   

There are three basic mechanisms by which cargo is endocytosed: clathrin-

mediated endocytosis, caveolae-mediated endocytosis, and dynamin- and clathrin- 

independent endocytosis (Dautry-Varsat A, 2001).  Clathrin-mediated endocytosis 

requires clathrin-coated vesicles to internalize its cargo.  Caveolae-mediated 

endocytosis involves small membrane invaginations that contain cholesterol, 

sphingolipids, and caveolin and is a method of receptor-mediated endocytosis in 

certain cell types.  The dynamin- and clathrin- independent mode of endocytosis has 

yet to be clearly characterized (Dautry-Varsat A, 2001).     

Ligand-induced internalization of cell surface receptors can occur through both 

clathrin-dependent or -independent pathways. In the clathrin-dependent pathway, 

receptors enter clathrin-coated vesicles, which are invaginations of the plasma 

membrane that concentrate endocytosed receptors. This process involves the 

interaction of the assembly polypeptide 2 (AP-2) clathrin adaptor complexes with 

specific endocytic signals located within the cytoplasmic domain of the receptors 

(Bonifacino JS and Traub LM, 2003).  AP-2 complexes, involved in the assembly of 

clathrin triskelions at the plasma membrane, are composed of four components, 

including two adaptin subunits (α and β2) and two smaller subunits (µ2 and σ2).  

Each of these subunits has unique functions (Owen DJ et al., 2004)). Specific 
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endocytic motifs are essential for receptor clustering on the membrane and clathrin-

dependent internalization of receptors.  For example, both tyrosine- and leucine-

based motifs can be recognized by the AP-2 complex via interaction with the µ2 

subunit and with the β2 or α/σ2 hemicomplexes, respectively (Bonifacino JS and 

Traub LM, 2003; Chaudhuri R et al., 2007; Doray B et al., 2007).   

In the case of many cell surface receptors, ligand-induced ubiquitination of 

the receptor promotes its interaction with clathrin and stimulates receptor 

endocytosis. Furthermore, ubiquitination plays an important role in post-

internalization sorting of cargo receptors to the late endosomes and in subsequent 

lysosomal degradation (Höller D and Dikic I, 2004; Dikic I, 2003; Haglund K et al., 

2003b). 

PRLr is expressed in the majority of breast cancers (Ormandy CJ et al., 

1997).  Previous work from our lab has shown that the interaction between PRLr and 

β-TrCP, an F-box protein in the SCF
β-TrCP

 E3 ligase complex that recognizes PRLr, 

is defective in human breast cancer cells compared to normal mammary epithelial 

cells (Li Y et al., 2006).  This implies that aberrant PRL signaling plays an important 

role in carcinogenesis within the breast. 

 

3.3 Materials and Methods 

Cell lines, constructs, and gene delivery 

Human embryo kidney 293T cells and their derivatives were maintained and 

transfected as described elsewhere (Li et al. 2004, Deng et al., 2007). Plasmid for 
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expression of flag-tagged (Li et al. 2004) PRLr was previously described.  Plasmids 

for expression of hemagglutinin (HA)-tagged PRLr have been previously described 

(Swaminathan G et al., 2008b). The HA-tagged ubiquitin expression constructs were 

kindly provided by Yosef Yarden (Weizmann Institute, Israel).  The knockdown of 

clathrin heavy chain was performed using a short hairpin obtained from Sigma 

(MISSION short hairpin RNA [shRNA] plasmid DNA; catalog no. 

SHDNACTRCN0000007982).  The short hairpin constructs directed against β-TrCP 

(Li Y et al., 2004; Tang W et al., 2005) and the small interfering RNA against AP-2 

(Barriere H et al., 2006) were previously characterized elsewhere.  The knockdown 

of clathrin heavy chain was performed using a short hairpin obtained from Sigma 

(MISSION short hairpin RNA [shRNA] plasmid DNA; catalog no. 

SHDNACTRCN0000007982).  The short hairpin constructs directed against β-TrCP 

(Li Y et al., 2004; Tang W et al., 2005) and the small interfering RNA against AP-2 

(Barriere H et al., 2006) were previously characterized elsewhere.   

Reagents, antibodies, and immunotechniques 

Antibodies against FLAG tag (M2, Sigma), HA tag (12CA5, Roche), beta-

actin (Sigma), and PRLr (Zymed, San Francisco, CA, USA and Santa Cruz, Santa 

Cruz, CA, USA) were purchased. Human PRL was purchased from the National 

Hormone and Peptide program (AF Parlow). Immunoprecipitation and 

immunoblotting were performed as described previously (Li et al., 2004).  Monensin 

was purchased from Sigma.  Transfections were performed with Lipofectamine Plus 
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or Lipofectamine 2000 (Invitrogen Corporation, Carlsbad, CA) or FuGENE 6 

(Roche) and analyzed after 48 h according to the manufacturer’s recommendations.  

Fluorescence-based internalization assay 

This assay measures the loss of cell-surface immunoreactivity of epitope 

tagged or endogenous receptors using an ELISA assay as described previously 

(Barriere et al., 2006) with the following modifications. Briefly, 293T or γ2A cells 

transfected with HA-PRLr (or no receptor construct if studying endogenous PRLr) in 

addition to other constructs as indicated were serum starved and chilled on ice. 

Internalization was initiated by incubation of cells with serum-free DMEM for 

indicated time periods at 37°C and terminated by placing the plate on ice. Levels of 

cell surface HA-PRLr or endogenous PRLr were analyzed by ELISA using anti-HA 

or anti-PRLr (Zymed, San Francisco, CA) primary antibodies respectively and 

horseradish peroxidase-conjugated goat anti-mouse secondary antibody (Molecular 

Probes, Eugene, OR, USA) followed by incubation with Amplex Red Ultra Reagent 

(Molecular Probes). Resulting fluorescence was measured (530 nm for excitation and 

590 nm for emission) and expressed after subtracting the value obtained with mock 

transfected (endogenous receptor experiments used cells with a non-relevant control 

primary antibody) cells as percentage of fluorescence registered prior to 

internalization.  Where indicated, pretreatment with monensin (100 µM in ethanol 

for 30 min prior to initiation of internalization) was used to prevent receptor 

recycling as described elsewhere for EGF receptor (Wang Y et al., 2002).  In these 

cases, control cells received equal volumes of vehicle (ethanol). 
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3.4 Results 

Various factors regulate the internalization of cytokine receptors, including 

receptor ubiquitination.  Ubiquitinated receptors often internalize by interaction with 

proteins of the endocytic machinery that contain ubiquitin interacting domains.  Such 

receptors (among them IFNAR1 [Kumar et al., 2007]) often are endocytosed via a 

clathrin-dependent pathway.  We wanted to investigate the process of PRLr 

internalization and whether this is clathrin-dependent.  To identify if PRLr is 

internalized via the clathrin-dependent pathway, we used a shRNA-mediated 

knockdown approach of clathrin to see how this would affect PRLr internalization.  

By knocking down clathrin heavy chain, we can impair clathrin-mediated 

internalization and observe whether the loss of the clathrin heavy chain has an effect 

upon PRLr internalization.  If internalization of PRLr is impaired or decreased, then 

we can understand that clathrin plays a key role in the endocytosis of PRLr.  To this 

end, we used our high throughput fluorescence based internalization assay using a 

tagged exogenous PRLr because it provides an accurate and precise way to look at 

the disappearance of the PRLr from the cell surface.  Use of shRNA that efficiently 

knocked down the expression of clathrin heavy chain noticeably impaired the 

internalization of exogenous PRLr compared to the internalization of PRLr in which 

clathrin was intact (Figure 3.2).  This result inferred that PRLr endocytosis is a 

clathrin-dependent process since efficient PRLr internalization could only be 

achieved in the presence of intact clathrin heavy chain protein.   
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However, this result was achieved using exogenous receptor.  Since 

expression of an exogenous receptor can increase the load on the endocytic 

machinery, the internalization mechanism for PRLr may become altered in order to 

quickly deal with this now abundant protein.  Thus, results obtained looking at the 

internalization kinetics of exogenous PRLr may not replicate that of the endogenous 

protein in normal settings.  We sought to determine whether the internalization of the 

endogenous PRLr was a clathrin-dependent process and whether internalization 

studies using the exogenous receptor could recapitulate those performed using the 

endogenous receptor.  To this end, we decided to use the fluorescence-based 

endocytosis assay to investigate the internalization kinetics of endogenous PRLr.  In 

order to investigate whether the internalization of endogenous PRLr was a clathrin-

dependent process, we decided to use a shRNA-mediated knockdown approach for 

the knockdown of clathrin heavy chain and observe whether internalization kinetics 

became altered.  If the internalization kinetics of endogenous PRLr is deficient when 

clathrin heavy chain is knocked down, this would indicate that the endocytosis of 

PRLr is largely a clathrin-dependent process.  Our studies indicate that the 

endocytosis of endogenous PRLr, like that of exogenous PRLr, is a clathrin-mediated 

process (Figure 3.1).  This suggests that the fluorescence-based internalization assay 

can produce similar results using both exogenous receptor (which may be used for 

more complicated studies that require genetic manipulation) and for the endogenous 

receptor (which is more indicative of what occurs within the cell) in the case of 

clathrin heavy chain knockdown. These results taken together show that PRLr 
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internalization is clathrin-dependent and confirm our previous observations that the 

endocytosis of recombinant HA-tagged PRLr faithfully recapitulates the processes 

involved in the regulation of the endogenous receptor by use of this internalization 

assay (Swaminathan G et al., 2008b).   

Previous work from our lab has shown that the SCF
β-TrCP

 E3 ligase complex 

is needed for the effective ubiquitination and degradation of the PRLr (Li Y et al., 

2004).  Along these lines, we wanted to establish whether SCF
β-TrCP

 plays a role in 

the endocytosis of PRLr.  To this end, we decided to use the fluorescence-based 

internalization assay using exogenous PRLr to establish endocytic rates in the 

presence or absence of shRNA targeted for the knockdown of β-TrCP.  By using 

shRNA to knockdown β-TrCP, we can determine whether the endocytic rates of 

PRLr are affected by β-TrCP.  We decided to express HA-tagged PRLr in our model 

293T cell system.  These studies established that the rate of internalization of PRLr is 

highly deficient when β-TrCP is knocked down compared to PRLr in the presence of 

intact β-TrCP (Figure 3.4).  This suggests that β-TrCP is necessary for efficient PRLr 

endocytosis. 

To confirm the role of β-TrCP in the internalization of PRLr, we wanted to 

investigate the importance of the E3 ligase complex for the endocytosis of 

endogenous PRLr to see whether this would recapitulate the results obtained using 

exogenous PRLr.  To this end, we performed the fluorescence-based internalization 

assay using 293T cells and studied the disappearance of endogenous PRLr from the 

cell surface either in the presence or absence of shRNA directed against β-TrCP.  
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These studies showed that the internalization of endogenous PRLr is dependent upon 

β-TrCP levels as knockdown of β-TrCP resulted in a deficient endocytic rate (Figure 

3.3).  This result indicates that β-TrCP is needed for the efficient endocytosis of 

endogenous PRLr.  Taken together, these results show that PRLr is internalized in a 

manner dependent on the SCF β-TrCP E3 ligase complex.   

Since β-TrCP is the major E3 ubiquitin ligase for PRLr, these data (Figure 

3.3; Figure 3.4) suggest that the ubiquitination of PRLr is required for the efficient 

internalization of the receptor.  However, knockdown of β-TrCP could affect PRLr 

internalization indirectly via the numerous other known β-TrCP targets (Fuchs SY et 

al., 2004; Yamaski L and Pagano M, 2004).  To determine the role of PRLr 

ubiquitination in the internalization of PRLr in a more direct manner, we decided to 

compare the endocytic rates of wild type PRLr and of the ubiquitination-deficient 

PRLr
S349A

 mutant, which does not efficiently recruit β-TrCP (Li Y et al., 2004).  To 

this end, we expressed HA-tagged PRLr
WT

 and HA-tagged PRLr
S349A

 in 293T cells 

and used the fluorescence-based internalization assay to determine the endocytic rate 

of these receptors.  Interestingly, the PRLr
S349A

 mutant exhibited slower kinetics of 

endocytosis in 293T cells than PRLr
WT

 (Figure 3.5).  The facts that the PRLr
S349A

 

mutant is not effectively ubiquitinated and exhibits a deficient internalization rate 

compared to the wild type receptor are suggestive of PRLr ubiquitination playing a 

crucial role in promoting PRLr endocytosis.  

Despite our data signifying the importance of PRLr ubiquitination in 

promoting the internalization of PRLr, these results could be explained by 
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differential rates of receptor recycling between the wild type PRLr and the S349A 

mutant.  Our results (Figure 3.5) could be explained by the wild type and S349A 

mutant of PRLr both having similar endocytic rates but the S349A mutant having a 

high rate of internalized receptor that recycles back to the cell surface.  In this case, 

despite the wild type and S349A mutant receptors having similar endocytic rates, the 

high number of mutant receptors that have recycled back to the cell surface will 

make it seem as though the S349A has a slower rate of internalization than the wild 

type receptor.  In fact, the data obtained would be a result of the S349A mutant’s 

ability to internalize and recycle at a quick rate and would complicate our 

interpretation of results looking at the role of ubiquitination in PRLr endocytosis.  To 

understand the recycling rates of PRLr and determine whether our results obtained 

are an artifact of our system, we decided to investigate the endocytic rate of PRLr in 

the presence or absence of monensin, a well-established inhibitor of receptor 

recycling that has been used to differentiate between internalization and recycling 

phenotypes of various receptors, including EGF receptor (Wang Y et al., 2002).  To 

this end, we expressed HA-tagged PRLr
WT

 and HA-tagged PRLr
S349A

 in 293T cells 

in the presence or absence of monensin and determined the endocytic rate of both 

receptors under both conditions using our fluorescence-based internalization assay.  

Results from these studies showed that pretreatment of the 293T cells with monensin 

neither altered the internalization rates of PRLr
WT

 nor that of PRLr
S349A

 (Figure 3.6). 

This indicates that PRLr cell surface recycling does not occur at an appreciable level 

during the initial time of PRLr internalization which is studied.  Since monensin 
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pretreatment did not rescue the endocytic phenotype of PRLr
S349A

 (Figure 3.6), this 

result confirms that PRLr internalization is dependent on the ubiquitination of PRLr 

and that interpretation of previous results (Figure 3.5) is not complicated by 

internalized PRLr that is being recycled back to the cell surface.  These data taken 

together suggest that the ubiquitination of PRLr is required for its efficient 

endocytosis. 

Clathrin-coated pits associate with internalized receptors through adaptor 

protein complexes (e.g., AP-2) which interact with the internalized receptors and 

membrane to form an invagination (Bonifacino JS and Traub LM, 2003). Previous 

findings from our lab concerning the interferon alpha receptor subunit 1 (IFNAR1) 

revealed that the ubiquitination of IFNAR1 stimulates its endocytosis by promoting 

the recruitment of the AP-2 components.  Since we established that PRLr is 

internalized by a clathrin-dependent process, we wanted to investigate the 

importance of the AP-2 adaptor protein complex in regulating the endocytosis of 

PRLr.  In order to determine the importance of the AP-2 complex for the 

internalization of PRLr, we decided to investigate the interaction between the alpha 

subunit of the AP-2 adaptor complex and PRLr.  To this end, we expressed FLAG-

tagged PRLr
WT

 or FLAG-tagged PRLr
S349A

 in 293T cells alone or in conjunction 

with a control shRNA construct or a shRNA construct directed for the knockdown of 

β-TrCP.  Immunoprecipitation assays using the whole cell extracts from these cells 

were performed using a FLAG-specific antibody.  These immunoprecipitates were 

assayed by SDS-PAGE and immunoblots were incubated with anti-FLAG and anti-
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AP-2 antibodies to determine the interaction between PRLr and the alpha subunit of 

AP-2 under various conditions.  These results showed that the wild type PRLr bound 

to the alpha subunit of AP-2 (Figure 3.7).  However, this interaction was lost when 

the Ser 349 of PRLr was mutated to alanine (PRLr
S349A

) or β-TrCP was knocked 

down using a specific shRNA construct (Figure 3.7).  These findings show that 

effective PRLr internalization, as mediated in a clathrin-dependent manner, requires 

receptor ubiquitination as evidenced by the need for an intact phosphodegron motif 

(DS
349

GRGS) and active E3 ligase complex (SCF
β-TrCP

), both of which are needed 

for effective PRLr ubiquitination. 

These results taken together establish that the ubiquitination of PRLr is 

important for the internalization of the receptor.  However, the nature of PRLr 

ubiquitination and whether the ubiquitin linkage specificity matters for PRLr 

internalization have yet to be determined.  To understand the linkage specificity of 

PRLr ubiquitination and subsequent receptor internalization, we sought to determine 

how the specific linkages of PRLr ubiquitination affect the interaction of the AP-2 

adaptor protein complex with PRLr.  To this end, we expressed FLAG-tagged PRLr 

in 293T cells along with various ubiquitin constructs.  These ubiquitin constructs 

were expressed to high levels so as to overtake the endogenous ubiquitin system 

resulting in ubiquitination of substrates utilizing the exogenous ubiquitin that has 

been expressed.  Lysates from these cells were immunoprecipitated using an anti-

FLAG antibody, assessed by SDS-PAGE, and immunoblots were blotted with anti-

FLAG and anti-AP-2 alpha chain antibodies.  If the interaction between the PRLr 
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and AP-2 was deficient in the presence of a given ubiquitin construct, then we can 

determine that the type of ubiquitination linkage which is absent in these cells is 

necessary in regulating the efficient internalization of PRLr.  Our data showed that 

the specificity of ubiquitination is important for the PRLr-alpha adaptin interaction 

as optimal PRLr-AP-2 interaction was seen in the presence of K63 

polyubiquitination (Figure 3.8).  Samples expressing the Ub K0 null mutant and Ub 

R48K reverse knock-in mutant exhibited a weak PRLr-AP-2 interaction that was 

significantly restored to that in the presence of Ub WT when the Ub R63K mutant 

was expressed.  Additionally, mutation of Lys 63 of ubiquitin (Ub K63R) greatly 

decreased the PRLr-AP-2 interaction compared to sample expressing Ub WT.  While 

mutation of Lys 48 of ubiquitin also decreased PRLr-AP-2 interaction, this decrease 

was not to the extent of the Ub K63R sample.  Furthermore, expression of Ub R48K 

reverse knock-in mutant did not increase the PRLr-AP-2 interaction compared to the 

Ub K0 lysine null mutant.  These data taken together suggest that while K48 linkages 

are involved in PRLr ubiquitination and interaction with AP-2 adaptor protein 

complex, they are not crucial for PRLr-AP-2 interaction like K63 linkages.  These 

results show that K63-linked polyubiquitination is crucial for the effective 

interaction of PRLr and AP-2 adaptor protein complex and implies that K63-linked 

polyubiquitination of PRLr is necessary for the effective internalization of PRLr.     

The AP-2 adaptor protein complex has been shown to interact with 

internalized receptors and clathrin proteins to mediate clathrin-dependent 

endocytosis of cell surface receptors.  Our data has shown that PRLr does interact 
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with AP-2 in an ubiquitination-dependent manner, for the purposes of receptor 

endocytosis.  However, we have not established that AP-2 adaptor protein complex 

is necessary for the internalization of PRLr.  We next sought to determine if PRLr 

endocytosis is dependent upon AP-2.  To this end, we expressed a control siRNA or 

siRNA directed against AP-2 alpha chain in 293T cells along with untransfected 

cells and assessed the internalization kinetics of endogenous PRLr using the 

fluorescence-based endocytosis assay.  If siRNA-mediated knockdown of AP-2 

resulted in a significant inhibition of PRLr internalization, then we can conclude that 

PRLr endocytosis is highly AP-2-dependent.  Our results from these studies 

indicated that knockdown of AP-2 significantly decreased the rate of PRLr 

internalization while expression of the control siRNA showed nearly identical 

internalization kinetics to those seen in untransfected cells (Figure 3.9).  While PRLr 

in the presence of siRNA directed against AP-2 alpha chain did show low levels of 

receptor internalization, this low rate of internalization is similar to that seen in the 

absence of the ligand (Figure 2.4).  These data taken together indicate that PRLr 

internalization is largely an AP-2-dependent process.  These results are consistent 

with the idea that ubiquitination may stimulate PRLr endocytosis by promoting the 

interaction of PRLr with AP-2, which is essential for mediating the efficient 

internalization of PRLr in a clathrin-dependent manner. 

Our data has shown that AP-2 and clathrin are required for mediating PRLr 

internalization.  We have also shown that the interaction of PRLr and the AP-2 

adaptor protein complex is dependent on K63-linked polyubiquitination.  However, 
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we have yet to confirm the nature of ubiquitination of PRLr that is necessary for the 

endocytosis of PRLr.  To determine the nature of PRLr ubiquitination that is required 

for the effective internalization of PRLr, we decided to investigate whether 

polyubiquitination was needed for PRLr endocytosis or whether monoubiquitination 

alone was sufficient.  To this end, we expressed HA-tagged PRLr in conjunction 

with wild type ubiquitin (WT) or lysine null ubiquitin mutant (K0), which can only 

propagate monoubiquitination on target substrates, in 293T cells and assessed the 

internalization kinetics of exogenous PRLr using the fluorescence-based 

internalization assay.  These studies showed that expression of the Ub K0 mutant 

(which lacks internal branching lysines and can only be used to monoubiquitinate a 

substrate) noticeably delayed the initial internalization of PRLr compared to wild 

type ubiquitin (Figure 3.10).  These data indicate that polyubiquitination is necessary 

for efficient PRLr endocytosis and that monoubiquitination alone is not sufficient to 

drive this process.   

While we have established that polyubiquitination is needed for efficient 

PRLr endocytosis, we do not know the nature of this polyubiquitination, the nature 

of its internal branching linkages, and whether linkage specificity is important for the 

internalization of PRLr.  To investigate this, we decided to observe the 

internalization kinetics of PRLr in the presence of single point Lysine mutants of 

ubiquitin compared to the wild type and lysine null ubiquitin proteins.  To this end, 

we expressed HA-tagged PRLr in the presence of Ub WT, Ub K48R, Ub K63R, or 

Ub K0 in 293T cells and assessed the internalization kinetics of PRLr using the 
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fluorescence-based internalization assay.  These studies showed that PRLr 

internalization in the presence of Ub K48R was similar to that in the presence of wild 

type ubiquitin while expression of Ub K63R resulted in similar endocytic rates of 

PRLr as those in the presence of Ub K0 (Figure 3.11).  These results indicate that the 

loss of K48-linked polyubiquitination did not affect PRLr internalization while loss 

of K63-linked polyubiquitination resulted in an attenuated rate of PRLr endocytosis, 

suggesting that K63-linked polyubiquitination and not K48-linked polyubiquitination 

is necessary for efficient PRLr endocytosis.     

We wanted to confirm the role of K48-linked and K63-linked 

polyubiquitination and decided to investigate the endocytic rates of PRLr in the 

presence of the reverse knock-in mutants of ubiquitin.  To this end, we expressed 

HA-tagged PRLr in conjunction with Ub WT, Ub R48K (K0 mutant with residue 48 

reverted back to lysine), Ub R63K (K0 mutant with residue 63 reverted back to 

lysine), or Ub K0 lysine null mutant in 293T cells and observed the internalization 

rates of PRLr by utilizing the fluorescence-based internalization assay.  These 

studies showed that while expression of the Ub R48K reverse knock-in slightly 

increased PRLr endocytic rates above those seen in the presence of Ub K0, re-

expression of Lys 63 in Ub K0 (Ub R63K) restored the internalization rate of PRLr 

to that seen in the presence of wild type ubiquitin (Figure 3.12).  This indicates that 

K63-linked polyubiquitination alone is sufficient to drive PRLr endocytosis.  Taken 

together, these results show that expression of ubiquitin mutants that lack the internal 

Lys 63 (Figure 3.11, Ub
K63R

; Figure 3.12, Ub
R48K

) robustly attenuated the endocytic 
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rate of PRLr, indicating that K63-linked (but not K48-linked) polyubiquitination is 

required for the efficient internalization of PRLr. 

 

3.5 Discussion 

In Chapter 3, we showed that PRLr internalization is a clathrin-dependent 

process which utilizes and requires the AP-2 adaptor protein complex.  The 

interaction of PRLr and the AP-2 complex is dependent upon Ser 349 

phosphorylation and recruitment of β-TrCP, suggesting that the ubiquitination of 

PRLr is necessary for receptor-AP-2 interaction.  Our results showed that K63-linked 

polyubiquitination specifically was needed for optimal PRLr-AP-2 interaction.  The 

internalization of PRLr was shown to be dependent upon Ser 349 phosphorylation, 

subsequent recruitment of β-TrCP, and the ubiquitination of PRLr.  The decreased 

internalization kinetics of non-ubiquitinated PRLr are not due to enhanced recycling 

kinetics but are likely due to a lack of interaction between ubiquitinated receptor and 

proteins of the endocytic machinery which can recognize the ubiquitinated receptor 

and target it for internalization.  Furthermore, we showed that K63-linked 

polyubiquitination is needed for the efficient internalization of PRLr. 

Conclusions of Chapter 3: 

- PRLr internalization is a clathrin-dependent process 

- PRLr internalization is dependent on the AP-2 adaptor protein complex 

- Interaction of PRLr and AP-2 is dependent on Ser 349 phosphorylation, 

recruitment of active β-TrCP, and K63-linked polyubiquitination of PRLr 
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- β-TrCP is required for efficient PRLr endocytosis 

- Ser 349 phosphorylation and subsequent ubiquitination of PRLr is 

necessary for efficient PRLr internalization 

- Recycling of the receptor back to the cell surface does not occur during 

the initial stage of PRLr endocytosis 

- PRLr is internalized in a K63-linked polyubiquitination dependent 

manner 

 

We have established a developing model for PRLr downregulation whereby PRL 

binds to the receptor, the receptor undergoes a conformational change, and the 

constitutively bound Jak2 proteins become activated and phosphorylate the 

intracellular tyrosines of PRLr.  PRLr is subsequently phosphorylated on its 

phosphodegron motif at Ser 349 by a yet to be identified kinase in a Jak2-dependent 

manner.  This phosphorylation results in the recruitment of β-TrCP, which 

ubiquitinates PRLr.  While efficient PRLr internalization requires K63-linked 

polyubiquitination, other substrates of the SCF
β-TrCP

 E3 ligase complex including 

IFNAR1 (internalized in a K48- and K63-polyubiquitination dependent manner), β-

catenin (K48-polyubiquitinated), and IκB (K48-polyubiquitinated) are differentially 

ubiquitinated.  How can substrates of the same E3 ligase complex be ubiquitinated 

and degraded in a manner depending on differing ubiquitin linkages?  While β-TrCP 

is responsible for recognizing and binding the substrates, it is the associated E2 

ubiquitin-conjugating enzyme which confers the specificity of ubiquitination.  It may 
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be that the K63-linked ubiquitin specific E2 Ubc13 may preferentially form a 

complex with SCF
β-TrCP

 in the case of PRLr as opposed to other E2 enzymes which 

may preferentially form polyubiquitin chains of other linkages.  In the case of β-

catenin and IκB, which are K48-linked polyubiquitinated, it may be that the K48-

linkage specific E2 Cdc34 may form in complex with SCF
β-TrCP

 while SCF
β-TrCP

 can 

form complexes with Ubc13 or Cdc34 on IFNAR1.  These E2-E3 complexes may 

form differentially on certain substrates based on steric hindrance.  The orientation of 

the SCF
β-TrCP

 complex may be such that the space between the phosphodegron motif 

(recognized and bound by β-TrCP) and the target lysines of the substrate may 

sterically prefer one E2 enzyme over another.  This theory could explain how these 

substrates of SCF
β-TrCP

 could be differentially ubiquitinated despite sharing the same 

E3 ligase.  Under this idea, the formation of the E3 ligase complex with Skip1, 

Cullin1, β-TrCP, the RING finger protein, the substrate, and the E2 enzyme would 

be a very dynamic complex that is constantly forming and reforming at the target 

substrate. 

Alternatively, the specificity of ubiquitination required for the degradation of 

certain β-TrCP substrates could be conveyed by the interaction of proteins of the 

endocytic machinery which have ubiquitin-binding domains (such as UBDs or 

UIMs) which may bind the ubiquitin chains of certain substrates.  Due to the 

conformation of proteins subsequent to ubiquitination, certain proteins with 

ubiquitin-binding domains may be able to complex with certain substrates depending 

on their ubiquitination status.  While K48-linked polyubiquitin chains tend to have a 
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zig-zag structure, K63-linked polyubiquitin chains tend to have a more linear 

structure.  The shape of these chains may regulate which proteins of the endocytic 

machinery (containing ubiquitin-binding domains) can interact with a given 

ubiquitinated substrate. Such proteins of the endocytic machinery may also convey 

specificity for whether an internalized receptor, such as PRLr, are efficiently sorted 

for lysosomal degradation or recycled back to the cell surface.  Studies investigating 

and testing these possibilities of how polyubiquitin chains of a certain linkage type 

are added could have great implications for the ubiquitination field as a whole.   

Since our studies on PRLr internalization indicated that optimal endocytosis 

occurred in the presence of K63-linked polyubiquitination, it may be that ubiquitin 

chains of different linkages can be differentially recognized by the endocytic 

machinery.  This would allow for certain receptors to be targeted for a unique 

signaling role or for degradation by the lysosome or proteasome.  In the case of 

PRLr, effectively K63-polyubiquitinated PRLr that is internalized does not seem to 

signal (data not shown) within the endosome contrary to what has been shown for 

other proteins such as the nerve growth receptor TrkA (Geetha T et al., 2005).  How 

the cell can recognize differential ubiquitin linkages is unknown and remains a 

mystery.  However, the specific ubiquitination of PRLr that is necessary for receptor 

internalization indicates that there is a specified program for receptor downregulation 

and for controlling downstream signaling and keeping it in check. 

These studies are significant in that they show that the endocytosis of PRLr is 

primarily a clathrin-dependent process, contrary to the conclusions established by 
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Piazza TM et al. that PRLr internalization is caveolin-dependent (Piazza TM et al., 

2009).  The work done by Piazza TM et al. studied PRLr endocytosis by looking at 

the internalization of radiolabeled ligand.  Our work utilized the fluorescence-based 

internalization assay which directly studies the endocytosis of PRLr in an accurate 

and precise way.  While our studies establish that PRL-mediated internalization of 

PRLr is primarily a clathrin-dependent process, it is possible that an alternative yet 

minor caveolin-dependent (and likely Src-dependent) mechanism for PRLr 

endocytosis exists. 

This work also establishes that ubiquitination of the PRLr is necessary for the 

efficient endocytosis of the receptor.  A previous report by Lu JC et al., that used a 

Chinese hamster lung cell line ts20 (which contains a thermolabile ubiquitin-

activating enzyme E1) that stably expressed wild type human PRLr, concluded that 

PRLr internalization was independent of ubiquitination (Lu JC et al., 2005).  These 

stable lines were cultured at the permissive temperature (30
o
C; active E1 enzyme) or 

the non-permissive temperature (42
o
C; inactive E1 enzyme) and treated with 

radiolabeled and unlabeled bovine placental lactogen.  Based on the ratio of 

radiolabeled ligand that internalized, they concluded that the internalization of 

human PRLr is not dependent on ubiquitination.  However, it has been shown that 

receptor internalization can be very cell type-specific so the study of human PRLr 

internalization in Chinese hamster lung cells does not replicate what occurs in human 

cells.  Furthermore, the measurement of internalized radiolabeled ligand (which in 

this case is further complicated by the use of bovine placental lactogen instead of 
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human prolactin) is not an accurate way to measure the internalization of a given 

receptor. Radiolabeled ligand can internalize due to phagocytosis or non-specific 

interaction of the ligand with a cell surface protein different than the receptor of 

interest.  The disappearance of PRLr from the cell surface should be directly 

measured to get an accurate estimation of the amount of endocytosed PRLr.  In light 

of these caveats, the conclusion made by the authors stating that ubiquitination is not 

important for PRLr endocytosis must be discounted.  Our work is significant in that 

it shows that PRL-mediated endocytosis of PRLr is a process dependent on receptor 

polyubiquitination, specifically of the K63 linkage.  These studies favor the view in 

the field of PRLr downregulation that receptor ubiquitination plays a key and 

important role.  These studies establish for the first time that PRLr internalization is 

dependent on K63 polyubiquitination of the receptor.  This is in agreement with 

previous studies showing the importance of Ser 349 phosphorylation, β-TrCP 

interaction, and receptor ubiquitination in the degradation of PRLr. 

 One viable way to control tumorigenic growth within the breast which is 

promoted by elevated PRL signaling would be to promote the downregulation of 

PRLr.  It has been shown that primary breast cancer tissues and breast cancer cell 

lines exhibit elevated PRLr levels and a deficiency in Ser 349 phosphorylation of the 

PRLr (Li Y et al., 2006).  Other studies from our lab have shown that the cannibinoid 

anandamide can inhibit the growth of breast cancer cell lines by promoting Ser 349 

phosphorylation and subsequent PRLr degradation (Plotnikov A et al., 2009).  The 

use of anandamide-like molecules may prove to be a viable treatment for breast 
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cancers that exhibit aberrant PRL signaling as it would promote Ser 349 

phosphorylation without promoting active PRL signaling. 

 Having established that PRLr is internalized in a manner dependent on K63-

linked polyubiquitination and then subsequently degraded, the following question 

remains to be answered: what are the consequences of the deregulation of PRLr 

levels?  If this regulated program of PRLr internalization and downregulation does 

not occur, what effect do elevated PRLr levels have upon cell growth?  These 

questions are addressed in further detail in Chapter 4. 
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Model 2 

 

 

 

Model 2: Stimulation of PRLr with PRL leads to Jak2 activation, which promotes the 

phosphorylation of Ser 349 within the conserved phosphodegron motif of PRLr.  The 

β-TrCP E3 ligase is then recruited and ubiquitinates PRLr at target lysine residues.  

This ubiquitination (specifically K63-linked polyubiquitination) promotes the 

internalization and subsequent degradation of the PRLr. 
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Figure 3.1 

 

 

 

 
 

 

 

 

 

Figure 3.1: Efficiency of the clathrin-dependent internalization of PRLr is dependent 

on PRLr ubiquitination.  Internalization of endogenous PRLr in 293T cells that were 

left untransfected (Mock [squares]) or were transfected with shRNA against clathrin 

heavy chain (shCLA) or green fluorescent protein (shCON [diamonds]) analyzed by 

the fluorescence-based assay using anti-PRLr antibody as outlined in Materials and 

Methods. 
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Figure 3.2 

 

 

 

 

 
 

 

 

 

Figure 3.2: Internalization of HA-tagged PRLr
WT

 exogenously expressed in 293T 

cells that were left untransfected (Mock [squares]) or were transfected with shRNA 

against heavy-chain clathrin (shCLA) or green fluorescent protein (shCON 

[diamonds]) analyzed by the fluorescence-based assay using anti-HA antibody as 

outlined in Materials and Methods. 
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Figure 3.3 

 

 

 

 

 

 
 

 

 

 

Figure 3.3: Internalization of endogenous PRLr in 293T cells that were left 

untransfected (Mock [squares]) or transfected with shRNA against β-TrCP2 (shBTR) 

or green fluorescent protein (shCON [diamonds]) analyzed as outlined for Figure 

3.1. 
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Figure 3.4 

 

 

 

 

 
 

 

 

 

Figure 3.4: Internalization of HA-tagged PRLrWT exogenously expressed in 293T 

cells that were left untransfected (Mock [squares]) or transfected with shRNA 

against β-TrCP2 (shBTR) or green fluorescent protein (shCON [diamonds]) analyzed 

as outlined for Figure 3.2. 
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Figure 3.5 

 

 

 

 

 

 
 

 

 

 

Figure 3.5: Internalization of a WT or ubiquitination-deficient S349A mutant of HA-

tagged PRLr expressed in 293T cells was analyzed as described for Figure 3.2. 
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Figure 3.6 

 

 

 

                                  
 

 

Figure 3.6: Rates of internalization of WT or ubiquitination-deficient S349A mutant 

HA-tagged PRLr expressed in 293T cells pretreated with 100 µM monensin (-m) or 

vehicle (ethanol) (-e) were analyzed as described for Figure 3.2. 
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Figure 3.7 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3.7: Ubiquitination of PRLr promotes its interaction with components of AP-

2, which are required for PRLr internalization.  Interactions between Flag-tagged 

PRLr (WT or S349A mutant) and the endogenous alpha subunit of the AP-2 complex 

in 293T cells (transfected with the indicated plasmids and treated with PRL [50 

ng/ml for 5 min]) were analyzed by immunoprecipitation (IP) using M2 anti-Flag 

antibody followed by immunoblotting (IB) using the indicated antibodies. Material 

used for immunoprecipitation was normalized to yield comparable levels of PRLr in 

all lanes. Levels of the alpha subunit in whole-cell extracts (WCE) were also 

assessed. Experiment was performed by Christopher Carbone. 
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Figure 3.8 

 

 

 

 

 
 

 

 

 

Figure 3.8: Interaction of Flag-tagged PRLr with an endogenous alpha-adaptin 

complex in 293T cells expressing the indicated ubiquitin constructs was analyzed by 

immunoprecipitation (IP) using M2 anti-Flag antibody followed by immunoblotting 

(IB) using the indicated antibodies. Material used for immunoprecipitation was 

normalized to yield comparable levels of PRLr in all lanes. Levels of the alpha 

subunit in whole-cell extracts (WCE) were also assessed. The results obtained with a 

fraction of alpha-adaptin bound to PRLr (per mille) are depicted in the bottom panel, 

Vec, vector; IB, immunoblotting; WCE, whole-cell extract. 
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Figure 3.9 

 

 

 

 

 
 

 

 

 

 

Figure 3.9: Internalization of endogenous PRLr in 293T cells that were left 

untransfected (Mock [squares]) or were transfected with small interfering RNA 

against the α-adaptin subunit of AP-2 (siAP2) or luciferase (siCON [diamonds]) was 

analyzed by the fluorescence-based assay using anti-PRLr antibody as outlined for 

Figure 3.1. 
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Figure 3.10 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3.10: Internalization of HA-tagged PRLr co-expressed with either WT 

ubiquitin or K0 mutant in 293T cells was analyzed as described for Figure 3.2. 
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Figure 3.11 

 

 

 

 

 
 

 

 

 

 

Figure 3.11: Internalization of HA-PRLr co-expressed with the indicated direct 

ubiquitin mutants was measured as described for Figure 3.2. WT ubiquitin, squares; 

K48R, open triangles; K63R, closed circles; K0, open diamonds. 
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Figure 3.12 

 

 

 

 

 
 

 

 

 

Figure 3.12: Internalization of HA-PRLr co-expressed with the indicated reverse 

ubiquitin mutants was measured as described for Figure 3.2. WT ubiquitin, squares; 

R63K, open circles; R48K, closed triangles; K0, open diamonds. 
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Chapter 4 

Elevated PRLr levels promote cell growth 

4.1 Abstract 

Signaling by the polypeptide hormone prolactin (PRL) is mediated by its 

cognate receptor (PRLr). PRLr is commonly stabilized in human breast cancer due to 

decreased phosphorylation of residue Ser 349, which when phosphorylated recruits 

the β-TrCP E3 ubiquitin ligase and facilitates PRLr degradation.  Impaired PRLr 

turnover results in an augmented PRL signaling and PRL-induced transcription.  In 

Chapter 4, we show that human mammary epithelial cells harboring degradation-

resistant PRLr display accelerated proliferation and increased invasive growth. 

Conversely, a decrease in PRLr levels achieved by genetic means in human breast 

cancer cells dramatically reduced transformation and tumorigenic properties of these 

cells.  The consequences of the alteration of PRLr turnover for the homeostasis of 

mammary cells and development of breast cancers is evidenced by enhanced cell 

growth properties both in vitro and in vivo. 

 

4.2 Introduction 

Malignant transformation of cells and development of tumors result from 

several key events that include stimulation of cell proliferation and inhibition of cell 

death.  The pituitary hormone prolactin (PRL), which is also secreted by mammary 
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epithelia, plays a central role in mammary gland development and function. In 

addition, several lines of evidence strongly implicate the role of PRL in breast 

tumorigenesis (Clevenger CV et al., 2003).  First, PRL promotes growth of human 

breast cancer cells acting as a survival agent and as a mitogen (Das R and Vondehaar 

BK, 2007; Perks CM et al., 2004), and up to 95% of primary human breast cancers 

are positive for PRL and its receptor, PRLr (Reynolds C et al., 1997; Gill S et al., 

2001; Bhatavdekar JM et al., 2000). Second, transgenic mice locally expressing PRL 

within mammary epithelia develop tumors (Wennbo H et al., 1997; Rose-Hellekant 

TA, 2003), whereas genetic ablation of PRLr severely delays the development of 

SV40 large T antigen–induced breast carcinomas (Oakes SR et al., 2007). Third, 

mutant PRLrs that are characterized by high levels of constitutive signaling have 

been recently identified in human breast tumors (Canbay E et al., 2004; Bogorad RL 

et al., 2008). Finally, epidemiologic studies link elevated levels of circulating PRL 

with increased risk of breast cancer (Hankinson SE et al., 1999; Tworoger SS et al., 

2004) and its metastases (Mujagic Z and Mujagic H, 2004), as well as with 

decreased taxane therapeutic efficacy (Frontini L et al., 2004; Lissoni P et al., 2002; 

Lissoni P et al., 2001) that could be reversed by pharmacologic suppression of PRL 

levels (Lissoni P et al., 2002). 

Because a high proportion of human breast cancer cells secrete their own 

PRL, the autocrine effects of PRL may account for the limited success of inhibitors 

of pituitary PRL synthesis/release against human breast cancers (Clevenger CV et 

al., 2003). Antagonists of PRLr kill human breast cancer cells in vitro and abrogate 
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the tumorigenesis in the xenograft models, showing that persistent signaling induced 

by locally secreted PRL is essential for growth and survival of these cells (Goffin V 

et al., 2005; Fuh G, Wells JA., 1995).  However, PRL also induces proteolytic 

degradation of PRLr via receptor ubiquitination facilitated by the SCF
β-TrCP

 E3 

ubiquitin ligase that is recruited to the substrate in a manner that requires 

phosphorylation of Ser 349 within the phosphorylated degron (Li Y et al., 2004; 

Swaminathan G et al., 2008). Given that this ligand-induced PRLr down-regulation 

limits the extent of PRL signaling, it is not clear how PRL maintains the survival of 

breast cancer cells. Whereas levels of PRLr are decreased in the breast cancer 

intratumoral stromal compartment, the levels of PRLr in tumor cells are not 

decreased in comparison with benign mammary cells (Reynolds C et al., 1997; 

Clevenger CV et al., 1995), suggesting a possibility that down-regulation and 

degradation of PRLr in tumor cells might be impaired. Indeed, we have reported that 

phosphorylation of PRLr on Ser 349 within its phosphorylated degron is impaired in 

breast cancer cells and tissues that exhibit increased stability of PRLr and ensuing 

high levels of its expression (Li Y et al., 2006). 

In this Chapter, we sought to investigate the outcomes of PRLr stabilization 

in breast cancer. Our studies reveal that abrogation of PRLr phosphorylation on Ser 

349 in near-normal human mammary epithelial cells contributes to the development 

of a transformed phenotype.  These studies suggest that decreasing the levels of 

PRLr in human breast cancer cells is detrimental for their growth, invasion, and 

tumorigenicity. Collectively, these findings suggest that an altered degradation (and 
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resulting accumulation) of PRLr might play a role in human breast cancers and could 

be targeted for anticancer therapies. 

4.3 Materials and Methods 

Cell lines, DNA constructs, and chemicals.  

MCF10A∆p53 derivative cell line, in which p53 expression is knocked down 

(MCF10A) were a generous gift of Alan Eastman (Levesque AA et al., 2005). 

Generation of the MCF10A∆p53 cells stably expressing wild type or S349A mutant 

PRLr was previously described (Yamashita H et al., 2006). Human breast cancer 

MCF7 cells were a gift from Ze’ev Ronai (Burnham Institute, San Diego, CA).  

Human recombinant PRL was kindly provided for a fee by Dr. A.F. Parlow 

(National Hormone and Peptide Program, Bethesda, MD).  

Analysis of cell growth, invasion, and tumorigenesis.  

Growth in a two-dimensional culture was analyzed using the staining with 

trypan blue. The number of live cells in each well was counted. Results from three 

independent experiments are presented as average + SE. For the analysis of cell 

growth in a three-dimensional culture, cells were mixed with Matrigel Basement 

Membrane Matrix (BD Biosciences) and cultured in complete medium for indicated 

number of days.  Invasion assays were done in Boyden chambers supplied with 

polyethylene terephthalate filter inserts containing 0.8-um pores (BD Company). 

Filters were coated on ice with 50 AL of Matrigel Basement Membrane Matrix and 

incubated for 30 min (37 degrees C). MCF10A∆p53-derived or T47D-derived cells 

(5 X 10
4
) were plated in 300 µL of Matrigel (diluted in 0.1% bovine serum albumin–
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DMEM/F-12, 1:3) into the upper chamber. The lower chamber was filled with 700 

µL of DMEM/F-12 medium supplied with 10% fetal bovine serum. Non-invaded 

cells in the inserts were removed with cotton swabs after 48 h of incubation. Invaded 

cells on the underside were fixed with absolute methanol for 2 min, stained with 

H&E solution (Sigma), and photographed using either 5x or 10x objectives. 

Tumorigenesis assays were carried out in NCRNU-M (Taconic) or in NSG mouse 

model (NOD-SCID, IL2Rgnull; The Jackson Laboratory) female mice, which also 

obtained pellets of 17beta-estradiol and PRL (purchased from Innovative Research 

of America). Cells were implanted s.c. or into abdominal mammary glands, and the 

growth of tumors was measured by caliper at indicated days after cell injection. 

Signal quantification and statistical analysis. Digital images were processed with 

Adobe Photoshop 7.0 software. For some experiments, band intensities and 

percentage of surface covered by cell growth were quantified by densitometry 

(ImageJ software). The statistical differences were analyzed using two-tailed 

Student’s t test. 

 

4.4 Results 

In Chapter 4, we sought to determine the effect of stabilized PRLr on cell 

growth and whether elevated levels of PRLr can contribute to the transformation of 

human mammary epithelial cells. We first wanted to investigate elevated levels of 

PRLr had any consequence for cell growth.  To this end, we studied the growth 

kinetics of MCF10A∆p53 mammary epithelial cell lines that stably expressed wild 
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type PRLr, the proteolytically stable S349A mutant of PRLr, or a puro-resistance 

vector as a control.  In these studies, we observed that MCF10A∆p53 derivatives that 

express stabilized PRLr (S349A) grow faster in tissue culture than those expressing 

wild type PRLr, which showed greater growth kinetics than cells expressing the 

control vector (Figure 4.1). These results suggest that elevated levels of PRLr 

promote cell growth in a 2-D culture system. 

 We next wanted to investigate whether elevated levels of PRLr would 

promote 3-dimensional growth, suggestive of the ability of these cells to grow in 3 

dimensions like a tumor would grow.  To this end, the MCF10A∆p53 cell lines 

previously used (Figure 4.1) were grown in three-dimensional cultures in Matrigel 

and pictures of the cell structures that grew were used to study the morphology.  

Through these studies, the analysis of cell growth in three-dimensional cultures in 

Matrigel revealed significant differences in both the rate of growth and morphology 

between all examined cell types.  Whereas vector-transduced puro cells grew slowly 

and formed well-defined spherical aggregates, WT cells formed numerous smaller 

spheroids. Remarkably, cells expressing the S349A PRLr mutant rapidly deviated 

from spherical growth to a pattern of irregular and poorly defined masses, forming a 

network of branches and meshes and, eventually, filling the entire culture space 

(Figure 4.2). Three other independent S349A individual clones displayed similarly 

fast tumor-like growth and morphology (data not shown), indicating that differences 

in cell growth were not clone specific but mediated by the S349A mutant of PRLr. In 
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summary, these data indicate that the increased stability of PRLr contributes to a 

transformed phenotype in human mammary epithelial cells.  

Aggressive and irregular growth of S349A cells in Matrigel point to changes 

in their ability to grow invasively. We next sought to determine whether elevated 

PRLr levels enhanced the invasive properties of mammary epithelial cells.  To this 

end, MCF10A∆p53-derived cell lines used previously (Figure 4.1; Figure 4.2) were 

allowed to migrate through Boyden chambers in order to provide an indication of 

their invasiveness. Indeed, these in vitro invasion assays revealed a superior ability 

of S349A cells (compared with WT cells which were more invasive than puro cells) 

to penetrate through Matrigel and insert pores in Boyden chamber assays (Figure 

4.3).  Cell motility and invasiveness is a complex process positively regulated among 

others by pathways that involve mitogen-activated protein kinase (MAPK), PI3K, 

and Rho family GTPases, all of which are activated by PRL (Clevenger CV et al., 

2003).  These data suggest that stabilization and increased levels of PRLr in breast 

cells contribute to a transformed in vitro phenotype, which is reflected by accelerated 

cell growth and increased motility and/or invasive abilities.   

While having established the importance of PRLr levels in promoting 2-D 

growth, 3-D growth, and invasiveness of breast epithelial cells, we wondered 

whether this propagation towards a transformed phenotype was an merely an in vitro 

phenomenon or this transformation could be further demonstrated in vivo.  To this 

end, we compared the tumorigenic growth of various MCF10A∆p53 derivatives 

(used previously in Figure 4.1) injected into the flanks of the NCRNU-M 
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immunocompromised mice that were implanted with pellets releasing estradiol and 

PRL.  MCF7 breast cancer cells served as a positive control.  These experiments 

showed that the MCF7 cells grew rapidly and continuously; the mice that were 

injected with these cells developed large tumors and had to be sacrificed by day 24.  

Although MCF10A∆p53 derivatives displayed a period of growth and formed 

distinct tumors, this growth was relatively short and was followed by tumor 

regression within 4 weeks after injection. Intriguingly, tumor regression proceeded 

significantly slower in S349A cells compared with either WT or puro cells (P < 0.05; 

Figure 4.4).  Similar results were obtained when NSG immunodeficient mice were 

used as hosts on either intraflank or intramammary gland injection of human cells 

(data not shown).  These data suggest that stabilization of PRLr promotes the growth 

of MCF10A∆p53 cells in vivo but is not sufficient for maintaining the tumorigenic 

phenotype. 

 

4.5 Discussion 

Whereas numerous epidemiologic and experimental data support important 

roles of PRL signaling in human breast cancers, the mechanisms that lead to 

constitutive activation of PRLr signaling that occur in primary human mammary 

tumors are poorly understood. Recent identification of gain-of-function mutations in 

PRLr in women with benign breast tumors (Bogorad RL et al., 2008) and the fact 

that PRLr levels are elevated in human breast carcinoma (Reynolds C et al., 1997) 

suggest that PRLr and PRL signaling are conducive to tumor cell growth and 



 

 

 76 

survival in at least a subset of breast cancer cases. However, besides activating 

diverse signaling pathways, PRL also stimulates down-regulation of its own 

receptors. We previously found that PRLr is stabilized in some human breast cancers 

and tissues due to an impaired phosphorylation of PRLr on Ser 349, which is 

required for recruitment of β-TrCP ubiquitin ligase followed by PRLr ubiquitination 

and degradation (Li Y et al., 2004; Li Y et al., 2006).   

Here, we investigated the consequences of PRLr stabilization and 

accumulation that was expected to contribute to elevated PRL signaling (Li Y et al., 

2006).  In this study we used the approach of investigating the stabilization of PRLr 

in nontumorigenic mammary epithelial cells by expressing the PRLr S349A mutant. 

Data from experiments using this approach clearly show that increased levels of 

PRLr in human mammary cells play a key role in developing and maintaining their 

transformed phenotype.  These data indicate that human breast cancers gain growth 

and invasive advantages by stabilizing the PRLr and suggest that PRL signaling, in 

general, and regulation of PRLr, in particular, are important for mammary 

tumorigenesis. This hypothesis is consistent with the published data showing that 

knockout of PRLr in mice prevents mammary tumorigenesis induced by SV40 large 

T antigen (Oakes SR et al., 2007) and that either PRLr antagonists (Goffin V et al., 

2005) decrease levels of PRLr and suppress growth of human breast cancer cells.   

       Conclusions of Chapter 4: 

- Elevated levels of PRLr enhance 2-dimensional culture growth 

- Elevated PRLr levels promote irregular 3-dimensional cell growth 
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- PRLr stabilization increases cell invasiveness 

- Stabilized PRLr increases the tumorigenicity of mammary epithelial cells 

in vivo  

In studies looking at the 2-dimensional culture growth of MCF10A∆p53 

breast epithelial cell lines that stably expressed a control puro vector, wild type 

PRLr, or the stable S349A mutant of PRLr, we noticed that stable expression of the 

S349A mutant of PRLr resulted in a significant growth advantage by 24 hours in 

culture (Figure 4.1).  These data indicate that elevated PRLr levels can promote 2-

dimensional growth of these cells.  However, the rate of growth of the WT and 

S349A cell lines from 24 to 48 hours is nearly identical despite the elevated levels of 

PRLr found in the S349A stable line compared to the WT stable line.  It is likely that 

early on, elevated PRLr levels provide a significant growth advantage as evidenced 

by the growth of the S349A cell line within the first 24 hours.  However, this 

increase in cell proliferation results in the quick utilization of nutrients which 

prevents an increase in the rate of growth of these cells from 24 to 48 hours.  

Additionally, this cell growth results in an increase in cellular waste products which 

result in acidification of culture media and prevent efficient cell growth.  These 

factors prevent the exponential increase in growth rate of the S349A stable line.  

However, the WT stable line by 24 hours is able to seed and form necessary cell-cell 

attachments and from 24 to 48 hours is able to catch up and recapitulate the growth 

rate seen of the S349A cells.  Despite the experimental limitations of these cell 

culture studies, experiments looking at the growth rate of these cell lines in 3-D 
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culture, in vivo, and their invasive properties confirm to us the pro-tumorigenic 

effects of elevated PRLr levels.  

Whereas our current data clearly point to the importance of maintaining PRLr 

levels for breast cancer cell tumorigenicity, future studies should reveal additional 

genetic events that cooperate with stabilized PRLr during formation of tumors. 

Although stabilization of PRLr, along with knockdown of p53 tumor suppressor 

protein, temporarily allowed near-normal MCF10A to grow in nude mice, these 

genetic changes were clearly insufficient to sustain tumorigenesis (Figure 4.4). 

Given an aggressive phenotype of these cells in vitro, they seem to lack a systemic 

factor when implanted in mice. It is plausible that activation of other oncogenes (e.g., 

c-Myc) is required for angiogenesis in these tumors; under this scenario, stabilized 

PRLr is likely to promote survival of tumor cells deprived of nutrition and oxygen. 

On the other hand, the fact that expression of stabilized PRLr slowed down tumor 

regression may reflect prolonged PRL signaling, which might be insufficient in 

transplanted human cells given that mouse PRL poorly activates human PRLr. 

Generation of human PRL knock-in mice will enable testing of this possibility. 

These studies are significant in that they establish the importance of elevated 

PRLr levels in promoting the growth, invasiveness, and tumorigenicity of mammary 

epithelial cells.  A deregulation of PRLr levels leading to aberrant PRL signaling 

may be a key contributing factor to the development and progression of breast 

cancers.  While elevated PRL signaling has been shown to occur in many breast 

cancers, these data confirm the importance of stabilized PRLr levels in promoting 
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this hyperactive signaling.  However, the mechanism by which PRLr propagates 

these pro-tumorigenic phenotypes is not completely understood.  While PRL 

signaling results in the upregulation of cyclin D1, the downregulation of p21, p27, 

Bad, and caspase 9, the tumorigenic effects of PRL signaling are likely mediated 

through other additional downstream effectors.  In order to investigate the 

mechanism by which PRLr promotes tumorigenicity, we performed a proteomics-

based screen to identify novel interactors of PRLr which may play a role.  In this 

screen, we identified pyruvate kinase M2, or PKM2, and in Chapter 5 we 

investigate how PKM2 works in conjunction with PRLr to promote a PRL-induced 

tumorigenic phenotype; this explores one such mechanism by which PRLr enhances 

cell growth and tumorigenicity. 
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Figure 4.1 

 

 

                

                

 

Figure 4.1: Expression of stabilized PRLr mutant augments growth of human 

mammary epithelial cells.  Representative pictures of indicated 

MCF10A∆p53 cells at 24 h after seeding. Scale bar, 100 um. Points, numbers 

of live cells that were calculated using trypan blue at 24 and 48 h after 

seeding; bars, SE. The differences between number of S349A and WT cells 

were statistically significant (P < 0.01).  Experiment was performed by 

Alexander Plotnikov. 
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Figure 4.2 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

Figure 4.2: Representative morphology of indicated MCF10A∆p53 cell lines 

grown in three-dimensional cultures at the indicated day after plating. The 

experiment was repeated twice. Scale bar, 15 um. Points, percentage of 

surface covered by cell growth calculated from nine of 10 magnification 

pictures (triplicates); bars, SE. The differences between the surfaces covered 

by either S349A or WT cells were statistically significant at 10 d (P < 0.05) 

and 13 d (P < 0.01).  Experiment performed by Alexander Plotnikov. 
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Figure 4.3 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

Figure 4.3: Analysis of invasiveness and tumorigenicity of MCF10A∆p53-

derived cell lines.  Migration of indicated cell lines through Boyden 

chambers was analyzed as described in Materials and Methods.  The 

undersides of membrane inserts containing invaded cells fixed and stained 

with H&E were photographed 48 h after plating using a 5x objective. Scale 

bar, 100 um. Columns, number of invasive cells calculated from nine of x 10 

magnification pictures (in triplicates); bars, SE. Experiment performed by 

Alexander Plotnikov. 
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Figure 4.4 

 

 

 

 

 

 

 

 

 

              
 

 

 

 

Figure 4.4: Volume of growth of indicated MCF10A∆p53 mammary 

epithelial cells and MCF7 breast cancer cells (positive control) injected into 

the flanks of the NCRNU-M mice was calculated as described in Materials 

and Methods. *, statistically significant (P < 0.05) growth difference between 

WT and S349A clones. Experiment performed by Alexander Plotnikov. 
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Chapter 5 

Prolactin inhibits activity of pyruvate kinase M2  

to stimulate cell proliferation 

5.1 Abstract 

Many studies have shown that PRL levels are associated with various breast 

cancer risk factors.  A long-lasting reduction in PRL levels is associated with parity 

(Clevenger et al., 2003), which has been found to be protective against breast cancer 

(Russo J et al., 2005).  Additionally, PRL levels positively correlate with 

mammographic density, a factor strongly associated with increased breast cancer risk 

(Clevenger et al., 2003).  Elevated PRL levels are linked to long term use of oral 

contraceptives, a strongly correlated risk factor for mammary carcinoma (Clevenger 

et al., 2003).  The correlation of PRL levels with these risk factors suggests that 

signaling downstream of PRLr, which mitigates the activities of PRL, plays a 

pertinent role in the etiology of breast cancer.   

Prolactin receptor (PRLr) is a cytokine receptor whose signaling has been 

found to be crucial in the pathogenesis and maintenance of breast cancer and other 

human malignancies.  In our efforts to study the regulation of prolactin receptor 

levels and its involvement in cancer, we used a Mass Spectrometry-based approach 

to identify novel interactors of the prolactin receptor.  One such interactor we found 

in our screen was Pyruvate Kinase M2 (PKM2), a glycolytic enzyme known to be 

important in tumorigenesis.  We studied the interaction of PRLr and PKM2 and in 
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Chapter 5 we show that PRL signaling inhibits PKM2 activity, thereby preventing 

progression through glycolysis and allowing PKM2 to promote the usage of 

glucometabolites to create lactate which is broken down as an alternative energy 

source.  Furthermore, we show that this inhibition is dependent on PRLr level, PRLr 

tyrosine phosphorylation, Jak2 activity, and is necessary for effective PRL-

dependent growth (Model 3). 

    

5.2 Introduction 

In 1924, Otto Heinrich Warburg postulated that the fundamental cause of 

cancer is a metabolic switch that occurs within a tumor cell; subsequent to this 

transformation, tumor cells obtain energy not through the oxidative phosphorylation 

of pyruvate, as in normal cells, but by alternative pathways of lactic acid 

fermentation and glutaminolysis.  Warburg observed that though tumor cells take up 

more glucose than normal cells, they do not utilize this glucose for energy 

production via oxidative phosphorylation (Warburg O, 1956).  Alternatively, tumor 

cells recruit the byproducts of glucose for the synthesis of building blocks (i.e. lipids, 

amino acids, nucleic acids) important for a growing tumor.  Warburg discovered an 

increase in lactate levels even in the presence of oxygen.  Although tumor cells do 

not normally progress through glycolysis and the citric acid cycle (TCA), lactate 

production can occur as a result of the breakdown of glutamine and serine, though 

the processes of glutaminolysis and serinolysis, respectively (Mazurek S et al., 

2005). 
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A reemergence of Warburg’s ideas on tumor metabolism has occurred in 

recent years.  Pyruvate Kinase M2, an isoform of pyruvate kinase, has been found to 

be a key regulator of the tumor metabolome and a major player in understanding 

Warburg’s view of cancer.  PKM2 is an isoenzyme of pyruvate kinase which 

regulates the last step of glycolysis by catalyzing the conversion of 

phosphoenolpyruvate to pyruvate.  Pyruvate kinase exists as various isoforms: M1 

isoform (found in normal cells), M2 isoform (found in highly proliferating cells), and 

the L isoform (found in the liver). 

This M2 isoform of pyruvate kinase has been shown to be expressed only in 

highly proliferating cells and in tumor cells.  PKM2 is less active than its 

counterpart, found in normal cells, allowing for the metabolites of glycolysis to be 

utilized for the production of lipids, amino acids, and nucleic acids and the 

production of lactate (which is broken down for energy), as opposed to entering the 

Krebs cycle.  Recent work concerning PKM2 has elucidated that the activity of 

PKM2 is inhibited upon binding to phosphotyrosine residues (Christofk HR et al., 

2008a; Christofk HR et al., 2008b).  Signaling pathways, such as Src signaling and 

HPV type 16 E7 oncoprotein signaling, that become hyperactive in cancer often 

result in the inhibition or inactiviation of PKM2 (Eigenbrodt E et al., 1992; 

Zwerschke W et al., 1999; Presek P et al., 1988).  However, current literature 

suggests that prolactin signaling promotes pyruvate kinase activity and does not 

work to inhibit it (Costello LC and Franklin RB, 2002; Arunakaran J et al., 1993; 

Arunakaran J et al., 1992).  Our work investigates the relationship between PRLr and 
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PKM2 and whether PRLr plays any regulatory role on the activity of PKM2 and its 

role in tumorigenesis.   

By investigating the regulation of PRLr levels and elucidating the mechanism 

of internalization and subsequent lysosomal degradation, we can establish a new 

paradigm for understanding how cytokine signaling is regulated and how these 

processes or regulation may go awry in the case of human disease. 

 

5.3 Materials and Methods 

Cell lines, constructs, and gene delivery 

MCF10A∆p53 derivative cell line, in which p53 expression is knocked down 

(MCF10A) were a generous gift of Alan Eastman (Levesque AA et al., 2005). 

Generation of the MCF10A∆p53 cells stably expressing wild type or S349A mutant 

PRLr was previously described (Yamashita H et al., 2006). Human breast cancer 

T47D cells were kindly provided by Dr Z. Ronai (Burnham Institute, San Diego, CA, 

USA).  Cells were cultured as previously described (Melck D et al., 2000).  Negative 

control shRNA (Sigma, #SHC002) is a lentiviral pLKO.1-puro vector containing an 

irrelevant shRNA insert that does not target human and mouse genes.  ShPRLr 

(Open Biosystems, #RHS3979-98492771) contains shRNA against human PRLr in 

the context of the same vector.  Stable mass cultures of T47D containing these 

shRNAs were generated using viruses packaged in 293T cells co-transfected with 

indicated shRNA, VSV-G, and 8.2DeltaR plasmids.  Mass cultures were selected in 

medium containing puromycin (2 µg/mL). CISH promoter-driven firefly luciferase 
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reporter (Hankinson SE et al., 1999) was kindly provided by CV Clevenger 

(Northwestern University, Chicago, IL).   

Human embryo kidney 293T cells and their derivatives were maintained and 

transfected as described elsewhere (Li et al. 2004, Deng et al., 2007). Plasmids for 

expression of flag-tagged (Li et al. 2004) or V5-tagged (Miller et al. 2005) PRLr, as 

well as JAK2WT or JAK2K882D (Huang et al. 2001) were previously described.  

Plasmids for expression of hemagglutinin (HA)-tagged PRLr have been previously 

described (Swaminathan G et al., 2008b). The HA-tagged ubiquitin expression 

constructs were kindly provided by Yosef Yarden (Weizmann Institute, Israel).  

Flag-PKM2
WT

 and FLAG-PKM2
K433E

 cloned into pLHCX retroviral vectors have 

been previously described (Christofk HR et al., 2008).  The knockdown of clathrin 

heavy chain was performed using a short hairpin obtained from Sigma (MISSION 

short hairpin RNA [shRNA] plasmid DNA; catalog no. 

SHDNACTRCN0000007982).  PRL-deficient MCF7 cells (Schroeder MD et al., 

2002), rat lymphoma Nb2-11C cells (Gertler A et al., 1985),  and control and PKM2-

specific shRNA lentiviral vectors (Christofk HR et al., 2008a) have been previously 

described.   

Reagents, antibodies, and immunotechniques 

Antibodies against FLAG tag (M2, Sigma), HA tag (12CA5, Roche), beta-

actin (Sigma), Jak2 (Upstate Biotech, Lake Placid, NY, USA), and PRLr (Zymed, 

San Francisco, CA, USA and Santa Cruz, Santa Cruz, CA, USA) were purchased. 

Human PRL was purchased from the National Hormone and Peptide program (AF 
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Parlow). PRLr antagonist PRL
∆1–9-G129R 

was produced and purified as previously 

described (Bernichtein et al., 2003). AG490 and PP1 (Calbiochem, San Diego, CA, 

USA) were purchased. Immunoprecipitation and immunoblotting were performed as 

described previously (Li et al., 2004).  Transfections were performed with 

Lipofectamine Plus or Lipofectamine 2000 (Invitrogen Corporation, Carlsbad, CA) 

or FuGENE 6 (Roche) and analyzed after 48 h according to the manufacturer’s 

recommendations.  

Pyruvate kinase activity assay and Lactate measurement assay 

Pyruvate kinase activity was determined in 293T cells, MCF10A stable lines 

(PRLr
WT

 or PRLr
S349A

), or PRL-deficient MCF7 cells in the absence or presence of 

prolactin.  The activity of pyruvate kinase activity was measured by a coupled 

enzymatic assay using lactate dehydrogenase (LDH). The change in absorbance at 

340 nm due to the conversion of NADH to NAD+ was measured by a Varian CARY 

1E UV-Vis Spectrophotometer. Enzymatic reactions contained cell lysate (50 µg), 

HEPES, pH 7.5 (10 mM), KCl (50 mM), MgCl2  (10 mM), ADP (2 mM), PEP (10 

mM), NADH (0.5 mM), and LDH (25 units).  Lactate levels were determined using a 

fluorescence-based lactate measurement kit as per the manufacturer’s instructions 

(BioVision, Mountain View, CA). 

Cell growth assay 

The rat lymphoma Nb2-11C cell line was electroporated with a vector control 

(Vec), wild type murine Flag-PKM2 (PKM2
WT

), or murine Flag-PKM2
K433E

 

(PKM2
KE

).  The PRL-deficient MCF7 cell line was transduced with a control shRNA 
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or shRNA targeting PKM2 (alone or in addition to an expression vector expressing a 

non-targetable murine PKM2 protein (wild type or K433E mutant)). 1x10
6
 cells were 

plated in triplicate for each sample and timepoint and cultured in the absence or 

presence of PRL (200 ng/ml). Trypan-blue negative live cells were counted at 24 and 

48 hours after plating. 

   

5.4 Results 

A decrease in PRLr levels results in an attenuation of the signaling program, 

thereby halting the downstream phenotypes of proliferation, differentiation, and 

survival depending on the cellular context.  In Chapter 4, we showed that elevated 

PRLr levels resulted in enhanced cell growth and promoted the transformation of 

mammary epithelial cells.  However, the mechanism(s) by which PRLr promotes cell 

growth and transformation is yet to be clearly understood.  Our lab sought out novel 

interactors of PRLr that may play a role in these processes.  In an effort to investigate 

other proteins which may be important for PRLr-mediated cell growth and 

transformation, we performed a proteomics-based screen to identify novel interacting 

proteins of PRLr.  To this end, FLAG-tagged PRLr was expressed in 293T cells and 

cell lysates were immunoprecipitated with anti-FLAG antibody, resolved by SDS-

PAGE, and visualized by Colloidal Coomassie staining.  Bands of interest were 

excised, trypsin-digested, and analyzed by LC-MS/MS.  After obtaining results from 

this screen, the presence of peptides derived from PRLr itself and a phosphor-

serine/threonine binding protein 14-3-3 that has been previously described as an 
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interactor of PRLr (Olayioye et al., 2003) validated our screen.  In this effort, we 

identified the glycolytic enzyme pyruvate kinase M2 (PKM2) to be a novel interactor 

of PRLr (Figure 5.1; unpublished data).   

While we identified PKM2 to be a novel interactor of PRLr, we wanted to 

confirm that this interaction occurred within the cell and was not an artifact of our 

proteomics-based screen.  To this end, we expressed FLAG-tagged PRLr and HA-

tagged PKM2 in 293T cells and assessed the interaction between PRLr and PKM2 

by direct and reciprocal co-immmunoprecipitation (using anti-FLAG and anti-HA 

antibodies) followed by immunoblotting analysis.  These data showed that PRLr and 

PKM2 co-immunoprecipitated with each other (Figure 5.2).  These results indicate 

that PRLr and PKM2 are interacting proteins. 

    While we have established that PRLr and PKM2 interact, these studies 

were performed with exogenous proteins.  We wanted to establish that the 

endogenous PRLr and PKM2 proteins in fact interact within the cell and that their 

interaction recapitulates the results seen using exogenous proteins.  To this end, we 

immunoprecipitated endogenous PRLr from 293T cells treated with or without PRL 

using anti-PRLr antibody and resolved these immunoprecipitates by SDS-PAGE.  

Samples were immunoblotted with anti-PRLr and anti-PKM2 antibodies.  Results 

from these studies showed that PKM2 co-immunoprecipitated with PRLr in lysates 

that were treated with or without PRL (Figure 5.3).  This indicated that PRLr and 

PKM2 are bonafide interactors within the cell.  Subsequent analysis of the effect of 

the ligand on the binding of PRLr to PKM2 did not yield conclusive results (data not 
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shown). These results taken together with the data from the proteomics screen 

suggest that PKM2 is indeed a protein that constitutively associates with PRLr.   

Unlike pyruvate kinase M1 (PKM1), which is found in normal tissues, 

pyruvate kinase M2 has been shown to be expressed only in highly proliferating cells 

and in tumor cells (Mazurek S, 2007). Furthermore, in contrast to PKM1, PKM2 

activity has been shown to be inhibited by the binding of PKM2 to phosphotyrosine 

residues in a manner that is dependent upon the integrity of a key amino acid within 

PKM2, lysine 433 (Christofk HR et al., 2008b). Expression of PKM2 (but not 

PKM1) and the integrity of K433 were shown to be important for cell proliferation 

and tumorigenicity (Christofk HR et al., 2008a). The current paradigm views the 

inhibition of PKM2 as a key event in preventing the progression of metabolites 

through the Krebs cycle and in promoting the utilization of metabolites for the 

production of lipids, amino acids, and nucleic acids. Therefore, PKM2 has been 

established as a key regulator of the Warburg effect: though tumor cells take up more 

glucose than normal cells, they do not utilize this glucose for energy production via 

oxidative phosphorylation (Warburg O, 1956).  Alternatively, tumor cells channel 

the byproducts of glucose metabolism for the synthesis of building blocks (i.e. lipids, 

amino acids, nucleic acids) important for a growing tumor (Vander Heiden MG et 

al., 2009).  In normal tissues, a stimulation of activity of PKM1 by PRL has been 

previously demonstrated (Arunakaran J et al., 1992; Arunakaran J et al., 1993; 

Costello LC and Franklin RB, 2002; Kumaran B et al., 1988). However, it is not 
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known how PRL that induces a cascade of tyrosine phosphorylation would affect the 

activity of PKM2 in rapidly proliferating cells.  

Since we identified PKM2 to be a bonafide interactor of PRLr and PKM2 has 

been shown to be inhibited in a manner dependent on the binding of PKM2 to 

phosphotyrosine residues, we wanted to determine whether the PRLr-PKM2 

interaction had any consequence for PKM2 activity.  For this study, we decided to 

use the 293T human embryo kidney cell line since it expresses PKM2 but not PKM1 

(Christofk HR et al., 2008a) and expresses low levels of endogenous PRLr (Li Y et 

al., 2004) so as to be amenable to experiments requiring the expression of exogenous 

forms of PRLr.  To study the effect of PRL signaling upon PKM2 activity, we 

treated 293T cells with PRL for various timepoints and assessed the PKM2 activity 

of these lysates.  The PKM2 enzymatic activity was assessed using a coupled 

enzymatic-based spectrophotometric assay that is well established in the study of 

pyruvate kinase enzymatic activity (Bergmeyer HU, 1963).  Results from these 

experiments showed that exposure to PRL led to a noticeable inhibition of pyruvate 

kinase activity which became more robust over time (Figure 5.4). The extent of this 

inhibition was greater than that reported in cells treated with the insulin-like growth 

factor (Christofk HR et al., 2008b).  

Once we established that PRL signaling works to inhibit PKM2 activity, we 

wanted to see if this effect was dependent upon PRLr levels.  If the interaction 

between PRLr and PKM2 leads to this inhibition, we believe that increased PRLr 

levels would increase the amount of PKM2 within the cell that is PRLr-bound, 
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thereby further decreasing PKM2 activity within the cell.  To study this hypothesis, 

we expressed wild type PRLr, PRLr S349A mutant, or an empty vector in 293T 

cells, treated them with or without PRL, and assessed the PKM2 kinase activity of 

the lysates using the coupled enzymatic-based spectrophotometric assay.  These 

results showed that expression of exogenous wild type PRLr increased PRL-

mediated inhibition of PKM2 to 25% while expression of the proteolytically stable 

PRLr S349A mutant increased PKM2 inhibition to 40% (Figure 5.5).  These results 

indicate that increased levels of PRLr increase the inhibitory effect of PRL upon 

PKM2 activity. 

We wanted to establish whether the effect of PRL treatment in the inhibition 

of PKM2 activity is cell-type specific and if PRL-mediated inhibition of PKM2 does 

occur in other cells, whether this effect is dependent on PRLr levels.  For this 

investigation, we decided to use human mammary epithelial MCF10A cell lines that 

stably express wild type or S349A mutant versions of PRLr.  Studies using these 

cells would tell us whether PRL-mediated inhibition of PKM2 is cell-type specific 

and whether it occurs in near normal breast epithelial cells.  To this end, MCF10A-

PRLr WT and MCF10A-PRLr S349A stable lines were treated with or without PRL.  

The PKM2 activity within these cell lysates was assessed using the coupled 

enzymatic-based spectrophotometric assay.  Results from these experiments showed 

that a robust inhibition of PKM2 activity by PRL was observed in MCF10A cell 

lines that stably express wild type PRLr (40%); even stronger inhibition was seen in 

cells that harbor the proteolytically stable S349A mutant (60%) of PRLr (Figure 5.6).  
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These data show that PRL treatment results in PKM2 inhibition in MCF10A 

mammary epithelial cells and that this PKM2 inhibition is dependent on PRLr levels, 

indicating that these processes are not cell-type specific.  

 Having established that PRL treatment works to inhibit PKM2 activity and 

that this inhibition is dependent upon PRLr levels, we sought to determine the 

importance of PKM2 inhibition.  PKM2 has previously been shown to regulate 

energy production within cancer cells.  While normal cells obtain energy in the 

presence of oxygen by the breakdown of glucose via oxidative phosphorylation, 

cancer cells have been shown to undergo the conversion of glucose to lactate, or 

aerobic glycolysis, even in the presence of oxygen.  Furthermore, cancer cells 

undergo the alternative energy production pathways of glutaminolysis and 

serinolysis, which produce energy by the breakdown of the amino acids glutamine 

and serine respectively, and result in the production of lactate. Since these alternative 

energy production pathways which occur in cancer cells result in elevated lactate 

levels, an increase in lactate production within the cell is indicative of a glycolytic 

switch.  Tumor cells switch their dependence of energy production pathways from 

oxidative phosphorylation to aerobic glycolysis, glutaminolysis, serinolysis, and 

other such alternative pathways.  In order to determine if the PRL-mediated 

inhibition of PKM2 resulted in such a change in energy dependence, the levels of 

lactate production were measured.  To this end, MCF10A mammary epithelial cell 

lines stably expressing wild type PRLr or the S349A mutant of PRLr were treated 

with or without PRL.  The lactate levels within the cell lysates was ascertained using 
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a fluorescence-based lactate measurement kit.  These results showed that PRL 

treatment increased the levels of lactate within the cell and this effect was more 

robust in cells expressing the proteolytically stable S349A mutant of PRLr (Figure 

5.7).  The extent of lactate production (Figure 5.7) was inversely proportional to the 

pyruvate kinase inhibition (Figure 5.6) in these cells, indicating that PRL treatment 

promotes the inhibition of PKM2 and a switch in energy dependence within the cell.  

 We wanted to confirm that the PRL-mediated inhibition of PKM2 is 

dependent upon PRLr levels.  By investigating the effect of PRL treatment on PKM2 

activity in another cell line, we can confirm that the PRL-mediated inhibition of 

PKM2 is not a cell-type specific effect.  To this end, we took T47D breast cancer cell 

lines (which express noticeable levels of endogenous PRLr) that stably express a 

control shRNA targeted against green fluorescent protein (GFP) or a shRNA 

construct targeted against PRLr (Plotnikov A et al., 2009), treated them with or 

without PRL, and assessed the PKM2 kinase activity in their cell lysates by using the 

coupled enzymatic-based spectrophotometric assay.  These studies showed that 

while PRL treatment resulted in a 35% decrease in PKM2 activity in control cells 

(shCON), cells with stable shRNA-mediated knockdown of PRLr (shPRLr) did not 

exhibit any change in PKM2 activity after PRL treatment (Figure 5.8).  These data 

indicate that PRLr levels are crucial for PRL-mediated inhibition of PKM2 as 

knockdown of PRLr abrogated this effect.     

 We further wanted to establish whether a switch in energy dependence occurs 

in cells that exhibit PRL-dependent inhibition of PKM2.  To investigate this, we 
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sought to determine the lactate levels in the T47D stable cell lines which showed 

PRL-mediated inhibition of PKM2 when PRLr was intact (Figure 5.8).  To this end, 

the shCON and shPRLr T47D stable lines were treated with or without PRL and the 

lacate levels within the cell lysates was determined using a fluorescence-based 

lactate measurement kit.  These studies showed that in response to PRL treatment, 

lactate levels increased in control cells (shCON) but not in cells where PRLr was 

knocked down (shPRLr), indicating that increased lactate level production in 

response to PRL is dependent on PRLr levels (Figure 5.9).  Similar to the results 

obtained using the MCF10A cell lines, PRL treatment of the T47D cell lines resulted 

in increased lactate levels which coincided with an inhibition of PKM2 activity.  

Together, these results indicate that the inhibition of PKM2 and accumulation of 

lactate in response to PRL are regulated by the abundance of PRLr, indicating that a 

switch in energy dependence occurs when PKM2 activity is inhibited and is 

dependent on PRL treatment and PRLr levels. 

 Our data establish that PRL treatment works to inhibit the activity of PKM2.  

However the mechanism by which this occurs or what determinants are key for this 

inhibition are unknown.  We next sought to investigate how PRL inhibits PKM2 

activity.  Given that binding of phosphotyrosines was shown to elicit such inhibition 

(Christofk HR et al., 2008b) and that PRLr (which interacts with PKM2) undergoes 

tyrosine phosphorylation (Rui H et al., 1992; Rui H, Kirken RA, et al., 1994) which 

is required for the activation and tyrosine phosphorylation of downstream effectors, 

we next tested the role of the tyrosine phosphorylation of PRLr in PKM2 inhibition.  
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To this end, we expressed wild type PRLr, a PRLr mutant where all intracellular 

tyrosines are mutated to arginine (YF mutant of PRLr), or an empty vector as a 

control in 293T cells and assessed the PKM2 activity of the cell lysates by using the 

coupled enzymatic-based spectrophotometric assay.  Results from these studies 

showed that expression of the PRLr mutant that lacks Tyr residues in its intracellular 

domain abrogated the PRL-induced inhibition of PKM2 in 293T cells (Figure 5.10).  

This suggests that tyrosine phosphorylation of PRLr is necessary for the PRL-

mediated inhibition of PKM2. 

 Since our results show that tyrosine phosphorylation of PRLr is needed for 

the inhibition of PKM2 and tyrosine phosphorylation of PRLr is a required step for 

active PRL signaling, we sought to determine if the inhibition of PKM2 is dependent 

upon the active signaling downstream of PRLr.  To this end, we expressed wild type 

PRLr, a gain-of-function I170L mutant of PRLr, or a control vector in 293T cells and 

measured the PKM2 activity within cell lysates by using the coupled enzymatic-

based spectrophotometric assay.  These data showed that expression of the gain-of-

function I170L mutant of PRLr (which is found in some breast cancers and benign 

tumors and exhibits constitutive Tyr phosphorylation that can be further stimulated 

by ligand (Bogorad RL et al., 2008; Canbay E et al., 2004)) resulted in a robust 

inhibition of PKM2 even in the absence of ligand; these results were further 

augmented with PRL treatment (Figure 5.11).  This suggests that PRL promotes the 

inhibition of PKM2 by propagating PRL signaling and not by a signaling-

independent effect.  
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 The importance of active PRL signaling for the inhibition of PKM2 led us to 

query whether active PRL signaling was needed for the PRL-mediated increase in 

lactate levels which are indicative of a switch in energy dependence.  To this end, we 

expressed wild type PRLr, the I170L mutant of PRLr, or a control vector in 293T 

cells and assessed the lactate levels in the cell lysates by using the fluorescence-

based lactate measurement kit.  Results from these studies showed that expression of 

the gain-of-function I170L mutant of PRLr increased lactate levels even in the 

absence of ligand; PRL treatment further augmented this effect (Figure 5.12).  This 

suggests that active PRL signaling promotes a switch in energy dependence as 

indicated by elevated lactate levels.  These results taken together show that Tyr 

phosphorylation of PRLr is required for the inhibition of PKM2 by PRL treatment.  

The PRL-mediated inhibition of PKM2 may either be directly regulated by 

PRLr or mediated by the recruitment of proteins containing phosphorylated Tyr 

residues to PRLr that would interact with PKM2 and decrease its activity.  We 

wanted to investigate the role of two downstream kinases which have been found to 

be tyrosine phosphorylated and are activated in response to PRL treatment.  Jak2 (the 

Janus kinase constitutively bound to PRLr) and Src are two major tyrosine kinases 

induced by PRL (Clevenger CV et al., 2003).  We sought to investigate whether 

these downstream kinases were important for the PRL-mediated inhibition of PKM2.  

We decided to investigate the role of these kinases in PRL-mediated inhibition of 

PKM2 by pharmacologically inhibiting Jak and Src activity and observing whether 

the inhibition of PKM2 in response to PRL was altered.  To this end, 293T cells were 
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treated with AG490 (Jak inhibitor), PP1 (Src inhibitor), or ethanol (vehicle control) 

and the PKM2 activity of cell lysates was assessed using the coupled enzymatic-

based spectrophotometric assay.  These results showed that pre-treatment of cells 

with the Jak inhibitor AG490 (but not with the Src inhibitor PP1) attenuated the 

PRL-mediated inhibition of PKM2 (Figure 5.13).  This implies that Jak activity, but 

not Src activity, is necessary for the PRL-mediated inhibition of PKM2.  

While we showed, by pharmacological inhibition, that Jak activity is needed 

for efficient PRL-mediated inhibition of PKM2, we have not established whether this 

dependence is upon Jak2 or the activities of all Jak kinases.  To investigate if this 

effect is Jak2 specific, we decided to take a genetic approach and discover if the 

PRL-mediated inhibition of PKM2 is affected by shRNA-mediated knockdown of 

Jak2 or another Janus kinase.  To this end, we expressed a shRNA targeted against 

Jak2, a shRNA targeted against Tyk2 (which is not bound to PRLr), or a control 

shRNA construct in 293T cells and we assessed the PKM2 activity in cell lysates by 

using the coupled enzymatic-based spectrophotometric assay.  These experiments 

showed that knockdown of Jak2 (which is constitutively bound to PRLr) but not 

knockdown of another Janus kinase (Tyk2) prevented the PRL-mediated decrease in 

PKM2 activity (Figure 5.14).  This shows that Jak2 is needed for the effective PRL-

mediated inhibition of PKM2 and that this effect is not true of all Janus kinases. 

Having established the importance of Jak2 in regulating the PRL-mediated 

inhibition of PKM2, we sought to determine whether Jak2 was needed for promoting 

a PRL-mediated switch in energy dependence.  By using a genetic approach we can 
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establish what role, if at all, Jak2 plays in this switch.  To this end, we expressed a 

shRNA targeted against Jak2, a shRNA targeted against Tyk2, or a control shRNA in 

293T cells (similar to the approach taken with Figure 5.14) and assessed the lactate 

levels of cell lysates by using the fluorescence-based lactate measurement kit.  These 

data showed that shRNA-mediated knockdown of Jak2, but not knockdown of Tyk2, 

resulted in a loss of lactate level increase in response to PRL treatment (Figure 5.15).  

This shows that Jak2 is crucial in regulating the switch of energy dependence in 

response to PRL.  

While our data has suggested Jak2 to play an important role in the PRL-

mediated inhibition of PKM2 and concomitant switch in energy dependence (as 

evidenced by elevated lactate levels), we wanted to confirm the role that Jak2 plays 

in this process.  Would the enhancement of Jak2 activity result in an augmented 

inhibition of PKM2 activity?  To investigate this, we decided to use constitutively 

active forms of Jak2 and observe how the inhibition of PKM2 was affected in 

response to PRL.  To this end, we expressed wild type Jak2, constitutively active 

TEL-Jak2 fusion protein, constitutively active V617F mutant of Jak2, or a control 

vector in 293T cells and assessed the PKM2 activity within cell lysates by using the 

coupled enzymatic-based spectrophotometric assay.  Our results showed that 

expression of constitutively active Jak2 proteins (TEL-Jak2 fusion protein and 

Jak2
V617F

 mutant found in hematologic malignancies (Valentino L and Pierre J, 

2006)) led to a robust suppression of PKM2 activity even in cells that did not receive 
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PRL (Figure 5.16).  These results taken together suggest that PRL-induced Jak2 

activity may be required and sufficient for the inhibition of PKM2. 

Our data has shown that PRL treatment works to inhibit PKM2 activity and 

promote a switch in energy dependence.  However, we do not know what the 

consequence of the PRLr-PKM2 interaction is for PRL mediated cell growth and 

transformation.  While elevated PRLr levels result in enhance cell growth and 

transformation, we do not know how the mechanism by which PRL signaling 

enhances these phenotypes.  To investigate whether the inhibition of PKM2 plays a 

role in PRL-mediated cell growth, we decided to overexpress PKM2 and observe 

whether this enhanced cell growth in response to PRL treatment.  To this end, we 

expressed FLAG-tagged wild type PKM2, FLAG-tagged K433E mutant of PKM2 

(which cannot bind phosphotyrosine residues and is not subsequently inhibited), or a 

control vector in the rat lymphoma Nb2-11C cell line (which has been shown to 

exhibit PRL-dependent growth) and assessed their growth kinetics in the absence or 

presence of PRL over a 48 hour time period.  In rat lymphoma Nb2-11C cells that 

are highly sensitive to PRL-stimulated growth (Gertler A et al., 1985), expression of 

murine PKM2 further promoted cell proliferation in the presence but not in the 

absence of PRL (Figure 5.17). Remarkably, when the K433E mutant of PKM2 

(which is insensitive to inhibition by binding to phosphotyrosine residues, (Christofk 

HR et al., 2008a; Christofk HR et al., 2008b)) was introduced into the cells, it did not 

further increase PRL-stimulated proliferation despite being expressed at levels 



 

 

 103

comparable with the wild type protein (Figure 5.17). These results suggest that the 

inhibition of PKM2 may contribute to PRL-induced cell proliferation.  

Having implicated a role for PKM2 in promoting PRL-mediated growth, we 

wanted to determine whether the affect of PRL on PKM2 activity and the switch in 

energy dependence are reliant on the interaction between PRL signaling and PKM2 

(and the subsequent inhibition of PKM2 activity) or whether these effects can be 

replicated by knockdown of the PKM2 protein.  For these studies, we used a sub-

clone derived from the MCF7 human breast cancer cell line; this sub-clone is 

deficient in producing its own PRL and, therefore, is highly sensitive to the effects of 

exogenously added PRL (Schroeder MD et al., 2002).  We used shRNA constructs 

for the knockdown of PKM2 and re-expressed murine forms of the PKM2 protein 

which cannot be targeted by the shRNA construct in this MCF7 sub-clone (the cells 

were treated with or without PRL).  PKM2 activity of the cell lysates was assessed 

by using the coupled enzymatic-based spectrophotometric assay.  These studies 

showed that the knockdown of PKM2 abrogated the PRL-induced suppression of 

PKM2 activity (Figure 5.18).  The PRL-mediated inhibition of PKM2 was restored 

in cells, where PKM2 was knocked down, by the expression of wild type PKM2 but 

not the K433E mutant of PKM2.  These results suggest that PRL-induced 

suppression of PKM2 activity is dependent on the presence of a PKM2 protein which 

can bind phosphotyrosine residues and subsequently be inhibited. 

Having established the need for an inhibitable PKM2 protein for the PRL-

mediated suppression of PKM2 activity, we wanted to investigate whether an 
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inhibitable PKM2 protein is required for the PRL-induced increase in lactate levels 

which are indicative of a switch in energy dependence.  To this end, we expressed a 

control shRNA or a shRNA directed against PKM2 alone or in conjunction with non-

targetable murine wild type or K433E mutant PKM2 proteins in the MCF7 sub-

clone, which is responsive to PRL, and treated them with or without PRL.  The 

lactate levels within these cell lysates were determined by using the fluorescence-

based lactate measurement kit.  These results showed that knockdown of PKM2 

abrogated the PRL-induced increase in lactate levels; the PRL-mediated increase in 

lactate levels were restored by expression of the non-targetable wild type PKM2 

protein but not the K433E mutant of PKM2 (Figure 5.19).  This suggests that the 

presence of an inhibitable PKM2 protein is needed for the PRL-induced 

augmentation of lactate levels, which are indicative of a switch in energy 

dependence.   

Our data has shown that the presence of an inhibitable PKM2 protein is 

necessary for the PRL-mediated inhibition of PKM2 activity and increase in lactate 

levels.  This leads us to ask the question of whether the presence of PKM2 is 

necessary for PRL-mediated cell growth.  While previous results showed that the 

inhibitable PKM2 promotes PRL-dependent growth (Figure 5.17), we did not 

establish whether PKM2 is necessary for PRL-dependent cell growth.  To this end, 

we used the MCF7 sub-clone (that is responsive to PRL) and expressed a control 

shRNA or shRNA directed against PKM2 and used a functional knock-in approach 

(Christofk HR et al., 2008a; Christofk HR et al., 2008b) and expressed murine 
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PKM2 (wild type or K433E mutant) that is insensitive to the specific shRNA 

directed against the human PKM2 enzyme.  The growth kinetics of these cells in the 

presence or absence of PRL was assessed over a 48 hour time period.  Knockdown 

of PKM2 abrogated PRL-stimulated cell proliferation (Figure 5.20).  Whereas 

expression of non-targetable wild type murine PKM2 rescued PRL-stimulated cell 

proliferation in cells where PKM2 was knocked down, expression of the 

phosphotyrosine-insensitive K433E mutant of PKM2 failed to do so (Figures 5.20). 

These data suggest that the inhibition of PKM2 by PRL is necessary for PRL-

induced cell proliferation.  

 

5.5 Discussion 

Collectively our data demonstrate that PKM2 constitutively binds to PRLr 

and undergoes a phosphotyrosine-mediated inhibition in response to PRL (Model 3). 

This inhibition is dependent on PRLr levels and its tyrosine phosphorylation and 

requires the catalytic activity of Jak2 (Model 3). Furthermore, PRL-mediated PKM2 

inhibition plays an important role in PRL-induced cell proliferation. While there is 

an ever increasing appreciation for the significance of metabolic changes in general 

and inhibition of PKM2 in particular for cell proliferation and tumorigenesis induced 

by pro-mitogenic stimuli and diverse oncogenes (DeBerardinis RJ et al., 2008; 

Vander Heiden MG et al., 2009), our data suggest the importance of PKM2 

inhibition in mediating the pro-tumorigenic effects of prolactin, whose receptor 

interacts with PKM2. Further studies are needed to investigate whether receptors for 
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other extracellular mitogens of polypeptide origin can also interact with PKM2 and 

to determine the role of such an interaction and its consequences for proliferation and 

tumorigenesis.   

      Conclusions of Chapter 5: 

- PKM2 is a novel interactor of PRLr 

- PRL treatment induces the inhibition of PKM2 kinase activity 

- Elevated PRLr levels promote PRL-mediated inhibition of PKM2 and a 

switch in energy dependence (as evidenced by enhanced lactate levels) 

- PRLr is required for the PRL-induced suppression of PKM2 activity and 

switch in energy dependence 

- Phosphorylation of the intracellular tyrosines of PRLr are required for 

PRL-mediated inhibition of PKM2 

- Constitutively active PRLr promotes PKM2 inhibition and a switch in 

energy dependence even in the absence of PRL 

- Active Jak2 is enhances and is required for PRL-induced inhibiton of 

PKM2 and switch in energy dependence 

- Expression of an inhibitable PKM2 protein enhances PRL-dependent 

growth 

- Expression of an inhibitable PKM2 protein is required for PRL-dependent 

growth and switch in energy dependence 

- The presence of an inhibitable PKM2 protein is required for PRL-

dependent growth 
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While the inhibition of PKM2 by PRL results in increased PRL-dependent 

growth, shRNA-mediated knockdown of PKM2 only stunts PRL-mediated growth, 

contrary to logic.  How can the necessity of the presence of a protein (PKM2) be 

reconciled to the fact that must be inhibited to promote a tumorigenic effect?  While 

the PRL-mediated inhibition of PKM2 leads to a halt in progression through 

glycolysis and promotes alternative energy production pathways (i.e., lactate 

breakdown, glutaminolysis, serinolysis), the tumorigenic effect of PKM2 may not be 

strictly due to its role in glycolysis.  Irrespective of its catalytic activity, PKM2 may 

act as an interactor which promotes the tumorigenic effects of other oncogenes.  

Under this proposed idea, PKM2 may serve to promote the activity of oncogenes or 

inhibit the activity of tumor suppressors in order to promote tumorigenic growth, 

thus leading to the necessity of the presence of PKM2 for PRL-mediated growth.  

However, if this PKM2 protein cannot be inhibited, then glycolysis is allowed to 

progress and the pro-tumorigenic effects of PKM2 are counterbalanced by the lack 

of a switch to alternative energy production pathways.  Presumably if PKM2 can be 

inhibited, alternative energy production pathways can occur and PKM2 is free to act 

as a docking site for other proteins or as an activator of oncogenes or suppressor of 

tumor suppressors.  This would reconcile the fact that optimal PRL-dependent 

growth can only occur in the presence of a PKM2 protein that becomes inhibited.  

Future studies looking at the mechanisms of PKM2-mediated tumorigenicity could 

provide valuable insights into these matters.  
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These studies in Chapter 5 are significant in that they propose a novel 

mechanism by which PRL mediates cell proliferation in a manner dependent on 

PKM2 (Model 3).  Previous work looking at the effect of PRL on glycolysis has 

shown that PRL signaling promotes progression through glycolysis and promotes 

PKM1 activity in normal cells.  However, our studies paint a novel role for PRL 

signaling in the regulation of pyruvate kinase in cancer cells (PKM2).  Furthermore 

PKM2, originally thought to play its role in the inhibition of glycolysis, seems to 

play the part of a key regulator of PRL-dependent cell growth and tumorigenesis.       
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Model 3 

 

 

 

 

Model 3: Increased PRLr levels and enhanced PRLr and Jak2 activity promote the 

interaction of PRL and PKM2 which leads to the inhibition of PKM2 activity, by 

binding phosphotyrosine residues (in a PKM2 K433 dependent manner), and to a 

switch in energy dependence (as evidenced by increased lactate levels).  This 

inhibition of PKM2 activity enhances cell growth in a PRL-dependent manner.  
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Figure 5.1 

 

 

 

 

 

 

 

                                        
 

 

 

 

 

 

 

 

 

Figure 5.1: Whole cell lysates from human embryonic kidney 293T cells transfected 

to express Flag�tagged PRLr (Li et al., 2004) and the corresponding control vector 

were immunoprecipitated with Flag M2 agarose (Sigma) followed by stringent 

washes to minimize non�specific interactions. The proteins that co�purified with 

PRLr were resolved by SDS�PAGE and visualized by Colloidal Coomassie 

staining. Indicated proteins (Band 1) were excised, digested with trypsin and 

analyzed by LC�MS/MS. The results were searched against the NIH database using 

the SEQUEST software.  Experiment performed by Gayathri Swaminathan. 
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Figure 5.2 

 

 

 

 

 

 

        
 

 

 

 

 

 

Figure 5.2: 293T cells transfected with Flag�tagged PRLr and HA�tagged PKM2 as 

indicated were lysed and immunoprecipitation�immunoblotting assays using 

anti�Flag (Sigma) and anti�HA antibody (12CA5, Roche) were carried out as 

depicted.  Experiment performed by Gayathri Swaminathan. 
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Figure 5.3 

 

 

 

 

                       
 

 

 

 

 

 

 

 

Figure 5.3: Immunoprecipitation of endogenous PRLr from lysates from 293T cells 

treated (or not) with human PRL (purchased from the National Hormone and Peptide 

program and used at 100ng/ml for 30 min) were carried out using anti�PRLr 

antibody (H�300, Santa Cruz) or naïve rabbit serum (NRS). Levels of PKM2 in 

whole cell extracts are also shown.  Experiment performed by Alexander Plotnikov.   
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Figure 5.4 

 

 

 

 

 
 

 

 

 

Figure 5.4: Pyruvate kinase activity was determined in lysates (50µg) from 293T 

cells treated with PRL (100 ng/ml for indicated timepoints) by a coupled 

enzymatic�based spectrophotometric assay that registers a decrease in absorbance at 

340 nm using Varian CARY 1E UV�Vis Spectrophotometer as described in 

(Bergmeyer HU, 1963). The reagents for the assay including phosphoenolpyruvate, 

nicotinamide adenine dinucleotide, reduced form (NADH), adenosine diphosphate 

and lactic dehydrogenase were from Sigma. Average data from four independent 

experiments (each in triplicate) are presented as % of activity measured in cells that 

did not receive PRL (± S.D.). 
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Figure 5.5 

 

 

 

 

 

 
 

 

 

 

Figure 5.5: Activity of pyruvate kinase was determined (as in Figure 5.4) in lysates 

from 293T cells transfected with vector control (pcDNA3) or vectors for expression 

of PRLr (wild type or S349A mutant) and treated (100 ng/mL prolactin for 20 

minutes, white bars) or not (grey bars) with PRL. Here and in similar subsequent 

figures, the average data from three independent experiments (each in triplicate) are 

presented as % of activity of non�treated control cells (± S.D.). Asterisks denote 

statistical significance of obtained differences (p<0.05 in the Student’s t�test). 
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Figure 5.6 

 

 

 

 

 
 

 

 

 

 

Figure 5.6: Pyruvate kinase activity was measured in the lysates from 

MCF10A�derived cells expressing wild type or S349A mutant of PRLr (described 

in details in (Plotnikov et al., 2009)) as in Figure 5.5. 
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Figure 5.7 

 

 

 

 

 
 

 

 

 

 

 

Figure 5.7: Lactate levels in the lysates from cells used in Figure 5.6 were 

determined using a fluorescence�based lactate measurement kit (BioVision). 

Asterisks signify that the difference in lactate levels between the treated and 

untreated samples is significant as determined by the Student’s t�test (p<0.05). 
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Figure 5.8 

 

 

 

 

 
 

 

 

 

 

Figure 5.8: Pyruvate kinase activity was measured in the lysates from T47D�derived 

cells that harbor shRNA against GFP (shCON) or against PRLr (shPRLr). Cells were 

described in details in (Plotnikov et al., 2009)). Asterisks denote statistical 

significance of obtained differences (p<0.05 in the Student’s t�test). 
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Figure 5.9 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5.9: Lactate levels in the lysates from cells used in Figure 5.8 were 

determined as outlined in Figure 5.7. 
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Figure 5.10 

 

 

 

 

 
 

 

 

 

Figure 5.10: Activity of pyruvate kinase was determined (as in Figure 5.4) in lysates 

from 293T cells transfected with vector control (pcDNA3) or vectors for expression 

of PRLr (wild type or YF mutant (all intracellular tyrosines mutated to 

phenylalanine, described in (Swaminathan et al., 2008b)) and treated (100 ng/mL 

prolactin for 20 minutes, white bars) or not (grey bars) with PRL. Average data from 

four independent experiments (each in triplicate) are presented as % of activity 

measured in cells that did not receive PRL (± S.D.). Asterisks denote statistical 

significance of obtained differences (p<0.05 in the Student’s t�test). 
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Figure 5.11 

 

 

 

 

 
 

 

 

 

 

 

Figure 5.11: Pyruvate kinase activity was determined in lysates from 293T cells 

transfected with vector control (pcDNA3) or vectors for expression of PRLr (wild 

type or I170L mutant constructed by site directed mutagenesis in the backbone of 

pcDNA3�HA�PRLr, described in (Varghese et al., 2008)). Asterisks denote 

statistical significance of obtained differences (p<0.05 in the Student’s t�test). 

 

 

 

 

 

 

 



 

 

 121

Figure 5.12 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 5.12: Lactate levels in the lysates from cells used in Figure 5.11 were 

determined as outlined in Figure 5.7. 
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Figure 5.13 

 

 

 

 

 
 

 

 

 

 

Figure 5.13: Pyruvate kinase activity was determined in lysates from 293T cells 

pretreated with ethanol (Vehicle), Jak inhibitor AG490 (AG490, 50 µM), or Src 

inhibitor PP1 (PP1, 10 µM) purchased from Calbiochem. Asterisks denote statistical 

significance of obtained differences (p<0.05 in the Student’s t�test). 
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Figure 5.14 

 

 

 

 

 
 

 

 

 

 

 

Figure 5.14: Pyruvate kinase activity was determined in lysates from 293T cells 

transfected with a control shRNA (shCON), shRNA targeting Jak2 (shJak2), or 

shRNA targeting Tyk2 (shTyk2, all constructs described in (Kumar et al., 2008)). 

Asterisks denote statistical significance of obtained differences (p<0.05 in the 

Student’s t�test). 
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Figure 5.15 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 5.15: Lactate levels in the lysates from cells used in Figure 5.14 were 

determined. 
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Figure 5.16 

 

 

 

 

 
 

 

 

 

 

Figure 5.16: Pyruvate kinase activity was determined in lysates from 293T cells 

transfected with vector control (pcDNA3) or vectors for expression of Jak2 (wild 

type or TEL�Jak2 fusion or V617F mutant). Asterisks denote statistical significance 

of obtained differences (p<0.05 in the Student’s t�test). 
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Figure 5.17 

 
 

                                           
 

Figure 5.17: The rate of proliferation of rat lymphoma Nb2�11C cells electroporated 

with a vector control (Vec), wild type murine Flag�PKM2 (PKM2
WT

), or murine 

Flag�PKM2
K433E

 (PKM2
KE

). 1x10
6
 cells were plated in triplicate for each sample 

and timepoint and cultured in the absence or presence of PRL (200ng/ml). 

Trypan�blue negative live cells were counted at 24 and 48 hours after plating.  

Flag�PKM2
WT

 and FLAG�PKM2
KE

 cloned into pLHCX retroviral vectors have 

been previously described (Christofk HR et al., 2008). Average data from three 

independent experiments (each in triplicate) are presented as % of number of initially 

seeded cells (± S.D.). Asterisks signify that the difference in growth rates between 

the treated and untreated samples is significant as determined by the student’s t�test 

(p<0.05). Material from experiment shown in top panel was analyzed by 

immunoblotting using anti�Flag (Sigma) and anti�beta actin (Sigma) antibodies in 

bottom panel. 
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Figure 5.18 

 

 

 

 

 
 

 

 

 

Figure 5.18: Pyruvate kinase activity was determined (as in Figure 5.4) in lysates 

from PRL�deficient MCF7 cells transduced with a control shRNA or shRNA 

targeting PKM2 (alone or in addition to an expression vector expressing a 

non�targetable murine PKM2 protein (wild type or K433E mutant)) and treated 

(200 ng/mL prolactin for 30 minutes, white bars) or not (grey bars) with PRL.  

Asterisks denote statistical significance of obtained differences (p<0.05 in the 

Student’s t�test).  PRL�deficient MCF7 cells (Schroeder et al., 2002) and control 

and PKM2�specific shRNA lentiviral vectors (Christofk et al., 2008a) have been 

previously described. 
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Figure 5.19 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5.19: Lactate levels in the lysates from cells used in Figure 5.18 were 

determined. 
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Figure 5.20 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 5.20: The rate of proliferation of MCF7�derived cells described in Figure 

5.18 was determined as outlined in Figure 5.17. Average data from three independent 

experiments (each in triplicate) are presented as % of number of initially seeded cells 

(± S.D.). Asterisks denotes statistically significant differences (p<0.05 in the 

student’s t�test). 
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Chapter 6 

Discussion and Future Directions 

In this thesis, we have investigated the downregulation of PRLr, its key 

determinants, and how elevated PRLr levels can result in a tumorigenic phenotype 

(Model 1).  In Chapter 2, we showed that PRL signaling is dependent on the level of 

PRLr and that the internalization of PRLr is a ligand-induced process that depends 

upon Jak2 activity (Model 1).  It is likely that upon ligand binding to PRLr, a 

conformational change occurs within the intracellular tail of each receptor subunit 

which brings the constitutively bound Jak2 proteins in close proximity.  These Jak2 

proteins then work to phosphorylate each other and phosphorylate key intracellular 

tyrosine residues on PRLr which need to be phosphorylated for effective PRL 

signaling.  In addition to the role of Jak2 in PRL signaling, Jak2 also promotes the 

kinase activity (either directly or indirectly) of another yet to be identified kinase 

which phosphorylates PRLr on Ser 349, a key serine residue of the phosphodegron 

motif of PRLr.  Upon phosphorylation of Ser 349, the SCF
β-TrCP 

E3 ligase complex is 

recruited to PRLr and ubiquitinates the receptor at target lysine residues, leading to 

subsequent degradation of the PRLr.  The kinase which phosphorylates Ser 349 of 

the phosphodegron leading to recruitment of β-TrCP E3 ligase, PRLr ubiquitination, 

and receptor degradation, has yet to be identified.  Studies aimed at the identification 

of this putative kinase and the mechanisms of its activation might be of translational 
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value since this may be the key in regulating PRLr levels. The identification of small 

molecules that stimulate PRLr phosphorylation and turnover should benefit those 

patients whose malignancies depend on PRL signaling.  However if the chosen 

target(s) promotes Ser 349 phosphorylation, there may be some augmentation of 

tyrosine phosphorylation of PRLr, similar to the effect of Jak2.  If such viable targets 

act like Jak2 in promoting PRL signaling and driving receptor degradation, any 

treatment hitting these targets may have counterproductive effects.  

In Chapter 3, we have shown that PRLr endocytosis is dependent on Ser 349 

phosphorylation (part of the phosphodegron motif), β-TrCP activity, and is a 

clathrin-dependent process which utilizes the AP-2 adaptor protein complex to tether 

the PRLr into clathrin-coated vesicles.  The internalization of PRLr was shown to be 

dependent on K63-linked polyubiquitination of the receptor as these ubiquitin 

linkages may be recognized by proteins of the endocytic machinery, thereby 

targeting PRLr for efficient internalization and subsequent degradation (Model 2).  

The way in which the cell can recognize the specific ubiquitin linkages and 

determine receptor fate is yet to be determined and remains an interesting avenue for 

further study.  Our studies showed that the interaction of PRLr and the AP-2 adaptor 

protein complex (which acts as an adaptor to couple internalized receptors and 

clathrin into clathrin-coated vesicles) is dependent on the K63-linked 

polyubiquitination of PRLr.  It is possible that AP-2 itself or associated proteins 

possess the ability to act as an ‘ubiquitin reader’, whereby the linkages found on the 

PRLr can be identified and it is then decided whether the endocytic machinery will 
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work to internalize PRLr.  While some have proposed that the fates and signaling 

properties of differentially ubiquitinated substrates is due to the different shapes of 

the polyubiquitin chains being sterically read by other interacting proteins.  

However, the possibility remains that there is an ‘ubiquitin reader’ protein that can 

bind polyubiquitin chains and identify the linkages.  Such a protein would be of a 

great deal of interest and would provide a breakthrough in the ubiquitin field.  If such 

a protein exists, it is likely a protein of the endocytic machinery that contains an 

ubiquitin-interacting domain; this protein could bind to an ubiquitinated substrate, 

mark it for internalization, and target it for degradation (whether by the proteasome 

or lysosome) or altered signaling (such as the nerve growth receptor TrkA which is 

K63-polyubiquitinated and once internalized, signals in an altered fashion inside the 

vesicles).   

While our studies suggested that K63-linked polyubiquitination targets PRLr 

for internalization and subsequent degradation, our data did show that PRLr is also 

K48-linked polyubiquitinated.  The purpose of this K48-linked polyubiquitination 

and what role it may play in PRL signaling have yet to be determined.  Furthermore, 

if PRLr is polyubiquitinated via K63 and K48 linkages, what is the fate of PRLr that 

is polyubiquitinated with a mix of both linkages?  Is this receptor still targeted for 

lysosomal degradation?  Is PRL signaling altered?  These questions still remain to be 

investigated.  

 In Chapter 4, we show that enhanced PRLr levels can lead to increased 

growth (both 2-D and 3-D) and invasiveness and this can cause a non-tumorigenic 
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cell line to have enhanced growth properties both in culture and with in vivo mouse 

models.  This proposed the importance of PRLr in tumorigenesis yet the possible 

mechanism by which PRLr enhances cell growth was unknown (Model 1).  These 

data show that the study of PRLr downregulation is a worthy endeavor in that 

elevated PRLr levels can result in a pro-tumorigenic phenotype.  While the exact 

relationship of PRL signaling and tumorigenesis, especially that in breast cancers, is 

yet to be clearly understood, the presence of aberrant PRL signaling in breast cancers 

has been established for many years.  Our work in Chapter 5 looking at the 

relationship of PRL signaling and PKM2, which plays a well-established role in 

cancer development and maintenance, provides us with a provocative mechanism by 

which the PRLr promotes tumorigenesis as seen in Chapter 4.     

In Chapter 5, we found that PRLr interacts with PKM2 and that PRL 

signaling inhibits PKM2 in a manner dependent on PRLr Tyr phosphorylation, PRLr 

level, and Jak2 activity (Model 3).  This PRL-mediated PKM2 inhibition was found 

to be a key factor in regulating PRL-mediated cell growth; this signaling crosstalk 

between PRLr and PKM2 likely plays a key role in PRL-mediated tumorigenesis.  Is 

the interaction between PRLr and PKM2 responsible for the ability of PRL to inhibit 

PKM2 activity?  Our data points to this fact but it still must be proven.  We have yet 

to determine the effect of PRL on PRLr-PKM2 binding and what regions/motifs of 

PRLr interact with PKM2.   

Future studies need to be focused on identifying the protein whose 

phosphotyrosine residues binds PKM2 and results in the inhibition of its enzymatic 
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activity in response to PRL.  This protein could be PRLr itself, Jak2, or another 

effector of PRL signaling which we did not study.  Identifying this protein may 

prove to have its own technical challenges.  The protein which directly inhibits 

PKM2 (in response to PRL) is likely an important effector of PRL signaling.  Any 

interference with the tyrosine phosphorylation of this protein may prevent inhibit 

PKM2 activity and PRL signaling at the same time, making it difficult to tease out 

the protein which directly inhibits PKM2.  If this protein can be identified, inhibition 

of this protein using a small molecule inhibitor may provide a way to abrogate the 

pro-tumorigenic effect of PRLr while keeping normal PRL signaling relatively 

intact.  Understanding the mechanism by which PRL signaling inhibits PKM2 

activity may give choice insights into the role of PRL in breast cancer and other 

human malignancies.  Since our data shows that constitutively active Jak2 resulted in 

PKM2 inhibition even in the absence of PRL, this may implicate other cytokine 

receptors, which signal through Jak2, to promote tumorigenesis by the inhibition of 

PKM2.  The inhibition of PKM2 activity, by various cytokine signaling pathways or 

any signaling pathways that activate Jak2, may prove to be a widespread mechanism 

by which normal signaling pathways become aberrant and lead to tumorigenesis. 

By investigating the mechanism of downregulation of PRLr, we have 

provided new insights into how levels of PRLr are maintained within the cell.  We 

showed that elevated levels of PRLr are sufficient to promote cell proliferation, 

invasion, and tumorigenic growth in near normal breast epithelial cell lines.  One 

novel mechanism by which PRLr exerts its pro-tumorigenic effect is by the 
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inhibition of PKM2, which acts as a key regulator of the energy production pathways 

within the cell, allowing for a tumor cell to hijack normal energy production 

pathways for metabolites that are used to create the building blocks of a growing 

tumor. 

Future studies into the regulation of PRLr levels and the interplay between 

PRLr and PKM2 will provide us new insights into the role of PRL signaling and 

tumorigenesis within the breast, giving us hope of elucidating the enigmatic role of 

PRL signaling in breast cancer pathogenesis.  
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