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Efficient Reduction of CO2 in a Solid Oxide Electrolyzer

Abstract
The electrolysis of CO2 has been examined in a solid oxide electrolyzer (SOE) using a ceramic electrode
based on La0.8Sr0.2Cr0.5Mn0.5O3 (LSCM), infiltrated into a yttria-stabilized zirconia scaffold together with
0.5 wt % Pd supported on 5 wt % Ce0.48Zr0.48Y0.04O2. An SOE with this electrode exhibited a total cell
impedance of 0.36 Ω cm2 at 1073 K for operation in CO–CO2 mixtures. An additional benefit is that the
CO–CO2 electrode was shown to be redox stable, with LSCM exhibiting good conductivity in both oxidizing
and reducing environments, so that the cell can operate in pure CO2.
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Efficient Reduction of CO2 in a Solid Oxide Electrolyzer
F. Bidrawn,a G. Kim,a G. Corre,b J. T. S. Irvine,b,*,z J. M. Vohs,a,* and
R. J. Gortea,*,z

aDepartment of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, USA
bSchool of Chemistry, University of St. Andrews, Fife KY16 9ST, United Kingdom

The electrolysis of CO2 has been examined in a solid oxide electrolyzer �SOE� using a ceramic electrode based on
La0.8Sr0.2Cr0.5Mn0.5O3 �LSCM�, infiltrated into a yttria-stabilized zirconia scaffold together with 0.5 wt % Pd supported on 5 wt %
Ce0.48Zr0.48Y0.04O2. An SOE with this electrode exhibited a total cell impedance of 0.36 � cm2 at 1073 K for operation in
CO–CO2 mixtures. An additional benefit is that the CO–CO2 electrode was shown to be redox stable, with LSCM exhibiting good
conductivity in both oxidizing and reducing environments, so that the cell can operate in pure CO2.
© 2008 The Electrochemical Society. �DOI: 10.1149/1.2943664� All rights reserved.

Manuscript submitted April 11, 2008; revised manuscript received May 18, 2008. Published June 20, 2008.

When the economy is based on renewable energy resources, such
as wind and solar, the major source of H2 for chemical production
and energy storage will be from the electrolysis of water. The ability
to reduce CO2 efficiently by a similar process could also play a role
in reducing greenhouse gas emissions and moving us toward a more
sustainable economy.1 CO produced in this manner could be used in
chemical production or reacted with H2 to produce liquid fuels via
the Fischer–Tropsch reaction.2

Solid oxide electrolyzers �SOEs�, which are essentially solid ox-
ide fuel cells �SOFCs� operated in reverse, are capable of higher
water electrolysis efficiencies compared to solution-based electroly-
sis cells because they operate at higher temperatures ��925 K�.
The higher operating temperatures result in a lower Nernst potential,
the thermodynamic potential required for water splitting, and in
lower electrode overpotentials.3 �The electrode overpotential is the
difference between the actual electrode potential and the Nernst po-
tential, and is a measure of the lost efficiency in the cell.� SOEs also
differ from low-temperature, solution-based electrolyzers in that the
electrolyte membrane conducts oxygen anions, rather than protons.
The material most often used for the electrolyte is yttria-stabilized
zirconia �YSZ�, a material that is a good oxygen-anion conductor
and an electronic insulator. In an SOE, the cathode �the fuel-side
electrode� reaction for water electrolysis is the electrochemical dis-
sociation of steam to produce H2 and O2− anions, Reaction 1, while
recombination of the oxygen ions to O2, Reaction 2, occurs at the
anode �the air-side electrode�

H2O + 2e− → O2− + H2 �1�

O2− → 2e− + 1/2O2 �2�

By analogy to Reaction 1, the reduction of CO2 can also be carried
out at the fuel-side electrode using Reaction 3

CO2 + 2e− → O2− + CO �3�

Finally, note that the Nernst potentials for the electrolysis of H2O
and CO2 are virtually identical.

There are a few reports for the electrochemical reduction of CO2
to CO in SOEs.4-6 Most of these have focused on O2 production for
space missions and have employed expensive bulk Pt electrodes that
would not be practical for large-scale CO2 electrolysis as would be
required for sustainable chemical and fuel production. Furthermore,
the overpotentials for the Pt electrodes used in these studies were
very high, so that the efficiency for CO2 reduction was low.

In conventional SOE used for steam electrolysis, the fuel-side
electrode is a composite of Ni and YSZ,7-9 the same material that is
used in SOFCs for oxidation of H2. In principle, Ni–YSZ electrodes

can be used for CO2 electrolysis10 but they suffer from several im-
portant limitations. First, while Ni–YSZ electrodes are efficient for
H2 oxidation, electrode overpotentials for CO oxidation are much
higher.11 Indeed, a highly optimized SOFC that was able to produce
1.8 W/cm2 when H2 was the fuel produced less than 0.3 W/cm2 on
a 44% CO–56% CO2 mixture at 1073 K.12 When SOFCs are
operated on syngas, a mixture of CO and H2, the oxidation of
CO proceeds primarily through the water–gas-shift reaction,
CO + H2O → H2 + CO2, with H2 oxidation still the primary
electrochemical reaction.11,12 Second, there are concerns about the
stability of Ni–YSZ composites in a CO–CO2 environment. Ni car-
bonyls are highly volatile,13 making it important to choose operating
conditions for which carbonyl formation is less favorable. Ni is also
a superb catalyst for the Boudouard reaction, 2CO → C + CO2,14,15

so that operation would be limited to higher temperatures and
CO2:CO ratios to avoid equilibrium conditions favorable for this
reaction. Finally, Ni–YSZ composites are severely damaged by
reoxidation.16 Because Ni would be oxidized by pure CO2, it would
be necessary to ensure that the feed to any CO2 electrolyzer con-
tained sufficient CO or H2 to make the gas composition reducing
over all parts of the electrode.

Our groups have recently demonstrated that it is possible to
achieve a very high performance with an electrode made from 45 wt
% La0.8Sr0.2Cr0.5Mn0.5O3 �LSCM�, 0.5 wt % Pd, and 5 wt % ceria
infiltrated into a porous YSZ scaffold.17 In this composite electrode,
LSCM provides electronic conductivity, YSZ provides ionic conduc-
tivity, and the Pd–ceria mixture enhances the catalytic activity for
fuel oxidation. An SOFC with this fuel–electrode composition ex-
hibited maximum power densities at 1073 K of 1.1 and 0.71 W/cm2

in humidified �3% H2O� H2 and methane, respectively, even though
the cell had a relatively thick, 60 �m YSZ electrolyte. The compos-
ite electrode was also stable to oxidation and reduction cycles,
showing conductivity under both oxidizing and reducing conditions.
Finally, none of the materials used in the LSCM-based electrode
forms vapor-phase carbonyls, and none is a good catalyst for carbon
formation by the Boudouard reaction. These attributes make this
electrode design a good candidate for use in a CO2 SOE system.

In this paper, we describe the performance characteristics for
CO2 electrolysis of an SOE with a fuel electrode based on LSCM.
The results demonstrate that this electrode is very efficient for the
electrochemical reduction of CO2.

Experimental

Cells were fabricated by first preparing a three-layer YSZ wafer,
consisting of two porous layers separated by a dense electrolyte
layer, 65 �m thick as previously described.17-19 The three-layer ce-
ramic wafers were produced by laminating three green ceramic
tapes, synthesized by tape casting, with pore formers in the two
outer tapes. The laminated green tapes were fired to 1773 K to
produce the final ceramic structures. The porous layer on one side of

* Electrochemical Society Active Member.
z E-mail: jtsi@st-andrews.ac.uk; gorte@seas.upenn.edu

Electrochemical and Solid-State Letters, 11 �9� B167-B170 �2008�
1099-0062/2008/11�9�/B167/4/$23.00 © The Electrochemical Society

B167

Downloaded 18 Aug 2008 to 130.91.116.168. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp



the electrolyte was 300 �m thick YSZ ��65% porous� and was
used as the scaffold for the air-side electrode, while the other porous
layer was 60 �m thick YSZ ��65% porous� and was used as the
scaffold for the fuel-side electrode. Porosity in the 300 �m layer
was obtained using a mixture of graphite and polystyrene pore form-
ers �the latter was used to introduce larger pores�, while the thinner
porous layer used only graphite.

The addition of 45 wt % LSCM to the porous fuel-side layer was
the next step in cell fabrication. The impregnating solution was pre-
pared by adding La�NO3�3·6H2O �Alfa Aesar, ACS 99.9%�,
Sr�NO3�2 �Alfa Aesar, ACS 99.0%�, Cr�NO3�3·9H2O �Alfa Aesar,
ACS 98.5%�, and Mn�NO3�2·xH2O �Alfa Aesar, ACS 99.98%� to
distilled water in the correct molar ratios, then mixing this with
citric acid ��99.5%, Aldrich� to produce a solution with a citric-
acid:metal-ion ratio of 2:1. After infiltrating the porous layer with
this solution, the ceramic wafer was heated in air to 750 K to de-
compose the nitrate ions and the citric acid. This procedure was
repeated until the desired weight loading of LSCM was achieved.
Finally, the wafer was heated in air to 1473 K to produce the per-
ovskite structure.

After forming the LSCM in the porous layer, the
�La0.8Sr0.2FeO3� LSF–YSZ air-side electrodes were synthesized by
impregnating the 300 �m thick layer with an aqueous solution con-
taining La�NO3�3·6H2O, Sr�NO3�2, and Fe�NO3�3·9H2O, to a load-
ing of 40 wt % LSF, followed by calcination to 1123 K.18 The
impedance of LSF–YSZ electrodes prepared in this way is between
0.1 and 0.15 � cm2 at 973 K and is independent of current density
under both fuel-cell and electrolyzer conditions. Following the ad-
dition of LSF, 0.5 wt % Pd and 5 wt % of the mixed oxide,
Ce0.48Zr0.48Y0.04O2 �CZY�, were added as catalysts to the LSCM-
containing layer by addition of the nitrate salts and heating in air to
750 K. Pd supported on ceria–zirconia is known to be highly active
for oxidation catalysis,20 and Y doping of the ceria–zirconia main-
tains the mixed oxide as a single-phase material following high-
temperature treatments.21 The addition of an oxidation catalyst was
found to be essential for achieving high electrode performance.17

For testing, cells were attached to an alumina tube with a ceramic
adhesive �Aremco, Ceramabond 552�. Electrical connections were
achieved using Ag paste and Ag wire at both the air and fuel elec-
trodes. The gas to the fuel-side electrode was either humidified
�10% H2O� H2 or a mixture of CO and CO2, with the concentration
controlled by the relative flow rates of the gases. The air electrode
was simply exposed to the ambient air. Impedance spectra were
measured at open circuit in the galvanostatic mode with a frequency
range of 0.1 Hz to 100 kHz and a 10 mV ac perturbation using a
Gamry Instruments potentiostat. The active area of the cells, equal
to the area of the fuel electrode, was 0.35 cm2; but the area of the
electrolyte and of the air electrode was approximately 1 cm2.

Results and Discussion

A complete description of the LSCM–YSZ17 electrode micro-
structure is given elsewhere. What this earlier work showed is that
the infiltration process produces a remarkable morphology, with a
thin porous layer of electronically conductive LSCM covering the
surface of the YSZ scaffold. Infiltration of the
Pd/Ce0.48Zr0.48Y0.04O2 catalyst into the LSCM pores then adds the
necessary catalytic sites. This microstructure appears to be critical
for achieving high performance by providing a mixed conducting
substrate with a large, catalytically active, three-phase boundary.
The electrode was demonstrated to be thermally stable on cycling up
to at least 1173 K.

Figure 1 shows a comparison of the cell performance with the
fuel-side electrode exposed to 90% H2–10% H2O and
90% CO–10% CO2 mixtures at 973 K. In this figure, oxidation of
H2 and CO is indicated by positive currents and reduction of H2O
and CO2 by negative currents. The cell potential at zero current was
1.05 V in H2–H2O and 1.07 V in CO–CO2, which is close to the
calculated Nernst potentials for these fuel compositions when the

opposite electrode is exposed to ambient air. Because the feeds to
the fuel side of the cell were dilute in both H2O and CO2, the
overpotentials in electrolysis are higher than those under fuel-cell
conditions. With the H2–H2O mixture, a current density of
1.14 A/cm2 was obtained at a cell potential of 0.5 V, while the
corresponding electrolysis current density at 1.5 V was only
0.64 A/cm2. With CO–CO2 mixtures, the corresponding current
densities at 0.5 and 1.5 V were 0.75 and 0.34 A/cm2, respectively.

The corresponding open-circuit impedance spectra, Fig. 2, pro-
vide insight into the origin of the overpotential losses while operat-
ing in the electrolysis mode. As expected, a significant fraction of
the cell losses was ohmic and attributable to the internal resistance
drop in the 65 �m YSZ electrolyte. The measured ohmic losses,
determined from the high-frequency intercept with the abscissa,
were 0.37 � cm2 for operation in H2 and H2O and 0.35 � cm2 for
operation in CO and CO2, in good agreement with the calculated
resistance of 0.35 � cm2 expected for the 65 �m electrolyte, using
reported YSZ conductivities.22 The nonohmic losses, determined
from the length of the arc under the impedance curves, were
0.19 � cm2 for operation in H2–H2O and 0.6 � cm2 for operation
in CO–CO2. Losses for the LSF–YSZ air electrode are estimated to
be between 0.1 and 0.15 � cm2 at 973 K,18 suggesting that the fuel
electrode losses in H2–H2O are approximately 0.1 � cm2 and those
in CO–CO2 mixtures are 0.5 � cm2.

Figures 3 and 4 show the voltage–current density �V-i� relation-
ships for the cell during electrochemical reduction of CO2 and oxi-
dation of CO as a function of the CO:CO2 ratio in the fuel at 973
and 1073 K, respectively. When pure CO2 is fed to the fuel-side

Figure 1. V-i polarization curves for 10% H2O–90% H2 ��� and
10% CO2–90% CO ��� mixtures at 973 K. Negative currents correspond to
electrolysis of H2O or CO2. The cell composition was as follows: 40 wt %
LSF in YSZ�YSZ�65 �m�� 0.5 wt % Pd, 5 wt % CZY, and 45 wt % LSCM
in YSZ.

Figure 2. Cole–Cole plots, measured at the open-circuit potentials or OPCs
if it shortened, for 10% H2O–90% H2 ��� and 10% CO2–90% CO ���
mixtures at 973 K. The cell composition was as follows: 40 wt % LSF in
YSZ�YSZ�65 �m�� 0.5 wt % Pd, 5 wt % CZY, and 45 wt % LSCM in YSZ.
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electrode, the open-circuit potential �OCP� is close to zero. �These
are obviously conditions for which a Ni–YSZ electrode would un-
dergo oxidation.� The cell potential rises to �0.8 V as CO is pro-
duced by CO2 reduction. At 1.5 V, the reduction current reaches
0.96 A/cm2 at 973 K and 1.8 A/cm2 at 1073 K. At 973 K for a
CO2:CO ratio of 9:1, the OCP is 0.87 V and increases with decreas-
ing the CO2:CO ratio. The slope of the V-i curve remains nearly the
same as that for pure CO2, however, as long as there is sufficient
CO2 to avoid diffusional limitations. Diffusion limitations are al-
most certainly the reason for the increase in the slope at higher
current densities. The nearly constant slopes, approximately
0.63 � cm2 at 973 K and 0.36 � cm2 at 1073 K, reflect the fact
that the electrode impedances are nearly current-independent so long
as the diffusion of CO2 �for CO2 reduction� or CO �for CO oxida-
tion� is not limiting. Because 65 �m YSZ electrolyte contributes to
the increased slope of these lines, 0.35 � cm2 at 973 K and
0.15 � cm2 at 1073 K,22 significant improvements could be made
by using a thinner electrolyte.

Next, we consider how the LSCM-based electrode in the present
study compares to the best Ni–YSZ electrodes. Because the only
available CO2 electrolysis data on cells with Ni–YSZ electrodes are
for much higher temperatures, 1223 K,10 we instead compare the
performance of our cells operating as a fuel cell. As mentioned in
the beginning, a highly optimized SOFC with a Ni–YSZ anode and
a 10 �m thick electrolyte produced less than 0.3 W/cm2 on a

44% CO–56% CO2 mixture at 1073 K, even though it was capable
of producing 1.8 W/cm2 on 100% H2 at this temperature.12 Figure
5, which shows the power density as a function of current density
for our cell operating in the fuel-cell mode in various CO–CO2
mixtures, demonstrates that our cell achieved 0.45 W/cm2 in a
50% CO2–50% CO mixture at this temperature, even with a
65 �m electrolyte. Clearly, the performance of these LSCM-based
electrodes in CO–CO2 mixtures is excellent.

Conclusion

We have demonstrated that it is possible to reduce CO2 electro-
chemically with an efficiency that is similar to that which can be
achieved for H2O electrolysis. This result suggests that reduction of
CO2 by electrolysis in an SOE is feasible and could play a role in
the development of sustainable and nongreenhouse-gas-emitting en-
ergy and fuel cycles which use renewable energy sources such as
wind and solar to produce chemicals and liquid fuels.
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