
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

April 1989

Polynomial Learnability of Semilinear Sets Polynomial Learnability of Semilinear Sets

Naoki Abe
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Naoki Abe, "Polynomial Learnability of Semilinear Sets", . April 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-25.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/792
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76365371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/792
mailto:repository@pobox.upenn.edu

Polynomial Learnability of Semilinear Sets Polynomial Learnability of Semilinear Sets

Abstract Abstract

We characterize learnability and non-learnability of subsets of Nm called 'semilinear sets', with respect to
the distribution-free learning model of Valiant. In formal language terms, semilinear sets are exactly the
class of 'letter-counts' (or Parikh-images) of regular sets. We show that the class of semilinear sets of
dimensions 1 and 2 is learnable, when the integers are encoded in unary. We complement this result with
negative results of several different sorts, relying on hardness assumptions of varying degrees - from P ≠
NP and RP ≠ NP to the hardness of learning DNF. We show that the minimal consistent concept problem
is NP-complete for this class, verifying the non-triviality of our learnability result. We also show that with
respect to the binary encoding of integers, the corresponding 'prediction' problem is already as hard as

that of DNF, for a class of subsets of Nm much simpler than semilinear sets. The present work represents
an interesting class of countably infinite concepts for which the questions of learnability have been nearly
completely characterized. In doing so, we demonstrate how various proof techniques developed by Pitt
and Valiant [14], Blumer et al. [3], and Pitt and Warmuth [16] can be fruitfully applied in the context of
formal languages.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-25.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/792

https://repository.upenn.edu/cis_reports/792

POLYNOMIAL LEARNABILITY
OF SEMILINEAR SETS

Naoki Abe

MS-CIS-89-25
LING LAB 149

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

April 1989

Acknowledgements: This research was supported in part by an IBM graduate fellowship,
Office of Naval Research grant N00014-87-K-0401, DARPA grant NO001 4-85-K-0018, NSF
grants MCS-8219196-CER, I R184-10413-A02 and U.S. Army grants DAA29-84-K-0061,
DAA29-84-9-0027.

Polynomial Learnability of Semilinear Sets*

Naoki Abe

Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA19104.

April 5 , 1989

Abstract

We characterize learnability and non-learnability of subsets of Nm called 'semilinear
sets', with respect to the distribution-free learning niodel of Valiant. In formal language
terms, semilinear sets are exactly the class of 'letter-counts' (or Parikh-images) of regular
sets. We show that the class of semilinear sets of dimensions 1 and 2 is learnable, when
the integers are encoded in unary. We complement this result with negative results
of several different sorts, relying on hardness assumptions of varying degrees - from
P # N P and R P # N P to the hardness of learning DNF. We show that the minimal
consistent concept problem is NP-complete for this class, verifying the non-triviality
of our learnability result. We also show that with respect to the binary encoding of
integers, the corresponding 'prediction' problem is already as hard as that of DNF, for
a class of subsets of Nm much simpler than semilinear sets. The present work represents
an interesting class of countably infinite concepts for which the questions of learnability
have been nearly completely characterized. In doing so, we demonstrate how various
proof techniques developed by Pitt and Valiant [14], Blumer et al. [3], and Pitt and
Warmuth [16] can be fruitfully applied in the context of formal languages.

1 Introduction

We consider the problem of learning semilinear subsets of Nm, with respect to the distribution-free
learnability model of Valiant [18]. Semilinear sets are finite unions of linear subsets of Nm, where
a linear set is the set of values assumed by a linear integral formula of the form:

v0 $ cl vl $... $ ck .vk

*The work reported herein is supported in part by an IBM graduate fellowship awarded to the author and by the
Office of Naval Research under contract number N00014-87-K-0401.

as the ti's vary over natural numbers, where the vi's are constant integral vectors of dimension m
(v; E Nm). The constant vectors vl, ..., vk are called 'generators' of the linear set, as they are indeed
generators of the set S obtained by uniformly subtracting the 'offset vector' vo from the linear set
L (i.e. S = {x - vo (x E L)), when one views the set as the additive semigroup generated by the
vi 's.

The model of learnability we use is that of 'polynomial learnability' (or 'pac-learnability'), intro-
duced by Valiant [18], [17] in the context of boolean concept learning, and subsequently generalized
to arbitrary concepts by Blumer et al. [3]. We consider the learnability of semilinear subsets of Nm
with respect to both the unary encoding and the binary encoding of integers both for examples
and concept representations.

We settle, up to varying degrees of hardness assumptions ranging from P # N P and R P + N P
to the hardness of learning DNF, a host of learnability questions for these and related classes of
subsets of Nm. This work provides an interesting class of infinite concepts for which the questions of
learnability in Valiant's model have been nearly completely settled, and demonstrates how various
proof techniques recently developed by Pitt and Valiant [14], Blumer et al. [3], and Pitt and
Warmuth [16] can be fruitfully applied to classes of formal languages.

2 Results and Significance

With respect to the unary encoding, we show that the entire class of semilinear sets, for dimensions 1
and 2, is polynomially learnable. Since m-dimensional semilinear sets are exactly the sets of "letter
counts" (or Parikh-images) of regular sets over an m-letter alphabet (see [12]), our result implies
that NFA (non-deterministic finite state automata) of alphabet size at most 2 is polynornially
learnable modulo equivalence under Parikh-mapping, in a certain well-defined sense. This result is
particularly interesting, in light of the recent results by Pitt and Warmuth [15] and Kearns and
Valiant [lo] indicating that learning the entire class of NFA is most likely hard. We show this result
by a proof technique due to Blumer et al. [4], namely by exhibiting an 'Occam algorithm', that is,
a polynomial time algorithm which reliably compresses a given sample to a consistent hypothesis,
which is polynomially approximately minimal and less than linear in the sample size (number of
examples).

We complement this result with negative results of varying sorts which, in addition to being
of interest on their own, provide specific reasons to suspect that a significantly stronger positive
result for this class is difficult to obtain. First, we show that the corresponding 'minimal consistent
concept representation' problem (to find a minimal hypothesis consistent with a given sample from
the class of concept representations under consideration) is strongly NP-complete. Obtaining an
approximately minimal consistent hypothesis, therefore, is the best we can reasonably expect to
do in polynomial time. Second, we show that the Vapnik-Chervonenkis dimension1 of successive
subclasses of semilinear sets of bounded size n, where 'size' is taken to mean the size in unary of

m
the concept representations in question, grows at least as fast as n X , hence it follows that the

lVapnik-Chervonenkis dimension, or VC-dimension for short, is a measure of combinatorial complexity of a concept
class. A great many of the performance guarantees for polynomial learnability are stated in terms of the VC-dimension
of the concept class in question [3].

m

lower-bound for the number of examples required for pac-learning is also at best order of nm+l,
by a result of Ehrenfeucht et al. [6]. Finally, we show that the 'prediction' problem2 for linear sets
encoded in binary is at least as hard as that for DNF - a long-standing open problem in the field. In
fact, the existence of any prediction algorithm for linear sets encoded in unary, which runs in time
polynomial in the 'domain dimension' (m) in addition to other parameters, would also show the
predictability of DNF. Furthermore, the analogous results are shown to hold for a class of subsets
of Zm which is significantly simpler than semilinear sets.

Our result on the minimal consistent concept representation problem for semilinear sets in unary
is one of non-approximability. More specifically, it cannot be approximated within any guaranteed
constant factor less than 2 in polynomial time, unless P = NP. This result complements the recent
result of Pitt and Warmuth [15] that the 'minimal consistent DFA problem' cannot be approximated
within any polynomial. On the one hand, we do not have the non-polynomial approximability result
that they have. On the other hand, the class under consideration here is a much simpler class which
is in fact polynomially learnable (if only for a restricted range of dimensions). We also show a related
result using a proof technique due originally to Pitt and Valiant [14]; The class of semilinear sets
that are unions of a bounded number, say k, of linear sets ('k-fold semilinear sets') is not properly
polynomially learnable3 unless R P = NP.

Our results on predictability are shown using the proof technique of 'prediction preserving
reducibility' recently developed by Pitt and Warmuth [16]. The result that the class of linear sets
encoded in binary is as hard to predict as DNF is not surprising, as we have also shown that even
the 'evaluation problem'4 for linear sets in binary is NP-complete [I]. It was noted by Manfred
Warmuth, however, that the prediction-preserving reduction exhibited to prove this result can be
extended to show that the prediction problem for linear sets in unary is also as hard as that of
DNF, if one considers the dimension of the class to be a variable ('variable dimensions'). The
class of concepts for which we show the analogous results is the 'submodules' of Zm, the learning
problem of which has been extensively investigated by Helmbold, Sloan and Warmuth [9]. They
show that not only is the class of submodules of Zm encoded in binary efficiently learnable, but so
is the class of 'nested differences' of members of this class. In contrast, we have shown that the
prediction problem for the class of finite unions of modules (or 'semi-modules') is also as hard as
that for DNF, for fixed dimensions in binary, or variable dimensions in unary.

These results together draw up a nearly complete characterization of learnability of the concept
classes in question, as summarized in the tables in Figures 1 and Z7 The positive results for

 he prediction problem for a class of concepts is a slightly relaxed notion of learning where the algorithm need
not output any hypothesis concept explicitly. Predictability of a given class is implied by its learnability (cf. [16]).

3~ class of concept representations A is said to be learnable by another class B, if there exists a learning algorithm
which only outputs hypotheses from B and learns A. A is properly learnable iff A is learnable by A (cf. [14]).

*The evaluation problem for a class of language representations B is the language {(G, w) I G E B A w E L(G)}
where L(.) denotes the mapping from a representation to the language it represents (cf. [16]).

'It has been suggested by several different sources that this result had been known, although no correct reference
to the result has been pointed out to the author.

6Algebraically these classes are closely related. A linear set is a finitely generated semigroup under addition with
a constant offset, while a module is indeed a finitely generated module under addition and subtraction. The former is
a much more complicated class of concepts, however, both computationally and learning-theoretically. For the former
the evaluation problem (in binary) is NP-complete and the Vapnik-Chervonenkis dimension grows nearly linearly
already with respect to the unary encoding, whereas for the latter the evaluation problem is efficiently solvable in
polynomial time, and the Vapnik-Chervonenkis dimension grows logarithmically with respect to the unary encoding.

71n these tables, 'Thm x.y' indicates that the result is stated in Theorem x.y, and 'Cor x.y' indicates that it follows

Linear Sets I Seniilinear Sets 11 Modules I Semi-modules

Fixed Dimensions

Figure 1: Results on pac-learnability and predictability.

- u

Semilinear Sets (Proper Pac-learnability, Minimal Consistency)
11 Linear Sets I K-fold Semilinear I Minimal Consistent I Semilinear Sets

Figure 2: Results on Semilinear Sets encoded in Unary.

Variable Dimensions
unary k DNF * (Thm 5.7) 1> DNF * (Cor 5.7, 5.8) yes [9] 1> DNF (Thm 5.8)

yes [9]
yes [9]

yes m < 2 (Thm 5.2)
k DNF (Cor 5.5, 5.6)

unary
binary

unary

modules are due to Helmbold, Sloan and Warmuth 191, as indicated.

yes (Cor 5.2)
D DNF (Thm 5.6)

yes m < 2 (Cor 5.2)
k DNF (Thm 5.5)

3 The Learnability Models

(proper-pac)
?

We are concerned with the question of probably approximately correct(pac) learnability of count-
ably infinite concept classes from randomly generated examples, essentially in the sense of Valiant
[18]. In adapting Valiant's original formulation of learnability of boolean concepts to infinitar y
domains, an interesting question arises as to exactly what parameters quantifying the complexity
of the concept class under consideration should be included in the arguments to the polynomial
of the 'sample complexity'8. In the case of boolean concepts, the sample complexity was allowed
to polynomially (and at most polynomially) depend on the number of variables, which could be
thought of as either the length of examples (assignments), or the 'dimension' of the domain under
consideration. In an infinitary domain such as C*, it is arguable whether the sample complexity
should be allowed to polynomially depend on the (maximum) length of examples seen. Subsequent
generalizations of Valiant's model to infinitary domains have taken different views on this issue. In
this paper we employ different formulations of learnability, depending on whether we are consider-
ing the unary encoding or the binary encoding. In particular, we adopt the exact formulation of
'polynomial learnability' by Blumer et al. [3] for the unary case, in which the sample complexity is
not allowed to depend on the example length. For the binary case, we employ the version of poly-
nomial learnability in which sample complexity is allowed to polynomially depend on the length
of the longest example seen, following the formulation of 'predictability' by Haussler et al. [8] and
Pitt and Warmuth 1161. It is important to note this distinction particularly because the prediction
problem with respect to the unary encoding becomes trivial if the sample complexity is allowed to
polynomially depend on the length of the longest example seen 1131. We review in the following

(essentially) as a corollary of Theorem x.y. ' DNF' indicates that DNF is prediction-preserving reducible to it. '[g]'
indicates a result by Helmbold et al., and '*' an extension by Manfred Warmuth.

'This notion will shortly be formally defined.

Sets (proper-pac)
hard (k 2 3) unless

RP = N P (Thm 5.4)

Semilinear Sets
NP-hard

(Thm 5.3)

(P ~ c >
Yes (m 5 2)
(Thm 5.2)

the definition of 'polynomial learnability '

In this paper the domain (X) under consideration is assumed to be (C*)m for some alphabet
C. Learnability question is asked of a class of concept representations (Q) which represent some
class of concepts R(Q) over X , that is9, R(Q) P(X). We fix some encoding scheme for these
representations with respect to which we define the notion of 'complexity measure7 (size) on these
representations. We let Q, denote the subclass of Q of bounded size s. Examples are drawn with
respect to some time-invariant probability distribution (D) over the entire domain X, and then
they are paired with either + or - to indicate whether they belong to the target concept or not.
This process is iterated m times to obtain a labeled sample of size m (S,), which is then fed into
our learning algorithm.

A learning algorithm is a possibly randomized algorithm which takes as input a labeled sample
and outputs a hypothesis from some class of concept representations. A learning algorithm is said
to learn a concept representation class Q with sample complexity f (~ ~ 6 , s) if and only if for whatever
distribution D, and whatever values of E and 6, whenever it is fed with a randomly generated labeled
sample of size at least f (E, 6, size(G)) for some concept R(G) in R(Q) according to D, its output
hypothesis H is an E-approximation of R(G), that is, D(R(G)AR(H)) < E, with probability at
least 1 - 6. A class of concept representations {G, 1 s E N +) is said to be polynomially learnable,
if there exists a learning algorithm A which learns Q with sample complexity f (E,S, s), for some f
polynomial in E-I, and s, and which runs in time polynomial in the total length of the input
sample.

For the binary case, we use the version of polynomial learnability in which on any particular
'run', the distribution (D) is assumed to be defined over a subset of the domain C* of bounded length
n, and then a learning algorithm is said to polynomially learn a class of concept representations
just in case it learns it with sample complexity f (E,S, s , n) for some f polynomial in all of E-', 6-I,
s and n.

4 Classes of Concepts Under Consideration

We define the class of concept representations considered in this paper. Throughout, bo, .., b, are
integral vectors in Nm.

Linear Bases (LB) for Linear Sets
B = (bo, {bl, ..., b,)) is called the linear basis of the linear set L(B) = {bo + Cr=l xib; I Vi 5 n xi E

N l .

Semilinear Basis Sets (SLB) for Semilinear Sets
If B1, ..., B, are linear bases, then {B1, ..., B,) is called the semilinear basis set of the set Ur=l L(B;) .

Module Bases (MB) for Modules
The set B = {bl, ..., b,) is called the module basis of the module L(B) = {CZ1 xibi I Vi 5 n xi E 2).

'We denote by R(G) the concept represented by G , and by R(4) the class of concepts represented by 8.

Semi-module Basis Sets (SMB) for Finite Unions of Modules
If B1, ..., B, are module bases, then {B1, ..., B,} is called the module basis set of the set Uy=, L(Bi).

The components of example vectors in the domain, as well as those of vectors in concept
representations are either encoded in binary, or encoded in unary. We define 'size' in binary of
a concept representation to be the sum of the log of all the integers appearing as components of
vectors in it, and the 'size' in unary to be the sum of all the component integers themselves. In this
paper we consider the two cases (out of the four in total), in which the same encoding is used for
the examples and for the concept representations. We explicitly quantify all our results by 'unary'
or 'binary', as in 'SLB(unary)', for example. Also we specify the dimension of the concept class
under consideration in a similar manner: For example, SLB(m, binary) denotes the m-dimensional
SLB in binary, and LB(variable,unary) denotes variable-dimensional LB in unary. Finally, for
any concept representation class A (such as SLB) we denote by A, (such as SLB,) the subclass of
A of bounded size n, that is, A, = {B E A I size(B) 5 n).

5 Technical Details

5.1 Vapnik-Chervonenkis Dimensions of Semilinear Sets in Unary

We characterize the VC-dimension of LB, of dimension 1 up to a constant factor, and those of LB,
and SLB, of arbitrary dimensions within at most fi factor, and thereby establish a lowerbound
for the sample complexity of any learning algorithm for these classes by a result of Ehrenfeucht et
al. [6].

Theorem 5.1 If we let VCdim(C) denote the VC-dimension of the concept class represented by
C ,

(1) Vn E N + VCdim(LB(l,unary),) = @(+)
(2) Vn E N + VCdim(LB(m, unary),) = O(f i)

= O(n)

Corollary 5.1 Any learning algorithm for SLB(m, unary) requires at least R(E-' . log 6-I + 6-I .
n*) many examples to achieve r accuracy with 1 - 6 confidence.

In both cases, the upperbound of O(n) trivially follows from the fact that a string of length n can
represent at most 0 (2,) different concepts .

Proof of Theorem 5.1(1)
Lowerbound: Let S, = {n, n + 1, ..., 2n - 1). Then, for an arbitrary subset T C S,, if we let
BT = (O,T), then, L(BT) fl S, = T. Also, size(T) = C z E T x 5 x 5 2 . n2. Hence, S,
is shattered by LB(1, ~ n a r y) ~ , ~ for an arbitrary n. It follows therefore that for some constant c,
Vn E N VCdim(LB(1, unary),) 2 c fi.

Upperbound: This is shown by a counting argument. If we let P(n) denote the number of
'partitions' of n, that is, the number of multisets of positive integers whose sum equal n, then
we have card(LB(l,unary),) = O(Cr=l P(n)). By a result by Hardy and Ramanujan (See

for example [2].), we have P(n) = 0 (2 6) . So, C:,, P(i) = O(x:=l 2J) = 0(2fi) , Hence,
VCdim(LB(1, unary),) 5 log(card(LB(1, unary),)) = O(&).

Proof of Theorem 5.1(3)
1

We prove the lowerbound. Let S,,, = {1,2,..,nm}m, where we assume that n is a perfect m-th
power. Note the following:10
(1) card(S,,,) = n.

m-1 - 1 m-1 2

(2) size(S,,,) = m - n m . xy=", = O(m - n m - nm) = ~ (n e) .
Now, for an arbitrary T C S,,,, define BT = {(b,q5) I b E T). Then for any T, it is clear

22t.L
that L(BT) n S,,, = T, and size(&) 5 size(S,,,) = O(n). thus, S,,, is shattered by

a
SLB(m, unary) : Hence, VCdim(LB(m, unary),) = O(nm+l).

n m

5.2 Learnability Result for Semilinear Sets

Theorem 5.2 SLB(m, unary) is Properly Polynomially Learnable for m = 1, 2.

We prove this theorem (for the 2 dimensional case only) by exhibiting an Occam Algorithm with
a range dimension (cf. [4]) logarithmic in the sample size, and polynomial in the size of a minimal
basis set.

5.2.1 ProofSketchofTheorem 5.2

We exhibit a normal form for semilinear bases, with a 'polynomial blow-up'," such that each
semilinear basis set in this normal form is a finite union of linear bases each of which has at most
two generators. Now, for a, given positive sample, we can generate all such linear bases that are
relevant to that sample and eliminate the ones that are inconsistent with the negative sample in
time polynomial in the total sample length. This leaves us with a polynomially bounded set of
linear bases of varying sizes all consistent with the input sample, of which the 'relevant7 part of a
minimal consistent semilinear basis set in the normal form is guaranteed to be a subset. We can
then apply the polynomial time approximation algorithm of Chvatal [5] to the instance of Weighted
Set Cover obtained by taking the positive sample to be the set to be covered, its subsets defined by
the relevant linear bases and the sizes of these bases to be the weighted legal subsets. As Chvatal's
algorithm always outputs a cover whose total weight is polynomially bounded in the total weight
of a minimal weight cover and logarithmic in the number of points to be covered, this will give us
an Occam algorithm.

The main significance of this result lies in the fact that via the 'poly-blowup' normal form, we
are able to show the entire class of semilinear sets of dimensions 1 and 2 to be learnable, without

''For any set S of vectors, we define s i ze (S) to be the sum of all the components of vectors in it.
''That is, for each semilinear basis set there exists a language equivalent one in the normal form whose size is only

polynomially larger, for some fixed polynomial.

Figure 3: Schematic views of 1,2-dimensional linear sets.

having to put an explicit bound on the number of generators, as is necessary, for example, in the
case of k-DNF. It is worth noting that our proof in some sense uses a special case of the notion of
'prediction preserving reduction'. Namely, we have reduced the learning problem of unrestricted
SLB to that of '2-SLB', by a reduction with the concept mapping being the 'poly-blowup' normal
form, and the example mapping being the identity function.

5.2.2 The Normal Form Lemma

As it is clear from the proof sketch we just gave, the key step in the proof is the poly-blowup normal
form lemma. We now state the normal form theorem for (2-dimensional) semilinear bases formally.

Lemma 5.1 There is a polynomial p such that for every semilinear basis set B1 in SLB(2), there
is another semilinear basis set B2 such that

The intuitive reason why the above holds is that a linear set is ultimately periodic. For analogy let
us first consider the 1-dimensional case. A 1-dimensional linear set looks very complicated close to
0. However, past a certain point called the conductor [ll], it becomes very simple, i.e. an integer is
in the set if and only if it is expressible as the sum of the offset and some multiple of the greatest
common divisor of all the generators of its basis. (See Figure 3(a).) Furthermore, the conductor of
any linear set is polynomially bounded in the size of its basis.

In the 2-dimensional case, the exact analogue of the 'conducting' phenomenon does not happen.
A slightly weaker phenomenon does happen, however, which suffices for our present purpose. A
2-dimensional linear set is also complicated around the origin (0,0), but if one goes sufficiently
(polynomially) far from it, then a point is in the set if and only if it is expressible as the sum
of a linear combination of some fixed pair of vectors and one of a polynomially bounded set of
polynomially small offset vectors. In other words, each linear set is equivalent to a semilinear set

consisting of polynomially many linear sets, each of which has a basis with two generator vectors.
Hence, so does each semilinear set. (See Figure 3(b).)

The first key fact for showing this is the following. Given an arbitrary pair of vectors, say
vl and v2, and any vector, say v, in between12 them, there is a multiple of v, which is at most
the determiner of the matrix A = [q, v2], which is expressible as a linear integral combination of
vl and va. The determiner of A is, in turn, bounded by a fixed polynomial am where a is the
maximum component in A - a quadratic function for the case m = 2. Thus, given an arbitrary set
of generator vectors, the two vectors that are 'rightmost' and 'leftmost' among them can express
every sufficiently large multiple of every other vector in the set as their linear combination.

Given this fact, it is easy to see that the normal form lemma holds. Given an arbitrary set
of two-dimensional generator vectors, say V = {vl, ..., v,}, one can always pick the 'rightmost'
one and the 'leftmost' one, say vl and v2.13 Then any linear combination w of vectors in V is
expressible as Cr=l c; . v;, where all of integral constants ti's, except for cl and c2, are less than
or equal to some integer, say d, which is at most order of size(^))^. Hence given an arbitrary
linear basis B = (vo,{vl, ..., vk}) E LB(2) (where we assume without loss of generality that vl
is the "rightmost" one, and vz is the "leftmost" one among vl through vk), if we take the set
of linear bases B = {((vo + y3 - vg + ... + yk . vk), (01, v2}) 1 y3, ..., yk 5 d} then L(B) = L(B).
Furthermore, if we let n = size(B), then the size of f? is seen to of order n9, because each of the
offset vectors in f? has size order of n3, and there are at most o(n6) many different offsets of the
form vo + y3 . v3 + ... + yk - vk. That the size of each offset is of order n3 follows because each
multiple yi is of order n2, and there are Ic offsets: Clearly Ic < n. To obtain the bound on the
number of distinct offsets, we observe that each offset is a 2-dimensional vector with both of its
coordinates bounded by n3, and hence there can be n6 such vectors at the most. Hence B satisfies
all the conditions of Theorem 5.1.

5.3 NP-completeness of the Minimal Consistent Concept Problem

The results in this section concern the problem of finding a consistent concept (representation) for a
given labeled sample, satisfying a certain minimality constraint. We define this as an optimization
problem below, and state our results in terms of it.

MCC(G, measure)
for a class Q of concept representations with associated measure measure on them to be minimized;
INSTANCE: A finite labeled sample S.
PROBLEM: Find G in Q which is consistent with S , and measure(G) = min{measure(F) I
consistent($', S)).

Theorem 5.3 MCC(SLB(unary), size) cannot be approximated within any constant less than 2 in
polynomial time unless P = NP.

''In other words, cosine of v is in between those of v l and vz .
I3The corresponding statement for the 3-dimensional case is false, and this is why the above lemma in the 3-

dimensional case does not give rise to the analogue of the next lemma. The same technique does not yield an Occam
Algorithm for the 3-dimensional and higher dimensional cases.

Theorem 5.4 MCC(SLB(unary), cunlinality) cannot be approximated within any constant less
than 2 in polynomial time unless P = N P .

By a lemma (Lemma 5.2) which is essentially due to Pitt and Valiant [14], our proof of Theorem 5.4
implies that the subclasses of SLB with a bounded 'cardinality7 (k-fold-SLB) are not properly
polynomially learnable (for k > 3), provided that R P + N P .

Lemma 5.2 Let A be a class of concept representations, and L an NP-hard language. If there
exists a polynomial time transformation T from L to finite samples and a polynomial p such that
all of the following conditions are equivalent, then A is not properly polynomially learnable, unless
R P = N P .

(1) x E L
(2) There exists G E A which is consistent with ~ (x) .
(3) There exists G E A which is consistent with ~ (x) , and size(G) 5 p(size(x)).

Corollary 5.2 k-fold-SLB(unary) is not properly polynomially learnable for k 2 3, unless R P =

N P .

We give a sketch of the proof of Theorem 5.4, and then explain how it can be modified to prove
Theorem 5.3.

5.3.1 Proof Sketch of Theorem 5.4

We exhibit a polynomial time transformation from instances of Graph-k-Colorability (GkC) [7]
to finite samples such that there exists a (1-dimensional) k-fold semilinear set consistent with the
resulting sample, just in case the original graph is k-colorable. We give a rough outline of this
transformation.

Given an arbitrary graph, we 'represent7 each vertex in the graph by a unique integer (call
them 'vertex numbers7) and put them in the positive sample. We then put, for each edge in the
graph, the sum of the numbers representing the two end vertices of the edge in the negative sample.
Further, by means of additional negative examples, we enforce that any linear basis that generates
a vertex number must include that very number either in its generators or as its offset, and hence if
i t generates any two vertex numbers, it must also generate their sum. First, we add all the integers
between 0 and the maximum vertex number, which have not already been put into the sample, to
our negative sample. We then add for each pair of vertex numbers, say a < b, the integer a+2(b-a)
into our negative sample thereby ensuring that no vertex number could be generated as a linear
combination of another vertex number and the difference between the two.

The Transformation
G = (V, E) where V = {vi I 1 < i < n) and E C {(v;,vj) I v;,vj E V) is transformed to
S = S+ U S-, where T, is the set of n vertex numbers t o be specified later (in Lemma 5.4).
s+ = { (t i , +) (t i E T ,)
s- = {(t i+ t j , -) I (vi7vj)E E)

U {(x, -) I 0 < x < max(T,) A x @ T,)
U {(tj + (t j - ti), -) I i, j 5 n & ti < t j)

Since we make sure that each vertex number must be 'colored7, but no two vertex numbers are

to be 'colored' by the same linear set if there is an edge between them, the resulting sample should
have a consistent k-fold-semilinear set if and only if the original graph is k-colorable. Note further
that when there is a k-fold semilinear basis set consistent with a sample generated in the above
manner, there is one that has as its offsets and periods all and only the vertex numbers of the
transformation. Thus the size of a minimal consistent semilinear basis set is predictably small. We
summarize this in the following lemma, which by Lemma 5.2 implies Corollary 5.2.

Lemma 5.3 If G is any graph of n vertices, and S is the sample that the above transformation
maps G to, then all of the following conditions are equivalent.

(1) G is k-colorable.
(2) There exists a k-fold-semilinear basis set consistent with S.
(3) There exists a k-fold-semilinear basis set consistent with S, and is of size Cy=l t;.

In order to verify Lemma 5.3, we must demonstrate that the outlined transformation can be
carried out without either accidentally 'putting an edge' where there is none, or making the resulting
sample inconsistent.14 We specify a certain set of conditions for the vertex numbers (T,) which
suffice for this purpose, and show that for an arbitrary number of vertices (n), a set of vertex
numbers T, satisfying such conditions can be quickly computed. This is formalized in the following
lemma.

Lemma 5.4 There is an algorithm, which on input n E N , computes in time polynomial in n, a
set Tn of n integers with the following properties.

1. CzETn x 5 q(n) for a fixed polynomial q.
2. (a)Vu,v,w,x €Tn [({u,v) # {w,x)) -+ (u + v # w + x)]

(b) V X , Y , ~ E T n [X + Y > z]
3. (a) v x , ~ , z E T n [(x < ~) - + (~ + (~ - x) # z)]

(b) V X , Y , ~ I , ~ ~ E Tn[(x < Y) + (Y + (Y - X) < zl + z2)]

Proof Sketch of Lemma 5.4
First note that 3(a) in fact follows from 2(a), because if there were x, y, z E Tn such that y+(y-x) =
z, then we would have x + z = y + y, which contradicts 2(a). Note also that 2(b) follows from 3(b).
Thus, we need only be concerned with 1, 2(a), and 3(b). Furthermore, if we can show that a set of
n integers, say S,, with properties 1 and 2(a) can be generated in polynomial time, then we can
obtain T, by adding 2 . max(Sn) + 1 to each member of S, so that 3(b) is satisfied. We can do this
because property 2(a) is preserved under any "translation" of the set by a constant offset.

We are left to verify that S, can indeed be computed from n in polynomial time. We define
S, = {sl, ..., s,) in stages (iterations).

Stage 1
Let S1 = (0) and S; = (0).
Stage i
Let S; = {s;) U 5';-1 where s; = minix E N I x > m a ~ (S ; - ~) A (Vy E Si-lVz E SL1 [x + y # z])) .
Let S! = {s; + sj I s; ,sj E 5';).

It is easy to see that for each n, S, satisfies property 2(a). For suppose otherwise, then for

1 4 ~ h a t is, the same integer is never put both to the positive and negative sample.

some si, s j , sk, st E Sn such that {s;, sj) # {sk, sl) we have si + sj = s k + sl. Pick the maximum
index among i, j, k and 1, say 1. Then all of i, j, k are strictly less than 1, for if i = l then, that would
imply j = k and the two sets are identical, and if k = 1 then we would have to have i = j = k = 1
for the equality to hold because sl is maximal. Thus, at stage 1, sk E SI-l, and s; + s j E St, .
So, letting y = s k and a = s; + sj in the minimization clause, this would have rejected sl as an x
satisfying the condition. This is a contradiction. It is straightforward to verify that all the members
of Sn are bounded by a fixed polynomial in n (in fact n4), and that S, can be computed in time
polynomial in n (at most O(n4 - log n)).

5.3.2 Proof Sketch of Theorem 5.3

We modify the above transformation to prove Theorem 5.3 as follows: We add to every exam-
ple in the sample some constant offset a > max(Tn), chosen depending on the constant of non-
approximability and n, add a in the positive sample and all the integers less than a in the negative
sample. More precisely, the new sample Sa is defined as S, = S$ U S; where:

S, = U{(X + a , -) I (x, -) E S-) U {(2a, -)) U {(x, -) I x E N A 0 5 x < a)

First we note that if some linear basis B consistent with S, generates {a + x I x E A) for some
subset A of Tn then we must have either of the following two cases.
(i) B's offset equals a. Its generators must contain A. We say that such a B is of 'type 1' and write
type(B, 1).
(ii) B's offset does not equal a. If its offset is 0 then its generators contain {a + x I x E A} because
it cannot contain a as a generator to respect (2a, -) in S;. Otherwise, A must be a singleton,
and B's offset must equal that one member in A. We say that such a B is of 'type 2', and write

type(B, 2).

The crucial fact is that since all the required properties of Tn of Lemma 5.4 are preserved under
positive 'translation', by a in this case, essentially the same argument as before applies, if all of
the linear bases in question are of type 1: Namely, there is a k-fold-SLB all of whose bases are of
type 1 consistent with Sa if and only if the original graph G is k-colorable. Using this fact, we can
verify the following 'gap' lemma.

Lemma 5.5 Let S, be the sample obtained as above from an arbitrary graph G, and f? a minimal
consistent SLB for it. Then we have:

(1) If G is k-colorable, then size(f?) = (CxETn x) + k - a.
(2) If G is not k-colorable, then size(B) 2 (CxETn x) + (k + 1) a.

Proof o f Lemma 5.5
If the graph G is k-colorable, then there is a k-fold semilinear basis set consistent with S,, such
that each of its linear basis is of type 1, and hence has size k . a + Cr=fit;. Suppose on the other
hand that G is not k-colorable, and let f? = {Bi I i = 1, ..., 1) be a minimal consistent SLB for S,

and let Qi = L(Bi) fl {a + ti 1 ti E Tn). NOW let I = {i 5 1 (type(Bi7 I)), J = {i < 1 (type(Bi72)),
and R = UiEJQi. Then, note that:

We claim that we must have card(I) + card(R) 1 k + 1. For suppose otherwise, i.e. card(I) +
card(R) 5 k. Then define B1 = {B; I i E I) U {(a, {x - a}) 1 x E R}. Note that (i) all of the bases in
B1 are of type 1, (ii) card(B1) 5 k7 and (iii) B' is consistent with S,. Hence it follows that G must
be k-colorable, contradicting our hypothesis. Thus, we have shown that card(I) + card(R) 2 k + 1,
and hence size(f3) >_ CZETn x + a (k + 1).

By appropriately setting a as a polynomial function of EL1 ti and E-', we can show that any
approximation algorithm for MCC(SLB(unary), size) with a guaranteed constant factor 2 - E can
be used to approximate GkC within 2 - 5 , which is known to be NP-hard [7].

5.4 Prediction Preserving Reductions from DNF

The results in this section are all stated in terms of the notion of 'prediction preserving reducibility7
due to Pitt and Warmuth [16]. We note that if a class of concepts A is prediction-preserving
reducible to B (written A d B), then the predictability of B implies that of A.

Theorem 5.5 Vm E N + DNF LB(m,binary).

Theorem 5.6 Vm E N + DNF 9 SMB(m,binary), and DNF 9 SLB(m,binary)

Theorem 5.7 DNF 4 LB(variable, unary),

Theorem 5.8 DNF 9 SMB(variable, unary), and DNF 9 SLB(variable, unary).

To show that DNF R, for a class of representations for concepts over N , we must exhibit
the following two mappings [16] : the 'example mapping' f : {071)* x N x N -+ N , mapping any
assignment to an integer, and the 'concept mapping' g : D N F x N -+ R mapping any DNF-formula
A to a semilinear basis set, satisfying the following conditions.15
(1) Vs,n E N Vtu E (0, lIn VA E D N F [~] f(w,s ,n) E L(g(A,n)) if and only if w satisfies A.
(2) f is computable in time polynomial in n and s.
(3) g is 'poly-blowup7, that is, for some fixed polynomial q, Vn, s E N VA E D N F [~] ~ i z e (~ (A , n)) 5
q(n, 3).

In each of the reductions to be exhibited in the sections to follow, no use is made of the variable
'offset' (available for LB and SLB only), i.e. it is always the zero vector. We therefore abbreviate
the linear basis (a7 B) by the set of generators B for readability, in the expositions below.

1 5 ~ ~ ~ [S] denotes the subclass of D N F with at most s terms.

MSF 2n- lh n t l s t n-th 2nd 1 st W 2n-lh i - t h 1st

MSF 2n-th
(4

i - t h 1 st i - t h 1st W 2n-th
(b)

Figure 4: Bit-maps for f (w, s, n), gl(T, n), and e;.

5.4.1 Proof Sketch of Theorem 5.5

We use the idea of 'bit maps' in our transformation. The integers that are yielded by the example
mapping or the concept mapping all have a bit-map representation of the form in Figure 4(a).
This map has 2n fields each of q(n)-bits, where q is some polynomial, plus the most significant
field (MSF). The 2n fields are to correspond to the 2n literals, say; XI, ..., X,, i X l , ..., i X n ,
in that order from right. We make use of the following notation: If w is an assignment of n
variables: IND(w) = {i I wi = l) U { n + i I w; = 0). If T is a term, then IND(T) = {i I Xi E
T) U {n + i I 7 X i E T). IIND(x) denotes the characteristic function for IND(x) , i.e. IIND(x)(i) = 1
if i E I N D (x) and 0 otherwise.

f maps an assignment w to an integer whose bit representation is as in Figure 4 (b); It contains
IIND(w) in its first 2n fields, and 2n - 1 in its most significant field. g maps a DNF A to the union
of the set {gl(T) I T E A), and the 'extra' numbers, E(n) = {el, ..., ez,), which will serve the role
of 'stuffings'. g' maps a term T to an integer whose bit representation is as in Figure 4 (c) ; Each
i-th field contains IIND(q(i), and the MSF is 2m - 1, where m is the number of literals in T. The
'extra' generators also have the same format: E(n) is the set of 2n integers el, ..., e2, where each e;
has the bit representation in Figure 4 (d); e; has 2 in its MSF, and 0's everywhere except in the
i-th field where it has 1.

The claim is that f (w, s , n) is generated by g(A, n) just in case w satisfies A. We give a brief,
informal explanation of why this claim holds. The first crucial fact is that I N D (T) C IND(w)
if and only if w + T, for any term T. The next crucial fact is that if any linear combination of
g(A,n) generates f(w, s , n), then there can be no 'carries7. Therefore, if for any term T, gl(T)
is in some linear combination generating f (w, s , n), then T must be satisfied by w. Finally, the
fact that MSF's of f(w, s, n),gl(T) and ei are 2n - 1, 2m - 1, and 2, respectively, ensures that
if any linear combination is to equal f (w, s , n), then it must contain a non-zero multiple of gl(T)
for some term T. This T must be satisfied by w. It is easily seen, on the other hand, that if
there is a term T in A that is satisfied by w, then the sum of gl(T) and the appropriate stuffings;
{ei I i E IND(w) \ IND(T)) , equals f (w,s, n).

It is easy to check that f can be computed in time polynomial in n and s , and that g is
'poly- blowup'.

5.4.2 Proof Sketch of Theorem 5.6

First, we note the following fact, which is essentially a corollary to the Prime Number Theorem.16

Fact 5.1 There exists an algorithm which takes an integer n as input and outputs 2n distinct
primes in time polynomial in n. We let h denote the function computed by one such algorithm, and
let h(n) denote the output of h on n, and h(n, i) the i-th smallest element in h(n).

These 2n primes are then associated with the 2n literals there are for n variables: We map any
assignment w to the product of the associated primes for those n literals made true by the assign-
ment, say f (w). (For simplicity, we ommit other parameters t o f for now.) We then map any term
T to the product of the associated primes for all the literals in it, gt(T). The simple but crucial
observation is that gt(T) divides f(w) if and only if T is a subset of the set of literals made true
by w. Thus, f(w) is in the linear set (module) generated by {gt(T)), if and only if w satisfies
T. It follows immediately then, that if A is a DNF formula, then f(w) is in the semilinear set
(semi-module) generated by g(A) = {{gt(T)) I T E A) if and only if w satisfies A.

We formally define f and g (for SLB only). Since f is polynomial time computable by Fact 5.1
and g is easily seen to be poly-blowup, the foregoing informal argument shows that they satisfy all
the required conditions of a prediction-preserving reduction of DNF to either SMB or SLB.

where

5.4.3 Proof Sketch of Theorem 5.7

The reduction is identical to the one in the proof of Theorem 5.5, except for the fact that the
2n fields and MSF of bit maps in the previous case are replaced by 2n independent dimensions.
Namely, we define our f and g as follows.

where
gt(T) = (2m - ~ , I I N D (T) (~ ~) , ...,IZND(T)(~), ...,II ND(T)(~))

E(n) = {e; 11 5 i 5 2n3

e; = (2,O ,..., 0,1,0 ,..., 0)

An essentially identical argument as before shows that this gives us a prediction preserving reduction
from DNF to LB(variab1e-dimension, unary).

16The prime number theorem states that the number of primes less than or equal to n is of order $ - in fact Q(e) This, together with the fact that primality checking is performable in pseudo polynomial time, implies the
claimed fact.

5.4.4 Proof Sketch of Theorem 5.8

The reduction is similar to the one in the proof of Theorem 5.6 with some twist. Here, instead of
the 2n primes that were associated with the 2n literals for n variables in the previous case, we use
2n-dimensional unit vectors for the same purpose. In essence, we use the variable dimension at
hand to express 2n independent components which, in the previous case, we used primes for.

We map any assignment w to the sum of the unit vectors associated with exactly those n Literals
made false by the assignment, and call this f (w). (Again for simplicity, we ommit other parameters
to f for now.) Recall that, in the previous reduction, we mapped w to the product of all the primes
for those literals made true by the assignment. We then map any term T to the basis (with 0
offset) and the set of generators consisting of the associated unit vectors for all the literals not in i t ,
denoted gl(T). The crucial fact is that g'(T) can generate f(w) as an integral Linear combination
of its elments if and only if T contains no literals that are made false by w. Thus, f(w) is in the
linear set (module) generated by gl(T) if and only if w satisfies T. Hence if A is a DNF formula,
then f(w) is in the semilinear set (semi-module) generated by {gl(T) 1 T E A) if and only if w
satisfies at least one of the terms in A.

We formally define the mappings f and g in the following (for SLB only). We introduce the
notation 'NIND(.) ' as a short hand for the 'complement' of IND(.) , i.e. if w is an assignment
then NIND(w) = {i I w; = 0) U {n + i (w; = 1).

f (w, S, n) = (I N I N D (~) (~ ~) , ..., I N I N D (~) (~) , I N I N D (~) (~))

where
gl(T, n) = {e; I i E NIND(T))

and e; is the unit vector whose only non-zero component is its i-th component.

6 Open Problems

Our characterization of learnability is complete, up to various degrees of hardness assumptions,
except the learnability question for semilinear sets in unary for dimensions 3 and higher which is
an open problem. Also, the question of proper-learnability of linear sets for any dimension is open,
though they are clearly learnable by semilinear sets for dimensions up to 2.

Acknowledgments

The author gratefully acknowledges his advisor, Scott Weinstein, for guiding him to the learn-
ability questions of semilinear sets. Thanks are also due to Herbert S. Wilf for his generous help
in my understanding of properties of additive semigroups and the theory of partitions, and to
Sanguthevar Rajasekaran for pointing out to the author some facts of number theory. Finally, the

author has greatly benefited from valuable discussions with Leonard Pitt and Manfred Warmuth,
particularly in regard to the subject of 'prediction preserving reducibility', and the learnability
results on modules.

References

[I] Nmki Abe. Money Changing Problem is NP-Complete. Technical Report MS-CIS-87-45,
University of Pennsylvania, June 1987.

[2] George Andrews. The Theory of Partitions. Addison-Wesley, 1976.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable geometric
concepts with the vapnik-chervonenkis dimension. In Proc. 18th ACM Symp. on Theory of
Computation, pages 243 - 282, 1986.

[4] A. Blumer, A. Ehrenfeucht , D. Haussler, and M. Warmuth. Occam's razor. Information
Processing Letters, 24:377 - 380, 1987.

[5] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233 - 235, 1979.

[6] A. Ehrenfeucht, D. Haussler, M. Kearns, and Leslie G. Valiant. A general lower bound on the
number of examples needed for learning. In Pmceedings of the 1988 Workshop on Computa-
tional Learning Theory, pages 139 - 154, 1988. Also to appear in Information and Computa-
tion.

[7] Michael A. Garey and David S. Johnson. Computers and Intractability - A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[8] D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0,1) functions on randonily
drawn points. In Proceedings of 1988 IEEE Symposium on the Foundations of Computer
Science, 1988. Also in Proceedings of the 1988 Workshop on Computational Learning Theory.

[9] David Helmbold, Robert Sloan, and Manfred Warmuth. Bootstrapping one-sided learning.
1989. To appear.

[lo] Michael Kearns and Leslie G. Valiant. Learning Boolean Formulae or Finite Automata is
as Hard as Factoring. Technical Report TR-14-88, Aiken Computation Laboratory, Harvard
University, 1988.

[ll] Albert Nijenhuis and Herbert S. Wilf. Representation of integers by linear forms in nonnegative
integers. Journal of Number Theory, 4:98-106, 1972.

[12] R. J. Parikh. Language generating devices. M.I.T. Res. Lab. Electron. Quart. Prog. Rep.,
60:199-212, 1961.

[13] Leonard Pitt. personal communication.

[14] Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples.
Journal of the ACM, 35(4):965-984, 1988.

1151 Leonard Pitt and Manfred Warmuth. The minimum consistent DFA problem cannot be approz-
imated within any polynomial. Technical Report UIUCDCS-R-89-1499, University of Illinois
at Urbana-Champaign, February 1989.

1161 Leonard Pitt and Manfred Warmuth. Prediction preserving reducibility. 1989. To appear in
Journal of Computer and System Sciences.

1171 Leslie G. Valiant. Learning disjunctions of conjunctions. In The 9th IJCAI, 1985.

1181 Leslie G. Valiant. A theory of the learnable. Communications of A.C.M., 27:1134-1142, 1984.

	Polynomial Learnability of Semilinear Sets
	Recommended Citation

	Polynomial Learnability of Semilinear Sets
	Abstract
	Comments

	tmp.1198352130.pdf.AzJfk

