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Polynomial Learnability of Semilinear Sets* 

Naoki Abe 

Department of Computer and Information Science, 
University of Pennsylvania, Philadelphia, PA19104. 
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Abstract 

We characterize learnability and non-learnability of subsets of Nm called 'semilinear 
sets', with respect to  the distribution-free learning niodel of Valiant. In formal language 
terms, semilinear sets are exactly the class of 'letter-counts' (or Parikh-images) of regular 
sets. We show that the class of semilinear sets of dimensions 1 and 2 is learnable, when 
the integers are encoded in unary. We complement this result with negative results 
of several different sorts, relying on hardness assumptions of varying degrees - from 
P # N P and R P  # N P  to the hardness of learning DNF. We show that the minimal 
consistent concept problem is NP-complete for this class, verifying the non-triviality 
of our learnability result. We also show that with respect to the binary encoding of 
integers, the corresponding 'prediction' problem is already as hard as that of DNF, for 
a class of subsets of Nm much simpler than semilinear sets. The present work represents 
an interesting class of countably infinite concepts for which the questions of learnability 
have been nearly completely characterized. In doing so, we demonstrate how various 
proof techniques developed by Pitt and Valiant [14], Blumer et al. [3], and Pitt and 
Warmuth [16] can be fruitfully applied in the context of formal languages. 

1 Introduction 

We consider the problem of learning semilinear subsets of Nm,  with respect to the distribution-free 
learnability model of Valiant [18]. Semilinear sets are finite unions of linear subsets of Nm, where 
a linear set is the set of values assumed by a linear integral formula of the form: 

v0 $ cl vl $ ... $ ck .vk 

*The work reported herein is supported in part by an IBM graduate fellowship awarded to the author and by the 
Office of Naval Research under contract number N00014-87-K-0401. 



as the ti's vary over natural numbers, where the vi's are constant integral vectors of dimension m 
(v; E Nm).  The constant vectors vl, ..., vk are called 'generators' of the linear set, as they are indeed 
generators of the set S obtained by uniformly subtracting the 'offset vector' vo from the linear set 
L (i.e. S = {x - vo ( x E L)), when one views the set as the additive semigroup generated by the 
vi 's. 

The model of learnability we use is that of 'polynomial learnability' (or 'pac-learnability'), intro- 
duced by Valiant [18], [17] in the context of boolean concept learning, and subsequently generalized 
to arbitrary concepts by Blumer et al. [3]. We consider the learnability of semilinear subsets of Nm 
with respect to  both the unary encoding and the binary encoding of integers both for examples 
and concept representations. 

We settle, up to varying degrees of hardness assumptions ranging from P # N P and R P  + N P  
to the hardness of learning DNF, a host of learnability questions for these and related classes of 
subsets of Nm.  This work provides an interesting class of infinite concepts for which the questions of 
learnability in Valiant's model have been nearly completely settled, and demonstrates how various 
proof techniques recently developed by Pitt and Valiant [14], Blumer et al. [3], and Pitt and 
Warmuth [16] can be fruitfully applied to classes of formal languages. 

2 Results and Significance 

With respect to  the unary encoding, we show that the entire class of semilinear sets, for dimensions 1 
and 2, is polynomially learnable. Since m-dimensional semilinear sets are exactly the sets of "letter 
counts" (or Parikh-images) of regular sets over an m-letter alphabet (see [12]), our result implies 
that NFA (non-deterministic finite state automata) of alphabet size at  most 2 is polynornially 
learnable modulo equivalence under Parikh-mapping, in a certain well-defined sense. This result is 
particularly interesting, in light of the recent results by Pitt and Warmuth [15] and Kearns and 
Valiant [lo] indicating that learning the entire class of NFA is most likely hard. We show this result 
by a proof technique due to  Blumer et al. [4], namely by exhibiting an 'Occam algorithm', that is, 
a polynomial time algorithm which reliably compresses a given sample to a consistent hypothesis, 
which is polynomially approximately minimal and less than linear in the sample size (number of 
examples). 

We complement this result with negative results of varying sorts which, in addition to being 
of interest on their own, provide specific reasons to  suspect that a significantly stronger positive 
result for this class is difficult to obtain. First, we show that the corresponding 'minimal consistent 
concept representation' problem (to find a minimal hypothesis consistent with a given sample from 
the class of concept representations under consideration) is strongly NP-complete. Obtaining an 
approximately minimal consistent hypothesis, therefore, is the best we can reasonably expect to 
do in polynomial time. Second, we show that the Vapnik-Chervonenkis dimension1 of successive 
subclasses of semilinear sets of bounded size n,  where 'size' is taken to mean the size in unary of 

m 
the concept representations in question, grows at least as fast as n X ,  hence it follows that the 

lVapnik-Chervonenkis dimension, or VC-dimension for short, is a measure of combinatorial complexity of a concept 
class. A great many of the performance guarantees for polynomial learnability are stated in terms of the VC-dimension 
of the concept class in question [3]. 



m 

lower-bound for the number of examples required for pac-learning is also at best order of nm+l, 
by a result of Ehrenfeucht et al. [6]. Finally, we show that the 'prediction' problem2 for linear sets 
encoded in binary is at least as hard as that for DNF - a long-standing open problem in the field. In 
fact, the existence of any prediction algorithm for linear sets encoded in unary, which runs in time 
polynomial in the 'domain dimension' (m) in addition to other parameters, would also show the 
predictability of DNF. Furthermore, the analogous results are shown to  hold for a class of subsets 
of Zm which is significantly simpler than semilinear sets. 

Our result on the minimal consistent concept representation problem for semilinear sets in unary 
is one of non-approximability. More specifically, it cannot be approximated within any guaranteed 
constant factor less than 2 in polynomial time, unless P = NP. This result complements the recent 
result of Pitt and Warmuth [15] that the 'minimal consistent DFA problem' cannot be approximated 
within any polynomial. On the one hand, we do not have the non-polynomial approximability result 
that they have. On the other hand, the class under consideration here is a much simpler class which 
is in fact polynomially learnable (if only for a restricted range of dimensions). We also show a related 
result using a proof technique due originally to Pitt and Valiant [14]; The class of semilinear sets 
that are unions of a bounded number, say k, of linear sets ('k-fold semilinear sets') is not properly 
polynomially learnable3 unless R P  = NP. 

Our results on predictability are shown using the proof technique of 'prediction preserving 
reducibility' recently developed by Pitt and Warmuth [16]. The result that the class of linear sets 
encoded in binary is as hard to predict as DNF is not surprising, as we have also shown that even 
the 'evaluation problem'4 for linear sets in binary is NP-complete [I]. It  was noted by Manfred 
Warmuth, however, that the prediction-preserving reduction exhibited to  prove this result can be 
extended to  show that the prediction problem for linear sets in unary is also as hard as that of 
DNF, if one considers the dimension of the class to be a variable ('variable dimensions'). The 
class of concepts for which we show the analogous results is the 'submodules' of Zm, the learning 
problem of which has been extensively investigated by Helmbold, Sloan and Warmuth [9]. They 
show that not only is the class of submodules of Zm encoded in binary efficiently learnable, but so 
is the class of 'nested differences' of members of this class. In contrast, we have shown that the 
prediction problem for the class of finite unions of modules (or 'semi-modules') is also as hard as 
that for DNF, for fixed dimensions in binary, or variable dimensions in unary. 

These results together draw up a nearly complete characterization of learnability of the concept 
classes in question, as summarized in the tables in Figures 1 and Z7 The positive results for 

 he prediction problem for a class of concepts is a slightly relaxed notion of learning where the algorithm need 
not output any hypothesis concept explicitly. Predictability of a given class is implied by its learnability (cf. [16]). 

3~ class of concept representations A is said to be learnable by another class B, if there exists a learning algorithm 
which only outputs hypotheses from B and learns A. A is properly learnable iff A is learnable by A (cf. [14]). 

*The evaluation problem for a class of language representations B is the language {(G, w) I G E B A w E L(G)} 
where L(.) denotes the mapping from a representation to the language it represents (cf. [16]). 

'It has been suggested by several different sources that this result had been known, although no correct reference 
to the result has been pointed out to the author. 

6Algebraically these classes are closely related. A linear set is a finitely generated semigroup under addition with 
a constant offset, while a module is indeed a finitely generated module under addition and subtraction. The former is 
a much more complicated class of concepts, however, both computationally and learning-theoretically. For the former 
the evaluation problem (in binary) is NP-complete and the Vapnik-Chervonenkis dimension grows nearly linearly 
already with respect to the unary encoding, whereas for the latter the evaluation problem is efficiently solvable in 
polynomial time, and the Vapnik-Chervonenkis dimension grows logarithmically with respect to the unary encoding. 

71n these tables, 'Thm x.y' indicates that the result is stated in Theorem x.y, and 'Cor x.y' indicates that it follows 



Linear Sets I Seniilinear Sets 11 Modules I Semi-modules 

Fixed Dimensions 

Figure 1: Results on pac-learnability and predictability. 

- u 

Semilinear Sets (Proper Pac-learnability, Minimal Consistency) 
11 Linear Sets I K-fold Semilinear I Minimal Consistent I Semilinear Sets 

Figure 2: Results on Semilinear Sets encoded in Unary. 

Variable Dimensions 
unary k DNF * (Thm 5.7) 1> DNF * (Cor 5.7, 5.8) yes [9] 1> DNF (Thm 5.8) 

yes [9] 
yes [9] 

yes m < 2 (Thm 5.2) 
k DNF (Cor 5.5, 5.6) 

unary 
binary 

unary 

modules are due to Helmbold, Sloan and Warmuth 191, as indicated. 

yes (Cor 5.2) 
D DNF (Thm 5.6) 

yes m < 2 (Cor 5.2) 
k DNF (Thm 5.5) 

3 The Learnability Models 

(proper-pac) 
? 

We are concerned with the question of probably approximately correct(pac) learnability of count- 
ably infinite concept classes from randomly generated examples, essentially in the sense of Valiant 
[18]. In adapting Valiant's original formulation of learnability of boolean concepts to infinitar y 
domains, an interesting question arises as to  exactly what parameters quantifying the complexity 
of the concept class under consideration should be included in the arguments to the polynomial 
of the 'sample complexity'8. In the case of boolean concepts, the sample complexity was allowed 
to polynomially (and at most polynomially) depend on the number of variables, which could be 
thought of as either the length of examples (assignments), or the 'dimension' of the domain under 
consideration. In an infinitary domain such as C*, it is arguable whether the sample complexity 
should be allowed to polynomially depend on the (maximum) length of examples seen. Subsequent 
generalizations of Valiant's model to  infinitary domains have taken different views on this issue. In 
this paper we employ different formulations of learnability, depending on whether we are consider- 
ing the unary encoding or the binary encoding. In particular, we adopt the exact formulation of 
'polynomial learnability' by Blumer et al. [3] for the unary case, in which the sample complexity is 
not allowed to  depend on the example length. For the binary case, we employ the version of poly- 
nomial learnability in which sample complexity is allowed to  polynomially depend on the length 
of the longest example seen, following the formulation of 'predictability' by Haussler et al. [8] and 
Pitt and Warmuth 1161. It  is important to note this distinction particularly because the prediction 
problem with respect to the unary encoding becomes trivial if the sample complexity is allowed to 
polynomially depend on the length of the longest example seen 1131. We review in the following 

(essentially) as a corollary of Theorem x.y. ' DNF' indicates that DNF is prediction-preserving reducible to it. '[g]' 
indicates a result by Helmbold et al., and '*' an extension by Manfred Warmuth. 

'This notion will shortly be formally defined. 

Sets (proper-pac) 
hard (k 2 3) unless 

RP = N P  (Thm 5.4) 

Semilinear Sets 
NP-hard 

(Thm 5.3) 

( P ~ c >  
Yes ( m  5 2) 
(Thm 5.2) 



the definition of 'polynomial learnability ' 

In this paper the domain (X) under consideration is assumed to be (C*)m for some alphabet 
C. Learnability question is asked of a class of concept representations (Q) which represent some 
class of concepts R(Q) over X ,  that is9, R(Q) P(X). We fix some encoding scheme for these 
representations with respect to which we define the notion of 'complexity measure7 (size) on these 
representations. We let Q, denote the subclass of Q of bounded size s. Examples are drawn with 
respect to some time-invariant probability distribution (D) over the entire domain X, and then 
they are paired with either + or - to indicate whether they belong to the target concept or not. 
This process is iterated m times to obtain a labeled sample of size m (S,), which is then fed into 
our learning algorithm. 

A learning algorithm is a possibly randomized algorithm which takes as input a labeled sample 
and outputs a hypothesis from some class of concept representations. A learning algorithm is said 
to learn a concept representation class Q with sample complexity f ( ~ ~ 6 ,  s )  if and only if for whatever 
distribution D,  and whatever values of E and 6, whenever it is fed with a randomly generated labeled 
sample of size at least f (E, 6, size(G)) for some concept R(G) in R(Q) according to D, its output 
hypothesis H is an E-approximation of R(G), that is, D(R(G)AR(H)) < E, with probability at 
least 1 - 6. A class of concept representations {G, 1 s E N + )  is said to be polynomially learnable, 
if there exists a learning algorithm A which learns Q with sample complexity f (E,S, s), for some f 
polynomial in E-I, and s, and which runs in time polynomial in the total length of the input 
sample. 

For the binary case, we use the version of polynomial learnability in which on any particular 
'run', the distribution (D) is assumed to be defined over a subset of the domain C* of bounded length 
n, and then a learning algorithm is said to polynomially learn a class of concept representations 
just in case it learns it with sample complexity f (E,S, s ,  n) for some f polynomial in all of E-', 6-I, 
s and n. 

4 Classes of Concepts Under Consideration 

We define the class of concept representations considered in this paper. Throughout, bo, .., b, are 
integral vectors in Nm. 

Linear Bases (LB) for Linear Sets 
B = (bo, {bl, ..., b,)) is called the linear basis of the linear set L(B) = {bo + Cr=l xib; I Vi 5 n xi E 

N l .  

Semilinear Basis Sets (SLB) for Semilinear Sets 
If B1, ..., B, are linear bases, then {B1, ..., B,) is called the semilinear basis set of the set Ur=l L(B;) .  

Module Bases (MB) for Modules 
The set B = {bl, ..., b,) is called the module basis of the module L(B) = {CZ1 xibi I Vi 5 n xi E 2). 

'We denote by R(G) the concept represented by G ,  and by R(4) the class of concepts represented by 8. 



Semi-module Basis Sets (SMB) for Finite Unions of Modules 
If B1, ..., B, are module bases, then {B1, ..., B,} is called the module basis set of the set Uy=, L(Bi). 

The components of example vectors in the domain, as well as those of vectors in concept 
representations are either encoded in binary, or encoded in unary. We define 'size' in binary of 
a concept representation to  be the sum of the log of all the integers appearing as components of 
vectors in it, and the 'size' in unary to be the sum of all the component integers themselves. In this 
paper we consider the two cases (out of the four in total), in which the same encoding is used for 
the examples and for the concept representations. We explicitly quantify all our results by 'unary' 
or 'binary', as in 'SLB(unary)', for example. Also we specify the dimension of the concept class 
under consideration in a similar manner: For example, SLB(m, binary) denotes the m-dimensional 
SLB in binary, and LB(variable,unary) denotes variable-dimensional LB in unary. Finally, for 
any concept representation class A (such as SLB) we denote by A, (such as SLB,) the subclass of 
A of bounded size n, that is, A, = {B E A I size(B) 5 n). 

5 Technical Details 

5.1 Vapnik-Chervonenkis Dimensions of Semilinear Sets in Unary 

We characterize the VC-dimension of LB, of dimension 1 up to a constant factor, and those of LB, 
and SLB, of arbitrary dimensions within at most fi factor, and thereby establish a lowerbound 
for the sample complexity of any learning algorithm for these classes by a result of Ehrenfeucht et 
al. [6]. 

Theorem 5.1 If we let VCdim(C) denote the VC-dimension of the concept class represented by 
C ,  

(1) Vn E N +  VCdim(LB(l,unary),) = @(+) 
(2) Vn E N +  VCdim(LB(m, unary),) = O(f i )  

= O(n) 

Corollary 5.1 Any learning algorithm for SLB(m, unary) requires at  least R(E-' . log 6-I + 6-I . 
n*) many examples to achieve r accuracy with 1 - 6 confidence. 

In both cases, the upperbound of O(n) trivially follows from the fact that a string of length n can 
represent at  most 0 (2,) different concepts . 

Proof of Theorem 5.1(1) 
Lowerbound: Let S, = {n, n + 1, ..., 2n - 1). Then, for an arbitrary subset T C S,, if we let 
BT = (O,T), then, L(BT) fl S, = T. Also, size(T) = C z E T x  5 x 5 2 .  n2. Hence, S, 
is shattered by LB(1, ~ n a r y ) ~ , ~  for an arbitrary n. It  follows therefore that for some constant c, 
Vn E N  VCdim(LB(1, unary),) 2 c fi. 



Upperbound: This is shown by a counting argument. If we let P(n)  denote the number of 
'partitions' of n,  that is, the number of multisets of positive integers whose sum equal n,  then 
we have card(LB(l,unary),) = O(Cr=l P(n)). By a result by Hardy and Ramanujan (See 

for example [2].), we have P(n)  = 0 ( 2 6 ) .  So, C:,, P(i) = O(x:=l 2J) = 0(2fi) ,  Hence, 
VCdim(LB(1, unary),) 5 log(card(LB(1, unary),)) = O(&). 

Proof of Theorem 5.1(3) 
1 

We prove the lowerbound. Let S,,, = {1,2,..,nm}m, where we assume that n is a perfect m-th 
power. Note the following:10 
(1) card(S,,,) = n. 

m-1 - 1 m-1 2 

(2) size(S,,,) = m - n m . xy=", = O(m - n m  - nm) = ~ ( n e ) .  
Now, for an arbitrary T C S,,,, define BT = {(b,q5) I b E T). Then for any T, it is clear 

22t.L 
that L(BT) n S,,, = T, and size(&) 5 size(S,,,) = O(n ). thus, S,,, is shattered by 

a 
SLB(m, unary) : Hence, VCdim(LB(m, unary),) = O(nm+l). 

n m 

5.2 Learnability Result for Semilinear Sets 

Theorem 5.2 SLB(m, unary) is Properly Polynomially Learnable for m = 1, 2. 

We prove this theorem (for the 2 dimensional case only) by exhibiting an Occam Algorithm with 
a range dimension (cf. [4]) logarithmic in the sample size, and polynomial in the size of a minimal 
basis set. 

5.2.1 ProofSketchofTheorem 5.2 

We exhibit a normal form for semilinear bases, with a 'polynomial blow-up'," such that each 
semilinear basis set in this normal form is a finite union of linear bases each of which has at most 
two generators. Now, for a, given positive sample, we can generate all such linear bases that are 
relevant to  that sample and eliminate the ones that are inconsistent with the negative sample in 
time polynomial in the total sample length. This leaves us with a polynomially bounded set of 
linear bases of varying sizes all consistent with the input sample, of which the 'relevant7 part of a 
minimal consistent semilinear basis set in the normal form is guaranteed to  be a subset. We can 
then apply the polynomial time approximation algorithm of Chvatal [5] to the instance of Weighted 
Set Cover obtained by taking the positive sample to be the set to be covered, its subsets defined by 
the relevant linear bases and the sizes of these bases to be the weighted legal subsets. As Chvatal's 
algorithm always outputs a cover whose total weight is polynomially bounded in the total weight 
of a minimal weight cover and logarithmic in the number of points to be covered, this will give us 
an Occam algorithm. 

The main significance of this result lies in the fact that via the 'poly-blowup' normal form, we 
are able to show the entire class of semilinear sets of dimensions 1 and 2 to be learnable, without 

''For any set S of vectors, we define s i ze (S )  to be the sum of all the components of vectors in it. 
''That is, for each semilinear basis set there exists a language equivalent one in the normal form whose size is only 

polynomially larger, for some fixed polynomial. 



Figure 3: Schematic views of 1,2-dimensional linear sets. 

having to put an explicit bound on the number of generators, as is necessary, for example, in the 
case of k-DNF. It is worth noting that our proof in some sense uses a special case of the notion of 
'prediction preserving reduction'. Namely, we have reduced the learning problem of unrestricted 
SLB to that of '2-SLB', by a reduction with the concept mapping being the 'poly-blowup' normal 
form, and the example mapping being the identity function. 

5.2.2 The Normal Form Lemma 

As it is clear from the proof sketch we just gave, the key step in the proof is the poly-blowup normal 
form lemma. We now state the normal form theorem for (2-dimensional) semilinear bases formally. 

Lemma 5.1 There is a polynomial p such that for every semilinear basis set B1 in  SLB(2), there 
is  another semilinear basis set B2 such that 

The intuitive reason why the above holds is that a linear set is ultimately periodic. For analogy let 
us first consider the 1-dimensional case. A 1-dimensional linear set looks very complicated close to  
0. However, past a certain point called the conductor [ll], it becomes very simple, i.e. an integer is 
in the set if and only if it is expressible as the sum of the offset and some multiple of the greatest 
common divisor of all the generators of its basis. (See Figure 3(a).) Furthermore, the conductor of 
any linear set is polynomially bounded in the size of its basis. 

In the 2-dimensional case, the exact analogue of the 'conducting' phenomenon does not happen. 
A slightly weaker phenomenon does happen, however, which suffices for our present purpose. A 
2-dimensional linear set is also complicated around the origin (0,0), but if one goes sufficiently 
(polynomially) far from it, then a point is in the set if and only if it is expressible as the sum 
of a linear combination of some fixed pair of vectors and one of a polynomially bounded set of 
polynomially small offset vectors. In other words, each linear set is equivalent to a semilinear set 



consisting of polynomially many linear sets, each of which has a basis with two generator vectors. 
Hence, so does each semilinear set. (See Figure 3(b).) 

The first key fact for showing this is the following. Given an arbitrary pair of vectors, say 
vl and v2, and any vector, say v, in between12 them, there is a multiple of v, which is at most 
the determiner of the matrix A = [q, v2], which is expressible as a linear integral combination of 
vl and va. The determiner of A is, in turn, bounded by a fixed polynomial am where a is the 
maximum component in A - a quadratic function for the case m = 2. Thus, given an arbitrary set 
of generator vectors, the two vectors that are 'rightmost' and 'leftmost' among them can express 
every sufficiently large multiple of every other vector in the set as their linear combination. 

Given this fact, it is easy to see that the normal form lemma holds. Given an arbitrary set 
of two-dimensional generator vectors, say V = {vl, ..., v,}, one can always pick the 'rightmost' 
one and the 'leftmost' one, say vl and v2.13 Then any linear combination w of vectors in V is 
expressible as Cr=l c; . v;, where all of integral constants ti's, except for cl and c2, are less than 
or equal to  some integer, say d, which is at most order of   size(^))^. Hence given an arbitrary 
linear basis B = (vo,{vl, ..., vk}) E LB(2) (where we assume without loss of generality that vl 
is the "rightmost" one, and vz is the "leftmost" one among vl through vk), if we take the set 
of linear bases B = {((vo + y3 - vg + ... + yk . vk), (01, v2}) 1 y3, ..., yk 5 d} then L(B) = L(B). 
Furthermore, if we let n = size(B), then the size of f? is seen to  of order n9, because each of the 
offset vectors in f? has size order of n3, and there are at  most o(n6) many different offsets of the 
form vo + y3 . v3 + ... + yk - vk. That the size of each offset is of order n3 follows because each 
multiple yi is of order n2, and there are Ic offsets: Clearly Ic < n. To obtain the bound on the 
number of distinct offsets, we observe that each offset is a 2-dimensional vector with both of its 
coordinates bounded by n3, and hence there can be n6 such vectors at the most. Hence B satisfies 
all the conditions of Theorem 5.1. 

5.3 NP-completeness of the Minimal Consistent Concept Problem 

The results in this section concern the problem of finding a consistent concept (representation) for a 
given labeled sample, satisfying a certain minimality constraint. We define this as an optimization 
problem below, and state our results in terms of it. 

MCC(G, measure) 
for a class Q of concept representations with associated measure measure on them to  be minimized; 
INSTANCE: A finite labeled sample S. 
PROBLEM: Find G in Q which is consistent with S ,  and measure(G) = min{measure(F) I 
consistent($', S)). 

Theorem 5.3 MCC(SLB(unary), size) cannot be approximated within any constant less than 2 in 
polynomial time unless P = NP. 

''In other words, cosine of v is in between those of v l  and vz .  
I3The corresponding statement for the 3-dimensional case is false, and this is why the above lemma in the 3- 

dimensional case does not give rise to the analogue of the next lemma. The same technique does not yield an Occam 
Algorithm for the 3-dimensional and higher dimensional cases. 



Theorem 5.4 MCC(SLB(unary), cunlinality) cannot be approximated within any constant less 
than 2 in polynomial time unless P  = N P .  

By a lemma (Lemma 5.2) which is essentially due to Pitt and Valiant [14], our proof of Theorem 5.4 
implies that the subclasses of SLB with a bounded 'cardinality7 (k-fold-SLB) are not properly 
polynomially learnable (for k > 3), provided that R P  + N P .  

Lemma 5.2 Let A be a class of concept representations, and L an NP-hard language. If there 
exists a polynomial time transformation T from L to finite samples and a polynomial p such that 
all of the following conditions are equivalent, then A is not properly polynomially learnable, unless 
R P  = N P .  

(1) x E L 
(2) There exists G E A which is consistent with ~ ( x ) .  
(3) There exists G E A which is consistent with ~ ( x ) ,  and size(G) 5 p(size(x)). 

Corollary 5.2 k-fold-SLB(unary) is not properly polynomially learnable for k 2 3, unless R P  = 

N P .  

We give a sketch of the proof of Theorem 5.4, and then explain how it can be modified to prove 
Theorem 5.3. 

5.3.1 Proof Sketch of Theorem 5.4 

We exhibit a polynomial time transformation from instances of Graph-k-Colorability (GkC) [7] 
to  finite samples such that there exists a (1-dimensional) k-fold semilinear set consistent with the 
resulting sample, just in case the original graph is k-colorable. We give a rough outline of this 
transformation. 

Given an arbitrary graph, we 'represent7 each vertex in the graph by a unique integer (call 
them 'vertex numbers7) and put them in the positive sample. We then put, for each edge in the 
graph, the sum of the numbers representing the two end vertices of the edge in the negative sample. 
Further, by means of additional negative examples, we enforce that any linear basis that generates 
a vertex number must include that very number either in its generators or as its offset, and hence if 
i t  generates any two vertex numbers, it must also generate their sum. First, we add all the integers 
between 0 and the maximum vertex number, which have not already been put into the sample, to 
our negative sample. We then add for each pair of vertex numbers, say a < b, the integer a+2(b-a) 
into our negative sample thereby ensuring that no vertex number could be generated as a linear 
combination of another vertex number and the difference between the two. 

The Transformation 
G = (V, E) where V = {vi I 1 < i < n) and E C {(v;,vj) I v;,vj E V) is transformed to 
S = S+ U S-, where T, is the set of n vertex numbers t o  be specified later (in Lemma 5.4). 
s+ = { ( t i , + ) ( t i E T , )  
s- = {( t i+ t j , - )  I (vi7vj)E E )  

U {(x, -) I 0 < x < max(T,) A x @ T,) 
U {(tj  + (t j  - ti), -) I i,  j 5 n & ti < t j )  

Since we make sure that each vertex number must be 'colored7, but no two vertex numbers are 



to be 'colored' by the same linear set if there is an edge between them, the resulting sample should 
have a consistent k-fold-semilinear set if and only if the original graph is k-colorable. Note further 
that when there is a k-fold semilinear basis set consistent with a sample generated in the above 
manner, there is one that has as its offsets and periods all and only the vertex numbers of the 
transformation. Thus the size of a minimal consistent semilinear basis set is predictably small. We 
summarize this in the following lemma, which by Lemma 5.2 implies Corollary 5.2. 

Lemma 5.3 If G is any graph of n vertices, and S is the sample that the above transformation 
maps G to, then all of the following conditions are equivalent. 

(1) G is k-colorable. 
(2) There exists a k-fold-semilinear basis set consistent with S. 
(3) There exists a k-fold-semilinear basis set consistent with S, and is of size Cy=l t;. 

In order to  verify Lemma 5.3, we must demonstrate that the outlined transformation can be 
carried out without either accidentally 'putting an edge' where there is none, or making the resulting 
sample inconsistent.14 We specify a certain set of conditions for the vertex numbers (T,) which 
suffice for this purpose, and show that for an arbitrary number of vertices (n), a set of vertex 
numbers T, satisfying such conditions can be quickly computed. This is formalized in the following 
lemma. 

Lemma 5.4 There is an algorithm, which on input n E N ,  computes in time polynomial in n, a 
set Tn of n integers with the following properties. 

1. CzETn x 5 q(n) for a fixed polynomial q. 
2. (a)Vu,v,w,x €Tn [({u,v) # {w,x)) -+ ( u + v #  w + x ) ]  

(b) V X , Y , ~  E T n  [X + Y > z] 
3. ( a ) v x , ~ , z E T n [ ( x < ~ ) - + ( ~ + ( ~ - x ) # z ) ]  

(b) V X , Y , ~ I , ~ ~  E Tn[(x < Y) + (Y + (Y - X) < zl + z2)] 

Proof Sketch of Lemma 5.4 
First note that 3(a) in fact follows from 2(a), because if there were x, y, z E Tn such that y+(y-x) = 
z, then we would have x + z = y + y, which contradicts 2(a). Note also that 2(b) follows from 3(b). 
Thus, we need only be concerned with 1, 2(a), and 3(b). Furthermore, if we can show that a set of 
n integers, say S,, with properties 1 and 2(a) can be generated in polynomial time, then we can 
obtain T, by adding 2 .  max(Sn) + 1 to each member of S, so that 3(b) is satisfied. We can do this 
because property 2(a) is preserved under any "translation" of the set by a constant offset. 

We are left to verify that S, can indeed be computed from n in polynomial time. We define 
S, = {sl, ..., s,) in stages (iterations). 

Stage 1 
Let S1 = (0) and S; = (0). 
Stage i 
Let S; = {s;) U 5';-1 where s; = minix E N I x > m a ~ ( S ; - ~ )  A (Vy E Si-lVz E SL1 [x + y # z ] ) ) .  
Let S! = {s; + sj I s; ,sj  E 5';). 

It is easy to  see that for each n, S, satisfies property 2(a). For suppose otherwise, then for 

1 4 ~ h a t  is, the same integer is never put both to the positive and negative sample. 



some si, s j ,  sk, st E Sn such that {s;, sj) # {sk, sl)  we have si + sj = s k  + sl. Pick the maximum 
index among i, j, k and 1, say 1. Then all of i, j,  k are strictly less than 1, for if i = l then, that would 
imply j = k and the two sets are identical, and if k = 1 then we would have to have i = j = k = 1 
for the equality to  hold because sl is maximal. Thus, at stage 1, sk E SI-l, and s; + s j  E St, .  
So, letting y = s k  and a = s; + sj in the minimization clause, this would have rejected sl as an x 
satisfying the condition. This is a contradiction. It is straightforward to  verify that all the members 
of Sn are bounded by a fixed polynomial in n (in fact n4), and that S, can be computed in time 
polynomial in n (at most O(n4 - log n)). 

5.3.2 Proof Sketch of Theorem 5.3 

We modify the above transformation to prove Theorem 5.3 as follows: We add to  every exam- 
ple in the sample some constant offset a > max(Tn), chosen depending on the constant of non- 
approximability and n, add a in the positive sample and all the integers less than a in the negative 
sample. More precisely, the new sample Sa is defined as S, = S$ U S; where: 

S, = U{(X + a ,  -) I (x, -) E S-) U {(2a, -)) U {(x, -) I x E N A 0 5 x < a)  

First we note that if some linear basis B consistent with S, generates {a + x I x E A) for some 
subset A of Tn then we must have either of the following two cases. 
(i) B's offset equals a. Its generators must contain A. We say that such a B is of 'type 1' and write 
type(B, 1). 
(ii) B's offset does not equal a. If its offset is 0 then its generators contain {a + x I x E A} because 
it cannot contain a as a generator to respect (2a, -) in S;. Otherwise, A must be a singleton, 
and B's offset must equal that one member in A. We say that such a B is of 'type 2', and write 

type(B, 2). 

The crucial fact is that since all the required properties of Tn of Lemma 5.4 are preserved under 
positive 'translation', by a in this case, essentially the same argument as before applies, if all of 
the linear bases in question are of type 1: Namely, there is a k-fold-SLB all of whose bases are of 
type 1 consistent with Sa if and only if the original graph G is k-colorable. Using this fact, we can 
verify the following 'gap' lemma. 

Lemma 5.5 Let S, be the sample obtained as above from an arbitrary graph G, and f? a minimal 
consistent SLB for it. Then we have: 

(1) If G is k-colorable, then size(f?) = (CxETn x) + k - a. 
(2) If G is not k-colorable, then size(B) 2 (CxETn x) + (k + 1) a. 

Proof o f  Lemma 5.5 
If the graph G is k-colorable, then there is a k-fold semilinear basis set consistent with S,, such 
that each of its linear basis is of type 1, and hence has size k . a + Cr=fit;. Suppose on the other 
hand that G is not k-colorable, and let f? = {Bi I i = 1, ..., 1) be a minimal consistent SLB for S, 



and let Qi = L(Bi) fl {a + ti 1 ti E Tn). NOW let I = {i 5 1 ( type(Bi7 I)), J = {i < 1 ( type(Bi72)), 
and R = UiEJQi. Then, note that: 

We claim that we must have card(I) + card(R) 1 k + 1. For suppose otherwise, i.e. card(I) + 
card(R) 5 k. Then define B1 = {B; I i E I) U {(a, {x - a}) 1 x E R}. Note that (i) all of the bases in 
B1 are of type 1, (ii) card(B1) 5 k7 and (iii) B' is consistent with S,. Hence it follows that G must 
be k-colorable, contradicting our hypothesis. Thus, we have shown that card(I) + card(R) 2 k + 1, 
and hence size(f3) >_ CZETn x + a (k + 1). 

By appropriately setting a as a polynomial function of EL1 ti and E-', we can show that any 
approximation algorithm for MCC(SLB(unary), size) with a guaranteed constant factor 2 - E can 
be used to approximate GkC within 2 - 5 ,  which is known to  be NP-hard [7].  

5.4 Prediction Preserving Reductions from DNF 

The results in this section are all stated in terms of the notion of 'prediction preserving reducibility7 
due to Pitt and Warmuth [16]. We note that if a class of concepts A is prediction-preserving 
reducible to  B (written A d B), then the predictability of B implies that of A. 

Theorem 5.5 Vm E N +  DNF LB(m,binary). 

Theorem 5.6 Vm E N +  DNF 9 SMB(m,binary), and DNF 9 SLB(m,binary) 

Theorem 5.7 DNF 4 LB(variable, unary), 

Theorem 5.8 DNF 9 SMB(variable, unary), and DNF 9 SLB(variable, unary). 

To show that DNF R, for a class of representations for concepts over N , we must exhibit 
the following two mappings [16] : the 'example mapping' f : {071)* x N x N -+ N ,  mapping any 
assignment to  an integer, and the 'concept mapping' g : D N F  x N -+ R mapping any DNF-formula 
A to  a semilinear basis set, satisfying the following conditions.15 
(1) Vs,n E N Vtu E (0, lIn VA E D N F [ ~ ]  f(w,s ,n)  E L(g(A,n)) if and only if w satisfies A. 
(2) f is computable in time polynomial in n and s. 
(3) g is 'poly-blowup7, that is, for some fixed polynomial q, Vn, s E N VA E D N F [ ~ ]  ~ i z e ( ~ ( A ,  n)) 5 
q(n, 3). 

In each of the reductions to be exhibited in the sections to  follow, no use is made of the variable 
'offset' (available for LB and SLB only), i.e. it is always the zero vector. We therefore abbreviate 
the linear basis (a7 B)  by the set of generators B for readability, in the expositions below. 

1 5 ~ ~ ~ [ S ]  denotes the subclass of D N F  with at most s terms. 



MSF 2n- lh  n t l s t  n-th 2nd 1 st W 2n-lh i - t h  1st  

MSF 2n-th 
(4 

i - t h  1 st  i - t h  1st  W 2n-th 
( b )  

Figure 4: Bit-maps for f (w, s, n), gl(T, n), and e;. 

5.4.1 Proof Sketch of Theorem 5.5 

We use the idea of 'bit maps' in our transformation. The integers that are yielded by the example 
mapping or the concept mapping all have a bit-map representation of the form in Figure 4(a). 
This map has 2n fields each of q(n)-bits, where q is some polynomial, plus the most significant 
field (MSF). The 2n fields are to  correspond to  the 2n literals, say; XI,  ..., X,, i X l ,  ..., i X n ,  
in that order from right. We make use of the following notation: If w is an assignment of n 
variables: IND(w) = {i I wi = l ) U { n + i  I w; = 0). If T is a term, then IND(T)  = {i I Xi E 
T )  U {n + i I 7 X i  E T). IIND(x) denotes the characteristic function for IND(x) ,  i.e. IIND(x)(i) = 1 
if i E I N D ( x )  and 0 otherwise. 

f maps an assignment w to an integer whose bit representation is as in Figure 4 (b); It contains 
IIND(w) in its first 2n fields, and 2n - 1 in its most significant field. g maps a DNF A to the union 
of the set {gl(T) I T E A), and the 'extra' numbers, E(n)  = {el, ..., ez,), which will serve the role 
of 'stuffings'. g' maps a term T to an integer whose bit representation is as in Figure 4 (c) ; Each 
i-th field contains IIND(q(i), and the MSF is 2m - 1, where m is the number of literals in T.  The 
'extra' generators also have the same format: E(n)  is the set of 2n integers el, ..., e2, where each e; 
has the bit representation in Figure 4 (d); e; has 2 in its MSF, and 0's everywhere except in the 
i-th field where it has 1. 

The claim is that f (w, s ,  n)  is generated by g(A, n)  just in case w satisfies A. We give a brief, 
informal explanation of why this claim holds. The first crucial fact is that I N D ( T )  C IND(w) 
if and only if w + T,  for any term T. The next crucial fact is that if any linear combination of 
g(A,n) generates f(w, s ,  n), then there can be no 'carries7. Therefore, if for any term T, gl(T) 
is in some linear combination generating f (w, s ,  n), then T must be satisfied by w. Finally, the 
fact that MSF's of f(w, s, n),gl(T) and ei are 2n - 1, 2m - 1, and 2, respectively, ensures that 
if any linear combination is to equal f (w, s ,  n), then it must contain a non-zero multiple of gl(T) 
for some term T.  This T must be satisfied by w. It is easily seen, on the other hand, that if 
there is a term T in A that is satisfied by w, then the sum of gl(T) and the appropriate stuffings; 
{ei I i E IND(w) \ IND(T)) ,  equals f (w,s, n). 

It is easy to check that f can be computed in time polynomial in n and s ,  and that g is 
'poly- blowup'. 



5.4.2 Proof Sketch of Theorem 5.6 

First, we note the following fact, which is essentially a corollary to  the Prime Number Theorem.16 

Fact 5.1 There exists an algorithm which takes an  integer n as input and outputs 2n distinct 
primes in time polynomial in n. We let h denote the function computed by one such algorithm, and 
let h(n) denote the output of h on n, and h(n, i) the i-th smallest element in h(n). 

These 2n primes are then associated with the 2n literals there are for n variables: We map any 
assignment w to  the product of the associated primes for those n literals made true by the assign- 
ment, say f (w). (For simplicity, we ommit other parameters t o  f for now.) We then map any term 
T to the product of the associated primes for all the literals in it, gt(T). The simple but crucial 
observation is that gt(T) divides f(w) if and only if T is a subset of the set of literals made true 
by w. Thus, f(w) is in the linear set (module) generated by {gt(T)), if and only if w satisfies 
T.  It follows immediately then, that if A is a DNF formula, then f(w) is in the semilinear set 
(semi-module) generated by g(A) = {{gt(T)) I T E A) if and only if w satisfies A. 

We formally define f and g (for SLB only). Since f is polynomial time computable by Fact 5.1 
and g is easily seen to be poly-blowup, the foregoing informal argument shows that they satisfy all 
the required conditions of a prediction-preserving reduction of DNF to  either SMB or SLB. 

where 

5.4.3 Proof Sketch of Theorem 5.7 

The reduction is identical to the one in the proof of Theorem 5.5, except for the fact that the 
2n fields and MSF of bit maps in the previous case are replaced by 2n independent dimensions. 
Namely, we define our f and g as follows. 

where 
gt(T) = (2m - ~ , I I N D ( T ) ( ~ ~ ) ,  ...,IZND(T)(~), ...,II ND(T)(~) )  

E(n) = {e; 11 5 i 5 2n3 

e; = (2,O ,..., 0,1,0 ,..., 0) 

An essentially identical argument as before shows that this gives us a prediction preserving reduction 
from DNF to LB(variab1e-dimension, unary). 

16The prime number theorem states that the number of primes less than or equal to n is of order $ - in fact Q(e) This, together with the fact that primality checking is performable in pseudo polynomial time, implies the 
claimed fact. 



5.4.4 Proof Sketch of Theorem 5.8 

The reduction is similar to  the one in the proof of Theorem 5.6 with some twist. Here, instead of 
the 2n primes that were associated with the 2n literals for n variables in the previous case, we use 
2n-dimensional unit vectors for the same purpose. In essence, we use the variable dimension at 
hand to express 2n independent components which, in the previous case, we used primes for. 

We map any assignment w to the sum of the unit vectors associated with exactly those n Literals 
made false by the assignment, and call this f (w). (Again for simplicity, we ommit other parameters 
to  f for now.) Recall that, in the previous reduction, we mapped w to the product of all the primes 
for those literals made true by the assignment. We then map any term T to  the basis (with 0 
offset) and the set of generators consisting of the associated unit vectors for all the literals not in i t ,  
denoted gl(T). The crucial fact is that g'(T) can generate f(w) as an integral Linear combination 
of its elments if and only if T contains no literals that are made false by w. Thus, f(w) is in the 
linear set (module) generated by gl(T) if and only if w satisfies T.  Hence if A is a DNF formula, 
then f(w) is in the semilinear set (semi-module) generated by {gl(T) 1 T E A) if and only if w 
satisfies at  least one of the terms in A. 

We formally define the mappings f and g in the following (for SLB only). We introduce the 
notation 'NIND(.) '  as a short hand for the 'complement' of IND(.) ,  i.e. if w is an assignment 
then NIND(w)  = {i I w; = 0) U {n + i ( w; = 1). 

f (w, S, n) = ( I N I N D ( ~ ) ( ~ ~ ) ,  ..., I N I N D ( ~ ) ( ~ ) ,  I N I N D ( ~ ) ( ~ ) )  

where 
gl(T, n) = {e;  I i E NIND(T))  

and e; is the unit vector whose only non-zero component is its i-th component. 

6 Open Problems 

Our characterization of learnability is complete, up to various degrees of hardness assumptions, 
except the learnability question for semilinear sets in unary for dimensions 3 and higher which is 
an open problem. Also, the question of proper-learnability of linear sets for any dimension is open, 
though they are clearly learnable by semilinear sets for dimensions up to 2. 
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