
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1989

A Simple Semantics for ML Polymorphism A Simple Semantics for ML Polymorphism

Atsushi Ohori
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Atsushi Ohori, "A Simple Semantics for ML Polymorphism", . March 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-21.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/784
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76365368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/784
mailto:repository@pobox.upenn.edu

A Simple Semantics for ML Polymorphism A Simple Semantics for ML Polymorphism

Abstract Abstract
We give a framework for denotational semantics for the polymorphic "core" of the programming language
ML. This framework requires no more semantic material than what is needed for modeling the simple
type discipline. In our view, the terms of ML are pairs consisting of a raw (untyped) lambda term and a
type-scheme that ML's type inference system can derive for the raw term. We interpret type-schemes as
sets of simple types. Then, given any model M of the simply typed lambda calculus, the meaning of an ML
term will be a set of pairs, each consisting of a simple type τ and an element of M of type τ.

Hence, there is no need to interpret all raw terms, as was done in Milner's original semantic framework. In
comparison to Mitchell and Harper's analysis, we avoid having to provide a very large type universe in
which generic type-schemes are interpreted. Also, we show how to give meaning to ML terms rather than
to derivations in the ML type inference system (which can be several for the same term).

We give an axiomatization for the equational theory that corresponds to our semantic framework and
prove the analogs of the compeleteness theorems that Friedman proved for the simply typed lambda
calculus. The framework can be extended to languages with constants, type constructors and recursive
types (via regular trees). For the extended language, we prove a theorem that allows the transfer of
certain full abstraction results from languages based on the typed lambda calculus to ML-like languages.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-21.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/784

https://repository.upenn.edu/cis_reports/784

A Simple Semantics
For M L Polymorphism

MS-CIS-89-21
LOGIC & COMPUTATION 05

Atsushi Ohori

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

March 1989

ACKNOWLEDGMENTS:
This research was supported in part by grants NSF IRI86-10617, NSF

MCS-8219196-CER, US Army grants DAA29-84-K-0061,
DAA29-84-9-0027 and by funding from AT&T Telecommunications
Program. Appeared in Proceedings of Fourth ACM/IFIP Conference on

Functional Programming Languages and Computer Architecture, London, England,
ACM Press, September 1989.

A Simple Semantics for ML Polymorphism*

Atsushi Ohori

Department of Computer and Information Science,

University of Pennsylvania,

200 South 33rd Street

Philadelphia, PA 191 04-6389

Electric mail address : ohori@linc.cis.upenn.edu

Abs t r ac t

We give a framework for denotational semantics for the polymorphic "core" of the programming lan-

guage ML. This framework requires no more semantic material than what is needed for modeling the simple

type discipline. In our view, the terms of M L are pairs consisting of a raw (untyped) lambda term and a

type-scheme that ML's type inference system can derive for the raw term. We interpret type-schemes as

sets of simple types. Then, given any model M of the simply typed lambda calculus, the meaning of an

ML term will be a set of pairs, each consisting of a simple type r and an element of M of type r.

Hence, there is no need to interpret all raw terms, as was done in Milner's original semantic framework.

In comparison to Mitchell and Harper's analysis, we avoid having to provide a very large type universe in

which generic type-schemes are interpreted. Also, we show how to give meaning to ML terms rather than

to derivations in the ML type inference system (whic11 can be several for the same term).

We give an axiomatization for the equational theory that corresponds to our semantic framework and

prove the analogs of the compeleteness theorems that Friedman proved for the simply typed lambda

calculus. The framework can be extended to languages with constants, type constructors and recursive

types (via regular trees). For the extended language, we prove a theorem that allows the transfer of certain

full abstraction results from languages based on the typed lambda calculus to ML-like languages.

1 Introduction

ML is a strongly typed programming language sharing with other typed languages the property t h a t the type

correctness of a program is completely checked by sta.tic analysis of the program - usually done at compile

time. Among other strongly typed languages, one feature tha t distinguishes ML is i ts implicit type system.

Unlike explicitly-typed languages such as Algol a.nd the typed lambda calculus, ML does not require type

specifications of bound variables. T h e synta.x of M L progranls is therefore same as t ha t of untyped terms (raw

'This research was supported in part by grants NSF IRlS6-10617, ARO DAA6-29-84-k-0061, and by OK1 Electric Industry

Co., Japan.

terms). However, not all raw terms correspond to legal RIL programs. A term of ML is an associations of

raw term and a type-scheme determined by a proof system often called a type inference system. Moreover,

for any given raw term, the type system can infer its most general (or principal) type-scheme representing

the set of all possible types of the raw term. For example, a type system can infer the type-scheme t + t for

the raw term Ax. x, where t is a type variable representing arbitrary types. The above type-scheme correctly

represents the set of all possible types of the raw term Ax. x. Through this type inference mechanism, ML

attains the flexibility and convenience of untyped languages without sacrificing the desired feature of complete

static type-checking. In the above example, the term Ax. x can safely be used as a term of any type of the form

r -+ r. Combining the type inference with the binding mechanism of let-expressions, ML also realizes a form

of polymorphism without using type abst,ract,ion or t5ype application. In the body e of let id = Ax. x in e,

each occurrence of id can be used as an identity function of a different type.

There are two major existing approaches to explain M L type system - the one by Milner [Mi1781 (extended

by MacQueen, Plotkin and Sethi [MPS86]) based on a semantics of an untyped language and the other by

Mitchell and Harper [MH88] based on an explicitfly-typed language using Damas and Milner's type inference

system [DM82]. As we shall suggest in this paper, however, neither of them properly explain the behavior

of ML programs. Because of the implicit type system, AIL behaves differently from both untyped languages

and explicitly-typed languages. In order to understand AIL, me need to develop a framework for denotational

semantics and equational theories that give precise account for ML's implicit type system. The goal of this

paper is to propose such a framework. In the rest of this section, we review the two existing approaches and

outline our approach.

1.1 Milner's original semantics

In [Mi178], Milner proposed a semantic framework for RiIL based on a semantics of an untyped language. He

defined the following two classes of types:

where b stands for base types and t stands for type variables. Here we call them types (ranged over by r)

and type-schemes (ranged over by p) respectively. Type-schemes containing type variables represent all their

substitution instances and correspond to polymorphic types. A type-scheme pl is more general than p2 if pz

is a substitution instance of p l . He then gave the algorithm W that infers a most general type-scheme for the

following raw terms:

e ::= x I AX.^) I (e e) I if e then e else e I fix x e I let x = e in e

where x stands for variables and fix x e stands for the least fixed point of Ax. e.

For this language, he proposed a semantic interpretation for the typing judgement e : p as the set-

membership relation between the denotation of e and the denotation of p and showed that the type inference

algorithm W is sound under this interpretation. A denotation of a raw term is defined as an element of a

(universal) domain of untyped expressions given by the following domain equation:

V = B1+ . . . + B, + [V + V] + {wrong)

where B1, . . . , B, are basic domains and wrong represents run-time error. The denotation of types are induc-

tively defined as subsets of V. The denotation of a type-scheme is defined as the intersection of the denotations

of all its instance types. This semantics was extended to recursive types by MacQueen, Plotkin and Sethi

[MPS86]. (See also [Hin83, Cop841 for related studies.)

This semantics explains the polymorphic nature of ML programs and verifies that ML typing discipline

prevents all run-time type errors. However, this semantics does not fit the behavior of ML programs. As an

example, consider the following two raw terms el and e2 with their type-schemes:

el XxXy. y : t l + t2 + t2

e2 XxXy. (XrXw. w)(xy)y : (t l -+ t2) + t i -+ t i

where parentheses are omitted assuming left association of applications. I t is easily checked that the two raw

terms have the same meaning under Milner's semantics. Indeed, if we were to ignore their type-schemes and

regard them as terms in the untyped lambda calculus, then they would be /?-convertible t o each other and

would be regarded as equal terms. However, RIL is apparently a typed language, and as terms of ML, these

two behave quite differently. For example, the term ((el 1) 2) is evaluated t o 2 but ((e2 1) 2) is not even

a legal term and ML compiler reports a type error. This is one of the most noticeable difference between

meanings of terms and should be distinguished by any semantics. From this example, we can also see that

the equality on ML programs is different from the equa.lity on terms in the untyped lambda calculus. For this

reason, Milner's semantics seems to provide little help in reasoning about the behavior of ML programs.

1.2 Damas-Milner type inference systenl and Mitchell-Harper's analysis

Damas and Milner presented a proof system for typing judgements of ML [DM82]. They redefined the set of

types of ML as the following two classes:

The class represented by p is same as Milner's type-schemes. We call the class of types represented by a

generic type-schemes. t in Vt. a is a bound type varia.ble analogous to a bound variable in lambda terms. We

write a[tl := al, . . . , t, := a,] for the generic type-scheme obtained from a by simultaneously substituting t;

by ai with necessary renaming of bound type va.ria.bles. A type a = Vtl . . .t,. p is a generic instance of a type

a' = Vti . . . tk .p ' if each t5 is not free in a and p' = p[tl := pl , . . . , t , := p,] for some non-generic type-schemes

p l , . . . , p n A type a is more general than a', a' < a, if a' is a generic instance of a . A Damas-Milner type

assignment scheme r is a function from a finite subset of varia.bles to generic type-schemes. For a given

function f , we write f {xl := vl, . . . , x, := v,) for the function f' such that dorn(f1) = dom(f) U {xl, . . . , x,),

fl(y) = f (y) for any y # xi, 1 5 i 5 n and f l (xi) = vi, 1 < i < 12. A Damas-Milner typing-scheme is a formula

of the form I? b e : o that is derivable in the following proof system:

r b e : ~
(G E N) if t not free in I'

r b e : v t . u

r b e l : a I'{x := u) b ez : p
(L E T) r b let x = e l in ez : p

We write DM l- r b e : a if b e : a is derivable in the proof system. Terms of ML are then defined as

typing-schemes.

Based on this derivation system, Mitchell and Harper proposed another framework to explain implicit type

system of ML [MH88]. In what follows, we shall only discuss their analysis of the "core" of ML. However,

it should be mentioned that their approach also provides an elegant treatment of Standard ML's modules

[HMM86].

They defined an explicitly-typed language, called Core-XML. The set of types of Core-XML is same as

those in Damas-Milner system. The set of un-checked pre-terms of Core-XML is given by the following abstract

syntax:

M ::= x 1 (M M) I (Ax : p. A d) ((M p) I (A t . M) (let x : a = M in M

where (M p) is a type application and (At . h4) is a type abstraction. Type-checking rules for Core-XML are

given as follows:

r D M : u
(T A B S) if t not free in r

r b (A t . M) : v t . u

r b M~ : r { ~ := U) b :
(L E T) r D let x : u = M1 in Ad2 : p

We write MH I- I' b M : a if r b M : a is derivable from the above typing rules. Terms of Core-XML

are typing-schemes that are derivable in the above system. They showed the following relationships between

Core-XML and Damas-Milner system. Define the type erasure of a pre-term M , erase(M) , as follows:

erase(x) = x

erase((Ml M z)) = (erase(M1) erase(M2))

erase((Ax : p. M)) = (Ax. erase(M))

erase((X1. M)) = erase(M)

erase((hl p)) = erase(M)

erase(let x : a = M1 in M 2) = let x = erase(M1) in erase(M2)

Theorem 1 (Mitchell-Harper) If M H I- r b M : a then DM I- r b erase(M) : a. If DM I- r b e : a

then there exists a Core-XML pre-term M such that erase(M) e and M H I- b M : a. Moreover, M

can be computed effectively from a proof of I' b e : a. I

Based on this relationship, they concluded that Core-XRIL and Damas-Milner system are "equivalent" and

regarded ML as a "convenient shorthand" for Core-XML.

If we could indeed regard ML terms as syntactic shorthands for Core-XML terms then equational theory

and model theory could simply be those of Core-XML. However, we cannot simply regard ML terms as

syntactic shorthands for Core-XML terms. "Syntactic shorthand" should mean a syntactic mapping from ML

terms to Core-XML terms but the above relationship does not define nor imply such a mapping. The above

results only established a correspondence between Core-XML terms and derivations of Damas-Milner terms.

However, a Damas-Milner term in general has infinitely ma,ny distinct derivations. For example, consider the

term:

0 b (XxXy. y)(Xx. x) : t -+ t

This means that there are, in general, infinitely many distinct Core-XML terms that correspond to a given

Damas-Milner term. One way to overcome this difficulty is to choose a particular Core-XML term among

infinitely many choices. Such a choice seems possible if we assume a particular type inference algorithm.

However we cannot regard any particular algorithm as a part of the essence of ML.

We also think that Damas-Milner system and the corresponding explicitly-typed language Core-XML are

too strong to explain ML's type system. As argued by Milner in [Mi178], it is ML's unique feature and

advantage that ML supports polymorphism without type abstraction and type application. Note that this

account of ML only used non-generic type-schemes. As such a language, ML can be better understood without

using generic type-schemes, whose semantics requires the construction of very large spaces.

1.3 A simple framework for ML polyinorphism

From the above analyses, it appears that hlL is different from both untyped languages and explicitly typed

languages. In order to understand ML properly we need to develop a framework for semantics that account

for ML's implicit type system. Such a semantics should be useful to reason about various properties of ML

programs including equality on programs and operational semantics. A strategy was already suggested in

Mitchell-Harper approach. We can use an explicitly typed language as an intermediate language to define

a semantics of ML. In this paper we propose a framework for semantics and equational theories of ML by

extending Wand's analysis [Wan84], where ML terms are considered as shorthands for terms of the typed

lambda calculus. Wand's approach, however, does not give semantics to terms whose type-schemes contain

type variables.

We first define an inference system and semantics for ML typings (typing-schemes that do not contain

type variables) and then "lift" them to general ML terms (i.e. typing-schemes). Analogous to the relationship

between Damas-Milner system and Core-XML, derivations of typings correspond to terms of the simply typed

lambda calculus. Here is the crucial point in the development of our semantic approach: we show that if two

typed terms correspond to derivations of a same ML typing then they are P-convertible (theorem 7). This

guarantees that any semantics of the simply typed lambda calculus, in which the rule (P) is sound, indeed

yields a semantics of ML typings. We then rega.rd a general ML term as a representation of a set of typings.

An association of a raw term and a type-scheme is an ML term if the set of all its ground instances are

ML typings. The denotation of an ML term is defined as the set of denotations of the typings indexed by

types represented by its type-scheme. For example, we regard the denotation 60 b Ax. x : t + t] as the set

{ (r - r, [[Ax : r . z])(T E T y p e) .

Equational theories are defined not on raw terms but on typing-schemes. Informally, two typing-schemes

are equal iff their type-schemes are equal and raw terms a.re convertible to each other. This definition correctly

models the behavior of ML programs. Type-schemes determine the compile-time behavior of programs and

raw terms determine their run-time behavior. We then prove the soundness and completeness of equational

theories. This confirms that our notion of semantics precisely captures and justifies the informal intuition

behind the behavior of ML programs.

Our semantic framework can be extended to languages with an arbitrary set of constants, an arbitrary

set of type constructors and recursive types (via infinite regular trees). Our semantic framework can also be

related to certain operational semantics. We show that if a semantics of the typed lambda calculus is fully

abstract with respect to an operational semantics then the corresponding semantics of ML is fully abstract

with respect to an operational sema.ntics that sa.tisfies certain reasonable properties in connection with the

operational semantics of the typed lambda calculus. This results enables us to transfer various existing results

for full abstraction of typed languages to AIL-like languages. A limitation to this program is due to the fact

that our interpretation needs the soundness of the (P) rule. Such models, of course, while good for "call-by-

name" evaluation, are not computationally adequate for the usual "call-by-value" evaluation of ML programs.

Thus, this result seems helpful only for "lazy" ML-like languages such as Mirand [Tur85]

2 The Language Core-ML

We first present our framework for the set of pure raw terms, the same set analyzed in [DM82, MH881. We call

the pure language Core-ML. Later in section 5 we extend our frameworks to a language allowing constants,

arbitrary set of type constructors and recursive types (infinite types).

2.1 Raw terms, types and type-schen~es

We assume that we are given a countably infinite set of variables V a r (ranged over by x) . The set of raw

t e r n s of Core-ML (ranged over by e) is defined by the following abstract syntax:

e ::= x I (e e) I Ax. e I let x = e in e

We write e[xl := e l , . . . , xn := en] for the raw term obtained from e by simultaneously replacing X I , . . . , xn

by e l , . . . ,en with necessary bound variable renaming. The intended meaning of let x = e l in e2 is to bind

x to el in e2 and to denote operationally the expression e2[x := e l] . For a raw term e , the let expansion

e, letexpd(e), is the raw term without 1eGexpression obtained from e by repeatedly replacing the outmost

subterm of the form let x = el in e2 by e2[x := e l] . For any raw term el letexpd(e) always exists.

The set of types, Types ranged over by r , is given by the following abstract syntax:

where b stands for base types. We assume that there is a given set T v a r of countably infinite type variables

(ranged over by t) . The set of type-schemes, Tscheme ranged over by p, is given by the following abstract

syntax:

p : : = t 1 b (p - - + p

A substitution 6 is a function from T v a r to Tscheme such that B (t) # t for only finitely many t . We identify

6 with its extension to Tscheme (and any other tree structures that contain type-schemes). A type-scheme p

is an instance of a type-scheme p' if there is a substitution 6 such that 6(p1) = p. If p is a type then it is a

ground instance.

2.2 Typings, typing-schemes and terms of Core-ML

A type assignment A is a function from a finite subset of V a r to Types . A typing is a formula of the form

A b e : T that is derivable in the following proof system:

A b e ~ [x := e2] : r A b e 2 : T' for some T'

(LET)
A b let x = e 2 in el : r

We write ML I- A b e : T if A b e : T is derivable in the above proof system. A derivation A of A b e : r

is a proof tree for A b e : T in the above proof system.

A type assignment scheme C is a function from a finite subset of V a r to Tscheme . A typing-scheme is a

formula of the form C b e : p whose ground instances are all typings, i.e. for any substitution 0 if 6(C) is a

type assignment and 6(p) is a type then M L I- O(C) b e : O(p). We write M L I- C b e : p if C b e : p

is a typing-scheme. A typing-scheme C1 b e : pl is more general than a typing-scheme C2 b e : pa, write

C2 b e : p2 < El b e : pl, if there is a substitution 6 such that C2fdom(Cl)= 6(C1) and p2 = O(pl), where

f tX denotes the function restriction of f on X. Note that more general also means less entries in a type

assignment scheme. A typing-scheme C D e : p is principal if C' b e : p' < C b e : p for any typing-scheme

C' b e : p'. The following property is an immediate consequence of the definition:

Proposition 1 If C b e : p is a principal typing-scheme then { A b e : rlA b e : T < C b e : p)

= { A b e : r1MLI-A b e : 71.1

This means that a principal typing-scheme represents the set of all provable typings. In what follows, we

regard typing-schemes as representatives of equivalence classes under the preorder <, i.e. equivalence classes

induced by renaming of type variables (without "collapsing" distinct variables).

We now define terms of ML as (not necessarily principal) typing-schemes. Non principal typing-schemes

correspond to programs with (pa.rtia1) type specifications which are supported in ML and can be easily added

to our definition. A term containing type variables corresponds to a polymorphic program in ML. A raw term

e in C b e : p represents the computational contents of the term and determines its run-time behavior. The

pair (C, p) represents the typing contexts in which e is meaningful and determines the compile-time behavior

of the term.

One important property of Core-ML is the decida.bility of type inference problem:

Theorem 2 If a raw t e rm e has a typing-scheme then it has a principal typing-scheme. Moreover, there is an

algorithm which, given a raw term, computes a principal typing-scheme if one exists otherwise reports failure.

Proof This is a simple extension of Hindley's result of principal typing-schemes for untyped lambda term

[HinSS] by using the following property: ML I- A b let x = el in e2 : r iff M L t A b e2[x := e l] : r and

M L I- A b e l : r' for some r'. 1

Since the relation C1 b e : pl < C2 b e : p2 is decidable, this theorem also establishes the decidability of the

provability M L t C b e : p .

This typing derivation system is significantly simpler than that of Damas-Milner system. In particular, it

does not involve generic type-schemes. However, for closed terms, they are essentially equivalent in the sense

of the following two theorems (theorem 3 and 4):

Theorem 3 For a closed raw term e , if D M I- r b e : u then there is some C such that M L I- C b e : p

where p is the most general non-generic type-scheme such that p < a, i.e p is the type-scheme obtained from

u by deleting all prefixes of the form V t .

Proof The proof uses the following lemma. We only show outline of their proofs.

Lemma 1 If D M I- I? b e : u then it has a derivation such that all applications of the rule (INST) are

immediately preceded b y an instance of th,e axiom scheme (V A R) .

Proof By induction on the structure of e. I

L e m m a 2 F o r raw t e r m s e l , e 2 , DM I- r b let x = e l in e2 : p iff DM I- I' b e l : a f o r s o m e a a n d

DM I- r b e 2 [x := e l] : p .

Proof This is proved by lemma 1, the existence of most general typing-schemes in Damas-Milner system and

the following property: if DM i- I'{x := p l) b e l : p2 and DM I- I' b e 2 : pl then DM I- I' b e l [z := e 2] : p2.

I

We now prove the theorem. Suppose DM I- I' b e : a . Since e is a closed term, DM I- 0 b e : a.

By the rule (INST), DM t 0 b e : p where p is the most general non-generic type-scheme such that p < a .

By the property of l e t e x p d (e) and lemma 2 , DM t 0 b l e t e x p d (e) : p . By lemma 1 and the fact that

l e t e x p d (e) does not contain let-expression, 0 b l e t e x p d (e) : p has a derivation A such that it does not contain

applications of (G E N) or (I N S T) . This means that any ground instance of A is a derivation in ML t. Therefore

ML I- A b l e t e x p d (e) : r for any ground instance (A , r) of (C, p) . But in ML I-, it is easily shown by definition

that ML t A b e : r iff ML I- A b l e t expd (e) : r . Therefore ML I- 0 b e : r for any ground instance

(A , r) of (C , p) . Hence MLt 0 b e : p . 1

Theorem 4 F o r a n y r a w t e r m e l if ML t C b e : p then there i s s o m e I' such tha t DM t I' b e : p .

Proof By induction on the structure of e using lemma 2 . 1

As we have demonstrated through theorem 2, 3, and 4, ML's syntactic properties are understood without

using generic type-schemes. This correspond to our semantics which only requires the semantic space of the

simply typed lambda calculus. However, our system suggests a potentially inefficient type inference algorithm.

A straightforward implementation of an algorithm based on our derivation system would infer a typing-scheme

of let x = e l in e2 by inferring a typing-scheme of e 2 [x := e l] . This involves repeated inferences of a typing-

scheme of e l because of multiple occurrences of x in e z , which is clearly redundant. The extra typing rules

for generic type-schemes in Darnas-Milner system and the corresponding control structures of the algorithm

W can be regarded as a mechanism to elimina.te t1he redundancy and can be considered as implementation

aspects of ML type inference.

2.3 Equational theories of Core-ML

A formula of an equational theory is a pair of terms having the same type assignment scheme and the same

type-scheme. We write C b e l = e2 : p for such a pair. An AfL-theory consists of a given set of equations

EM, and the following set of rules: the axiom schemes (a) , (P) , (v), the inference rule scheme (t) obtained

from respective rule schemes in the untyped lambda ca.lculus by tagging C and p (and restricting axioms to

the set of pairs of legal terms of MI,), the set of rule schemes for usual equational reasoning (i.e. reflexivity,

symmetry, transitivity and congruence), the following axiom scheme:

(l e t) C b (le t x = e l in e z) = (e 2 [x := e l]) : p ,

and the following inference rule scheme:

C b e l = e 2 : p
(thinning) if C C' (as graphs).

C' b el = e2 : p

On a set of equations EM,, we require the following closure properties:

1. if C b e 1 =e2 : p~ E and (C',pl) is aninstanceof (C,p) then C' b e 1 =e2 : p l E E .

2. if C1 b el = e2 : pl E E and C2 b el = e2 : p2 E E then there is some C b el = e2 : p E E such that

(El , pl) and (Cz, p2) are instances of (C, p).

We believe that all useful equations for ML satisfy the restrictions. We call a set of equation EML satisfying

the above closure properties as a set of ML-equations. We write EM, I-,, C b el = e2 : p if C b el = e2 : p

is derivable from the axioms and EM, using the inference rules. A set of ML-equations EM, determines the

ML-theory ThML(EML). We sometimes regard ThML(EML) as the set of all equations that are provable by the

theory. The theory ThML(0) corresponds to the equality on ML terms. We write C b el =,, e2 : p for

0 kML C b el = e2 : p.

If we exclude the rule of symmetry from the set of rules, then we have the notion of reductions. We write

E M , t-,, C b e l + + e 2 : p if C b el : p is reducible to C b e2 : p using EML and the set of rules. In particular,

the empty set determines the pq-reducibility, for which we write A b Ml++MLM2 : T . The notion of normal

forms are defined accordingly.

3 Semantics of Core-ML

In this section, we first define the explicitly-typed 1angua.ge T A that corresponds to derivations of Core-ML

typings. We then define the semantics of Core-ML relative to a semantics of TA.

3.1 Explicit ly-typed language TA and its semantics

The set of types of TA is exactly the set Types of types of ML. The set of un-checked pre-terms is given by

the following abstract syntax:

M ..- ..- x 1 (Ad A f) 1 Ax : r. M

Type-checking rules for T A are given as follows:

We write T A t- A b M : r if A b Ad : r is derivable from the above typing rules. The set of terms of TA

is the set of all derivable typings. T A is clearly a representation of the simply typed lambda calculus, whose

equational theory and model theory are well understood.

We write A b M1 = M2 : T for an equation of T A . A TA-theory consists of a set ETA of equations and

the following set of rules: the axiom schemes (a), (P) , (17) and the inference rule scheme (t) of the simply

typed lambda calculus, the set of rule schemes for usual equational reasoning and the following inference rule

scheme:

A b M 1 = M 2 : ~
(thinning) if A C_ A' (as graphs)

A' b M1 = A t 2 : T

We write ETA I-,, A b M1 = M2 : T if d b M1 = Mz : T is derivable from the axioms and ETA using the

inference rules. The following notations and notions are defined parallel to Core-ML: ThTA(ETA), A b M1 =,,
M2 : T, the notion of reductions, ETA k,, A b MI-M2 : T, and A b M1+,,M2 : T.

Following [Fri73] we define the notion of models of T A as follows: A frame is a pair (Dl e) where 2) is a set

{D, I T E Types) such that each D, is non-empty a.nd l is a family of binary operations e,,,, : D,,,,, x D,, -.
D,, . A frame is extenszonal if

Given a frame F , a map 4 : D,, -+ D,, is representable if there is some f E D,,,,, such that Vd E D,, .4(d) =

f l d (f is a representative of 4) . In an extensional frame, representatives are unique. For a frame 3 = ('Dl a)

and a type assignment A , a FA-environment E is a mapping from dom(A) to U D such that ~ (x) E DA(I) .

We write ~ n u ~ (A) for the set of all FA-environments. A semantics of a term A b M : p is a mapping

from ~ n u ~ (A) to D,. An extensional frame M is a model if there is a semantic mapping [I on terms of T A

satisfying the following equations. For any E E EnvM (A):

[A b X : TIE = E(X)

[A b Ax : TI. M : TI + T ~] E = the representative of 4 such that

(Vd E D,,)(4(d) = [d{x := 71) b M : T2]&{2 := d))

[A b (M N) : TIE = [A b M : T ~ + T] E ~ [A b N : TI]&

Note that for a given extensional frame, such a sema.ntic mapping does not necessarily exist, but if one exists

then it is unique. If M is a model, then we write M[] for the unique semantic mapping.

An equation A b M = N : T is valid in a model M, write M bTA A b M = N : T, if M[A b M : T] =

Mud I> M : T]. Let V a l i d T A (M) be the set of all T A equations that are valid in M . Write M ETA F for

F Val idTA(M). For T A we have the following soundness a.nd completeness of equational theories [Fri73]:

T h e o r e m 5 (Friedman) For any model M and any TA-theory ThTA(ETA), i f M bTA E T A then ThTA(ET,) 5
ValidTA(M). For any TA-theory T, there exists a model 7 such that V a l i d r A (7) = T.

3.2 Relationship between TA and derivations of Core-ML typings

Analogous to the relationship between Damas-Milner system and Core-XML, derivations of Core-ML typings

correspond to terms of T A . Define a mapping typedtervn on derivations of Core-ML typings as follows:

(1) If A is the one node derivation tree

A b x : r (V A R)

then typedterm(A) = x .

(2) If A is the tree of the form

then typedterm(A) = Ax : T I . typedterm(A1).

(3) If A is the tree of the form

A 1 A2

A b (el ez) : r
(A P P)

then t yped term(A) = (typedterm(A1) t~ped t e rm(A2)) .

(5) If A is the tree of the form

A 1

A b le t x = e l in e2 : r
(LET)

then typedterm(A) = t yped term(Al) .

The type erasure of a pre-term M , write erase(M) , is the raw term obtained from M by erasang all type

specifications of the form ": r" in all subterms of the form Ax : r. M' in M . The following theorem corresponds

to theorem 1:

T h e o r e m 6 If T A t- A b M : r then M L I- A b erase(M) : r and there is a derivation A for A b

erase(M) : r such that typedterm(A) z M . If A is a typing derivation for A b e : r then letexpd(e) G

erase(typedterm(A)) and T A I- A b typedterm.(A) : T .

Proo f These properties are shown by inductions on the structures of M and e respectively. 1

On this relationship we also have the following desired property:

T h e o r e m 7 If Al , A2 are typing derivations of a same typing A b e : r then the following equation holds:

Proo f The proof uses the following lemmas:

L e m m a 3 Let A b M : r and A b e : r he respectively T A lenn and Core-ML term such that erase(M) z e.

If A b M-+,,M' : T then there is el such that erase(M1) e' and A b e--,,el : r. Conversely, if

A b el-+,,e2 : T then there is MI such that erase(Adl) = e' and A b M++,,M1 : r.

Proof This is proved by observing the following facts: (1) there is a one-one correspondence between the

set of @?redexes in M and the set of PQ-redexes in e, (2) if erase((Ax : T. MI) M2) ((Ax.el) e2) then

erase(Ml[x := M z]) r el[x := e2], and (3) if erase(Ax : T. Mx) - (Ax.ex) then erase(M) e. I

Note that this result, combined with the property of the reduction rule (let) and the connection between

TA terms and typing derivations of ML implies that if TA has the strong normalization property then so

does Core-ML, which was suggested in [HS86, remark 15.321. Technical difficulty of treating bound variables

mentioned in [HS86, remark 15.321 was overcome by our presentation of TA.

Lemma 4 If two terms A b M1 : T and A b M2 : r are in P-normal form and erase(M1) erase(M2)

then MI M2.

Proof The proof is by induction on the structure of MI . Bases are trivial. Induction step is by cases.

Case of M1 E Ax : TI. Mi: By the typing rules of TA, T A I- A{x := b Mi : 72 for some T2 and

T = 71 - ~ 2 . Since erase(M1) EE erase(M2), Ad2 must be of the form Ax : T;. M i such that erase(Mi)

erase(Mi). By the typing rules for TA, T A k A{x := ri) b M2 : T; for some T; and T = T; -+ T;. Therefore

rl = ri, r 2 = T;. By definition, A{x := rl) b A4i : r 2 and d { x := TI} b M i : 72 must be also in @-normal

form. Then by induction hypothesis, Mi E Mi. This implies M1 E M2.

Case of M1 E (. . . (x MI1) . . . M?): Define N r E x, N; E (. . . (x M:) . . . M;-~), 0 < i < n - 1. By the

typing rules for TA, T A k A 1> ~ 1 " : rf' for some rf E Types, 0 5 i < n - 1 and T A I- A b M: : p i for

some p(E Types, 1 < j <. It is shown by simple induction that 710 = T and T: = p ~ - ~ + l -+ TI'-', 1 < i 5 n.

Therefore A(z) = 71" = p i -+ p: -+ . . . -+ py -+ T. Since erase(M1) r erase(M2), M2 must be of the form

(. . . (x M;). . . M;) such that erase(^;) E erase(Mi), . . . , erase(M;) E erase(M2"). Then similarly we have

T A t A b M; : ,u{ for some pf E Types, 0 5 j 5 n - 1 and A(x) = p i -+ p i -+ . . . -+ p; -+ T. This implies

p: = p i , . . ., py = p;. Then by induction hypothesis, M: M i , . . . , M r E M;. Hence we have M1 r M2.

Since M1 is in /?-normal form. we have exhausted all cases. 1

We now prove the theorem. Let MI E typedterm.(Al), Ad2 = typedterm(A2). Also let A DM; : T, A bM; : T

be terms in @-normal form such that A b M1-nTAAdi : T and A b M2-,,Mi : r (such Mi , M i always

exist). By lemma 3, there are P-normal form terms A b el : T and A b e2 : r such that erase(Mi) G

el ,erase(Mi) e2 and A b e+,,el : T and A D e+,,e2 : r. By the uniqueness of normal form, el e2.

Thus erase(M{) erase(M4). Then by lemma 4, Mi G Mi. 1

3.3 Semantics of Core-ML

We define the semantics of Core-hlL relative to a model of TA. We first define the semantics of Core-ML

typings and then "lift" them to general Core-ML terms.

Let M be any given model of TA. The semantics of ML typings relative to M is defined as

for some derivation A for A b e : T. By theorem 7 and the soundness of TA theories (theorem 5), this

definition does not depend on the choice of A.

For a given type assignment scheme C , the set of admissible type assignments under C denoted by T A (C)

is the set (A13B. Atdom(')= B(C)). Under a given type assignment A, the set T P (A , C b e : p) of types

associated with a term C b e : p is the set (7138. AT^'^(') , r) = B(E, p)). For a set of types S, we write

IIT E S. D, for the space of functions f such that d o m (f) = S, f (r) E D,. Then the semantics M [C b e : pIML

of a Core-ML term C b e : p relative to a model M is the function taking a type assignment A E T A (C) and

an environment E E E n v M (A) that returns an element in l l r E T P (A , C b e : p) . D, defined as follows:

M [C b e : plMLd& = { (r , M [d b e : r]lML&)lr E T P (A , C b e : p))

For example,

M[0 b X x . x : t - - t] l M L A & = { (r + r , M [A b X x : r . x : r - + r] ~) l r € T y p e s)

Now if each element of D,,,,, is a function from D,, to D,, then by the extensionality property of M , we

have

M[8 b Ax. x : t + t IMLA& = { (T -+ r , idDI)1r E Types)

where idx is the identity function on X

4 Soundness and Completeness of Core-ML Theories

Let M be a given model of TA. M also determines the semantics of ML. We say that an equation A b el =

e2 : p is valid in M , write M bML C b el = e2 : p, iff M [C b el : pIML = M [C b e2 : plML (as

mappings). Let V a l i d M L (M) be the set of all equations in Core-ML that are valid in M . Write M bML F

for F C V a l i d M L (M) .

T h e o r e m 8 (S t rong Soundness of Core-ML Theories) Let EM, be any set of ML-equations and M be

any model. If M b M L EML, then ThML(EML) & V n l i d M L (M) .

Proof Define mappings @, Q between sets of RlL-equations and sets of TA-equations as:

@(EM,) = { A b M = N : rlthere is some C b el = e2 : p E EM, such that

(A , T) is an instance of (C, p), erase(M) G letexpd(el), erase(N) = letexpd(e2))

E T A = {C b el = e2 : pl for all ground inst.ance (A , r) of (C , p) there are some M I , M2

such that erase(Ml) le2expd(el),erase(Mz) - letexpd(ez),A b Mi = M2 : T E ETA)

The proof uses the following lemmas.

L e m m a 5 For any set of ML-equations EM,, Q (T h T A (Q (E M L))) = T h M L (E M L) .

Proof By our assumptions on E M , and the properties of rules of ML-theories, C b el = e2 : p E ThML(EML)

iff for all ground instance (A, T) of (C , p) , A b el = e2 : r E ThML(EML)- By definition of 9, S(Th,, (@(EM,)))

also has this property. It is therefore enough to show that A b el = e2 : r E ThML(EML) iff A b el = e2 :

T E Q (T h T A (@ (E M L))) , which is proved by the rela,tionship between sets of rules of T A and Core-ML and the

definition of Q. I

L e m m a 6 Let M be any model. V a l i d M L (M) = Q(Va l id rA(M)) .

Proo f Suppose C b el = e2 : p E V a l i d M L (M) . For any ground instance (A, T) of (C,p) , M [d b e l : ?] I M L

= Mud b e2 : T] ~ ~ . Let A1,A2 be derivations for A b e l : T and A b e2 : r respectively. Then

erase(typedterm(Al)) E letexpd(el), erase(typedterm(A2)) E letexpd(e2), and M I A b typedterm(Al) :

r] = Mud b typedterm(A2) : TI. Therefore by definition C b e l = e2 : p E ?Ir(ValidTA(M)). Conversely,

suppose C b e l = e2 : p E ?Ir(ValidTA(M)). Then by definition, for any ground instance (A , T) of (C,p) ,

there are M, N , A b M = N : T E Val idTA(M) , erase(M) r letexpd(el), erase(N) letexpd(ez). Then by

definition C b el = e2 : p E V a l i d M L (M) . 1

We now prove the theorem. Suppose M /=,, EM,. By definitions of \E', M [] and theorem 6 , M I T A

@(EML). By theorem 5, ThTA(@(EML)) V a l i d T A (M) . Then by lemma 5 and 6, ThML(EML) C_ V a l i d M L (M) .

I

T h e o r e m 9 (Rela t ive Completeness of Core-ML Theories) For any set of ML-equations EML and any

model M , if V a l i d T A (M) = ThT,(@(EML)) then Va . l idML(M) = ThML(EML)

Proo f By lemma 5 and 6 . 1

Then by theorem 5, we have:

Corol lary 1 (S t rong Completeness of Core-ML Theories) For any ML-theory G, there exists a model

I; such that Val idML(G) = G. I

As a special case of theorem 9, for any model M , we have V a l i d M L (M) = ThML(0) if V a l i d T A (M) =

ThTA(0). Now let S be a full t ype structure where Da is a countably infinite set, D,,,,, is the set of all functions

from D,, to D,, and is the function application. Friedman showed that [Fri73] ValidTA(S) = ThTA(0).

Then we have:

Corol lary 2 V a l i d M L (S) = ThML(0)

This means that =,, is sound and complete in the full type structure generated by countably infinite base

sets. Since =,, is decidable, this implies that the set of a.11 true ML equations in the full type structure is

recursively enumerable.

5 Extensions of Core-ML

As a programming language, Core-ML should be extended to support recursion and various data types in-

cluding recursive types. This is done by adding constants and extending the set of types and type-schemes as

(possibly infinite) trees generated by various type constructor symbols.

We assume that we are given a ranked alphabet Tycon (always containing + of arity 2) representing a set

of type constructors. As observed in [Cop85, Wan841, an a.ppropriate class of infinite trees to support recursive

types is the set of regular trees [Cou83]. The set of types Types and the set of type-schemes Tscheme are

extended t o the set of regular trees generated by Tycon and Tycon U T v a r respectively. As an example of

a recursive types, the following infinite type-scheme represented by a regular system [Cou83] correspond to

polymorphic list type:

Lt = nil + (t x Lt)

where + and x are binary type constructors representing sum and product and nil is a trivial type representing

empty lists. We also assume that there is a given set of constant symbols Const, each of which is associated

with a type-scheme. For example, the products can be introduced by assuming the following set of constants

with their type-schemes:

pair : t l - + t 2 - + (t l x t 2)

first : (tl x t2) i t l

second : (t l x t 2) 1 t2

The set of raw terms is extended with element,^ of Const (without their associated type-schemes) and the

inference system of typing is extended by the rule for consta.nts:

(CONST) A b c : T if T is an instance of the type-scheme associated with c

We call this extended language ML. The type inference problem of ML is still decidable. Theorem 2 hold also

for ML, whose proof uses the unification algorithm for regular trees by Huet [Hue76].

In order to define a semantics of the extended language, we need to extend the simply typed lambda

calculus T A and its semantics. The extension of the syntax of T A is done simply by adding typed constants

cT and the obvious type-checking axiom for constants. MTe call this extended language T A + . The notion of

models is extended by adding a type-preserving interpretation function C for constants into a frame and the

condition [A b cT : T I E = C(cT) on the semantic mapping. Breazu-Tannen and Meyer extended [BM85]

Friedman's soundness and completeness of equational theories to languages with constants and a set of types

satisfying arbitrary constraints. The set of types of TA+ satisfies their definition of type algebra and the

soundness and completeness of equational theories (theorem 5) still holds for T A + .

The relationship between T A + terms and derivations of hiIL typing-schemes is essentially unchanged and

theorem 6 still holds (by adding the case for constants). However, theorem 7 no longer holds. There are non

convertible T A + terms that correspond to a same AIL typing. For example, consider the ML typing:

0 b (second((pnir Ax. x)l)) : int

The following two T A + terms both correspond to derivations of the above typing:

0 (second((int-int)xint)'a"t ((p n i r (i n t - i n t) - i n t - ((i n . t - i n t) x i n t) A x : int. x) l)) : int

0 (s e c o n d ((b o o l + b o o ~) x i n t) - i n t ((p a i r (b o o l - b o o l) - i n t - ((b o o l - b o o l) x i n t) A x : b00l. 2) l)) : int

but they are not convertible to each other (with respect to =,,). Another counter-example can be constructed

using infinite types. An obvious implication of this fact is that we cannot interpret constants (and expressions

of infinite types) arbitrarily. We need to restrict models of TA+ to those that give same denotations to terms

whenever they correspond to derivations of a same ML typing. The required condition for a model M of

T A + is that if e r a s e (M) G e r a s e (N) then M[d b A4 : r7) = Mid b N : T]. We call a model M of TA+

satisfying this condition abstract. By the completeness theorem for equational theories, TA+ always has an

abstract model. We further think that the class of abstract models covers a wide range of standard models of

languages with standard set of constants. For example, ordinary interpretation of pair and second certainly

satisfy the above condition and suggests an abstract model. Any abstract model of TA+ yields a semantics

of ML. The soundness and completeness of equational theories of ML (theorem 8 and 9) hold with respect to

the class of abstract models. Proofs are same as before. The condition of abstract models can be regarded as

a necessary condition for fully abstract models we will exploit in the next section.

6 Full Abstraction of ML

One desired property of a denotational semantics of a programming language is full abstract ion [Mi177, Plo77,

Mu184, MC881, which roughly says that the denotational semantics coincides with the operational semantics.

In this section, we will show that if a model of TA+ is fully a.bstract for an operational semantics of TA+ then

it is also fully abstract for the corresponding operational semantics of ML. It should be noted, however, that

our notion of models of TA+ assume the structure that makes the @-rule always sound. This means that a

model is fully abstract for an operational semantics only if the operational semantics is faithful to the P-rule.

Following [Plo77, MC881, we define an operational semantics as a partial function on closed terms of base

types . Let E T A , E M L be respectively the evalua.tion functions of TA+ and ML determining their operational

semantics. We write E (X) JJ y to means that E (X) is defined and equal to y. On the operational semantics of

TA+ we assume that it depend only on structure of terms. Formally, we assume E T A to satisfy the following

property:

for two terms 0 D M : b and 8 b N : b if e r a s e (A 4) G e r a s e (N) then E T A (@ t> M : b) V 0 b cb : b

iff ETA(O b N : b) JJ 0 D cb : b.

We believe this condition to be satisfied by most operational semantics of explicitly-typed programming

languages. On the operational semantics of C M L we assume the following property on evaluation of let-

expressions:

EML(O b e : b) JJ 0 b c : b iff EML(O D l e t e zpd(e) : b) U. 0 D c : b.

This condition correspond to the equality axiom (let), which is analogous to the axiom (P) . This assumption

reflects our structure of models where the rule (@) is always sound. Finally we assume the following relationship

between the operational semantics of TA+ and t,he operational semantics of ML:

for terms 0 t> M : b of TA+ and 0 b e : 6 of RIIL, if e r a s e (M) G e then E T A (@ b M : b) JJ 0 D C ~ : b

iff EML(O D e : b) JJ 0 b c : b.

We believe that in most cases it is routine to construct E M L from given E T A that satisfies the condition and

vice versa.

A context C [] in T A + is a T A + pre-term with one "hole" in it. We omit a formal definition. A context C[]

is a closang b-context for A b M : r if there is a derivation for T A l- 0 b C[M] : b such that its sub-derivation

for (the occurrence in C[M] of) M is a derivation for A b M : r. Two T A + terms A b M : r and A b N : r

are operationally equivalent, write A b M N : r , iff for any closing bcontext C[] for these two terms,

ETA(@ b C[M] : b) JJ 0 b cb : b iff ETA(O b C[N] : b) JJ 0 b cb : b.

Under our assumption on let-expressions, it is enough to consider raw terms and contexts that do not

contain let-construct. Therefore we define a context c[] in ML as a context of the untyped lambda calculus.

A context c[] is a closing b-context for C b e : p if there is a derivation for 0 b c[e] : b such that its

subderivation for e is a derivation for an instance of C b e : p. Two ML terms C b el : p and C b e2 : p
M L

are operationally equivalent, write C b el = e2 : p, iff for any closing b-context c[] for these two terms,

EML(O b c[el] : b) U 0 b c : b iff EML(O b c[ez] : b) U 0 b c : b.

A model M is fully abstract for ETA if M kTA A b M = N : T iff A b M N : r . Similarly, a mode M
M L

is fully abstract for CML if M kML C b el = e2 : p iff C b el x e2 : p. Note that a model M is fully abstract

for ETA then it is an abstract model. This means that any fully abstract model for ETA yields a semantics of

ML. Moreover, we have:

Theorem 10 If a model M is fully abstract for ETA then M is also fully abstract for EML

Proof Let M be any fully abstract model for ETA. By our assumption on EML and the definition of M [IML,
it is sufficient to show the condition of full abstraction for EML for terms that do not contain let-construct.

ML ML ML
Suppose C b el R e2 : p, where el,e2 do not contain let-construct. By the definition of x , A b e l % e2 : T

for any ground instance (A, r) of (C, p). Let A b Ad : r, A b N : r be T A + terms such that erase(M) G
T A ML T A

e l , erase(N) = ez. By the assumption on the relationship between x and x , A b M = N : r . By the full

abstraction of M for ETA, by theorem 6 and by definition of M I I M L , M kML C b el = e2 : p. Conversely,

suppose M bM, C b el = e2 : p, where el,e2 do not contain let-construct. Let c[] be any closing b-context

for C b el : p and C b el : p. Let Al be a, derivation for 0 b c[el] : b such that it contains a subderivation

A2 for A b el : r where (A, r) is an instance of (C ,p) . Since c[] is a closing b-context for C b el : p, such

A1 always exists. Since C b e2 : p is a term, there is a derivation tree A3 for A b e2 : r . Then by typing

rules and the definition of contexts, the derivation tree A4 obtained from Al by replacing the subtree A2 by

A3 is a derivation for 0 b c[e2] : b . Let M1 G typedterm(Al), M2 = typedterm(A2), M3 -- typedterm(A3),

Mq 5 typedterm(A4). Then erase(M2) e l , erase(M3) = ez. Clearly MI , M4 respectively contain Mz, M3

as subterms. Moreover, the TA+ contexts obtained from hill, M4 by replacing M2, M3 with the 'hole' are

identical. Call this context C[]. Since M kML C b el = e2 : p, M kTA A b M2 = M3 : r . Then by the

full abstraction of M for ETA, ETA(bC[M2] : r) JJ bcb : b iff ETA(bC[M2] : r) JJ b c b : b Then by the
T A M L

assumption on the relationship between x and x , EML(O bc[el] : b) U 0 b c : b iff EML(O bc[e2] : b) 0 b c : b.

I

The importance of this result is tha.t we ca.n immedia.tely apply results already developed for explicitly

typed languages to implicitly typed language with ML polymorphism. As an example, Plotkin constructed

a fully abstract model of his language PCF with "parallel" conditionals. It is not hard to define the "ML

version" of PCF (with parallel conditionals) by deleting type specifications of bound variables and adding let

expressions. Its operational semantics can be also defined in such a way that it satisfies our assumptions. We

then immediately have a fully abstract model for the ML-version of PCF.

7 Conclusion

We have presented a framework for denotational semantics and equational theories of ML. We have charac-

terized terms of ML as representations of sets of (ground) typings. A denotation of an ML term is defined as

a set of pair of a type and a value in a semantic space of the typed lambda calculus. We have axiomatized the

equational theories of ML and proved their soundness and completeness with respect to our semantics. We

have also shown that if a model of the typed lambda calculus is fully abstract for its operational semantics

then the corresponding semantics of hlL is also fully abstract for the operational semantics that correspond

to the operational semantics of the typed lambda calculus. This allows us t o transfer existing results of full

abstraction on explicitly typed languages to ML-like languages.

One limitation of our framework is that it assumes P-equality both in equational theories and in semantic

spaces (through a condition on semantic ma.ppings). This implies that, while good for languages with "call-

by-name" evaluation, our axiomatization of equationa.1 theories do not completely fit languages with "call-

by-value" evaluation and our result about full abstraction is not useful for those languages. Since the "call-

by-value" evaluation is a standard strategy of ML, It would be useful to develop a framework that precisely

capture the equality and operational semantics under the "call-by-value" evaluation.

Acknowledgement

I would like to thank Val Breazu-Tannen and Peter Buneman for discussions and many useful suggestions.

References

[BM85] V. Breazu-Tannen and A. R. Meyer. Lambda, calculus with constrained types (extended abstract).

In R. Parikh, editor, Proceedings of the Conference on Logics of Programs, Brooklyn, June 1985,

pages 23-40, Lecture Notes in Computer Science, Vol. 193, Springer-Verlag, 1985.

[Cop841 M. Coppo. Completeness of Type Assignment in Continuous Lambda Models. Theoretical Com-

puter Science, 29:309-324, 1984.

[Cop851 M. Coppo. A Completeness Theorem for Recursively Defined Types. In G. Goos and J . Hartma-

nis, editors, Automata, Languages and Programming, 12th Colloquium, LNCS 194, pages 120-129,

Splinger-Verlag, July 1985.

[Cou83] B. Courcelle. F'undame11ta.l Properties of Infinite Trees. Theoretical Computer Science, 25:95-169,

1983.

[DM821 L. Damas and R. Milner. Principal type-schemes for functional programs. In Proc. 9th ACM

Symposium on Principles of Programming Languages, pages 207-212, 1982.

[Fri73] H. Friedman. Equations between functionals. In Lecture Notes in Mathematics 453, pages 22-33,

Springer-Verlag, 1973.

[Hi11691 R. Hindley. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. American

Mathematical Society, 146:29-60, December 1969.

[Hin83] R. Hindley. The Completeness Theorem for Typing A-Terms. Theoretical Computer Science, 22:l-

17, 1983.

[HMM86] R. Harper, D. B. MacQueen, and R. Milner. Standard ML. LFCS Report Series ECS-LFCS-86-2,

Department of Computer Science, University of Edinburgh, March 1986.

[HS86] J . R. Hindley and J . P. Seldin. Introduction to Combinators and A-Calculus. Cambridge University

Press, 1986.

[Hue761 G Huet. Re'solution d'e'quations dans les langages d'ordre 1,2,. . .w . PhD thesis, University Paris,

1976.

[MC88] A.R. Meyer and S.S. Cosmadakis. Semantical Paradigms. In Proc. IEEE Symposium on Logic in

Computer Science, July 1988.

[MH88] J . C. Mitchell and R. Harper. The Essence of ML. In Proc. 15th ACM Symposium on Principles

of Programming Languages, pages 28-46, Sa.n Diego, California, January 1988.

[Mi1771 R. Milner. Fully abstract models of typed A-calculi. Theoretical Computer Science, 4:l-22, 1977

[Mi1781 R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System

Sciences, 17:348-375, 1978.

[MPS86] D.B. MacQueen, G.D. Plotkin, and Setlii. An ideal model for recursive polymorphic types. Infor-

mation and Control, 71(1/2):95-130, 1986.

[Mu1841 K. Mulmuley. A semantic characterization of full abstraction for typed lambda calculus. In Proc.

25-th IEEE Symposium on Fundations of Computer Science, pages 279-288, 1984.

[Plo77] G.D. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223-

255, 1977.

[Tur85] D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In Func-

tional Programming Languages and Computer Architecture, Lecture Notes in Computer Science

201, pages 1-16, Springer-Verlag, 1985.

[Wan841 M. Wand. A Types-as-Sets Semantics for Rlilner-Style Polymorphism. In Proc. 11th ACM Sympo-

sium on Princzples of Prograinming Languages, pages 158-164, January 1984.

	A Simple Semantics for ML Polymorphism
	Recommended Citation

	A Simple Semantics for ML Polymorphism
	Abstract
	Comments

	tmp.1198347141.pdf.UrhDs

