
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 1988

Use of Higher-Order Unification for Implementing Program Use of Higher-Order Unification for Implementing Program

Transformers Transformers

John Hannon
University of Pennsylvania

Dale Miller
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
John Hannon and Dale Miller, "Use of Higher-Order Unification for Implementing Program Transformers", .
June 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-46.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/698
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76365357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/698
mailto:repository@pobox.upenn.edu

Use of Higher-Order Unification for Implementing Program Transformers Use of Higher-Order Unification for Implementing Program Transformers

Abstract Abstract
Source-to-source program transformers belong to the class of meta-programs that manipulate programs
as objects. It has previously been argued that a higher-order extension of Prolog, such as λProlog, makes
a suitable implementation language for such meta-programs. In this paper, we consider this claim in more
detail. In λProlog, object-level programs and program schemata can be represented using simply typed λ-
terms and higher-order (functional) variables. Unification of these λ-terms, called higher-order unification,
can elegantly describe several important meta-level operations on programs. We detail some properties
of higher-order unification that make it suitable for analyzing program structures. We then present (in
λProlog) the specification of several simple program transformers together with a more involved partial
evaluator. With the depth-first control strategy of λProlog for both clause selection and unifier selection all
the above mentioned specifications can be and have been executed and tested.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-46.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/698

https://repository.upenn.edu/cis_reports/698

USES OF HIGHER-ORDER
UNIFICATION FOR IMPLEMENTING

PROGRAM TRANSFORMERS
JohnHannan

Dale Miller

MS-CIS-88-46
LlNC LAB 118

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

June 1988

Appear in the proceedings of the Fifth International Logic Programming
Conference, August 1988, Seattle, Washington.

Acknowledgements: This research was supported in part by NSF grants CCR-87-05596,
MCS-8219196-CER, IR184-10413-A02, DARPA grant N00014-85-K-0018, and U.S. Army
grants DAA29-84-K-0061, DAA29-84-9-0027.

USES OF HIGHER-ORDER UNIFICATION FOR
IMPLEMENTING PROGRAM TRANSFORMERS

JOHN HANNAN and DALE MILLER
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

Abstract
Source-to-source program transformers belong to the class of meta-programs that manipu-
late programs as objects. It has previously been argued that a higher-order extension of
Prolog, such as XProlog, makes a suitable implementation language for such meta-programs.
In this paper, we consider this claim in more detail. In XProlog, object-level programs and
program schemata can be represented using simply typed X-terms and higher-order (func-
tional) variables. Unification of these X-terms, called higher-order unification, can elegantly
describe several important meta-level operations on programs. We detail some properties
of higher-order unification that make it suitable for analyzing program structures. We then
present (in XProlog) the specification of several simple program transformers together with
a more involved partial evaluator. With the depth-first control strategy of XProlog for both
clause selection and unifier selection all the above mentioned specifications can be and have
been executed and tested.

1 Introduction
Source-to-source program transformations have been the subject of considerable research
over the past twenty years. Most program transformation systems are organized around a
collection of transformation rules that specify source and target programs together with a
set of constraints on these programs. On the surface, such rules have a natural declarative
reading: if the input program matches the source template and certain auxiliary constraints
are satisfied, then the output program is the result of instantiating the output template.
In practice, however, such rules become rather complex and awkward; auxiliary constraints
evolve in number and complexity as their functionality often narrows. Many of these auxiliary
constraints are needed to handle those syntactic aspects of comparing an input program
with a template that are not captured by first-order unification. In particular, many of these
constraints need to treat both syntactic conditions, such as "C is a constant" and " X is not
free in T," as well as semantic constraints, such as " F is the composition of G with itself"
or "functions F and G commute." Often these syntactic and semantic conditions get mixed
in ways that obfuscate their separate roles, thereby complicating any reasoning about such
systems. In discussions of transformation systems this issue is often skirted by presenting
transformations instead of the transformers (the actual code) that implement them. An

informal, often mathematical, high-level language is usually used to present transformations,
thereby passing the problems of syntactic and semantic conditions into the informal language;
actual transformers, however, are often not presented.

In this paper, we present the actual transformers for several familiar transformations. Our
transformers are also presented in a higher-level language, but one that is formalized and can
be executed directly. The implementation language is the higher-order logic programming
language AProlog [ll, 141. We shall argue that the process of matching a template with a
program is considerably enriched if both the program and the template are considered as
A-terms and the match is achieved by higher-order unification. In such a setting, the number
of auxiliary predicates can be reduced and their use can largely be limited to mostly semantic
aspects of the programs being transformed.

This paper is organized as follows. In Section 2, we describe some high-level concerns of
implementing programs that manipulate other programs. In Section 3, we present simply
typed A-terms and various properties of higher-order unification. In Section 4, we demon-
strate how a programming language, in particular, a subset of the functional programming
language ML, can be represented as A-terms. Section 5 presents the implementation of sev-
eral simple program transformers in AProlog and section 6 presents a slightly more elaborate
transformation program, a partial evaluator. We conclude in Section 7.

2 Programs as Values
Consider using Lisp to write program transformers for, say functional programs. While
Lisp provides a representation of programs via its notation for A-terms, the only primitive
mechanisms for manipulating such terms in Lisp are essentially those for manipulating lists,
namely, CAR, CDR, and CONS. Programs and lists are different objects, however, and
the complexity of the structure of programs is not captured by simple list manipulation
functions. While any transformer can be implemented using lists to represent programs and
CAR, CDR, and CONS to decompose and construct programs, the resulting implementation
of such transformers is often complex and difficult to understand. Also, in Lisp, the equality
operator EQUAL is not sensitive to the usual meaning of A-terms. For example, if two Lisp
terms differ only in their bound variable names, they are not EQUAL. Thus, while Lisp
contains a notation for A-terms, it does not treat them as being their own data type.

One characteristic that distinguishes between programs (especially functional programs)
as values and list structures is that equality between A-terms is typically considered nlodulo
A-conversion. This notion of equality is a much more complex operation than simple syntactic
equality (see Section 3). In particular, using this notion of equality, a A-term is equal to any
alphabetic variant of itself. With respect to this notion of equality, accessing the name of
a bound variable in a A-term is not a meaningful operation since equal terms might return
different values. Adhering to this notion of equality disqualifies most conventional methods
of analyzing the structure of programs.

Higher-order unification is a mechanism that can be used to probe the structure of
programs, respecting congruence classes modulo A-conversion. Illustrations of how this is
achieved are outlined in Section 3. If the only method for manipulating A-terms is via higher-

order unification then it is impossible to distinguish between two programs which are equal
modulo A-conversion. In particular, it is impossible to access the names of bound variables.
In this paper we make use of a higher-order logic programming language, AProlog [14], to
implement programs transformations because this language employs higher-order unification
in a direct fashion. While this language extends Prolog in several directions, we shall only
regard it as an implementation of the theory of higher-order Horn clauses [13].

The use of A-terms and of higher-order unification to implement program manipulation
systems has been proposed by various people. Huet and Lang in [lo] employed second-
order matching (a decidable subcase of higher-order unification) to express certain restricted,
"template" program transformations. Miller and Nadathur in [12] extended their approach
by adding to their scheme the flexibility of Horn clause programming and richer forms of
unification. In [6] we argued that if the Prolog component of the CENTAUR system [2]
were enriched with higher-order features, logic programming could play a stronger role as a
specification language for various kinds of interpreters and compilers.

While we are only concerned in this paper with the simply typed A-calculus, richer and
more flexible A-calculi have been proposed as a suitable representation system for programs.
For example, Pfenning and Elliot in [16] have extended the simply typed A-calculus to include
simple product types. They also discuss in depth the role of higher-order abstract syntax,
i.e., the representation of programs as A-terms, in the construction of flexible and general
program manipulation systems. The LF specification language [7] uses a A-calculus with
a strong typing mechanism to specify various components of proof systems: much of this
specification language could profitably be used in the context we are concerned with here.
While extensions of higher-order unification to such rich notions of terms and types are
important, we do not consider them here.

Similar advantages of the blend of higher-order unification and logic programming have
been exploited in systems that manipulate formulas and proofs of logical systems. Felty
and Miller in [5] discuss the use of AProlog to specify and implement theorem provers and
proofs systems. Here again, A-terms and higher-order unification are used to represent and
manipulate formulas and proofs. The Isabelle theorem prover of Paulson [15] also makes use
of these features to implement flexible theorem provers.

3 A-Terms and Higher-Order Unification
In this section we present particular properties of A-terms and higher-order unification that
are exploited in the program transformers described in Sections 5 and 6.

Throughout the rest of this paper we use the word "term" to mean simply typed A-term.
The simple types are composed of some collection of primitive types and of all functional
types built from these primitive types. The collection of primitive types must contain at least
one type, written as o, which is used to denote the type of logic programming propositions.
Other primitive types can be added by the programmer of this system. We shall assume that
there are denumerably many constants and variables at all types. Simply typed A-terms are
built from these using the usual notions of application and abstraction.

We denote by the operation [N / x] M the result of substituting the term N for all free

occurrences of x in M. Bound variables of M may require renaming to avoid capture of free
variables in N. A P-redex is a formula of the form (Ax M)N and an 7-redex is a formula
of the form Ax (Px) where x is not free in P . The equality for A-terms is the reflexive,
symmetric, and transitive closure of the following relation on terms of the same type: P is
related to Q if they are either alphabetic variants of each other, or Q results by replacing
a ,8-redex (Ax M) N in P with [N/x]M or by replacing an 7-redex Ax (Mx) in P with M.
This relation between A-terms is called ,&-conversion. A A-term is in ,8-normal form if it
contains no P-redexes, and is in P7-normal form if it is in p-normal form and contains no
7-redexes. Any simply typed A-term is Pq-convertible to a P7-normal form, which is unique
up to alphabetic changes of bound variables. Also, two terms are equal in this theory if
and only if they have a common ,87-normal form. (Proofs of these results may be found in
the literature.) In this paper, whenever we refer to a normal form or A-conversion we mean
p7-normal form and Pq-conversion. See [8] or [9] for more details on the A-calculus.

Let t and s be two terms of the same type possibly with free variables of any type. The
problem of deciding if there is a substitution, say a, such that a (t) A-converts to a(s), is
known as higher-order unification. When one of the two terms to be unified is closed we
refer to unification as matching. The nature of higher-order unification is described in detail
in [9] and in lesser detail in [ll]. Although general higher-order unification is undecidable,
all the unification problems arising in the examples in this paper are decidable. A simple,
depth-first implementation of [9] is all that is necessary to find unifiers. We do not present
higher-order unification in detail here since the points we wish to make only require an
understanding of some of its high-level properties. These properties can be determined by
looking at the behavior of A-terms under substitution and A-conversion. In particular, the
following definition and properties of terms will be exploited in our subsequent transformers.

Definition 1 (Dependence on an abstraction) We say that term t is dependent on its
ith abstraction if a A-normal form oft is of the form Axl.. . Axi.tl and xi is free in t'. Notice
that t' may be a function abstraction itselj, i.e., it might be of functional type.

Property 1 (Dependency Invariance) Let t be a term which is dependent on its ith ab-
straction. If t A-converts to s, then s is dependent on its ith abstraction.

This property concludes that dependence on an abstraction is well-defined. This fact is
important since equality between terms is determined by A-conversion.

Property 2 (Dependency and Substitution) Let t be a term and a a substitution. If
a(t) is dependent on its ith abstraction, then t is dependent on its ith abstraction.

This property states that abstraction dependency cannot be introduced by substitution.
For example, if t = AxAy.(f x) then there is no substitution (for the free variable f) such
that a(t) is dependent on its second abstraction. If the substitution term for f contains a
free occurrence of y, for example a = { f H (g y)), the bound occurrence of y is renamed to
avoid variable capture. Thus, a (t) converts to AxAz.(g y x), which is not dependent on its
second abstraction.

Note that the converse of Property 2 is not true; dependencies can disappear under
higher-order substitution. For example, consider the term t = AxAy.(f x y) and let a =
{(f , AxAy.y)}. While t is dependent on its first and second abstractions, a (t) is dependent
only on its second abstraction.

Property 3 (Nested Dependency) Let t be a term, let a be a substitution, and assume
that t and a (t) have A-normal forms Ax1.. . Ax,.t1 and Axl . . . Ax,.tl', respectively. Let i, j be
integers such that 1 5 i, j 5 n. If every occurrence of xi in t' is in the scope of an occurrence
of xj in t' then every occurrence of xi in t" is in the scope of an occurrence of xj in t".

That is, the "in the scope of" relationship (i.e., if a bound variable x is the head of a
subterm then all occurrences of bound variables within this subterm are said to be in the
scope of x) between bound variables does not change under substitution.

As an example of how these properties can be related to the unification of two terms we
consider the term

to = AuAvAwAh.(f u h (g (v))) ,

which we attempt to unify with each of the closed terms

tl = AuAvAwAh.((2 * w) + h(3 * v)) ,

t 2 = AuAvAwAh.((2 * u) + (3 * v)) ,
t3 = AuAvAwAh.((2 * U) + h(3 * v)) .

Property 2 states that no substitution instance of to will have a dependence on its third
argument and, therefore by Property 1, there is no substitution instance of to that is equal
to the term t l . Hence, tl and to are not unifiable. Similarly, Property 3 implies that to and
t 2 are not unifiable since every occurrence of v in to is in the scope of h , while this is not
true of t2 . to does, however, unify with tg by the substitution

This substitution is the only such unifier for to and t3.

If we consider terms like t l , t 2 , t3 as fragments of programs that are to be transformed and
terms like to as templates or expression schemata then this kind of unification can provide a
useful mechanism for probing the structure of such fragments. For example, an expression
fragment of the form AuAvAwAh.t matches the template to only if w is not free in t , all
free occurrences of u in t do not occur in the scope of h, and all free occurrences of v in t
do occur in the scope of h. Notice also that v may have multiple occurrences in the scope
of h. The function (A-term) g would then denote the abstraction of all such occurrences.
Furthermore, the combination h(g v) could occur multiple times in t ; the function f would
need to represent not only the abstraction of all occurrences of u but also all the occurrences
of h(g v) . Thus, the term

t4 = AuAvAwAh.(u + (h (v + v)) * (h (v + v)))

unifies with to with the resulting substitution

The ability of higher-order unification to provide sophisticated probing and analysis of pro-
grams is exploited in the remainder of this paper.

4 A Simple Object Language
Before introducing some simple transformers, we describe the object language that our ex-
ample transformers will manipulate. For this we use a restricted subset of the functional
programming language mini-ML, which is a subset of the language ML not containing excep-
tions, pattern matching, datatype declarations or modules [3]. We do not present the actual
concrete syntax of our language but present only its higher-order abstract syntax [16]. We
do this by providing an illustrative example: more details can be found in [6].

To the pure typed A-calculus we add new typed constants to denote program language
constructions. For example, we add constants car, cdr, cons, null to denote the familiar
operations on lists and the constants O,1,2,. . . , +, *, We also need to add the constants
truth and fake denoting the booleans and the constant if denoting the usual conditional. To
represent recursion, something not primitive or representable in the simply typed A-calculus,
we add a constant fix to denote the "least fixed point" operator (sometimes called the Y
combinat or). These const ants are not interpreted by the logic programming language in
which they are embedded. For example, the unifier does not unify the expression x with
(cons (car x) (cdr 2)). The intended meaning of these constants arises in our setting only in
the way in which they are used in program transformers. The exact set of constants in the
object-level programming language does not concern us greatly since all the transformations
we consider are either unaffected by the addition of new constants or are simply and mod-
ularly extended to handle new const ants. The constants if and fix are of particular interest
in the next section.

The append program, written in a functional programming style as

app K L = (if (nu l l K) L (cons (car K) (app (cdr K) L))) ,

is coded as the A-term

(fix X f XxXy. (if (null x) y (cons (car x) (f (cdr x) y)))).

We replace the name of the function (app) by an abstraction (X f) and the fixed point
operator. This is a standard representation of recursion and one that we use repeatedly
in this paper. We replace the bound variables of the function, namely K and L, by the
abstractions Xx and Xy. These abstractions, for the function name and the bound variables,
are crucial to some of the transformers introduced in the next section.

5 Some Basic Transformers
In this section we present a number of transformers that effect simple transformations. These
transformations typically comprise part of the basis of any rule-based program transforma-
tion system. Our emphasis in this section is not on producing new transformations but on
providing simple implementations of some familiar transformations. Before presenting such

transformations, we briefly describe a few aspects of our meta-language: the higher-order
Horn clauses fragment of AProlog.

Terms in these higher-order Horn clauses are simply typed A-terms in which individual
and function variables may occur. These variables can be universally quantified over pro-
gram clauses. The theory of higher-order Horn clauses provides for quantification of some
occurrences of predicate variables [ll, 141 but this aspect is not needed here and is ignored.
A term constructed by the operation of application is represented by writing two terms in
juxtaposition and separated by a space. A term constructed by the operation of abstraction
is represented by the infix operator '\' separating the bound variable being abstracted and
the term over which it is being abstracted.

In displaying Horn clauses, we use the common convention of not explicitly displaying
universal quantifiers. Instead, the variables which are intended to be quantified are written
as upper case letters. All other symbols are constants.

Our first example of a higher-order Horn clause is particularly simple. The transformation
that unwinds the definition of a recursive program can be represented as an atomic Horn
clause containing one universally quantified functional variable:

unwind (f i x A) (A (f i x A)) .

If we use this clause in its forward direction, that is, with its first argument instantiated
and second argument unbound, unification computes the appropriate abstraction to bind
to A. The second argument is then constructed by applying this abstraction to the original
argument. The strength of this transformer arises from the substitution, which is implicit
in using ,&conversion. In particular, any term that unifies with (f i x A) would cause A to
be bound to a term of the form (A f t). Thus the output value (A (f i x A)) is of the form
(A f t) (fix A f t), which, in A-normal form, is [(fix A f t) / flt. All recursive calls (marked by
the bound variable f) are replaced by the code of the recursive program. Notice that t may
be of any functional type. If this unwind program is "run in reverse", that is, if the first
argument is unbound and the second is instantiated, significant higher-order unification is
required to decide if the program in its second argument is the result of unwinding.

If a recursive program contains no recursive calls, it can be transformed simply into a
non-recursive program. This transformer, called vacuous-recursion, is given by the clause

vacuous-recursion (f i x F\A) A .

Note how this clause makes explicit use of property 2 to determine that the body of a
recursive program does not contain a recursive call. Any A-term that matches F\A cannot
depend on its first abstraction and, in this context, cannot contain any recursive calls.

Perhaps the most familiar transformation rule is the fold/unfold rule. The unfold transfor-
mation replaces a call to a function with the function's body, substituting actual parameters
for formal ones. The fold transformation replaces an instance of a function's body by a call
to the function, substituting formal parameters for actual ones. The following clause can be
used to implement unfold.

unfo ld (f i x A) (f i x F\(A (A F) 1) .

Operationally, we can think of supplying this clause with a closed term for its first argument
and applying higher-order unification and A-conversion to produce the second argument.

As an example of unfolding, consider calling the unfold predicate with the append pro-
gram, that is, the A-term

(f i x F\X\Y\(if (n u l l X) Y (cons (c a r X) (F (cd r X) Y))))

as its first argument. Such a call would succeed only if the second argument of the call can
unify with the term

(f i x F\X\Y\(if (n u l l X) Y
(cons (c a r X)

(i f (n u l l (cdr X)) Y
(cons (c a r (cdr X))

(F (cd r (cd r X)) Y)))))) .

Another simple transformation is one which reverses the order of the first two arguments
of a recursive program. This transformation is specified by the atomic clause

swap-args (f i x B)
(f i x F\Y\X\(B (U\V\ (F V U)) X Y)) .

Note that this particular clause interchanges the first and second arguments of a function
with at least two arguments (possibly more).

Our fifth transformer in this section, one which we call the parametric transformer, em-
ploys a more subtle use of higher-order unification. If the first argument of a recursive
function is not modified in any recursive call then we can transform the function definition
into a "parametric"recursive function of one less argument. This transformer is given by
the clause

pa ramet r i c (f i x F\U\(G (F U) U))
U\(f ix R\(G R U)) .

The first argument is a recursive function (of at least one argument) and the second
argument is the new equivalent function definition in which the recursion has been simplified.
In any term unifying with the first argument, all recursive calls to F must have exactly U as
its first argument. (Its other arguments can be functions of U and for distinct occurrences of
F these functions need not be the same.) Hence, the first argument to the function defined
by this term remains constant. This is a typical structure of many funct.ions in which some
argument is not used until the recursion bottoms out (cf. the second argument of the append
function). In the new function definition the first argument has been "abstracted out" over
the fixed point operator, yielding a parametric recursive function of one less argument.

As an example consider the term for the append program with its two arguments swapped
(this could have been obtained by applying swap-args to the term for the append program

given above):

(f i x F\Y\X\(if (nu l l X) Y (cons (ca r X) (F Y (cdr x)))))

Supplying this term as the first argument to the parametric clause produces the term (as
the second argument)

Y\(f i x F\X\ (i f (nu l l X) Y (cons (ca r X) (F (cdr X)))))

with the free variable G in the definition of parametric instantiated to

F\Y\X\(if (n u l l X) Y (cons (ca r X) (F (cdr X)))) .

Our final example is slightly more elaborate and illustrates the use of higher-order Horn
clauses to write a recursive transformer. Assume that we have a function of one argument
whose body can contain a nesting of i f statements. If a condition in one of these i f
statements does not depend on the argument of the function, the value of this condition
could be computed and determined to be either t r u t h or f a l s e . In such a case the function
could be simplified by replacing the i f statement with either its first or second branch,
depending on the computed value of the boolean condition. This operation can be specified
by the following clauses:

prune-if X\(if C (HI X) (H2 X)) G : -
eva l C t r u t h , prune-if HI G .

prune-if X\(if C (HI X) (H2 X)) G :-
eval C f a l s e , prune-if H2 G .

prune-if X\(if (C X) (HI X) (H2 X))
X\(if (CX) (GI X) (G2X)) :-

prune-if HI GI, prune-if H 2 G2.
prune-if H H .

In the first two clauses note the key use of Property 2, which ensures that C is independent
of the expression's arguments and so can be evaluated.

This transformer differs from the other ones in this section in several respects. First, it
is recursive and makes use of a richer collection of Horn clauses to accomplish this recursion.
Second, it works only for functions of exactly one argument. This is a rather serious limi-
tation. A similar pruning operation for functions of two arguments or any fixed number of
arguments can be given. Using higher-order Horn clauses, however, we have no natural way
to write pruning functions that work for the general case (i .e . , functions with an arbitrary
number of arguments). A solution to this problem has been proposed by Pfenning and Elliot
[16]: introducing product types into the A-calculus adds the necessary flexibility. Finally,
this transformer requires the language-specific predicate eva l that evaluates closed terms.
The code for this predicate is not presented here; its structure is straightforward and is
given in [6] . Of course, to make this pruning operation deterministic within the depth-first
interpreter for XProlog cuts should be added strategically in the first three clauses in the
definition of prune-if.

All these transformations can be implemented, of course, using first-order methods (e.g.,
as in Lisp or Prolog), but consider what such implementations would look like. They certainly
would not be the simple "one-liners" afforded by higher-order Horn clauses.

6 Specifying a Partial Evaluator
We now demonstrate how some of these basic transformers can be composed to provide a
slightly more elaborate program transformer. We concentrate on the declarative aspects of
the transformers, largely ignoring issues of control. As our example we consider the task
of partial evaluation, a technique of source- to-source optimizations. The topic of partial
evaluation is receiving increased attention lately [I]; an earlier summary by Ershov provides
a good introduction to the subject [4]. The partial evaluator we implement is restricted in
its domain of operation; it serves only to illustrate how such transformers can be specified.
More elaborate partial evaluators can easily be built using these techniques.

Let us now consider the tasks involved in partially evaluating a function with respect
to some known input for its first parameter. Assume we are given some function f of, for
example, two arguments x and y. For a given value c we want to compute a new function g of
one argument such that for all values of y, f (c, y) = g(y). One intent of this operation is that
for any value of y computing g(y) should be easier (e .g., faster) than computing f (c, y) . Such
improvement is possible by "compiling" the information of x = c in f into the definition of g.
Thus partial evaluation can be decomposed into two phases: (i) substitution of the known
value for the corresponding parameter in the function definition, and (ii) simplification of
the resulting definition.

The substitution in phase (i) is easily accomplished by A-conversion since the formal pa-
rameters of functions are represented by A-abstractions. The simplification in phase (ii) en-
tails a careful structural analysis of the result of phase (i), which requires a descent through
the structure of the function body searching for expressions that can be evaluated or re-
duced. Typically, subexpressions that can be completely evaluated (i.e., are independent of
the remaining formal parameter) are located and replaced with their values. The analysis
and transformers of the previous section can be brought together to achieve this task. We
decompose phase (ii) into two distinct stages: expand and reduce. The expand stage non-
deterministically expands (or embellishes) the given expression. In our example this process
is limited to unfolding, but additional strategies could be employed. The reduce stage then
attempts to evaluate and reduce expressions by, for example, an operation similar to the
prune-if operation of the previous section.

Figure 1 contains a set of higher-order Horn clauses (in the syntax of AProlog) for a
simple partial evaluator. For this example we rely on the default ordering of clauses, with a
depth-first search strategy, for control.

The clause for pe gives the top-level of the partial evaluator. It has three arguments: (f i x
F), a recursive function of (at least) two parameters; C, a value for the first parameter to (fix
F) ; and G, the residual function of one argument. The partial evaluator has three sub-goals:
substitution, simplification and elimination. Substitution (phase (i)) is given by the single
clause subs t i t u t e , and it substitutes the value C for F's first parameter (X). Note the implicit

pe (f i x F) C G :-
s u b s t i t u t e F C F l ,
s i m p l i f y F F i G I ,
e l i m i n a t e G I G .

s u b s t i t u t e F\X\Y\(B F X Y) C F\X\Y\(B F C Y) .

e l i m i n a t e F\X\Y\ (B Y) Y\ (B Y) .

s impl i fy F F l G 1 :-
expand F F l H a reduce H GI.

expand F F1 F l .
expand F F l G I :-

unfold F F1 H a expand F H G I .

unfold F F l G\ (F1 (F G)) .

* b * h i 4 reduce: base cases
reduce F\x\Y\Y G\X\Y\Y.
reduce F\x\Y\A G\X\Y\A .
* * * L h ! reduce: pruning i f s ta tements
reduce F\X\Y\(if (FO F X Y) (Fl F X Y) (F2 F X Y)) G :-

reduce FO GO\X\Y\truth, reduce F1 G .

reduce F\X\Y\(if (FO F X Y) (F1 F X Y) (F2 F X Y)) G :-
reduce FO GO\X\Y\false, reduce F2 G .

reduce F\X\Y\(if (FO F X Y) (Fi F X Y) (F2 F X Y))
~ \ x \ Y \ (i f (GO G X Y) (G I G X Y) (~ 2 G X Y)) :-

reduce FO G O , reduce F l G I , reduce F2 G2.

* h L i * * reduce: p r i m i t i v e s (cons, c a r , e t c .)

reduce F \ X \ Y \ (C O ~ S (F1 F X Y) (~ 2 F X Y))
G\X\~\(cons (GI G X Y) (G2 G X Y)) :-

reduce F1 GI, reduce F2 G2.

Figure 1: Part of a Partial Evaluator

use of p-conversion as B is a higher-order variable. The clause for s impl i fy performs both
stages of phase (ii): expansion and reduction. Declaratively, expand nondeterministically
unfolds the function zero or more times. Notice that for the unfold clause we use the
original function definition F for the unfolding and not the function F1 for which C has been
substituted. F1 is a function that ignores its first argument and is not a recursive function
definition. For this reason, the unfold predicate here is different than the one in the previous
section. The clause for e l imina te converts a recursive function of two arguments, in which
the recursion is vacuous and the first argument does not occur free, into a non-recursive
function of just one argument. This is achieved by applying the vacuous-recursion principle
(eliminating the abstraction F) and similarly eliminating the abstraction X. Other techniques
of converting the result of s impl i fy into a function of one argument could be used by adding
additional clauses for e l iminate .

Finally, the clauses for reduce implement the reduction stage of phase (ii). Th' is par-
ticular implementation of reduce is very simple and limited; more elaborate reductions are
studied in the literature on partial evaluation. The arguments of the reduce predicate denote
fragments of recursive programs of two arguments. Maintaining these abstractions during
the recursion of reduce enables higher-order unification to handle correctly the restrictions
on variables needed at various stages of the reduction. The reduce operation is intended
to descend through the body of a recursive program of two arguments. While making its
descent, it moves through and prunes, when possible, if statements. Unlike the prune-if
program, the recursive descent of reduce is intended to move through all the constants of
the language. A clause to descend through cons is given; others can easily be added. The
base cases for this recursion are the first two clauses. Note that the bound variable X cannot
occur in the body of the program and need not be considered as a base case.

The clauses for pruning i f statements replace calls to an eva l predicate with recursive
calls to reduce. Thus in the full presentation of reduce we include clauses that produce (as
their second argument) terms of the form G O \ X \ Y \ ~ r u t h and GO\X\Y\f a l s e . Such clauses
would, in effect, evaluate boolean valued expressions built from constructors like n u l l and
- -

If all recursive calls are eventually eliminated (by a series of unfoldings and reductions)
then pe succeeds. Note that interleaving unfoldings with reductions might provide a more ef-
ficient implementation (requiring less backtracking). For the purposes of this paper, however,
we are more concerned with the declarative nature of partial evaluation and so maintaining
the two distinct stages is beneficial.

While this evaluator is simple it demonstrates some of the basic techniques of partial
evaluation and how they can be implemented in XProlog. Consider, for example, using pe
on the append program presented in the previous section. The goal

pe (f i x F\X\Y\(if (n u l l X) Y (cons (ca r X) (F (cdr X) Y))))
(cons 1 n i l) G .

succeeds with the sole free variable G being instantiated to

Y\(cons (ca r (cons 1 n i l)) Y)) .

This transformation succeeds because the unfolding and pruning strategy worked here to
remove all recursive calls. From a procedural perspective the simplification phase entailed
one unfolding followed by two reductions (the first being the "false" clause of an i f expression
and the second being the "true" clause of an i f expression). With a more sophisticated
reduce predicate, the expression (car (cons 1 n i l)) could have been simplified to just 1.

7 Conclusion
To provide clear specifications of program transformers, ones that focus more on semantic
issues, we re-examined a higher-order logic programming language as a meta-language for
manipulating programs as objects. In this logic programming language object-level pro-
grams and program schemata are represented using simply typed A-terms and higher-order
variables. With this approach we argued that higher-order unification of terms denoting
programs and program schemata provides an elegant method of implicitly specifying the
syntactic constraints of transformations. To illustrate this point we first presented several
transformers written in higher-order Horn clauses. These transformers have a clear declara-
tive reading and avoid the use of non-logical constructs for describing syntactic constraints.
We then illustrated how these simple transformers can be used to specify more sophisti-
cated transformers by presenting a simple partial evaluator. The default depth-first control
mechanisms of AProlog provided an adequate experimental implementation of all these spec-
ifications. With further research in this area we hope to develop our understanding of richer
program transformers, focusing on the areas of specification, implementation (including con-
trol issues) and formal properties.

Acknowledgements: We would like to thank Frank Pfenning for useful discussions related
to this paper. This work was supported by NSF grant CCR-87-05596, DARPA grant N000-
14-85-K-0018 and also by a fellowship from the Corporate Research and Architecture Group,
Digital Equipment Corporation, Maynard, MA.

References
[I] D. Bjgrner, A. Ershov, and N. Jones, editors. Proceedings of the IFIP Workshop on

Partial Evaluation and Mixed Computation. IFIP TC-2, 1987.

[2] P. Borras et. al. CENTAUR: the System. Technical Report 777, INRIA, December
1987.

[3] D. Clkment, J . Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative lan-
guage: mini-ML. In Proceedings of the ACM Lisp and Functional Programming Con-
ference, pages 13-27, 1986.

[4] A. Ershov. Mixed computation: potential applications and problems for study. Theo-
retical Computer Science, 18:41-67, 1982.

A. Felty and D. Miller. Specifying theorem provers in a higher-order logic program-
ming language. In Proceedings of the Ninth International Conference on Automated
Deduction, 1988.

[6] J. Hannan and D. Miller. Enriching a meta-language with higher-order features. In
Workshop on Meta-Programming in Logic Programming, Bristol, June 1988.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Symposium
on Logic in Computer Science, pages 194-204, 1987.

[8] J. R. Hindley and J. P. Seldin. Introduction to Combinators and A-calculus. Cambridge
University Press, 1986.

[9] G. Huet . A unification algorithm for typed A-calculus. Theoretical Computer Science,
1:27-57, 1975.

[lo] G. Huet and B. Lang. Proving and applying program transformations expressed with
second-order logic. Acta Informatica, 11:31-55, 1978.

[ll] D. Miller and G. Nadathur. Higher-order logic programming. In Proceedings of the
Third International Logic Programming Conference, Springer-Verlag, 1986.

[12] D. Miller and G. Nadathur. A logic programming approach to manipulating formulas
and programs. In Proceedings of the IEEE Fourth Symposium on Logic Programming,
IEEE Press, 1987.

[13] G. Nadathur. A Higher-Order Logic as the Basis for Logic Programming. PhD thesis,
University of Pennsylvania, May 1987.

[14] G. Nadathur and D. Miller. An overview of AProlog. In K. Bowen and R. Kowalski,
editors, Fifth International Conference Symposium on Logic Programming, MIT Press,
1988.

1151 L. Paulson. The Foundation of a Generic Theorem Prover. Technical Report 130,
University of Cambridge, Cambridge, England, March 1988.

[16] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings of the ACM-
SIGPLAN Conference on Programming Language Design and Implementation, 1988.

	Use of Higher-Order Unification for Implementing Program Transformers
	Recommended Citation

	Use of Higher-Order Unification for Implementing Program Transformers
	Abstract
	Comments

	tmp.1194028069.pdf.RBTjy

