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USES OF HIGHER-ORDER UNIFICATION FOR 
IMPLEMENTING PROGRAM TRANSFORMERS 

JOHN HANNAN and DALE MILLER 
Department of Computer and Information Science 
University of Pennsylvania 
Philadelphia, PA 19104 

Abstract 
Source-to-source program transformers belong to the class of meta-programs that manipu- 
late programs as objects. It has previously been argued that a higher-order extension of 
Prolog, such as XProlog, makes a suitable implementation language for such meta-programs. 
In this paper, we consider this claim in more detail. In XProlog, object-level programs and 
program schemata can be represented using simply typed X-terms and higher-order (func- 
tional) variables. Unification of these X-terms, called higher-order unification, can elegantly 
describe several important meta-level operations on programs. We detail some properties 
of higher-order unification that make it suitable for analyzing program structures. We then 
present (in XProlog) the specification of several simple program transformers together with 
a more involved partial evaluator. With the depth-first control strategy of XProlog for both 
clause selection and unifier selection all the above mentioned specifications can be and have 
been executed and tested. 

1 Introduction 
Source-to-source program transformations have been the subject of considerable research 
over the past twenty years. Most program transformation systems are organized around a 
collection of transformation rules that specify source and target programs together with a 
set of constraints on these programs. On the surface, such rules have a natural declarative 
reading: if the input program matches the source template and certain auxiliary constraints 
are satisfied, then the output program is the result of instantiating the output template. 
In practice, however, such rules become rather complex and awkward; auxiliary constraints 
evolve in number and complexity as their functionality often narrows. Many of these auxiliary 
constraints are needed to handle those syntactic aspects of comparing an input program 
with a template that are not captured by first-order unification. In particular, many of these 
constraints need to treat both syntactic conditions, such as "C is a constant" and " X  is not 
free in T," as well as semantic constraints, such as " F  is the composition of G with itself" 
or "functions F and G commute." Often these syntactic and semantic conditions get mixed 
in ways that obfuscate their separate roles, thereby complicating any reasoning about such 
systems. In discussions of transformation systems this issue is often skirted by presenting 
transformations instead of the transformers (the actual code) that implement them. An 



informal, often mathematical, high-level language is usually used to present transformations, 
thereby passing the problems of syntactic and semantic conditions into the informal language; 
actual transformers, however, are often not presented. 

In this paper, we present the actual transformers for several familiar transformations. Our 
transformers are also presented in a higher-level language, but one that is formalized and can 
be executed directly. The implementation language is the higher-order logic programming 
language AProlog [ll, 141. We shall argue that the process of matching a template with a 
program is considerably enriched if both the program and the template are considered as 
A-terms and the match is achieved by higher-order unification. In such a setting, the number 
of auxiliary predicates can be reduced and their use can largely be limited to mostly semantic 
aspects of the programs being transformed. 

This paper is organized as follows. In Section 2, we describe some high-level concerns of 
implementing programs that manipulate other programs. In Section 3, we present simply 
typed A-terms and various properties of higher-order unification. In Section 4, we demon- 
strate how a programming language, in particular, a subset of the functional programming 
language ML, can be represented as A-terms. Section 5 presents the implementation of sev- 
eral simple program transformers in AProlog and section 6 presents a slightly more elaborate 
transformation program, a partial evaluator. We conclude in Section 7. 

2 Programs as Values 
Consider using Lisp to write program transformers for, say functional programs. While 
Lisp provides a representation of programs via its notation for A-terms, the only primitive 
mechanisms for manipulating such terms in Lisp are essentially those for manipulating lists, 
namely, CAR, CDR, and CONS. Programs and lists are different objects, however, and 
the complexity of the structure of programs is not captured by simple list manipulation 
functions. While any transformer can be implemented using lists to represent programs and 
CAR, CDR, and CONS to decompose and construct programs, the resulting implementation 
of such transformers is often complex and difficult to understand. Also, in Lisp, the equality 
operator EQUAL is not sensitive to the usual meaning of A-terms. For example, if two Lisp 
terms differ only in their bound variable names, they are not EQUAL. Thus, while Lisp 
contains a notation for A-terms, it does not treat them as being their own data type. 

One characteristic that distinguishes between programs (especially functional programs) 
as values and list structures is that equality between A-terms is typically considered nlodulo 
A-conversion. This notion of equality is a much more complex operation than simple syntactic 
equality (see Section 3). In particular, using this notion of equality, a A-term is equal to any 
alphabetic variant of itself. With respect to this notion of equality, accessing the name of 
a bound variable in a A-term is not a meaningful operation since equal terms might return 
different values. Adhering to this notion of equality disqualifies most conventional methods 
of analyzing the structure of programs. 

Higher-order unification is a mechanism that can be used to probe the structure of 
programs, respecting congruence classes modulo A-conversion. Illustrations of how this is 
achieved are outlined in Section 3. If the only method for manipulating A-terms is via higher- 



order unification then it is impossible to distinguish between two programs which are equal 
modulo A-conversion. In particular, it is impossible to access the names of bound variables. 
In this paper we make use of a higher-order logic programming language, AProlog [14], to 
implement programs transformations because this language employs higher-order unification 
in a direct fashion. While this language extends Prolog in several directions, we shall only 
regard it as an implementation of the theory of higher-order Horn clauses [13]. 

The use of A-terms and of higher-order unification to implement program manipulation 
systems has been proposed by various people. Huet and Lang in [lo] employed second- 
order matching (a decidable subcase of higher-order unification) to express certain restricted, 
"template" program transformations. Miller and Nadathur in [12] extended their approach 
by adding to their scheme the flexibility of Horn clause programming and richer forms of 
unification. In [6] we argued that if the Prolog component of the CENTAUR system [2] 
were enriched with higher-order features, logic programming could play a stronger role as a 
specification language for various kinds of interpreters and compilers. 

While we are only concerned in this paper with the simply typed A-calculus, richer and 
more flexible A-calculi have been proposed as a suitable representation system for programs. 
For example, Pfenning and Elliot in [16] have extended the simply typed A-calculus to include 
simple product types. They also discuss in depth the role of higher-order abstract syntax, 
i.e., the representation of programs as A-terms, in the construction of flexible and general 
program manipulation systems. The LF specification language [7] uses a A-calculus with 
a strong typing mechanism to specify various components of proof systems: much of this 
specification language could profitably be used in the context we are concerned with here. 
While extensions of higher-order unification to such rich notions of terms and types are 
important, we do not consider them here. 

Similar advantages of the blend of higher-order unification and logic programming have 
been exploited in systems that manipulate formulas and proofs of logical systems. Felty 
and Miller in [5] discuss the use of AProlog to specify and implement theorem provers and 
proofs systems. Here again, A-terms and higher-order unification are used to represent and 
manipulate formulas and proofs. The Isabelle theorem prover of Paulson [15] also makes use 
of these features to implement flexible theorem provers. 

3 A-Terms and Higher-Order Unification 
In this section we present particular properties of A-terms and higher-order unification that 
are exploited in the program transformers described in Sections 5 and 6. 

Throughout the rest of this paper we use the word "term" to mean simply typed A-term. 
The simple types are composed of some collection of primitive types and of all functional 
types built from these primitive types. The collection of primitive types must contain at least 
one type, written as o, which is used to denote the type of logic programming propositions. 
Other primitive types can be added by the programmer of this system. We shall assume that 
there are denumerably many constants and variables at all types. Simply typed A-terms are 
built from these using the usual notions of application and abstraction. 

We denote by the operation [ N / x ] M  the result of substituting the term N for all free 



occurrences of x in M.  Bound variables of M may require renaming to avoid capture of free 
variables in N.  A P-redex is a formula of the form (Ax M)N and an 7-redex is a formula 
of the form Ax (Px)  where x is not free in P .  The equality for A-terms is the reflexive, 
symmetric, and transitive closure of the following relation on terms of the same type: P is 
related to Q if they are either alphabetic variants of each other, or Q results by replacing 
a ,8-redex (Ax M ) N  in P with [N/x]M or by replacing an 7-redex Ax (Mx) in P with M. 
This relation between A-terms is called ,&-conversion. A A-term is in ,8-normal form if it 
contains no P-redexes, and is in P7-normal form if it is in p-normal form and contains no 
7-redexes. Any simply typed A-term is Pq-convertible to a P7-normal form, which is unique 
up to alphabetic changes of bound variables. Also, two terms are equal in this theory if 
and only if they have a common ,87-normal form. (Proofs of these results may be found in 
the literature.) In this paper, whenever we refer to a normal form or A-conversion we mean 
p7-normal form and Pq-conversion. See [8] or [9] for more details on the A-calculus. 

Let t and s be two terms of the same type possibly with free variables of any type. The 
problem of deciding if there is a substitution, say a, such that a ( t )  A-converts to a(s), is 
known as higher-order unification. When one of the two terms to be unified is closed we 
refer to unification as matching. The nature of higher-order unification is described in detail 
in [9] and in lesser detail in [ll]. Although general higher-order unification is undecidable, 
all the unification problems arising in the examples in this paper are decidable. A simple, 
depth-first implementation of [9] is all that is necessary to find unifiers. We do not present 
higher-order unification in detail here since the points we wish to make only require an 
understanding of some of its high-level properties. These properties can be determined by 
looking at the behavior of A-terms under substitution and A-conversion. In particular, the 
following definition and properties of terms will be exploited in our subsequent transformers. 

Definition 1 (Dependence on an abstraction) We say that term t is dependent on its 
ith abstraction if a A-normal form oft is of the form Axl.. . Axi.tl and xi is free in t'. Notice 
that t' may be a function abstraction itselj, i.e., it might be of functional type. 

Property 1 (Dependency Invariance) Let t be a term which is dependent on its ith ab- 
straction. If t A-converts to s, then s is dependent on its ith abstraction. 

This property concludes that dependence on an abstraction is well-defined. This fact is 
important since equality between terms is determined by A-conversion. 

Property 2 (Dependency and Substitution) Let t be a term and a a substitution. If 
a( t )  is dependent on its ith abstraction, then t is dependent on its ith abstraction. 

This property states that abstraction dependency cannot be introduced by substitution. 
For example, if t = AxAy.( f x)  then there is no substitution (for the free variable f )  such 
that a(t)  is dependent on its second abstraction. If the substitution term for f contains a 
free occurrence of y, for example a = { f H (g y)), the bound occurrence of y is renamed to 
avoid variable capture. Thus, a ( t )  converts to AxAz.(g y x), which is not dependent on its 
second abstraction. 



Note that the converse of Property 2 is not true; dependencies can disappear under 
higher-order substitution. For example, consider the term t = AxAy.(f x y) and let a = 
{( f ,  AxAy.y)}. While t is dependent on its first and second abstractions, a ( t )  is dependent 
only on its second abstraction. 

Property 3 (Nested Dependency) Let t be a term, let a be a substitution, and assume 
that t and a ( t )  have A-normal forms Ax1.. . Ax,.t1 and Axl . . . Ax,.tl', respectively. Let i, j be 
integers such that 1 5 i, j 5 n. If every occurrence of xi in t' is in the scope of an occurrence 
of xj in t' then every occurrence of xi in t" is in the scope of an occurrence of xj in t". 

That is, the "in the scope of" relationship (i.e., if a bound variable x is the head of a 
subterm then all occurrences of bound variables within this subterm are said to be in the 
scope of x )  between bound variables does not change under substitution. 

As an example of how these properties can be related to the unification of two terms we 
consider the term 

to = AuAvAwAh.(f u h ( g ( v ) ) ) ,  

which we attempt to unify with each of the closed terms 

tl = AuAvAwAh.((2 * w )  + h(3 * v ) ) ,  

t 2  = AuAvAwAh.((2 * u )  + (3  * v ) ) ,  
t3 = AuAvAwAh.((2 * U )  + h(3 * v ) ) .  

Property 2 states that no substitution instance of to will have a dependence on its third 
argument and, therefore by Property 1, there is no substitution instance of to that is equal 
to the term t l .  Hence, tl and to are not unifiable. Similarly, Property 3 implies that to  and 
t 2  are not unifiable since every occurrence of v in to is in the scope of h ,  while this is not 
true of t2 .  to does, however, unify with tg  by the substitution 

This substitution is the only such unifier for to and t3. 

If we consider terms like t l ,  t 2 ,  t3 as fragments of programs that are to be transformed and 
terms like to as templates or expression schemata then this kind of unification can provide a 
useful mechanism for probing the structure of such fragments. For example, an expression 
fragment of the form AuAvAwAh.t matches the template to  only if w is not free in t ,  all 
free occurrences of u in t do not occur in the scope of h,  and all free occurrences of v in t 
do occur in the scope of h. Notice also that v may have multiple occurrences in the scope 
of h. The function (A-term) g would then denote the abstraction of all such occurrences. 
Furthermore, the combination h(g v )  could occur multiple times in t ;  the function f would 
need to represent not only the abstraction of all occurrences of u but also all the occurrences 
of h(g v ) .  Thus, the term 

t4  = AuAvAwAh.(u + (h ( v  + v ) )  * (h ( v  + v ) ) )  

unifies with to  with the resulting substitution 



The ability of higher-order unification to provide sophisticated probing and analysis of pro- 
grams is exploited in the remainder of this paper. 

4 A Simple Object Language 
Before introducing some simple transformers, we describe the object language that our ex- 
ample transformers will manipulate. For this we use a restricted subset of the functional 
programming language mini-ML, which is a subset of the language ML not containing excep- 
tions, pattern matching, datatype declarations or modules [3]. We do not present the actual 
concrete syntax of our language but present only its higher-order abstract syntax [16]. We 
do this by providing an illustrative example: more details can be found in [6]. 

To the pure typed A-calculus we add new typed constants to denote program language 
constructions. For example, we add constants car, cdr, cons, null to denote the familiar 
operations on lists and the constants O,1,2,. . . , +, *, . . .. We also need to add the constants 
truth and fake denoting the booleans and the constant if denoting the usual conditional. To 
represent recursion, something not primitive or representable in the simply typed A-calculus, 
we add a constant fix to denote the "least fixed point" operator (sometimes called the Y 
combinat or). These const ants are not interpreted by the logic programming language in 
which they are embedded. For example, the unifier does not unify the expression x with 
(cons (car x) (cdr 2)). The intended meaning of these constants arises in our setting only in 
the way in which they are used in program transformers. The exact set of constants in the 
object-level programming language does not concern us greatly since all the transformations 
we consider are either unaffected by the addition of new constants or are simply and mod- 
ularly extended to handle new const ants. The constants if and fix are of particular interest 
in the next section. 

The append program, written in a functional programming style as 

app K L = (if (nu l l  K) L (cons (car  K) (app (cdr K) L ) ) ) ,  

is coded as the A-term 

(fix X f XxXy. (if (null x) y (cons (car x) (f (cdr x) y)))). 

We replace the name of the function (app) by an abstraction ( X f )  and the fixed point 
operator. This is a standard representation of recursion and one that we use repeatedly 
in this paper. We replace the bound variables of the function, namely K and L, by the 
abstractions Xx and Xy. These abstractions, for the function name and the bound variables, 
are crucial to some of the transformers introduced in the next section. 

5 Some Basic Transformers 
In this section we present a number of transformers that effect simple transformations. These 
transformations typically comprise part of the basis of any rule-based program transforma- 
tion system. Our emphasis in this section is not on producing new transformations but on 
providing simple implementations of some familiar transformations. Before presenting such 



transformations, we briefly describe a few aspects of our meta-language: the higher-order 
Horn clauses fragment of AProlog. 

Terms in these higher-order Horn clauses are simply typed A-terms in which individual 
and function variables may occur. These variables can be universally quantified over pro- 
gram clauses. The theory of higher-order Horn clauses provides for quantification of some 
occurrences of predicate variables [ll, 141 but this aspect is not needed here and is ignored. 
A term constructed by the operation of application is represented by writing two terms in 
juxtaposition and separated by a space. A term constructed by the operation of abstraction 
is represented by the infix operator '\' separating the bound variable being abstracted and 
the term over which it is being abstracted. 

In displaying Horn clauses, we use the common convention of not explicitly displaying 
universal quantifiers. Instead, the variables which are intended to  be quantified are written 
as upper case letters. All other symbols are constants. 

Our first example of a higher-order Horn clause is particularly simple. The transformation 
that unwinds the definition of a recursive program can be represented as an atomic Horn 
clause containing one universally quantified functional variable: 

unwind ( f i x  A) ( A  ( f i x  A)) . 

If we use this clause in its forward direction, that is, with its first argument instantiated 
and second argument unbound, unification computes the appropriate abstraction to bind 
to A. The second argument is then constructed by applying this abstraction to the original 
argument. The strength of this transformer arises from the substitution, which is implicit 
in using ,&conversion. In particular, any term that unifies with ( f i x  A) would cause A to 
be bound to a term of the form (A f t). Thus the output value (A ( f i x  A)) is of the form 
(A f t )  (fix A f t),  which, in A-normal form, is [(fix A f t) /  flt. All recursive calls (marked by 
the bound variable f )  are replaced by the code of the recursive program. Notice that t may 
be of any functional type. If this unwind program is "run in reverse", that is, if the first 
argument is unbound and the second is instantiated, significant higher-order unification is 
required to decide if the program in its second argument is the result of unwinding. 

If a recursive program contains no recursive calls, it can be transformed simply into a 
non-recursive program. This transformer, called vacuous-recursion, is given by the clause 

vacuous-recursion ( f i x  F\A) A .  

Note how this clause makes explicit use of property 2 to determine that the body of a 
recursive program does not contain a recursive call. Any A-term that matches F\A cannot 
depend on its first abstraction and, in this context, cannot contain any recursive calls. 

Perhaps the most familiar transformation rule is the fold/unfold rule. The unfold transfor- 
mation replaces a call to a function with the function's body, substituting actual parameters 
for formal ones. The fold transformation replaces an instance of a function's body by a call 
to the function, substituting formal parameters for actual ones. The following clause can be 
used to implement unfold. 



unfo ld  ( f i x  A) ( f i x  F\(A (A F) 1) . 

Operationally, we can think of supplying this clause with a closed term for its first argument 
and applying higher-order unification and A-conversion to produce the second argument. 

As an example of unfolding, consider calling the unfold predicate with the append pro- 
gram, that is, the A-term 

( f i x  F\X\Y\(if ( n u l l  X) Y (cons ( c a r  X) (F (cd r  X)  Y ) ) ) )  

as its first argument. Such a call would succeed only if the second argument of the call can 
unify with the term 

( f i x  F\X\Y\(if ( n u l l  X) Y 
(cons ( c a r  X) 

( i f  ( n u l l  (cdr  X)) Y 
(cons ( c a r  (cdr  X)) 

(F (cd r  ( cd r  X) ) Y ) ) ) ) ) )  . 

Another simple transformation is one which reverses the order of the first two arguments 
of a recursive program. This transformation is specified by the atomic clause 

swap-args ( f i x  B) 
( f i x  F\Y\X\(B (U\V\ (F V U)) X Y)) . 

Note that this particular clause interchanges the first and second arguments of a function 
with at least two arguments (possibly more). 

Our fifth transformer in this section, one which we call the parametric transformer, em- 
ploys a more subtle use of higher-order unification. If the first argument of a recursive 
function is not modified in any recursive call then we can transform the function definition 
into a "parametric"recursive function of one less argument. This transformer is given by 
the clause 

pa ramet r i c  ( f i x  F\U\(G (F U) U)) 
U\( f ix  R\(G R U)) .  

The first argument is a recursive function (of at least one argument) and the second 
argument is the new equivalent function definition in which the recursion has been simplified. 
In any term unifying with the first argument, all recursive calls to F must have exactly U as 
its first argument. (Its other arguments can be functions of U and for distinct occurrences of 
F these functions need not be the same.) Hence, the first argument to the function defined 
by this term remains constant. This is a typical structure of many funct.ions in which some 
argument is not used until the recursion bottoms out (cf. the second argument of the append 
function). In the new function definition the first argument has been "abstracted out" over 
the fixed point operator, yielding a parametric recursive function of one less argument. 

As an example consider the term for the append program with its two arguments swapped 
(this could have been obtained by applying swap-args to the term for the append program 



given above): 

( f i x  F\Y\X\(if (nu l l  X) Y (cons ( ca r  X) (F Y (cdr x ) ) ) ) )  

Supplying this term as the first argument to the parametric clause produces the term (as 
the second argument) 

Y\(f i x  F\X\ ( i f  ( nu l l  X) Y (cons (ca r  X) (F (cdr  X)) ) ) )  

with the free variable G in the definition of parametric instantiated to 

F\Y\X\(if ( n u l l  X) Y (cons (ca r  X) (F (cdr X)))) .  

Our final example is slightly more elaborate and illustrates the use of higher-order Horn 
clauses to write a recursive transformer. Assume that we have a function of one argument 
whose body can contain a nesting of i f  statements. If a condition in one of these i f  
statements does not depend on the argument of the function, the value of this condition 
could be computed and determined to be either t r u t h  or f a l s e .  In such a case the function 
could be simplified by replacing the i f  statement with either its first or second branch, 
depending on the computed value of the boolean condition. This operation can be specified 
by the following clauses: 

prune-if X\(if C (HI X) (H2 X)) G : - 
eva l  C t r u t h ,  prune-if HI G .  

prune-if X\(if C (HI X) (H2 X)) G :- 
eval  C f a l s e ,  prune-if H2 G .  

prune-if X\(if (C X) (HI X) (H2 X)) 
X\(if (CX) (GI X) (G2X)) :- 

prune-if HI GI, prune-if H 2  G2. 
prune-if H H .  

In the first two clauses note the key use of Property 2, which ensures that C is independent 
of the expression's arguments and so can be evaluated. 

This transformer differs from the other ones in this section in several respects. First, it 
is recursive and makes use of a richer collection of Horn clauses to accomplish this recursion. 
Second, it works only for functions of exactly one argument. This is a rather serious limi- 
tation. A similar pruning operation for functions of two arguments or any fixed number of 
arguments can be given. Using higher-order Horn clauses, however, we have no natural way 
to write pruning functions that work for the general case ( i .e . ,  functions with an arbitrary 
number of arguments). A solution to this problem has been proposed by Pfenning and Elliot 
[16]: introducing product types into the A-calculus adds the necessary flexibility. Finally, 
this transformer requires the language-specific predicate eva l  that evaluates closed terms. 
The code for this predicate is not presented here; its structure is straightforward and is 
given in [6] .  Of course, to make this pruning operation deterministic within the depth-first 
interpreter for XProlog cuts should be added strategically in the first three clauses in the 
definition of prune-if. 



All these transformations can be implemented, of course, using first-order methods (e.g., 
as in Lisp or Prolog), but consider what such implementations would look like. They certainly 
would not be the simple "one-liners" afforded by higher-order Horn clauses. 

6 Specifying a Partial Evaluator 
We now demonstrate how some of these basic transformers can be composed to provide a 
slightly more elaborate program transformer. We concentrate on the declarative aspects of 
the transformers, largely ignoring issues of control. As our example we consider the task 
of partial evaluation, a technique of source- to-source optimizations. The topic of partial 
evaluation is receiving increased attention lately [I]; an earlier summary by Ershov provides 
a good introduction to the subject [4]. The partial evaluator we implement is restricted in 
its domain of operation; it serves only to illustrate how such transformers can be specified. 
More elaborate partial evaluators can easily be built using these techniques. 

Let us now consider the tasks involved in partially evaluating a function with respect 
to some known input for its first parameter. Assume we are given some function f of, for 
example, two arguments x and y. For a given value c we want to compute a new function g of 
one argument such that for all values of y, f (c, y) = g(y). One intent of this operation is that 
for any value of y computing g(y) should be easier ( e .g., faster) than computing f (c, y ) . Such 
improvement is possible by "compiling" the information of x = c in f into the definition of g. 
Thus partial evaluation can be decomposed into two phases: (i) substitution of the known 
value for the corresponding parameter in the function definition, and (ii) simplification of 
the resulting definition. 

The substitution in phase (i) is easily accomplished by A-conversion since the formal pa- 
rameters of functions are represented by A-abstractions. The simplification in phase (ii) en- 
tails a careful structural analysis of the result of phase (i), which requires a descent through 
the structure of the function body searching for expressions that can be evaluated or re- 
duced. Typically, subexpressions that can be completely evaluated (i.e., are independent of 
the remaining formal parameter) are located and replaced with their values. The analysis 
and transformers of the previous section can be brought together to achieve this task. We 
decompose phase (ii) into two distinct stages: expand and reduce. The expand stage non- 
deterministically expands (or embellishes) the given expression. In our example this process 
is limited to unfolding, but additional strategies could be employed. The reduce stage then 
attempts to evaluate and reduce expressions by, for example, an operation similar to the 
prune-if operation of the previous section. 

Figure 1 contains a set of higher-order Horn clauses (in the syntax of AProlog) for a 
simple partial evaluator. For this example we rely on the default ordering of clauses, with a 
depth-first search strategy, for control. 

The clause for pe gives the top-level of the partial evaluator. It has three arguments: ( f i x  
F), a recursive function of (at least) two parameters; C, a value for the first parameter to (fix 
F) ; and G, the residual function of one argument. The partial evaluator has three sub-goals: 
substitution, simplification and elimination. Substitution (phase (i)) is given by the single 
clause subs t i t u t e ,  and it substitutes the value C for F's first parameter (X).  Note the implicit 



pe ( f i x  F) C G :- 
s u b s t i t u t e  F C F l ,  
s i m p l i f y  F F i  G I ,  
e l i m i n a t e  G I  G .  

s u b s t i t u t e  F\X\Y\(B F X Y) C F\X\Y\(B F C Y) . 

e l i m i n a t e  F\X\Y\ (B Y) Y\ (B Y) . 

s impl i fy  F F l  G 1  :- 
expand F F l  H a  reduce H GI. 

expand F F1 F l .  
expand F F l  G I  :- 

unfold  F F1 H a  expand F H G I .  

unfold  F F l  G\ (F1 (F G) ) . 

* b *  h i 4  reduce:  base  cases  
reduce F\x\Y\Y G\X\Y\Y.  
reduce F\x\Y\A G\X\Y\A . 
* * *  L h !  reduce:  pruning i f  s ta tements  
reduce F\X\Y\(if (FO F X Y) (Fl  F X Y) (F2 F X Y)) G :- 

reduce FO GO\X\Y\truth, reduce F1 G .  

reduce F\X\Y\(if (FO F X Y) (F1 F X Y) (F2 F X Y)) G :- 
reduce FO GO\X\Y\false, reduce F2 G .  

reduce F\X\Y\(if (FO F X Y) (Fi  F X Y) (F2 F X Y)) 
~ \ x \ Y \ ( i f  (GO G X Y) ( G I  G X Y) ( ~ 2  G X Y ) )  :- 

reduce FO G O ,  reduce F l  G I ,  reduce F2 G2. 

* h L i  * * reduce:  p r i m i t i v e s  (cons, c a r ,  e t c . )  

reduce F \ X \ Y \ ( C O ~ S  (F1 F X Y) ( ~ 2  F X Y ) )  
G\X\~\(cons  (GI G X Y) (G2 G X Y)) :- 

reduce F1 GI, reduce F2 G2. 

Figure 1: Part of a Partial Evaluator 



use of p-conversion as B is a higher-order variable. The clause for s impl i fy  performs both 
stages of phase (ii): expansion and reduction. Declaratively, expand nondeterministically 
unfolds the function zero or more times. Notice that for the unfold clause we use the 
original function definition F for the unfolding and not the function F1 for which C has been 
substituted. F1 is a function that ignores its first argument and is not a recursive function 
definition. For this reason, the unfold predicate here is different than the one in the previous 
section. The clause for e l imina te  converts a recursive function of two arguments, in which 
the recursion is vacuous and the first argument does not occur free, into a non-recursive 
function of just one argument. This is achieved by applying the vacuous-recursion principle 
(eliminating the abstraction F) and similarly eliminating the abstraction X. Other techniques 
of converting the result of s impl i fy  into a function of one argument could be used by adding 
additional clauses for e l iminate .  

Finally, the clauses for reduce implement the reduction stage of phase (ii). Th' is par- 
ticular implementation of reduce is very simple and limited; more elaborate reductions are 
studied in the literature on partial evaluation. The arguments of the reduce predicate denote 
fragments of recursive programs of two arguments. Maintaining these abstractions during 
the recursion of reduce enables higher-order unification to handle correctly the restrictions 
on variables needed at various stages of the reduction. The reduce operation is intended 
to descend through the body of a recursive program of two arguments. While making its 
descent, it moves through and prunes, when possible, if statements. Unlike the prune-if 
program, the recursive descent of reduce is intended to move through all the constants of 
the language. A clause to descend through cons is given; others can easily be added. The 
base cases for this recursion are the first two clauses. Note that the bound variable X cannot 
occur in the body of the program and need not be considered as a base case. 

The clauses for pruning i f  statements replace calls to an eva l  predicate with recursive 
calls to  reduce. Thus in the full presentation of reduce we include clauses that produce (as 
their second argument) terms of the form G O \ X \ Y \ ~  r u t h  and GO\X\Y\f a l s e .  Such clauses 
would, in effect, evaluate boolean valued expressions built from constructors like n u l l  and 
- - 

If all recursive calls are eventually eliminated (by a series of unfoldings and reductions) 
then pe succeeds. Note that interleaving unfoldings with reductions might provide a more ef- 
ficient implementation (requiring less backtracking). For the purposes of this paper, however, 
we are more concerned with the declarative nature of partial evaluation and so maintaining 
the two distinct stages is beneficial. 

While this evaluator is simple it demonstrates some of the basic techniques of partial 
evaluation and how they can be implemented in XProlog. Consider, for example, using pe 
on the append program presented in the previous section. The goal 

pe ( f i x  F\X\Y\(if ( n u l l  X) Y (cons (ca r  X) (F (cdr  X) Y)))) 
(cons 1 n i l )  G .  

succeeds with the sole free variable G being instantiated to  

Y\(cons ( ca r  (cons 1 n i l ) )  Y)) . 



This transformation succeeds because the unfolding and pruning strategy worked here to 
remove all recursive calls. From a procedural perspective the simplification phase entailed 
one unfolding followed by two reductions (the first being the "false" clause of an i f  expression 
and the second being the "true" clause of an i f  expression). With a more sophisticated 
reduce predicate, the expression (car (cons 1 n i l ) )  could have been simplified to just 1. 

7 Conclusion 
To provide clear specifications of program transformers, ones that focus more on semantic 
issues, we re-examined a higher-order logic programming language as a meta-language for 
manipulating programs as objects. In this logic programming language object-level pro- 
grams and program schemata are represented using simply typed A-terms and higher-order 
variables. With this approach we argued that higher-order unification of terms denoting 
programs and program schemata provides an elegant method of implicitly specifying the 
syntactic constraints of transformations. To illustrate this point we first presented several 
transformers written in higher-order Horn clauses. These transformers have a clear declara- 
tive reading and avoid the use of non-logical constructs for describing syntactic constraints. 
We then illustrated how these simple transformers can be used to specify more sophisti- 
cated transformers by presenting a simple partial evaluator. The default depth-first control 
mechanisms of AProlog provided an adequate experimental implementation of all these spec- 
ifications. With further research in this area we hope to develop our understanding of richer 
program transformers, focusing on the areas of specification, implementation (including con- 
trol issues) and formal properties. 
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