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1 Introduction 

Logic programming languages have many characteristics that indicate that they should serve as 

good implementation languages for theorem provers. First, at the foundation of computation 

in logic programming is search. While logic programs are specified declaratively, the execution 

of logic programming programs is based on an underlying search algorithm. Search is also 

fundamental to theorem proving. The process of discovering a proof involves traversing an 

often very large search space in some controlled manner. Second, unification is an important 

mechanism in logic programming which is used to  solve equations between various objects. This 

mechanism is crucial to the theorem proving process, in particular for the proper treatment of 

formulas and proofs. Also, the fact that programs have a declarative reading is an important 

characteristic of logic programming languages: one can often write programs that represent 

natural specifications for a given task. The capability to both write and understand programs 

easily is especially valuable in theorem proving because the tasks involved are often complex 

and because soundness and completeness results must often be proved. 

Traditional logic programming languages such as Prolog are not sufficient for handling cer- 

tain aspects of implementing proof systems. One deficiency, as argued in [Miller & Nadathur 871, 

is that first-order ternis are quite inadequate for a clean representation of formulas. For in- 

stance, first-order terms provide no mechanism for representing variable abstraction required 

for quantification in first-order formulas. Quantification must be specially encoded. For ex- 

ample, in Prolog, we can represent abstractions in formulas by including the bound variables 

as arguments in the terms. The formula Vx3yP(x, y) could be written as the first-order term 

f o r a l l  (x , exists (y ,p(x , y) ) ) . The logic variables of Prolog cannot be used to represent 

variables in the formula because we need to distinguish between variables within the scope 

of a quantifier, and those outside it. Thus the substitution and unification that is available 

on logic variables is not available for these terms. The programmer would have to write new 

procedures that accomplish these tasks for the encoded representation. In addition, by ma- 

nipulating such an encoding, we lose much of the declarative nature that should be present in 

logic programming programs. 

In this paper, we will introduce a higher-order logic programming language that extends 

the first-order Horn clause theory on which Prolog is based. The logical foundation of this 

language is a collection of formulas called higher-order hereditary Harrop formulas [Miller, 

Nadathur, & Scedrov 871. This language replaces first-order terms with simply typed X-terms. 

The abstractions built into X-terms can thus be used to represent quantification. Our extended 

language also permits goal formulas to be both implications and universally quantified and we 

shall show how such goal formulas are, in fact, necessary for implementing various kinds of 

theorem provers. Many of the programs that we present in this paper have been tested using 
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a logic programming language called XProlog which is based on these higher-order hereditary 

Harrop formulas. Various aspects of this language have been discussed in [Miller & Nadathur 

86a, Miller & Nadathur 86b, Miller & Nadathur 87, Nadathur 861. 

Our main claim in this paper is that such a language is a very suitable environment for 

implementing theorem provers. We will show that search and unification accommodate the 

tasks involved in theorem proving very naturally. In this case search is based on our extended 

set of goals and unification is over higher-order terms. Most of our theorem provers will have 

a clean declarative reading which provides them with implementation independent semantics. 

In particular, one of our main goals is to use such a language to build a theorem proving 

environment in which a user can become involved in the search for proofs. Such an environment 

should provide the user with many tools and techniques for searching for and constructing 

proofs, and should contain somewhat sophisticated capabilities for automated proof discovery. 

In working toward this goal, we will illustrate how to  implement a theorem prover based on 

tactics and tacticals as in the LCF theorem prover, [Gordon, Milner & Wadsworth 791 and the 

Nuprl proof system [Constable et al. 861. 

We are also interested in representing and storing proofs as they are discovered, so that 

they can be used in computations. We discuss the formulas-as-types paradigm [Howard 801 

within our setting, where we consider formulas to  be types and proofs to be the objects that 

inhabit these types. We will demonstrate how such proof objects can be constructed and 

manipulated in our environment. Some examples include constructing programs from proofs, 

building natural language explanations from proofs, and using proof objects to do proof by 

analogy. 

Another goal is to show that this logic programming language can be used to specify 

proof systems for a wide class of logics. In this respect, we share a common goal with the 

Edinburgh Logical Framework (LF) [Harper, HonselI & Plotkin 871. LF is a logic developed to  

provide a general theory of inference systems that captures many uniformities across different 

logics. We have been able to show that all the example signatures specified in LF in the paper 

[Avron, Honsell & Mason 871 can be specified as logic programming programs. In addition to 

natural specifications, these programs represent non-deterministic theorem provers for these 

logics. 

In the next section, we will present the subset of the class of higher-order hereditary Harrop 

formulas on which we base our logic programming language, and describe an interpreter for this 

language. In Section 3 we present some simple programs to manipulate formulas in this lan- 

guage. It will become evident that simple operations on formulas are handled quite differently 

in this setting than by traditional methods. This is followed, in Section 4, by a discussion of 

how to specify inference rules. Each rule will correspond to a definite clause. Theorem provers 
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are implemented using collections of such clauses. We discuss both the declarative reading 

and the operational meaning (under the interpreter of Section 2) of these clauses. We will also 

consider the specification of proof objects. 

In Section 5 we begin to consider some issues in controlling the search for proofs. We 

present an automatic theorem prover for a variant of the Gentzen LK proof system for classical 

first-order logic. In Section 6 we discuss the implementation of tactic style theorem provers 

which allow greater control in searching for proofs and provide means for user participation 

in the theorem proving process. We first present the tacticals and other general definite 

clauses that will be used in any tactic prover. As an example, we build a theorem prover for 

natural deduction where the basic tactics are the inference rules of this proof system, and then 

present ways in which we can add to the tactic database to enhance the basic theorem proving 

environment. 

In Section 7, we discuss some algorithms that use proof objects for different purposes, 

including those mentioned above. It will become apparent that there are many options for 

representing proof objects and that choosing a representation should depend on how the proofs 

will be used. 

In Section 8, we give an informal presentation of the algorithm used to  translate the ex- 

ample L F  signatures in [Harper, Honsell & Plotkin 871 and [Avron, Honsell & Mason 871 to 

specifications for theorem provers in our extended logic programming language. In Section 9, 

we discuss related work, and finally in Section 10, we discuss future research. 
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2 Extended Logic Programs 

We shall need to extend the logic of first-order positive Horn clauses in two essential ways. 

The first extensions provide for the interpretation of queries (goals) which can be implications, 

disjunctions, universally and existentially quantified, as well as the usual conjunction which is 

permitted in Horn clause theorems. Although the addition of disjunctive and existential goals 

does not depart much from the usual presentation of Horn clauses, the addition of implicational 

and universal goals makes a significant departure. The second extension makes this language 

higher-order in the sense that it is possible to quantify over function symbols. In order to 

represent constructions which can be functions, first-order terms are replaced with simply 

typed A-terms. To implement the application of function terms, A-conversion is also required. 

Finally, to perform unification on A-terms, higher-order unification is required. 

The logic programming language presented in this section is a subset of the class of higher- 

order hereditary Harrop formulas which was presented in [Miller, Nadathur & Scedrov 871. The 

richer language permits quantification over predicate variables and permits A-terms to  contain 

logical connectives. Neither of these features are needed in this paper so we shall simplify our 

presentation by ignoring these possibilities. 

2.1 A Logic Programming Language and Interpreter 

In the logic programming language used in the remainder of this paper, we will assume that 

a certain set of non-functional types is provided, which contains at  least one type, namely o, 

which denotes the type of logic programming propositions. The full set of types is then all the 

non-functional types along with all functional types, that is, types of the form cr + P where 

cr and p are (non-functional or functional) types. Simply typed A-terms are then built in the 

usual fashion. A-terms which are propositions, i.e. of type o, will be called atomic formulas. 

In this section we shall let A be a syntactic variable for atomic formulas. 

We now define two new classes of formulas, called gar1 formuhs and definite clauses. Let G 
be a syntactic variable for goal formulas and let D be a syntactic variable for definite clauses. 

These two classes are defined by the following mutual recursion. 

A logic program or just simply a program is a finite set, say P, of closed definite formu- 

las. The following theorem on definite clauses follows immediately from theorems in [Miller, 

Nadathur, & Scedrov 871. 
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Theorem 1 Let I-I denote intuitionistic provability for this higher-order logic and 
assume that the formulas G, G1,G2,A and D are closed formulas. Then all the 
following hold. 

1. P k I  G1 A G2 if and only i f P  F I  G1 and P G2. 
2. P F r  G1 v G2 if and only i f P  tI  G1 or P I - I  G2. 
3. P I-I  D > G if and only if P, D k r  G. Here P, D denotes the set P U {D). 
4. P k I  Vx G if and only if for any parameter c which does not occur in P or G, 

P I-I [x/c]G. 
5. P I - I  32 G if and only if there exists a closed A-term t of the same type as x 

such that P k I  [x/t]G. 
6. If A is atomic, then P F I  A if and only if either some universal instantiation 

of a D E P is either A or is of the form G > A and P tI  G. 

Notice that these properties of I - I  can be used to describe a very high-level interpreter which 

can determine if a given goal is provable from a given program. This interpreter will be called 

the non-deterministic interpreter. Assume that a program P and a closed goal formula G are 

given and we wish to determine if G is intuitionistically provable from P. This interpreter 

can be described non-deterministically as being composed of the following six basic search 
operations. 

AND If G is G1 A G2 then try to show that both G1 and G2 follow from P 

OR If G is G1 V G2 then try to show that either G1 or G2 follows from P. 

AUGMENT If G is D > G' then add D to the current program and try to prove the goal 

G' . 
GENERIC If G is Vx G' then pick a new parameter c and try to prove the goal [x/c]G1. 

INSTANCE If G is 32 G' then pick some closed A-term t and try to prove [x/t]Gt. 

BACKCHAIN If G is atomic, we must now consider the current program. If there is a 

universal instance of a definite clause which is equal to G then we have found a 

proof. If there is a definite clause with a universal instance of the form G' > G 
then try to prove G' from P. If neither case holds then there is no proof of G 

from P. 

There are actually many ways to implement the GENERIC search operation. The descrip- 

tion above indicates one possibility. It is not necessarily the best for implementation purposes, 

yet is a good conceptual description. We are not concerned with the implementation of the 

interpreter in this paper, but will consider it to be implemented in this way for the purpose of 

discussion. Everything that is said will still hold for any other implementation. 

In actual operation of this interpreter, the INSTANCE operation will introduce a variable 

which will become instantiated as necessary through unification. Thus, it will not be forced to 
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commit to a particular closed A-term at the time it is invoked. This corresponds to the notion 

of "logic variables" in Prolog. 

This logic programming language properly contains first-order positive Horn clauses. That 

is, if Ao, A1,. . . ,An are all atomic formulas then the formula V x l  . . .Vxn (Al A . . . A An 3 Ao)  

is both a positive Horn clause and a definite clause (in our sense). Hence, any pure Prolog 

program is also a program in our setting. Richer programs are, of course, possible. We give 

an example in the next subsection. 

2.2 An Example 

The following definite clauses are motivated by an example of John McCarthy. 

Vy(Vx((bug x )  > ( ( i n  x y)  > (dead x ) ) )  3 (sterile Y ) )  

VxVy((heated y )  A (in x y)  A (bug x) > (dead x ) )  

(heated j )  

Given two types, jar and insect ,  the predicates in the above formula could be given the 

"functional" types 

sterile: jar + o 
bug: insect + o 

dead: insect -t o 

heated: jar -, o 
in: insect + jar + o 

j :  jar. 

A-terms of functional types which map to propositions can be thought of as predicates. Notice 

that while the last two formulas above are Horn clauses, the first is not. All three, however, 

are definite clauses. Let Po denote the set of these three definite formulas. Given the above 

description of provability, it is easy to show that Po  k I  (sterile j ) .  The following represents 

the search strategy the above interpreter could follow to find a proof. 

Po t - ~  (steri le  j )  

Po I - I  Vx((bug x )  > ( ( i n  x j )  3 (dead x ) ) )  

Po t - I  (bug r )  > ( ( i n  T j )  3 (dead r ) )  

PO, (bug r )  I -I  ( i n  r j )  3 (dead r )  

Po, (bug r ) ,  ( i n  r j )  I-I (dead r )  
Po ,  (bug r ) ,  ( i n  r j )  I-I  (heated j )  A ( i n  r j )  A (bug r )  

Po, (bug r ) ,  (in r j )  I -I  (heated j )  

P O ,  (bug r ) ,  ( i n  r j )  I -I  (in r j )  
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The last three lines are proved immediately by the BACKCHAIN rule. Here, it was necessary 

to argue generically about an arbitrary bug, called r of type insect. 

It is important to realize that the metatheory of definite clauses is intuitionistic logic, a 

logic which is weaker than classical logic. (See [Miller 86, Miller, Nadathur & Scedrov 871 for 

a discussion on the role of intuitionistic logic in this extended notion of logic programming.) 

Hence, there are inferences from formulas in classical logic which can not be inferred by the 

kind of interpreter described above. For example, the goal formula 3x (bug x)  V Vy (sterile y) 

can be classically inferred from Po. Our interpreter would try either to prove that there 

exists an insect which is a bug or to prove that all jars are sterile. Neither attempt to find 

a proof will succeed. Because classical logic contains the axiom scheme of excluded middle 

(absent from intuitionistic logic), classical derivations do not obey all the above six search 

rules: in particular, the OR and INSTANCE rules are seldom valid. For example, although 

3x (bug x ) ~ V y  (sterile y) is classically provable, neither of its disjuncts are provable separately. 

The classical proof of this formula would start by noting that 

3s (bug x) V Vx -(bug 2). 

If we assume that there does exist an insect which is a bug, the formula follows immediately. 

On the other hand, if we assume that all insects are not bugs, then it is easy to show that all 

jars must be sterile. 

We will present further examples of definite clauses, in particular higher-order examples, 

in later sections. 

Our main claim in this paper is that the above six search operations along with higher- 

order unification, A-convertibility, and the notion of a "logic variable" provide a very valuable 

environment for the design of theorem proving programs. 

2.3 Notation 

For readability, we will use some abbreviations when writing definite clauses. For the most 

part, these abbreviations define the syntax of the logic programming language AProlog (which 

adopts much of the syntax of Prolog). 

A-Terms Variables are represented by tokens with an upper case initial letter, and con- 

stants are represented by tokens with a lower case initial letter. Function application will be 

represented using curried notation i.e. juxtaposition of terms represents application and this 

application associates to the left. A-abstraction is represented using the infix symbol \. A term 
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of the form Ax T is written as X\T. Terms are most accurately thought of as being represen- 

tatives of apq-conversion equivalence classes of terms. For example, the terms X\ (f XI, Y\ (f 

Y) , (F\Y\ (F Y) f ) , and f all represent the same class of terms. Since bound variables have no 

distinct "name," the programmer will not have to deal with renaming bound variables. Also, 

substitutions are handled directly because of the availability of A-conversion. 

As in Prolog, we allow infix operators, and will use infix notation when appropriate to 

enhance readability. For example, we could have considered the i n  predicate in the above 

example as an infix operator, and written (X i n  Y) instead of ( i n  X Y) . 

Search Connectives The symbols , and ; represent A and V respectively, and , binds 

tighter than ;. The symbol : - represents the top-level implication in a definite clause. Clauses 

of this form are written backwards i .e .  a clause G > A is written A :- G. Implications at all 

other levels are represented using the symbol => in the forward direction. We omit the outer- 

most universal quantifiers in a definite clause, and existential quantifiers in a goal. Thus, free 

variables in a definite clause are assumed to be universally quantified, while free variables in a 

goal are assumed to  be existentially quantified. Internal universal quantification is represented 

with the p i  constant and the A operator (\). A formula of the form Vx P is represented by 

(pi  X\ PI, where X is a capital letter and all occurrences of x in P occur as X in P. 

The program in the previous subsection can be abbreviated: 

s t e r i l e  Y :- p i  X\ ((bug X) => ((in X Y) => (dead X))). 
dead X :- heated Y, in X Y, bug X. 
heated j. 

Modules We sometimes want to think of a set of definite clauses as a module that can be 

imported by a goal formula so that the clauses in this module will be available when attempting 

to satisfy the goal formula. For more on the theory of adding modules to  logic programming 

see [Miller 861. Here, we simply allow a name ( e . g .  ~ o d )  to be associated with a set of definite 

clauses and allow abbreviations of the form (Mod => G) where G is a goal formula. The 

AUGMENT search operation must then be extended to allow sets of definite clauses to be 

added to the current program. 

Types As we saw in the example in the last subsection, a set of type declarations will be 

associated with each logic program. In addition to  functional types, other type constructors 

are allowed. In many of our programs we will use list structures, and so l i s t  will be the only 

type constructor needed in this paper. It takes one type as an argument. In the previous 

example, ( l i s t  insect)  and ( l i s t  jar) are also types. The syntax for lists will be the same 

as in Prolog. 
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Sometimes, we will use capital letters to represent variables in type declarations. Such a 

declaration represents an infinite number of declarations, each of which is obtained by sub- 

stituting closed types for the variables that occur in the type. For example, most of the list 

manipulation functions can operate on lists of any type. Some of predicates used in this paper 

and their declarations are as follows: 

member : A -> (list A) -> o. 
append : (list A) -> (list A) -> (list A) -> o. 

member-and-rest : A -> (list A) -> (list A) -> o. 

These three predicates have the following definitions. 

member X [X I L] . 
member X CY I L l  :- member X L .  

append L L. 
append CX I L i l  L2 CX I L31 : - append L l  L2 L 3 .  

member-and-rest X CX I L1 L. 
member-and-rest X [Y I L i ]  [Y I L21 :- member-and-rest X L i  L 2 .  

The type variable A must be instantiated before the interpreter can use these definite clauses. 
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3 Manipulation of Formulas 

As was argued earlier, first-order terms of traditional logic programming languages are not 

adequate for representing formulas. In particular it is awkward to represent quantification 

using such terms. Our higher-order language replaces these terms with simply typed A-terms. 

Using these terms, we can still easily represent first-order terms. Data structures that can be 

built using first-order terms such as lists, trees, and even propositional formulas are represented 

in essentially the same way in this setting. The additional ability to represent abstractions 

directly within terms makes it possible to very directly represent quantified formulas. 

We use A-terms to represent formulas as introduced by Church in his formulation of the 

simple theory of types [Church 401, and adopted by many others (e.9. [Paulson 86, Miller & 
Nadathur 87, Harper, Honsell & Plotkin 871). We introduce a new type bool, and specify the 

logical connectives of the object language by introducing new constants and giving them types. 

In Section 2 we said that we would not permit logical constants to appear in A-terms. That 

restriction was on logical constants which involved the special type o of search propositions. 

This special type was reserved for the interpreter of hereditary Harrop formulas, and was needed 

since the behavior of formulas of type o, as described by Theorem 1, is very specialized. Thus 

our hereditary Harrop formula language will presuppose nothing about our newly introduced 

constants. Another way to look at this is that at  the program- or meta-level, the logical 

constants have a very set meaning, i.e. provided by a higher-order intuitionistic logic. At the 

term- or object-level, logical connectives have only the meaning which is attributed to them 

by the programs which use them. 

For classical first-order formulas, which we present as an example, in addition to  the new 

type bool, let us introduce the type i to represent the domain of first-order individuals. We 

then declare the following constants and types. 

and : bool -> bool -> boo1 

o r  : bool -> bool ->  bool 

imp:bool  -> bool -> boo1 

neg : bool -> bool 

f o r a l l :  (i -> bool) -> bool 

e x i s t s  : (i -> bool) -> bool 

We will demonstrate in this and the next sections that the extended logic programming lan- 

guage presented in Section 2 gives us a language in which we can write programs to manipulate 

these A-terms in sophisticated ways. We begin here with some basic formula manipulation pro- 

grams. These programs will illustrate that certain simple operations on formulas are handled 

quite differently in this setting than by traditional methods. The following is a small program 
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which can be used to instantiate a universally quantified formula. The program produces an 

"instance" of a formula by replacing the outermost variables bound by universal quantifica- 

tion with new logic variables which can later become instantiated with specific terms. The 

ins tant iate  predicate has type bool -> bool -> o where the first argument is the (possibly) 

universally quantified formula, and the second is its instantiated form. 

instantiate ( foral l  A) B :- instantiate (A T) B .  
instantiate A A .  

Note that each time the first definite clause is used, it introduces a new logic variable T. For 

example, it might instantiate the formula (f o r a l l  X\  ( f  o r a l l  Y \  ( (p XI imp (p Y) 1) to 

( (p  Ti) imp (p T2) 1. These logic variables can later be instantiated through unification. 

As another example, the following program illustrates how to construct the negation normal 

form of a formula. There is one predicate, called nnf which has type bool -> bool -> o. 

The first argument is the input formula and the second is the output formula in negation 

normal form. The behavior of the program is fairly straightforward for propositional formulas. 

Since first-order unification is all that is needed to break a propositional formula into its 

subformulas, the algorithm proceeds by recursively descending the structure of the formula, 

building the normal form from the normal forms of the subformulas. The main departure 

from traditional algorithms occurs when determining the negation normal form of quantified 

formulas. For example, traditionally, finding the negation normal form of the formula ~ ( V X  A) 
entails changing it to  32 1 A  and then finding the negation normal form of TA. The quantifier 

and bound variable are stripped off and x becomes a free variable in A during the rest of the 

procedure. Using our representation for formulas, the formula (neg ( f o r a l l  A)) becomes 

( e x i s t s  X\ (neg (A X) ) 1. In order to  obtain a subformula for which we can take the negation 

normal form, we must first apply the A-term (X\ (neg (A X I )  1 to something. The universal 

goal can be used here to put in a generic constant for X as in the following definite clause: 

nnf (neg ( fora l l  A)) ( ex i s t s  B) :- p i  X\ (nnf (neg (A x ) )  (B x ) ) .  

The GENERIC search operation will pick a constant c, and then the interpreter will search 

for the normal form (B c) of (neg (A c )  ). The use of the universal goal insures that the new 

constant used for X will not appear in B, and thus B will be an abstraction over this constant. 

The final negation normal form is then ( e x i s t s  B). The complete algorithm is described by 

the following set of definite clauses. 

nnf (A and B) (C and D) :- nnf A C, nnf B D. 
nnf (A or B) (C or D) :- nnf A C ,  nnf B D .  
nnf (A imp B)  ( C  or D) :- nnf (neg A) C ,  nnf B D .  
nnf ( f  oral l  A) (f  ora l l  B) :- p i  X\ (nnf (A X) (B X) ) . 
nnf (ex i s t s  A) ( ex i s t s  B) :- p i  X\ (nnf (A X) (B XI). 
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nnf (neg (neg A ) )  B :- nnf A B.  
nnf (neg (A and B)) (C or  D) :- nnf (neg A) C ,  nnf (neg B) D .  
nnf (neg (A o r  B)) (C and D) :- nnf (neg A) C ,  nnf (neg B) D .  
nnf (neg ( A  imp B)) (C and D) :- nnf A C ,  nnf (neg B) D .  
nnf (neg ( f o r a l l  A)) (ex i s t s  B) :- p i  X\ (nnf (neg (A XI) (B XI). 
nnf (neg (ex i s t s  A ) )  ( f o r a l l  B) :- p i  X\ (nnf (neg (A x))  (B x) )  . 

nnf A A .  

Other programs for normal form algorithms such as conjunctive, disjunctive, and prenex 

normal forms can be written similarly. For prenex normal form, as for negation normal form, 

the universal goal is used to handle quantified formulas. 

Formula manipulation plays a large role in the task of implementing theorem provers. For 

example, inference rules are generally applied to specific formulas, modifying them as the search 

for a proof proceeds. Thus, the ways in which formulas are manipulated will continue to be 

important in the next sections as we discuss the construction of theorem provers in our logic 

programming setting. We begin, in the next section, by discussing how to specify inference 

rules for various proof systems. 



4 Specifying Inference Rules 

4 Specifying Inference Rules 

In this section we discuss how to  specify inference rules of proof systems as definite clauses and 

illustrate the role of the six search operations of our extended logic programming language in 

using these rules to  search for proofs. 

In the examples below, each inference rule can be very naturally understood as combining 

a unification step and a search step, and thus has a natural rendering as a logic programming 

definite clause. We obtain complete non-deterministic theorem provers under the interpreter 

described in Section 2 from a set of definite clauses representing all of the inference rules for a 

proof system. This is the basis for our claim that logic programming is a suitable domain for 

specifying natural theorem provers. 

In this section we will draw examples from a Gentzen sequent system and a natural de- 

duction system. In addition to determining whether or not a sequent or formula is provable, 

the programs will also build and store the proofs as they are discovered. We use a particular 

representation for our proofs in the examples below. It  is important to note that our main 

point is not to promote a particular representation as the "correct" one for sequent systems or 

natural deduction, but to illustrate that it is straightforward to represent proofs for many proof 

systems. The particular representation chosen should correspond to what the proof objects 

will be used for in a given proof system. 

To place these inference rules in the context of the theorem provers in which they appear, 

we must consider the type declarations associated with the programs. The declarations for 

a theorem prover will consist of first, a set of declarations for the logical constants used in 

constructing formulas, such as those used in the negation normal form program in the previous 

section. Second, they will include declarations for specifying the terms used in constructing 

proof objects. Finally, they include the types given to the predicates used in search. For the 

theorem provers from which we draw our example inference rules, we will define one predicate 

called proof which has two arguments: a sequent or formula and its proof. Thus the type of 

the proof predicate in a sequential system and a natural deduction system are, respectively 

sequent -> proof-object -> o and boo1 -> proof-object -> o. 

We will give examples of objects of type proof-object as we present the inference rules. 

It is important to note that we do not always need to construct proof objects. We may 

define the proof predicate to take only a formula as an argument. In this case, when a formula 

is provable, the result will simply be a "yes" answer. In all of our examples, we include the 

second argument for the proof objects to illustrate how they can be constructed. Then later, 

we demonstrate some possibilities for using them in computations. 

The type declarations, as above, for the program predicates and terms are specified at 
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the meta-level and are used by the interpreter to insure proper types. On another level more 

important to theorem proving, we would like to represent formulas as types and proofs as 

objects inhabiting these types as in [Howard 80, Martin-Lof 82, Harper, Honsell & Plotkin 

871, so that theorem proving corresponds to type checking and type inference as in systems 

based on these formalisms (e.g. [Constable et al. 86, deBruijn 801). On this level, formulas and 

sequents will represent the types for their corresponding proofs (i.e. the first argument to the 

proof predicate will represent the type of the second). 

In Section 4.1, we begin with some examples of inference rules for the Gentzen LJ system 

for intuitionistic logic. Then, in Section 4.2, we consider the specification of natural deduc- 

tion inference rules, which requires investigating some additional issues. The inference rules 

presented in each section will be discussed on two levels. First, they will have a declarative 

meaning, defining what a proof of the conclusion of a rule will be, based on the proofs of 

its premises. On this level, these clauses will give meaning to the objects used to  represent 

proofs. Additionally, these clauses will have operational meaning. On this level, there will be 

a discussion of how each definite clause will be used by the interpreter of Section 2 during the 

search for proofs. In this discussion, we will exhibit the correspondence between the logical 

connectives of the object-language and the search operations of the meta-language. 

4.1 Definite Clauses for Sequential Proof Systems 

For the LJ proof system, in addition to the logical constants defined in Section 3, we need an 

additional constant to represent sequents. A sequent, in this system, has the form I' ---t A  
where I' is a list of formulas and A  is a formula. We add sequent to our set of primitive types 

(bool and i) and define --> as an infix operator as follows. 

--> : ( l is t  bool) -> bool -> sequent 

We begin with the following inference rule for a conjunction on the right side of the sequent 

(the LJ A-R rule). 

--+ A r + B  
I ? - A A B  A-R 

It can be represented by the following definite clause. 

proof (Gamma --> (A and B)) (and-r PI P2) :- proof (Gamma --> A) Pi, 
proof (Gamma --> B) P2. 

The declarative meaning of such a clause may be stated: if P l  is a proof of (Gamma --> A)  and 

P2 is a proof of (Gamma --> B), then (and-r P1 P2) is a proof of (Gamma --> (A and B)). 
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The rule essentially gives meaning to a d s :  it is a function from two proofs (the premises of 

the A-R rule) to a new proof (its conclusion). In the context of logic programming declarations, 

the type of this term is specified as follows. 

and-r : proof-obj ect -> proof -obj ect -> proof-ob j ect  

In the formulas-as-types paradigm, as we stated, one way to view any of the inference rule 

definite clauses that we present is that they define the objects (proofs) that inhabit the types 

specified by a sequent or formula. In the case of the and-r rule, notice the correspondence 

to the constructive logic declaration (and-r PI P2) : I' ---+ A A B where (and-r PI P2) is a 

proof of the judgement I' + A A 3 when PI and P2 are proofs of I' ---+ A and I' ---+ B 
respectively. 

Operationally, this definite clause may be used by the interpreter when a goal matches a 

universal instance of the right side (a unification step). It is used, for example, in goal-directed 

search when attempting to find a proof of a sequent of the form (Gamma --> ( A  and B) ) . 
An AND search operation is then necessary to  handle the conjunctive goal that results after 

backchaining. Thus one role of the AND search operation in theorem proving is to handle the 

subgoals generated by inference rules with more than one premise. 

Next we consider the two LJ  inference rules for proving disjunctions. 

-+ A v-R r - f l  
I?-AVB I '---+AVB V-R 

These rules have a very natural rendering as the following logic programming clause. 

proof (Gamma --> (A o r  B)) (or-r P) :- proof (Gamma --> A )  P ;  
proof (Gamma --> B) P .  

Declaratively, this clause specifies the meaning of a proof of a disjunction. Here P is either a 

proof of (Gamma --> A)  or (Gamma --> B). Operationally, the OR search operation is used 

here to arbitrate between choices of inference rules that can be applied to the same sequent. 

All propositional rules for Gentzen sequential systems can be very naturally understood as 

combining a first-order unification step, possibly followed by an AND or an OR search opera- 

tion. 

In the next examples, we will present some quantifier rules. Operationally, they will illus- 

trate a use of the INSTANCE and GENERIC search operations and higher-order unification 

for theorem proving. Consider the following 3-R inference rule 



16 4.1 Definite Clauses for Sequential Proof Systems 

which can be written as the following definite clause. 

proof (Gamma --> (exis ts  A)) (exists-r  P) :- proof (Gamma --> (A T)) P. 

Note that T is a new logic variable introduced in the subgoal. This T is existentially quantified 

i.e. in its unabbreviated hereditary Harrop form the subgoal is equivalent to 

(3T (proof I? - (A T )  P)). 

Declaratively, the clause reads: if there exists a term T (of type i) such that P is a proof 

of (Gamma --> (A T)) ,  then ( e x i s t s 2  P) is a proof of (Gamma --> ( e x i s t s  A) 1. Opera- 

tionally, we rely on higher-order unification (in this case, second-order matching) to match the 

A of ( e x i s t s  A) to  a function of type i -> bool. Then ( e x i s t s  A) is replaced by (A T) in 

the sequent to form the subgoal, where A-application and normalization substitutes T for the 

bound variable in A. By making T a logic variable, we do not need to  commit to a specific 

term for the substitution. It will later be assigned a value through unification if there is one 

that results in a proof. This introduction of a new logic variable is the role of the INSTANCE 

search operation. 

Next consider the following V-R inference figure. 

with the condition that x is not free in r or A. This restriction is handled by universally 

quantifying the subgoal to  obtain: 

proof (Gamma --> ( f o r a l l  A)) ( foral l - r  P) :- p i  T\ (proof (Gamma --> (A T))  (P T))  . 

Declaratively, it will read: if we have a function P that maps arbitrary terms T to proofs (P 

T) of the sequent (Gamma --> (A T)), then ( f o r a l l - r  P) is a proof of (Gamma --> (f o r a l l  

A )  1. In this case, the proof object ( f o r a l l - r  P) contains a functional argument, and thus 

f  o r a l l r  is declared as follows. 

f o r a l l - r  : (i -> proof-object)  -> proof-object  

Operationally, the GENERIC goal is necessary to achieve the subgoal ( p i  T\ (proof (Gamma 

--> ( A  T)) (P T))) .  As stated in Section 2, one way to view the operational use of this goal 

is that the interpreter will pick a new constant c  for the universally quantified variable, in this 

case for T. In the logic programming setting, in order for c  to be a truly generic constant, we 
must insure that it will not appear in any of the logic variables in subsequent unifications. In 

this clause, in addition to not appearing in the sequent, c cannot appear in the proof. As a 

result we have a proof P which is a function from arbitrary terms (of type i) to a proof -ob j e c t .  

The fact that P must be a function agrees with our declarative reading of this definite clause. 
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In our discussion of each of the inference rules, we have been considering the operational 

meaning of each of the definite clauses because we would like to  use the proof program as a 

whole to  do theorem proving. To use the interpreter of Section 2 for this task, we can present 

it with a goal formula of the form (proof (Gamma --> Delta) PI, where the sequent will be 

specified and the proof will not. (It will be a logic variable.) When we start with a god  of this 

form, at each step of the proof, the initial unification step needed to determine if a definite 

clause can be used involves only the first argument. This argument acts as the input while 

the second argument (the proof) is the output, which gets constructed as the subgoals are 

completed. Clearly, it is possible to  give both arguments at the onset, and thus both would 

be important for the initial unification step. In this case, the program acts as a proof-checker. 

This dual role of theorem prover/proof-checker applies to  all of the theorem provers we discuss 

in this paper. 

4.2 Definite Clauses for Natural Deduction 

The natural deduction inference rules presented in this section are from Gentzen's system as 

presented in [Prawitz 651. Several of the introduction rules from this system resemble rules that 

apply to formulas on the right of the sequent in the LJ  proof system. Those that correspond 

to the example inference rules given in the previous section are as follows. 

A - I  A A B  

The V-I rule also has the proviso that y cannot appear in A. 

They can be translated to  the following definite clauses which are all similar in appearance 

to their corresponding definite clauses presented in the previous section. 

proof (A and B) (and-i Pi P2) :- proof A Pi, proof B P2. 

proof ( A  o r  B) (or - i  P) :- proof A P; proof B P. 

proof ( e x i s t s  A) ( e x i s t s - i  P) :- proof (A T) P. 

proof ( f o r a l l  A) ( f o r a l l - i  P) :- p i  T\ (proof (A T) (P T)). 

Clearly, they have similar declarative readings, and proof .terms are built in the same way 
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as in their LJ counterparts. Operationally they also require the AND, OR, INSTANCE, and 

GENERIC search operations respectively. 

In natural deduction, we have the additional task of specifying the operation of discharging 

assumptions. We illustrate how this can be accomplished using the >-I rule below. 

We can translate this rule to the following definite clause (which uses implication). 

proof (A imp B) (imp-i P) :- p i  PA\ ((proof A PA) => (proof B (P PA))). 

This clause represents the fact that if P is a "proof function" which maps proofs of A to proofs 

of B such that given an arbitrary proof PA of A, (P PA) is a proof of B, then (imp-i P) is a 

proof of ( A  imp B).  Here, the proof of an implication is represented by a function from proofs 

to proofs. The discharge of assumptions will always result in such proof functions. In this 

case, imp-i has the following type. 

imp-i : (proof -ob j e c t  -> proof -obj e c t )  -> proof -ob j e c t  

Operationally, the AUGMENT search operation plays a role in the discharge of assump- 

tions. In this case, to solve the subgoal ( p i  PA\ ((proof A PA) => (proof B (P PA))) 1, 
the GENERIC goal is needed to  pick a generic proof pa for the formula A.  Then the AUG- 

MENT goal is used to  add the clause (proof A pa), a proof of the discharged assumption, to 

the current program. This clause is then available to use in the search for a proof of B. The 

proof of B will most likely contain instances of the proof of A (the term pa). The resulting 

function P is the abstraction over this term. 

Representing proofs as functions, in addition to being a natural encoding of the operation 

of discharging assumptions, provides abstractions over proofs that can actually be applied to 

subproofs. For example, if we have a proof of ( A  imp B), and if A were a lemma that was later 

proved, we could apply P to this proof of A and obtain a proof of B directly. A definite clause 

to perform this operation might be as follows. 

proof B (P PA) :- proof (A imp B) (imp-i PI, proof A PA. 

In the term (P PA), A-application followed by normalization results in a new proof term with 

the actual proof term PA replacing all occurrences of the variable bound by A-abstraction in 

P.  When viewed in terms of proof trees of the style found in [Prawitz 651, this operation has 

the effect of substituting the proof of A above all occurrences of A that were discharged by this 

application of the >-I rule. 
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5 An Automatic Theorem Prover Using Depth-First Control 

Complete non-deterministic theorem provers are obtained by translating all of the rules of a 

proof system to definite clauses using techniques such as those in the previous section. There, 

we demonstrated that such specification can be quite straightforward. If we want to  go further 

and consider these specifications as executable programs for finding proofs, many more issues 

are raised. Controlling the search for a proof ( i . e .  forcing determinism) is a much more com- 

plicated task. For example, if we adopt the simple depth-first search algorithm of traditional 

logic programming, the order of the clauses (inference rules) becomes very important. It is un- 

likely that they can be ordered in such a way as to always avoid running into infinite branches 

in the search tree which cause the program to loop forever. Also, proofs of completeness for 

theorem provers using depth-first search might become quite complex. As a simple example, 

the left contraction rule of the Gentzen LK system and its corresponding definite clause are 

given below. 

- A contract - L A , r  - A 

proof ([A I Gamma] --> Delta) (contract-1 P) :- 
proof ( [ A , A  I G a m m d  --> Delta) P .  

This rule always produces a subgoal with an extra copy of the first formula on the left of the 

sequent. Thus it will always be applicable when there is at  least one formula on the left. This 

causes a problem since it could be applied repeatedly, making multiple copies of the same 

formula and preventing rules that appear after it from ever being attempted. Even if no other 

rules appear after i t ,  its interactions with other rules must be considered. For example, both 

contraction rules have the same problem, so that when one is placed before the other, the 

second may never get applied. Also, since either contraction rule will always be applied to the 

first formula in a list, in order to insure completeness, we need a guarantee that each formula 

that needs to  be doubled will appear at  the front of the list at some point. 

Although depth-first search is a naive and limited approach to the complex task of searching 

for proofs, at times it can be exploited successfully to build complete automatic theorem 

provers. As an example, in this section we will construct a theorem prover for a sequent-style 

calculus for first-order classical logic. In this case, by slightly modifying the LK inference 

rules, we are able to  obtain a reasonable automatic theorem prover. We present the system, 

called LKC (C for Computational) and discuss the changes to the inference rules. The purpose 

of these changes is to minimize non-determinism in the search for proofs. The changes are 

similar to those made to  LK to obtain the system G in [Gallier 861. There, a search algorithm 
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used to  find proofs in the G system is described, and a completeness result for this algorithm 

established. The changes made to LK to obtain LKC are as follows. 

(1) The interchange, contraction, thinning, and cut rules are removed. 

We eliminate the cut rule because in goal-directed automatic proof, we would have to specify 

the "cut formula7' that appears in the premises by introducing a new logical variable, and it 

is unlikely that unification could determine such cut formulas. By cut-elimination, this rule is 

not needed to obtain a complete theorem prover. We eliminate the structural rules since they 

can be applied to  almost any sequent and to any formula in the sequent. We are then left with 

the rules that apply to a formula of a particular form (based on the main logical connective) 

in the conclusion, i.e. the introduction rules. 

(2) An inference rule can be applied to a formula at any position on the left or 

right of the sequent in the conclusion of a rule. In the premises, the subformulas 

will appear at  the beginning of the lists of formulas on the left and right of the 

sequent. For example, the rule for implication on the right will have the following 

form. 

(3) Initial sequents are of the form rl, A, r2 - Al , A, A2. 

(2) above eliminates the need for the interchange rules, and allowing initial sequents as in (3) 

eliminates the need for the thinning rules. The remaining changes to the inference rules are 

those that must be made to account for the removal of the contraction rules. For a proof that 

these changes preserve completeness, see [Miller 871. 

(4) The 3 - L  rule has the following form. 

In the LK 3 - L  rule, each formula in the conclusion appears in only one of the premises. The 

LICC 3 - L  rule differs only in that all formulas (except the implication to which the rule is 

being applied) are duplicated in the premises. This is equivalent to repeatedly applying the 

contraction rule before applying the LK 1 - L  rule. The LKC rule is better suited for goal- 

directed proof since, when applying the rule, it will not be known which formulas are needed 

in each premise to complete their respective proofs. 
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(5) The two rules for A-L and V-R are combined into one for each as follows. 

A, B,rl,I '2 - A A-L 
r l , A A  B , r 2  --+ A 

In the LK rules, only one of the two conjuncts on the left or disjuncts on the right appears 

in the premise. Again, the LKC A-L and V-R rules are a combination of contraction and the 

corresponding LK rules. At the time of application it will not be known which conjunct on 

the left or disjunct on the right will be needed to complete the proof. 

(6) The V-L and 3-R rules are of the following form. 

j x / t ] ~ , r ~ , r ~ , v x  A -+ A 
rl,Vx A , r z  ---+ A V-L 

The V-L and 3-R rules also encompass a contraction, in this case, of the quantified formula. 

In addition, the quantified formula appears at  the end of the list while the formula to which 

the substitution is applied appears at  the beginning. The quantified formula is put a t  the 

end so that we can write a goal-directed theorem prover that applies rules to formulas in the 

order they appear in a list, so that all other formulas in the sequent will be examined before 

the quantifier rule is applied to the same formula again. Note that we will have to include 

a definite clause that applies both of these rules at once. Otherwise, in the case when both 

are applicable, placement of the definite clause for one before the clause for the other in any 

ordering would cause one to  be applied repeatedly and prevent the other from ever being 

applied. These are the only rules that need this treatment because all other rules replace a 

formula in the conclusion with subformulas in the premises, and thus the sequent becomes 

"smaller" in the sense that the total number of logical connectives decreases. The program 

below represents a depth-first theorem prover for the LKC system. Based on the observations 

above, it should be straightforward to show that it is complete. 

The sequents in the LK (and thus LKC) proof system are of the form I' - A where I? 
and A are both lists of formulas. Thus, for this program the sequent arrow is an infix operator 

with the following declaration. 

--> : (list bool) -> (list bool) -> sequent 

This program also makes extensive use of the list predicates discussed in Section 2. 
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proof (Gamma --> Delta)  ( i n i t i a l  A) :- member A Gamma, member A Delta .  

proof (Gamma --> Delta) (and-1 P) :- 
member-and-rest (A and B) Gamma Gammai, 
proof ( [A,B 1 Gammall --> Delta)  P. 

proof (Gamma --> Delta)  (and-r P i  P2) :- 
member-and-rest (A and B) Delta  De l t a i ,  
proof (Gamma --> [A I Del t a i l )  P i ,  
proof (Gamma --> [B I D e l t a i l )  P2. 

proof (Gamma --> Delta)  (or-r  P) :- 
member-and-rest (A o r  B) Delta De l t a i ,  
proof (Gamma --> [A,B I Del ta l l  ) P. 

proof (Gamma --> Delta)  (or-1 PI P2) :- 
member-and-rest (A o r  B) Gamma Gammai, 
proof ([A 1 Gammai] --> Delta)  P I ,  
proof (CB I Gammall --> Delta)  P2. 

proof (Gamma --> Delta) (imp-r P) : - 
member-and-rest (A imp B) Delta  De l t a i ,  
proof ([A I Gammal --> CB I Deltai])  P. 

proof (Gamma --> Delta)  (imp-1 P i  P2) :- 
member-and-rest (A imp B) Gamma Gammai, 
proof (Gammai --> [A I De l ta l )  P i ,  
proof ([B 1 ~ammai] --> Delta)  P2. 

proof (Gamma --> Delta)  (neg-1 P) :- 
member-and-rest (nag A) Gamma Gammal , 
proof (Gammal --> [A I Del tal  P. 

proof (Gamma --> Delta)  (neg-r P) :- 
member-and-rest (neg A) Delta  De l t a i ,  
proof ( [A  I Gammal --> Del t a l )  P. 

proof (Gamma --> Delta)  ( f o r a l l - r  P) :- 
member-and-rest ( f o r a l l  A) Delta  De l t a l ,  
p i  T\ (proof  amma ma --> [(A T) 1 Del ta i l  ) (P T)) . 

proof (Gamma --> Delta)  ( ex i s t s -1  P) :- 
member-and-rest ( e x i s t s  A) Gamma Gammai, 
p i  T\ (proof ([(A T) I Gammai] --> Delta)  (P T)) 

proof (Gamma --> Delta)  ( f o r a l l - r  (ex is t s -1  PI) :- 
member-move-to-end ( f o r a l l  Ai) Gamma Gammai,  
member-move-to-end ( e x i s t s  A2) Delta  De l t a i ,  
proof ([(A1 T i )  I Gammai] --> [ ( ~ 2  T2) I D e l t a i l )  P. 

proof (Gamma --> ~ e l t a )  ( ex i s t s - r  P) :- 
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member-move-to-end (exists A) Delta Deltal, 
proof (Gamma --> [(A T) I Deltall) P. 

proof (Gamma --> Delta) (forall-1 P) :- 
member-move-to-end (f oral1 A) Gamma Gamma1 , 
proof ([(A T) I Gammal] --> Delta) P. 
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6 Construction of Tactic Theorem Provers 

Tactics and tacticals provide a powerful and flexible device for building proof systems, and 

have been used with much success in recent years. As mentioned, examples of systems 

that have been developed using this style of theorem proving include the Edinburgh LCF 

theorem prover [Gordon, Milner & Wadsworth 791, and the Nuprl proof system at Cornell 

[Constable et al. 861. Tactics and tacticals promote modular design of proof systems and pro- 

vide flexibility in controlling the search for proofs. They allow an interactive proof environment 

to be enhanced with partial automation. Tactics provide the basic operations and inference 

rules for a particular proof system, while tacticals provide control mechanisms which can be 

used in combination with tactics to automate tedious details of building proofs, as well as to 

develop more complex proof strategies. As a result of the success of current tactic style proof 

systems in providing a mechanism for direct user involvement in the incremental construction 

of proofs, this method continues to receive much support in the theorem proving community 

[Milner 871. 

Logic programming provides a very suitable environment for writing tactics and tacticals. 

They can be used to develop an interpreter that provides a much richer mechanism for con- 

trolling the search for proofs than depth-first search. In this section, we will illustrate how to 

construct tactic style theorem provers in our extended logic programming language. 

In building tactic theorem provers, there will be certain definite clauses that will be common 

to all tactic provers while others will be specific to a particular logic. We will group sets of 

definite clauses together in program fragments or modules as described in Section 2. We will 

first present the modules that are general to all tactic theorem provers and then discuss the 

set of definite clauses that will be needed to specialize to a particular logic. We will illustrate 

with a theorem prover for natural deduction. 

There will be one main predicate in any tactic prover which we call prove and give the 

following type. 

prove : tact ica lexp -> goalexp -> goalexp -> o 

This predicate has three arguments, the first of which is a tactical expression used in controlling 

search. The simplest kind of tactical expression is the name of a tactic (often corresponding to  

an inference rule). The second argument is the input goal which can be a complex structure 

containing formulas or sequents and their corresponding proofs. At the onset, the proofs will 

most likely be logic variables, which will become instantiated step by step as the formulas or 

sequents are proven. The third argument is the output goal which will contain the subgoals 

remaining after applying the tactical expression. There are three types of prove clauses. 

The first two are general to all tactic provers. They are the tacticals and the goal reduction 
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clauses. Together they form the interpreter which controls the search for proofs. The tacticals 

specify control based on the first argument to the prove clause-the tactical expression-which 

indicates which inference rule(s) to apply. The goal reduction clauses are needed in the logic 

programming setting to handle complex goals that may be generated when applying inference 

rules. They specify control based on the structure of the second argument. We provide a goal 

structure corresponding to each of the search operations discussed in Section 2. The third type 

of prove clause includes all the definite clauses that are specific to  a given proof system. These 

clauses are the tactics. The basic tactics encode the inference rules of a proof system. We 

translate each inference rule to a tactic, similar to the specification of inference rules presented 

in Section 4. 

When gathered together, the modules presented in this section can be considered, on one 

hand, as a declarative specification for a tactic theorem prover. Under the interpreter described 

in Section 2 such programs specify non-deterministic theorem provers. On the other hand, we 

want to  consider our theorem provers as deterministic executable programs. One purpose 

of adopting the tactic paradigm was to provide more control in the search for proofs. For 

example, we give "names" to the basic tactics. This allows search to  be directed by specifying 

which rule to apply by calling it by name, so that only one (or a very small number) of tactics 

will be applicable at  any one time. To obtain completely deterministic theorem provers, we 

must resolve the remaining non-determinism that results when more than one definite clause 

is applicable. We will resolve these cases as in Prolog where the clauses are attempted in 

the order they appear. Thus we still assume depth-first search control of the underlying logic 

programming language, but we write an interpreter on top of this language for tactics and 

tacticals. 

6.1 Definite Clauses for Tactic Provers 

In this section we will specify the modules Tacticals and GoalRed for the tacticals and goal 

reduction clauses, respectively. Together they form the meta-interpreter for tactic provers since 

they provide the mechanisms for controlling the application of the individual inference rules of 

proof systenzs. We first present the type declarations for both of these sets of definite clauses. 

The types tact ica lexp and goalexp introduced earlier comprise the set of primitive types 

(along with the type o for logic programming propositions). The first group of declarations 

are the tacticals used in building tactical expressions. The second group is used to construct 

compound goals. 

then : tact icalexp -> tact icalexp -> tact ica lexp 

ore lse  : tact icalexp -> tact icalexp -> tact ica lexp 

idtac : tact ica lexp 
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repeat : tacticalexp -> tacticalexp 

try : tacticalexp -> tacticalexp 

complete : tacticalexp -> tacticalexp 

truegoal : goalexp 

andgoal : goalexp -> goalexp -> goalexp 

orgoa1:goalexp -> goalexp -> goalexp 

a l lgoal  : ( A  -> goalexp) -> goalexp 

existsgoal  : ( A  -> goalexp) -> goalexp 

impgoal : o  -> goalexp -> goalexp 

prove : tacticalexp -> goalexp -> goalexp -> o 

goalreduce :goalexp -> goalexp -> o 

Here, andgoal corresponds to the AND search operation, orgoal to OR, al lgoal  to GENERIC, 

existsgoal  to INSTANCE, and impgoal to AUGMENT. The meaning of these goal struc- 

tures as well as the tactical expressions will become apparent as we present the definite clauses 

in the next sections. The prove predicate is the main theorem proving predicate. goalreduce 

is an auxiliary predicate used in the GoalRed module to handle completed subgoals. Note the 

presence of the logic variable A in specifying the type of al lgoal  and existsgoal .  We want 

the interpreter to be able to universally or existentially quantify over any type in any tactic 

prover. The type assigned to A in any given instance will depend on the particular tactic prover 

and the goal structures within that prover. 

6.1.1 Definite Clauses for Tacticals 

The definite clauses below provide control based on the structure of the tactical expression in 

the first argument. They correspond to  the tacticals found in [Gordon, Milner & Wadsworth 

79, Constable et al. 861. and [Constable et al. 861 

(1) prove (then Tacl Tac2) InGoal OutGoal :- 
prove Tacl InGoal MidGoal, prove Tac2 HidGoal OutGoal 

(2) prove (orelse Tacl Tac2) InGoal OutGoal :- 
prove Tacl InGoal OutGoal; prove Tac2 InGoal OutGoal. 

(3) prove idtac Goal Goal. 

(4) prove (repeat Tac) InGoal OutGoal :- 
prove (orelse (then Tac (repeat Tac)) idtac) InGoal OutGoal. 

(5) prove (try Tac) InGoal OutGoal :- prove (orelse Tac idtac) InGoal OutGoal. 
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(6) prove (complete Tac) InGoal t ruegoal  :- prove Tac InGoal t ruegoa l  

The then  tactical allows composition of tactics. Tacl is applied to  the input goal, and then 

Tac2 is applied to the resulting goal. This tactical plays a fundamental role in combining the 

results of step-by-step proof construction. This role will become apparent in later examples. 

Here, we will simply note that MidGoal provides the sharing of logic variables across the two 

separate calls to tactics, so that the results from applying these tactics get combined. The 

o r e l s e  tactical simply uses the OR search operation so that Tacl is attempted, and if it fails 

(in the sense that the logic programming interpreter cannot satisfy the meta-goal), then Tac2 

is tried. The notion of success and failure of tactic application is defined here directly in terms 

of the success and failure of the interpreter of Section 2. The third tactical, id tac ,  returns 

an input goal unchanged. It  is useful in constructing compound tactical expressions such as 

the one found in the repea t  tactical. repeat  is defined in terms of the other tacticals. It 

repeatedly applies a tactic until it is no longer applicable. The t r y  tactical prevents failure 

by applying i d t a c  when Tac does not succeed. It might be used, for example, in the second 

argument of an application of the then tactical. It prevents failure when the first argument 

tactic succeeds and the second does not. Finally the complete tactical tries to finish all goals. 

It will fail if there are any subgoals remaining after Tac is applied. 

6.1.2 Definite Clauses for Goal Reduction 

In contrast to  the tacticals which break down tactical expressions, the following definite clauses 

direct control by examining goal expressions, in this case the input goal given by the second 

argument to the prove predicate. The definite clauses below represent the interpreter for the 

goal structures corresponding to the logic programming search operations. 

(7) prove Tac t ruegoa l  t ruegoal .  

(8)  prove Tac (andgoal InGoali InGoal2) OutGoal :- 

prove Tac InGoali OutGoall, prove Tac InGoal2 OutGoal2, 
goalreduce (andgoal OutGoall OutGoal2) OutGoal. 

(9) prove Tac (orgoal  InGoall InGoal2) OutGoal :- 
prove Tac InGoali OutGoal; prove Tac InGoal2 OutGoal. 

(10) prove Tac ( a l l g o a l  InGoal) OutGoal :- 
p i  T\ (prove Tac (InGoal T) (OutGoall T)) , 
goalreduce ( a l l g o a l  OutGoall) OutGoal. 

(11) prove Tac ( ex i s t sgoa l  InGoal) OutGoal :- 
prove Tac (InGoal T) OutGoal. 
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(12) prove Tac (impgoal D InGoal) OutGoal :- 
(D => (prove Tac InGoal OutGoali)) , 
goalreduce (impgoal D OutGoali) OutGoal. 

goalreduce (andgoal t ruegoal  Goal) OutGoal :- goalreduce Goal OutGoal. 

goalreduce (andgoal Goal t ruegoal )  OutGoal :- goalreduce Goal OutGoal 

goalreduce (orgoal  t ruegoal  Goal) t ruegoal .  

goalreduce (orgoal  Goal t ruegoal )  t ruegoal .  

goalreduce ( a l lgoa l  T\ t ruegoal )  t ruegoal .  

goalreduce (impgoal D t ruegoal )  t ruegoal .  

goalreduce Goal Goal. 

Note that clause (8) transfers the object level andgoal to an A (represented by ,) at the 

meta-level (the logic programming language). The other definite clauses behave similarly for 

the other corresponding search operations. 

In writing programs for tactic theorem provers, we can actually eliminate the definite clause 

above for exis tsgoal  from the interpreter because this goal can be handled directly. We can 

introduce a new logic variable directly into the program. This is achieved by replacing every 

goal of the form (existsgoal  G) by (G T) for some new T. The remaining compound goals 

require the extra control of the interpreter given by the definite clauses above. 

The goalreduce predicate is provided to handle the cases when a subgoal is achieved. 

Then the output goal (third argument) gets the value truegoal.  

6.2 Specifying Tactics 

The modules of the previous section will be included in any tactic theorem prover. In this 

section we illustrate how to specialize tactic provers to a particular proof system. We choose 

the Gentzen NK natural deduction system, and in the next subsections specify definite clauses 

for the inference rules and for a proof editor to  interface to the user. Each new module will add 

some new declarations and new clauses for the prove predicate. In Section 6.3, we demonstrate 

how to put these modules together to obtain a complete tactic prover. 

6.2.1 Inference Rules as Tactics 

We will call the module containing the inference rules for natural deduction NDrules. The 

declarations for this set of clauses will include those for basic first-order logic as discussed in 
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Section 3. Again, we will construct proofs, so we also include the declarations for natural 

deduction proof objects. The exact form that these proof objects take will not be important 

to  the presentation in this section. Finally, we must add declarations for the basic tactical 

expressions and goals. We begin with the tactics corresponding to the inference rules. Each 

inference rule tactic is given a name which is a token of type tac t ica lexp .  Thus declarations 

of the form: 

and-i-tac : t a c t  icalexp 

are included for every tactic. The basic goal will contain the formula to  be proved and its 

proof and is declared as follows. 

proofgoa1:bool  -> proof-object -> goalexp 

We will call goals of the form (proofgoal A PI the atomic goals of the natural deduction 

theorem prover, in contrast to compound goals built from the goal constructors in Section 6.1.2. 

We also introduce a new predicate called r u l e  which has the same arguments and function as 

the prove predicate, but allows the inference rules to be distinguished from the more general 

prove definite clauses. We then include the clause 

prove Tac InGoal OutGoal :- r u l e  Tac InGoal OutGoal. 

In Section 4, we required the premises of an inference rule to have proofs in order to  build 

a proof for the conclusion. Here, an inference rule tactic will only complete one step of the 

proof. The input goal specifies the formula to be proven and the output goal specifies the 

subgoals (premises of an inference rule) which still need to  be proven after a rule is applied. 

The interpreter can then take control to direct the remaining search to achieve the incomplete 

subgoals. The basic form of a tactic is illustrated by the following example for /\-I. 

r u l e  and-i-tac (proofgoal (A and B) (and-i P i  P2)) 
(andgoal (proofgoal A P i )  (proofgoal B P2)).  

It can be applied whenever the formula in the input goal is a conjunction. Since there are two 

subgoals which must both be completed, the output goal is specified using andgoal, which is 

later handled by clause (8) from the GoalRed module. 

We will use another predicate, called proof (similar to the proof predicate in Section 5) to 

represent discharged assumptions. As assumptions are discharged, clauses of the form (proof 

A PI  will be added to  the goal structure and eventually to the program as in the following 

definite clause for the >-I rule. 

r u l e  imp-i-tac (proofgoal (A imp B) (imp-i P) )  
( a l lgoa l  PA\ (impgoal (proof A PA) (proofgoal B (P PA)))) .  
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These proof clauses, once they are added to the program by clause (12) from the GoalRed 

module are examined by many of the tactics for elimination rules which build upon the proofs 

contained in them, and add these larger proofs to the program in the form of new proof 

clauses. For example the tactic for the A-E rule looks for a program clause of the form (proof 

( A  and B) P).  

r u l e  and-e-tac (proofgoal C PC) 
(impgoal (proof A (and-el P)) 

(impgoal (proof B (and-e2 P))  (proofgoal C PC))) :- 
proof (A and B) P. 

The two new clauses (proof A (and-el PI) and (proof B (and-e2 PI) become part of the 

output goal. They will then be added to the program also. The remaining inference rules are 

given below. We use the constant perp of type boo1 to represent the formula I. 

r u l e  or- i- tac (proofgoal (A o r  B) (or - i  P)) 
(orgoal  (proofgoal A P) (proofgoal B P)) . 

r u l e  f o r a l l - i - t a c  (proofgoal ( f o r a l l  A) ( f o r a l l - i  P ) )  
( a l l g o a l  T\ (proof goal  (A T) (P T) ) . 

r u l e  ex i s t s - i - t ac  (proofgoal ( e x i s t s  A) ( ex i s t s - i  P))  
(ex is t sgoal  T\ (proofgoal (A T) P ) ) .  

r u l e  neg-i-tac (proofgoal (neg A) (neg-i P)) 
( a l lgoa l  PA\ (impgoal (proof A PA) (proofgoal perp (P PA)))).  

r u l e  or-e-tac (proofgoal C (or-e P P i  P2)) 
(andgoal ( a l l g o a l  PA\ (impgoal (proof A PA) (proofgoal C (PI PA)))) 

( a l lgoa l  PB\ (impgoal (proof B PB) (proofgoal C (P2 PB) ) ) ) )  :- 
proof (A o r  B) P. 

r u l e  imp-e-tac (proofgoal C PC) 
(impgoal (proof B (imp-e P PA)) (proofgoal C PC)) :- 

proof (A imp B) P, proof A PA. 

r u l e  fo ra l l - e - t ac  (proofgoal C PC) 
( ex i s t sgoa l  T\ (impgoal (proof (A T) ( fo ra l l - e  P))  

(proofgoal C PC))) :- 
proof ( f o r a l l  A) P. 

r u l e  exists-e- tac (proofgoal C (ex is t s -e  P PC)) 
( a l l g o a l  T\ ( a l lgoa l  PA\ (impgoal (proof (A T) PA) 

(proof goal C (PC T PA)) 1)) : - 
proof ( e x i s t s  A) P. 

r u l e  neg-e-tac (proofgoal perp (neg-e P i  P2)) t ruegoal  :- 

proof (neg A) P i ,  proof A P2. 
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r u l e  perp-tac (proofgoal A (contra PA)) 
( a l l g o a l  P\ (impgoal (proof (neg A) P) (proof goal  perp (PA P) 1)) . 

r u l e  close-tac (proofgoal A P) t ruegoal  :- proof A P. 

6.2.2 A Proof Editor 

Providing a means for accommodating user interaction is one of the strong points of tactic 

theorem provers. One way to  provide an interface to  the user in this paradigm is by writing 

tactics that request input. A very simple tactic for this purpose is as follows. 

prove query (proofgoal A P) OutGoal :- 
w r i t e  A ,  wri te  "Enter t a c t i c :  ", read Tac. 
prove Tac (proofgoal A P) OutGoal. 

Here we have a tactic that, for any atomic input goal, will present the formula to be proved 

to the user, query the user for a tactic to apply to the input goal, then apply the input 

tactic. We restrict its application to atomic goals so that the GoalRed clauses will break down 

compound goals and present the subgoals one by one to the user. Note that the wr i t e  and 

read predicates used here are outside the logic of hereditary Harrop formulas, yet they are 

necessary for a practical proof editor. As in Prolog, (wri te  A)  prints A to the screen and will 

always succeed and (read A)  prompts the user for input and will succeed if A unifies with the 

input. 

Using this tactic, the following tactic, named in t e rac t ive ,  represents a proof editor for 

natural deduction for which the user must supply all steps of the proof. 

prove i n t e r a c t i v e  InGoal OutGoal :- prove ( repea t  query) InGoal OutGoal. 

Note that the query tactic only operates on atomic goals. This means that any assumptions 

that have been discharged along the way (causing them to become part of an impgoal structure) 

must be added to the current program using definite clause (12) before the query tactic can 

be attempted. A practical interactive prover needs to present these assumptions to the user 

so that it is possible to work forward from the assumptions in addition to backward from the 

conclusion. One way to add this capability is to  use the following goal reduction clause in 

place of (12) during interactive proof construction. 

prove Tac (impgoal D InGoal) OutGoal :- 
w r i t e  "Adding", wr i t e  D ,  
(D => (prove Tac InGoal OutGoall)), 
wr i t e  "Removing", wr i t e  D ,  
goalreduce (impgoal D OutGoall) OutGoal; 
wr i t e  "Removing", wr i te  D ,  f a i l .  
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This clause will inform the user of the clause that is being added to the program, which 

will then be available during the execution of the tactical expression Tac. If the tactical 

expression is completed successfully ( i . e .  at the meta-interpreter level the goal (prove Tac 

InGoal OutGoal) succeeds), the user is informed that D is no longer available. If OutGoal 

still contains subgoals to be completed, the task of completing them must be accomplished in 

the program environment that no longer contains D (unless it is added again). D also becomes 

unavailable in the case when the goal fails during the execution of the tactical expression. The 

user is notified and the definite clause as a whole fails. 

These additions to the tactic prover will still not be sufficient, in general, for interactive 

theorem proving in a natural deduction setting. For example, if there is more than one con- 

junction among the discharged assumptions, the A-I rule will be applicable in more than one 

way. The user needs the capability to  specify which formula to apply the tactic to. One way 

to solve this problem is to extend the program with inference rule tactics that request input 

from the user. Since tactics are modular, this is easily accomplished by adding to NDrules or 

creating a new module with tactics such as: 

r u l e  and-e-query (proof goal  C PC) 
(impgoal (proof A (and-e I P) ) 

(impgoal (proof B (and-e:! P))  ( ~ r o o f ~ o a l  C PC))) :- 
wri t e  "Enter conjunction:", read ( A  and B), proof (A and B) P 

The user must then enter enough information so that the input will unify with the desired 

conjunction. 

All of the definite clauses above will be grouped in a module called ProofEd. In general, 

proof editors will be specific to the proof system that is being implemented. The above ex- 

amples for natural deduction illustrate that the tactic paradigm provides flexibility in writing 

such proof editors. 

6.3 A Tactic Theorem Prover 

We can now define the top level module for the natural deduction theorem prover. This 
program will be named TacProver and contains only the following definite clause. 

prove-top Tac InGoal OutGoal :- 
(Tac t i ca l  => (GoalRed => (NDrules => (ProofEd => (prove Tac InGoal OutGoal))))).  

As stated in Section 2, the use of a module name in a definite clause stands for the set of all 

of the definite clauses in that module. 
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Using this program, we can, for example, attempt to prove some formula A with the 

i n t e r a c t i v e  tactic. This entails trying to establish 

TacProver k I  prove-top in t e rac t ive  (proof goal A P) t ruegoal .  

The P of the goal formula is an existentially quantified variable i .e .  it is a logic variable that 

will be instantiated to a proof (or partial proof) if the interpreter succeeds on this goal. 

In the next subsections we will discuss other tactics that may be used to extend the natural 

deduction theorem prover specified by TacProver. To include them, we can either import them 

by including them as in the above prove-top definite clause, or we can access them during the 

proof process as will be discussed in Section 6.4.3. 

6.4 Defining New Tactics and Tacticals 

So far we have presented the core of a tactic style theorem prover for natural deduction in- 

cluding the inference rule tactics and a facility for interactive theorem proving. We will now 

describe some possibilities for adding new tactics and tacticals to  enhance the proof environ- 

ment. 

6.4.1 Induction 

There are many other inference rules that we could add to increase the capabilities of our 

natural deduction theorem prover. Like the main core of inference rules, new rules can be added 

as basic tactics. In this section, we discuss the addition of induction rules. We present inference 

rules for induction on different kinds of structures. We will also want to  add information about 

the relations and operations on these structures to the theorem proving environment. Here we 

discuss only the induction inference rules, and illustrate the form that these new rules take in 

the tactic setting. 

An inference rule for non-negative integer induction in the natural deduction proof system 

might look something like the following where the base case and the inductive case specify two 

separate subproofs. 

We translate it to the following definite clause. 

rule induction (proofgoal (forall A) (ind Pi P2)) 
(andgoal (proofgoal (A 0) Pi) 
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( a l lgoa l  N\ ( a l lgoa l  P\ (impgoal (proof (A N) P) 
(proofgoal (A (N + 1 ) )  (P2 W P ) ) ) ) ) ) .  

In a similar manner, we can specify definite clauses for induction over other structures. For 

example a rule for induction on lists could be specified as follows. 

r u l e  l i s t - i nduc t ion  (proofgoal ( f o r a l l  A) ( l i s t - i n d  P1 ~ 2 ) )  
(andgoal (proofgoal (A n i l )  P i )  

( a l l g o a l  L\ ( a l lgoa l  PL\ (impgoal (proof (A L) PL) 
( a l lgoa l  X\ (proof goal  ( A  (cons X L)) (P2 L PL X) 1)) 1) 1. 

6.4.2 Compound Tactics 

Another way to  add to the tactic database is to  use existing tactics and tacticals to define 

compound tactics. Such tactics provide partial automation by applying some combination of 

inference rules. They range in complexity from automating simple details of proof construction 

to encoding more complex proof heuristics and strategies. The interactive tactic was a simple 

example of a compound tactic. Another example is the following tactic, named i n t r o  which 

does backward construction of a proof by applying some of the introduction rules to a formula 

before giving control to the user. 

prove i n t r o  InGoal OutGoal :- 
prove ( repea t  (ore lse  imp-i-tac (o re l se  and-i-tac (o re l se  ex is t s - i - tac  

(o re l se  f o r a l l - i - t a c  query) ) ) ) )  InGoal OutGoal. 

It is also possible to write tactics which integrate other programs written in the logic 

programming language. For example, in a tactic theorem prover for the LKC system of Sec- 

tion 5, if the automatic theorem prover presented there were available, the automatic tactic 

below could be included, so that the tactic prover has access to  completely automated proof 

construction. 

prove automatic (proofgoal (Gamma --> Delta) P) t ruegoal  :- proof (Gamma --> Delta)  P .  

This tactic works by "calling" the proof predicate of the automatic theorem prover to complete 

the proof of the sequent. Automatic construction of proofs in LKC also provides an example 

of a tactic that can be constructed from existing tactics. If there were tactics corresponding 

to each LKC rule, the following tactic would furnish the same automation. 

prove automatic InGoal OutGoal :- 
prove ( repea t  ( o r e l s e  i n i t i a l - t a c  and-1-tac and-r-tac or-r-tac or-1-tac 

imp-r-tac imp-1-tac neg-1-tac neg-r-tac f o r a l l - r - t a c  
exists-1-tac (then exis t s - r - tac  f oral l -1-tac)  
ex is t s - r - tac  fora l l -1- tac) )  

InGoal OutGoal . 
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For readability, we use the abbreviation (o re l se  Tacl . . . Tac,) to represent (o re l se  Tacl . . . 
(o re l se  Tac,-l Tac,) . . .) . Note that the expression (then ex is t s - r - tac  f orall-1-tac) 

has the effect of applying both the 3-R and V-L rules. As was argued in Section 5 this com- 

bination is essential for insuring the completeness of the theorem prover and the termination 

of the program for provable sequents. In the tactic setting, we do not need a separate definite 

clause to  handle this case as we did in the direct implementation. 

6.4.3 Accessing Modules Dynamically 

One can imagine that with a growing library of tactics, it might be desirable to organize tactics 

into modules containing sets of related tactics and be given the flexibility to access only those 

that are needed at different points during proof construction. This selective use of tactics can 

be achieved using the AUGMENT search operation which allows dynamic access of modules. 

To do this we first add a new tactical called usermodule which takes a module name and 

a tactical expression, and adds the module to the current program so that the new definite 

clauses are available during the execution of the tactical expression. To add this capability we 

add the definite clause below to the Tac t i ca l s  module. 

prove (use-module Mod Tac) InGoal OutGoal :- (Mod => (prove Tac InGoal OutGoal)). 

If this clause is used in a setting where the current program is the set of clauses Prog, then after 

a BACKCHAIN on this clause followed by an AUGMENT operation which adds the module 

Mod we are left with the following meta-level sequent to establish. 

Prog,ModFI (prove Tac InGoal OutGoal). 

The effect here is similar to that described for discharging assumptions. In this case, all of 

the clauses in Mod will be available during the execution of the tactical expression Tac. Upon 

completion of Tac there may be subgoals remaining in OutGoal. Unless added again, the 

clauses of Mod will not be available during the completion of these subgoals. 

Note the distinction between theorem proving in the meta-language (Fr) and theorem 

proving in the object language (establishing t ruegoal  under the rules for the NK system). 

Successful completion of Tac means that the above meta-sequent has been proven by the 

interpreter. If OutGoal still contains incomplete subgoals, then at the object level, the formula 

has not yet been proven. In this case, the object-level search for a natural deduction proof 

may continue in the previous environment that did not contain Mod. 
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7 Proof Manipulations 

One important characteristic of all of the inference rules and theorem provers that we have 

been discussing in this paper is that they can construct proof terms as they prove theorems. 

There are many options for representing proof terms and example representations were given 

whenever inference rules were presented. In this section, we show that such proof objects can 

be useful by presenting some procedures that employ these objects for different purposes. 

From the straightforward declarative interpretations, we saw that all of the logic program- 

ming renderings of the inference rules and theorem provers that have been presented are quite 

natural, and that the proof terms represent fairly natural encodings of the application of these 

inference rules. The first procedure we discuss below takes this idea a step further and pro- 

duces English text, a more natural rendering of these proof terms. This procedure takes the 

form of a simple mapping from proof terms to strings of text. The second procedure below 

constructs Craig style interpolation formulas based on the structure of proof terms. This is 

followed by a discussion of some possibilities for constructing programs from proofs. 

The remaining procedures involve transformations of proofs to different proofs. We discuss 

how one might go about specifying algorithms for proof normalization of natural deduction 

proofs and cut-elimination for sequential proofs. Finally, we discuss some possibilities for proof 

by analogy, in this case using one proof as a guiding proof to construct a structurally analogous 

proof of a related theorem. 

All of these procedures proceed by recursively descending through the structure of proof 

terms. At many points in these algorithms, we need to  know the formula or sequent associated 

with a proof or subproof. In the formulas-as-types paradigm, this information corresponds 

to the type of the object. On one hand, we may be given the formula or sequent as an 

additional argument along with its proof object, but we still might need to know the types of 

the subproofs. This is the situation in many of the programs presented in this section. In each 

case, we are able to get the type of subproofs from the type of the input proof by using the 

proof program in its proof-checking capacity. On the other hand, for the case when the type 

of the proof is not explicitly given, the question is whether or not it can be obtained from the 

proof. It  might be contained explicitly in the proof term, or it might be possible to deduce it. 

We have discussed the proof program in terms of theorem proving and proof-checking. We can 

now ask if it is possible to use it for "type inference" where the proof object is specified at the 

onset and the formula or sequent is not ( i . e .  is a logic variable). Using the proof representation 

we have chosen, this is usually not possible. Proof terms, as we have specified them, store the 

complete structure of proof trees, but contain very little type information. For example, using 

the LKC prover we obtain the proof term 

( a n d 2  (or-r ( fo ra l l -1  ( i n i t i a l  (q (f b)))))) 
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for the sequent ~ ( a )  /\ V x  q ( x )  -+ V y  s(y) V q ( f ( b ) ) .  But note that this also is a proof for 

v x  q ( x )  A r --. q ( f ( b ) )  V z. 

There is clearly a tradeoff between the amount of information stored in proof terms and the 

extra work that must be done to obtain type information. In this presentation, we emphasize 

the declarative reading of the programs and continue to  opt for economy and readability in 

proof objects. Thus we include the type of proofs as an argument, and demonstrate how we 

use the proof predicate to associate subproofs with types. In terms of program execution, this 

extra computation is often inefficient, so it is important to be aware of other possibilities. 

7.1 Building Explanations from Proofs 

We will illustrate the construction of explanations using proof terms as generated by the LKC 

theorem prover of Section 5. These proof terms can be viewed functionally. In the case of 

proof explanation, each inference rule in a term can be thought of as being a function from 

text to text. Under this interpretation, a proof term for a sequent would be interpreted as a 

textual argument for the proposition represented by that sequent or formula. For example, a 

term of the form (or-1 P1 P2) generated by the definite clause for the V-L rule: 

proof (Gamma --> Delta) (or-1 Pi P2) :- 
member-and-rest (A or B) Gamma Gammai, 
proof ([A 1 Gammal] --> Delta) PI, 
proof ([B 1 Gammal] --> Delta) P2. 

represents a proof using case analysis. Assume that P i  is interpreted as T e x t l  which argues 

that D e l t a  follows from A and Gammal, and that T2 is interpreted as T e x t 2  which argues that 

D e l t a  follows from B and Gammal. The interpretation of (or-1 P1 P2) would then need to be 

an argument that Delta follows from (A or B) and Gammal. This is easily done if we make the 

interpretation of or-1 be the function which takes T e x t l  and T e x t 2  into the following text. 

We have two cases. Case 1: Assume A. T e x t l  Case 2: Assume 

B. T e x t 2  Thus, in either case, we have De l t a .  

We will have one logic programming definite clause corresponding to the lexical interpre- 

tation of each inference rule. Using the above interpretation, the following is the clause for the 

V-L rule. 

explain (Gamma --> Delta) (or-1 Pi P2) Text :- 
member-and-rest (A or B) Gamma Gammal, 
explain ( [A I Gammai] --> Delta) Pi Texti, 
explain ([B I Gammai] --> Delta) P2 Text2, 
append [(boolstr "Assume"),A I Textl] 

[(boolstr "AssumeU),B I Text21 Text3, 
append Text3 [(boolstr "Thus in either case we have") 1 Delta] Text. 
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There are several technical details to  note about this program. First of all we will only be 

concerned here with "lexicalizing" inference rules. Formulas themselves will be left as formulas. 

Also, we represent explanations as lists of formulas (items of type bool) .  We define a function 

b o o l s t r  which acts as a coercion function from strings to type bool (i.e. has type s t r i n g  -> 
bool)  so that both formulas and strings may appear in the list. We can then write a program 

which takes an explanation and prints it out in a slightly more readable form without the list 

notation, string quotations, or coercion functions. 

The above clause is actually the same as the clause specifying the V-L rule in the LKC 

prover, except that the explain predicate has an extra argument for the explanation. Opera- 

tionally, the explain program will have both a theorem prover and proof-checker within it. If 

only the sequent is specified, the explanation and proof will be constructed simultaneously. If 

the sequent and proof are specified, the program will act as a proof-checker at the same time 

that it is building an explanation. This proof-checking is an example of how we obtain the 

"type" of the subproofs given a proof object and its type. In this clause, there may be more 

than one disjunction in Gamma. The member-and-rest predicate extracts the first one, and the 

next two subgoals attempt to  verify that the subproofs P1 and P2 are proofs of the sequents 

with the V-L rule applied to the chosen disjunction. If these subgoals fail, backtracking takes 

place, and the member-and-rest predicate must find another disjunction, continuing until the 

correct one is found. 

In sequent proof systems, recall that in proof terms of the form ( e x i s t s - 1  P) and (f ora l l -r  

P) corresponding to the 3-L and V-R rules, the proof P of the premise is an abstraction 

from terms to  proofs (has type i -> proof-object). The explanation for the correspond- 

ing premise, Text, will also be an abstraction over terms (will have type i -> ( l i s t  boo l ) ) .  

In these cases, we explain the proof using an arbitrary term obtained by introducing a new log- 

ical variable, Var, and applying the explanation to it. Then, using the following explanations, 

the clauses for these rules would be as below. 

Explanations: 

3-L: Choose Var such that ( A  Var). (Text Var) 

V-R: (Text Var) Since Var was arbitrary we have Delta.  

Clauses: 

explain (Gamma --> ~ e l t a )  (exists-1 P) Text :- 
member-and-rest ( ex i s t s  A) Gamma Gammal, 
p i  T\ (explain ( [ (A  T) I Gamma11 --> Delta) (P T) (Text I T) ) , 
append [(boolstr "Choose"), (var Var) , (boolstr "such that"),  (A  ~ a r ) ]  

(Text1 Var) Text. 

explain (Gamma --> Delta) (forall-r P) Text :- 
member-and-rest (f  orall  A )  Delta Delta1 , 
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p i  T\ (explain (Gamma --> [(A T) 1 Deltal]) ( P  T) (Text1 T)), 
append (Text1 ~ a r )  [(boolstr " ~ i n c e " )  , (var ~ a r )  , 

(boolstr "was arbitrary we have") 1 Delta] Text 

Note that we have introduced the additional coercion function: v a r  : i -> boo1 to allow 

terms of type i to appear in explanations. The following is a complete explanation obtained 

from a proof term for the formula which states that a reflexive transitive relation is sym- 

metric on its domain: VxVyVz (R(x, y) A R(y, z )  > R(x, z)) A VxVy (R(x, y) > R(y, x)) > 
Vx(3y R(x, Y) 3 R(x, x)). 

Assume ( ( f o r a l l  X\ ( f o r a l l  Y\ ( f o r a l l  Z\ ( ( ( r  X Y) and ( r  Y Z)) imp ( r  X Z ) ) ) ) )  
and ( f o r a l l  X\ (f  oral1 Y\ ( ( r  X Y) imp (r Y X)) ) ) )  . 
Assume ( e x i s t s  Y\ ( r  V l  Y)).  Choose V2 such that ( r  V i  V2). 
By modus ponens, we have ( r  V2 Vi) . Hence, ( ( r  V i  V2) and ( r  V2 Vi) )  . 
By modus ponens, ue have (r V l  V1). Since V i  was arbitrary, we have 
( f o r a l l  X\ ( e x i s t s  Y\ ( r  X Y)) imp ( r  X X)) .  

7.2 Finding Interpolants 

In this section, we describe a program to construct an interpolation formula from proof terms 

representing proofs for Craig-sequents as defined in [Smullyan 681. A formula X is called an 

interpolation fornzula for a sequent r ---t A if all predicates and constants of X occur in both 

r and A, and r - X and X -+ A are both provable. Craig's Interpolation Lemma states 

that for any provable sequent - A, if I' and A have at least one predicate in common, 

then it has an interpolation formula. We introduce a new set of definite clauses that will specify 

a theorem prover for Craig's sequent style proof system. In addition, we add a third argument, 

as we did in the explain program, in this case for the interpolation formula. 

Craig-sequents are similar to Gentzen sequents, except that they contain an interpolation 

formula. When a Craig-sequent I' -t X -t A is provable in this system, this means that the 

ordinary sequent r --+ A is provable and X is its interpolant. In the proof system presented 

in [Smullyan 681, the negation normal form of the formulas in the sequent is constructed 

"during" the proof process. For example, if a formula l ( A  V B) appears on the left of the 

sequent, the A-L rule is applied to the formula - A  A 1B .  To simplify matters, we will assume 

all formulas in the sequent are initially in negation normal form. The resulting program could 

easily be expanded to the more general system. The inference rules for this system, and thus 

their definite clause specifications are similar to those in the Gentzen LI< system. As examples, 

the A-R and V-R rules are given below. In the V-R rule, the proviso that y cannot appear in the 

conclusion also applies to  the interpolant X since the interpolant can only contain constants 

that appear on both sides. 
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I ' + X + A , A  I ' - t Y - t B , A  
r + X A Y + A A B , A  

A-R 
r -t X -t [y/x]A, A 
I ' + X + V x A , A  V-R 

They may be specified as follows with the interpolant as the third argument. 

interpolate (Gamma --> Delta) (and-r PI P2) (X and Y )  :- 
member-and-rest (A and B) Delta Deltai , 
interpolate (Gamma --> [A I Deltai]) P i  X ,  
interpolate (Gamma --> [B I Deltai]) P2 Y .  

interpolate (Gamma --> Delta) (f orall-r P) X :- 
member-and-rest (f o ra l l  A) Delta Deltal , 
p i  T\ (interpolate (Gamma --> [(A T) I Deltai]) (P T) X) . 

For the 3-R and V-L rules, there is more than one possibility for the interpolant depending 

on whether or not the substitution term still appears on both sides of the conclusion after the 

rule is applied. The rules for 3-R, for example, are as below where the first one applies when 

t does not occur in X at all, or if it does, it also occurs in I' and 32 A, A, i .e .  if t occurs in the 

interpolant of the premise, then after the rule is applied, t must still occur on both sides of the 

conclusion. The second applies when t, which appears on the right of the premise, does not 

occur on the right of the conclusion. As a result t cannot appear in the interpolation formula. 

These conditions represent a new kind of proviso that must be satisfied by the interpolation 

program. 

We can represent these two possibilities using the following definite clauses. 

interpolate (Gamma --> Delta) (exists-r P) X :- 
member-and-rest (exis ts  A) Delta Deltai, 
interpolate (Gamma --> [ ( A  T) I Deltail)  P X .  

interpolate (Gamma --> Delta) (exists-r P) (exists X) :- 
member-and-rest (exis ts  A) Delta Deltai, 
interpolate (Gamma --> [ ( A  T) I Deltall)  P (X T). 

To satisfy the conditions, we must insure that only the correct one will be applied. We will 

show that such a proviso can be satisfied by requiring queries of a particular form. We illustrate 

the form these queries take with an example (from [Gallier 861). Suppose we have the proof 

(and-1 (or-r (forall-1 ( i n i t i a l  (q (f b) ) ) ) ) )  
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for the sequent p(a)  A Vx q(z)  - Vy s(y) V q( f (b)). To find the interpolant, we form a query 

by taking the universal closure (in the meta-language) over all of the predicates and constants 

in the sequent, and then specifying which ones can appear in the interpolant ( i . e .  those that 

appear in both sides of the sequent). In our example, only q appears on both sides. We query 

the logic programming interpreter with the following goal. 

( p i  P\ (p i  A\  ( p i  Q\  (p i  S\ ( p i  F\ (p i  B\ 
( interpolate 

([((P A) and ( fora l l  X\ (q X ) ) ) ]  --> [ ( ( fora l l  Y\ (S Y)) or (Q (F B)))]) 
(and-1 (or-r ( foral l -1  ( i n i t i a l  (Q (F B)))))) 
(I q ) ) ) ) ) ) ) )  

Upon successful completion of this goal, none of the variables of the universal closure will 

appear in I since I is within their scope, and only Q will appear at  all in the interpolation 

formula (I 9). As a result I will be an abstraction over the predicate Q. We can view this as 

"permitting" Q to appear in the interpolation formula, while preventing the appearance of any 

of the other constants or variables. Note that we can similarly view the subgoal 

interpolate (Gamma --> [ ( A  T) I Del ta i l )  P (X T) 

in the second definite clause for the 3-R rule as permitting an additional constant T to appear 

in the interpolation formula of the subtree above the conclusion of this rule. 

7.3 Extracting Programs from Proofs 

One way we have been viewing proofs of formulas is that the proof exhibits an element of 

the type specified by the formula. Certain formulas such as A > B can be considered to 

have "functional type" and in certain cases, when the proof contains "constructive content," 

we can view their proofs as functions from elements of type A into elements of type B. We 

would like to be able to use the proof terms to extract executable code for these functions. 

Such program extraction from proofs provides a method for verified programming [Bates & 
Constable 85, Martin-Lijf 82, Manna & Waldinger 801. We show how programs might be 

extracted in the logic programming setting. We should be able to apply the mechanisms 

for extracting programs from proofs in the logic programming setting to proof objects with 

"constructive content" from many different logics. In the realize program, each definite 

clause will specify the code fragment associated with an inference rule. This investigation is 

preliminary and we illustrate it on a simple propositional example. 

Each logical connective corresponds to a type constructor. For example, we mentioned 

that A > B corresponds to a function type i.e. A -+ B. The definite clause below constructs 

the function corresponding to the proof of ( A  imp B). Here, functions are represented by 

A-abstractions in the A-calculus of our logic programming language. 
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r e a l i z e  (A imp B) (imp-i P) Prog :- 
( p i  Q\ ( p i  X\  ( ( r e a l i z e  A Q X) => ( rea l i ze  B (P Q) (Prog X))) ) ) .  

Here, Prog is a function from A to B if for any program X that produces an element of type 

A, (Prog X) returns an element of type B. Note the equating of formulas and types implicit 

in this definite clause. Prog, a function from type A to type B, is constructed based on the 

structure of P, a function from proofs of formula A to proofs of formula B. 

We view the formula (A and B) as the product type where the constructor p a i r  builds 

objects of this type, and the destructors f  st and snd extract elements of A and B, respectively. 

The formula (A o r  B) represents the disjoint union type where the constructors in1  and inr  

construct elements of the disjoint union type from elements of A and B, respectively. The 
V-E rule generates conditional statements from disjoint union types (A o r  B), which allow 

branching in one of two ways depending on whether an object is from A or B. The construct 

i s - l e f t  is the test used to  determine if an object originates from the left or right of the 

disjunctive type. The use of these constructs is illustrated by the definite clauses of the 

following program. 

r e a l i z e  (A and B) (and-i Pi  P2) (pai r  X i  X2) :- 
r e a l i z e  A P i  X i ,  
r e a l i z e  B P2 X2. 

r e a l i z e  (A or  B) (or- i i  P) ( in1 X) :- r e a l i z e  A P  X .  

r e a l i z e  (A or  B) ( o r 3 2  P) ( i n r  X) :- r e a l i z e  B P X .  

r e a l i z e  (A imp B) (imp-i P) Prog :- 

( p i  q\ ( p i  X\ ( ( r e a l i z e  A q X) => ( rea l i ze  B (P 4) (Prog X) ) ) ) ) .  

r e a l i z e  A (and-el P) ( f s t  X) :- rea l i ze  (A and B) P  X .  

r e a l i z e  B (and-e2 P) (snd X) :- rea l i ze  (A and B) P  X .  

r e a l i z e  C (or-e P1 P2 P3) ( i f  ( i s - l e f t  Xi) (X2 Xi) (X3 Xi)) :- 

r e a l i z e  (A o r  B) P i  X i ,  
( p i  Q\ ( p i  X\ ( ( r e a l i z e  A Q X) => ( rea l i ze  C (P2 Q) (X2 X)) ) ) ) ,  
( p i  Q\ ( p i  X\ ( ( r e a l i z e  B X) => ( rea l i ze  C (P3 Q) (X3 X)))))  . 

r e a l i z e  B (imp-e P 1  P2) (XI X2) :- 
r e a l i z e  (A imp B) P i  X i ,  
r e a l i z e  A P2 X2. 

Given the formula (a V (y A 2)) > ((a V y) A (x V z ) )  and its proof 

(imp-i P\ (or-e P  Q\ (and-i (o r - i i  Q) (or- i l  9 ) )  
Q\ (and-i (or-i2 (and-el 4))  (or-i2 (and-e2 Q))))) 
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we obtain the program 

X\ ( i f  ( i s - l e f t  X) 
(pair (in1 X)  ( in1 XI) 
(pair ( inr  (f st X)) ( inr (snd X ) ) ) ) .  

7.4 Proof Normalization and Cut Elimination 

Both proof normalization in natural deduction and cut-elimination in sequent systems are 

procedures which, given a proof, perform a transformation on the proof to obtain a new 

proof. Such proof transformations involve examining the structure of a proof and altering 

it as necessary. The transformations that are at the heart of these procedures can easily be 

specified in our logic programming setting by unifying over proof terms, breaking them up so 

that new proofs may be composed from the subproofs. We do not present the entire algorithms 

here-only some of the definite clauses that illustrate the central ideas. 

Proof normalization, as presented in [Prawitz 651, is based on proof reductions that are 

performed when a formula occurrence is a conclusion of an introduction rule and the premise 

of an elimination rule. For example, the two below are reductions for A and > with the initial 

proof on the left and the reduced proof on the right. 

E l  z2 
A  B 

A A B  

We define a reduce predicate used to specify definite clauses to apply these reductions 

to proof terms. There are three arguments to this predicate: a formula and two proofs. 

The second argument is the initial proof of the specified formula, and the third argument is 

its reduced proof. The subgoals are calls to the proof predicate. Again, proof-checking is 

necessary to insure that the subproofs are proofs of the appropriate formulas in order for the 

reduction to take place. The definite clauses for the transformations above, and for all the 

other connectives are as follows. 
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reduce  A (and-e ( a n d 2  P i  P2)) P i  :- 
proof  ( A  and B) (and- i  P i  P2) .  

r e d u c e  B (and-e (and- i  P i  P2))  P2 :- 
proof  ( A  and B) (and-i  P i  P2) .  

r e d u c e  B (imp-e P i  (imp-i P2)) (P2 P I )  :- 
proof  A P i ,  
p roof  ( A  imp B) (imp-i P2) .  

r educe  C (or-e  ( o r 2  P I )  P2 P3) (P2 P I )  :- 
proof  A ,PI ,  
p i  P\  ( (p roof  A P) => (proof  C (P2 P) ) ) . 

r e d u c e  C (or-e ( o r - i  P i )  P2 P3) (P3 P i )  :- 
proof  B P i ,  
p i  P\ ( (p roof  B P) => (proof  C (P3 P I ) ) .  

r e d u c e  (A T) (f o r a l l - e  ( f  o r a l l - i  P ) )  (P T) :- 
proof  (f o r a l 1  A) (f o r a l l - i  P) . 

r e d u c e  B ( e x i s t s - e  ( e x i s t s - i  P I )  P2) (P2 T P I )  :- 
proof  ( A  T) P I ,  
p i  Y\ ( p i  P\ ((proof ( A  Y) P) => (proof B (P2  Y P ) ) ) ) .  

This algorithm in an illustration of how "proof functions" may be used. For example, in 3- 

reduction, the argument to imp-i is a proof function, in this case a function that takes proofs 

of A to proofs of B. But P1 is a proof of A,  so a simpler proof (the "reduced proof" of B) is 

obtained by applying P2 to Pi directly. In V-reduction, P is an abstraction over terms which 

gets applied to  the term T that appears in the formula ( A  T). 

In proof normalization for intuitionistic logic, in addition to the above reductions, we 

also need clauses to remove occurrences of an application of the 11 rule, followed by an 

application of an elimination rule, and clauses to reduce the length of maximum segments 

(series of repeated occurrences of a formula in a string of applications of V-E and 3-E). The 

former are fairly straightforward. We will demonstrate the latter. These proof transformations 

have the following form. 

C1 - C2 - C3 
A V B  F F 

C 2 - - C3 
A F C4 F C4 * A V B  C C 

C 
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In both cases, there are several possibilities for the last inference rule. (If it does not branch 

then Cq will be empty.) Below are the definite clauses for the case when this last rule is 3-E. 

reduce C (imp-e (or-e PI P2 P3) P4) 
(or-e Pi (X\ (imp-e (P2 X) P4)) (X\ (imp-e (P3 X) P4)) 1. 

reduce C (imp-e PI (or-e P2 P3 P4)) 
(or-e P2 (X\ (imp-e Pi (P3 XI)) (X\ (imp-e P l  (P4 X ) ) ) ) .  

reduce D (imp-e ( ex i s t s - e  PI P2) P3) 
( ex i s t s - e  Pi  ( X \  (imp-e (P2 X) P3) ) ) .  

reduce D (imp-e PI ( ex i s t s - e  P2 P3)) 
( ex i s t s - e  P2 (X\ (imp-e PI (P3 X)) ) )  

Similar clauses are needed for each of the other possibilities. In these reductions the structure of 

the "proof functions" is altered. As a result, the scope of the variable X bound by A-abstraction 

changes. 

In implementing the complete normalization algorithm given by the proof of normalization 

for intuitionistic logic in [Prawitz 651, the order in which the above reductions get applied 

is very important. Although insuring the correct order is non-trivial, it should be possible 

to specify a complete algorithm that operates by repeatedly searching for possible reductions, 

checking to see whether these reductions can be applied without violating the required ordering, 

and applying only the appropriate ones, continuing until there are no more possible reductions. 

In cut-elimination [Gentzen 351 (discussed here in the context of the LK system), instead 

of reductions, each instance of the cut rule is "pushed" up the tree as far as possible, until it 

"disappears" at  the leaves. There are several cases to consider in order to push an application 

of a cut past other inference rules. The cases depend on whether the cut formula is involved in 

the inference rules immediately preceding the cut in both the left and right premises, just one 

of the premises, or neither of the premises. We first consider some cases when the cut formula 

is involved in both inference rules immediately preceding the cut. The transformations below 

are those that apply when the cut formula is of the form A A B and Qx A respectively. (We 

only show one possibility for the A-L rule. The other is analogous.) 
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C Cz C3 
r - A , A  r - A , B  A , @ - A  A-R A-L + 

I? - A , A A B  A A B , O - A  
I?,@ - A, A cut 

C1 C3 
r - A , A  A , O  -A  cut I ' ,@-A,A 

C C2 
r - A> [XIYIA v - R [ ~ / t ~ ~ ,  @ - A [YI~ICI cz V-L VxA,O -A  I' - A ,  [x/t]A r - A , V x A  [x/t]A, O - A 

cut cut j r , O  - A , A  r ,0  - A , A  

The cut-elimination program has one predicate called cut-slim which takes a sequent and 

two proofs. Whenever the first proof is a proof of the sequent, then the second proof will be 

its corresponding cut-free proof. This procedure operates by examining the structure of the 

last inference rule in a proof tree, and whenever there is an application of the cut rule, either 

reducing the size of the cut formula (as in the transformations above), or pushing the cut 

formula further up the tree (as will be demonstrated next), then repeating the same procedure 

until all applications of the cut rule are eliminated. The definite clauses for the transformations 

above, and for the others that occur when the cut formula is involved in the inference rules 

of both premises are given below. The third definite clause (for the V transformation above) 

illustrates the instantiation of a proof term that is an abstraction over terms. 

cut-elim (Sigma --> Phi) (cut  (and-r P i  P2) (and-1 P3)) P4 :- 
proof (Gamma --> [A I Delta]) P i .  
proof (Gamma --> CB I Delta]) P2, 
proof ( [A I Thetal --> Lambda) P3, 
d is jo in t -union  Gamma Theta Sigma, 
d i s j o i n t  -union Del ta  Lambda Phi ,  
cut-elim (cut  P i  P3) P4. 

cut-elim (Sigma --> Phi) (cut  (and-r Pi ~ 2 )  (and-1 P3)) P4 :- 
proof (Gamma --> [A I Delta]) P i ,  
proof (Gamma --> [B 1 Del t a l )  P2, 
proof ( [B I Theta] --> Lambda) P3, 
dis jo in t -union  Gamma Theta Sigma, 
d i s j o i n t  -union Del ta  Lambda Phi, 
cut-elim (cut  P2 P3) P4. 

cut-elim (Sigma --> Phi) (cut  ( fo ra l l - r  PI )  ( f o r a l l - 1  P2)) P3 : - 
p i  Y\ (proof (Gamma --> [(A Y) I De l ta l )  (Pi  Y)) , 
proof ( [(A T) I Theta] --> Lambda) P2, 
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d i s  j oint-union Gamma Theta Sigma, 
d i s  j oint-union Del ta  Lambda Phi ,  
cut-elim (Sigma --> Phi) (cut  (P i  T) P2) P3. 

cut-elim (Sigma --> Phi) (cut  (or-r P i )  (or-1 P2 P3)) P4 : - 
proof (Gamma --> [A 1 Delta]) P i ,  
proof ([A I Theta] --> Lambda) P2, 
proof ([B 1 Theta] --> Lambda) P3, 
d is jo in t -union  Gamma Theta Sigma, 
d i s  j oint-union Del ta  Lambda Phi ,  
cut-elim (cut  P i  P2) P4. 

cut-elim (Sigma --> Phi) (cut  (or-r P i )  (or-1 P2 P3)) P4 :- 
proof (Gamma --> [B I Delta]) P i ,  
proof ([A I Theta] --> Lambda) P2, 
proof ([B 1 Theta] --> Lambda) P3, 
d is jo in t -union  Gamma Theta Sigma, 
d i s  j oint-union Del ta  Lambda Phi ,  
cut-elim (cut  P i  P3) P4. 

cut-elim (Sigma --> Phi) (cut  (imp-r P i )  (imp-1 P2 P3)) P4 :- 
proof ([A 1 Gamma] --> [B I Delta]) P i ,  
proof (Theta1 --> [A 1 Lambdail) P2, 
proof ([B I Theta21 --> Lambda2) P3, 
d i s  joint-union Thetal Theta2 Theta, d i s  j oint-union Gamma Theta Sigma, 
d i s  j oint-union Lambda1 Lambda2 Lambda, d i s  joint-union Del ta  Lambda Phi ,  
cut-elim (cut  (cu t  P2 P i )  P3) P4. 

cut-elim (Sigma --> Phi) (cu t  (neg-r P i )  (nag-1 P2)) P3 :- 
proof ([A I ~ m a ]  --> Delta)  P i ,  
proof (Theta --> [A I Lambda]) P2, 
d i s  joint-union Gamma Theta Sigma. 
d is jo in t -union  Del ta  Lambda Phi ,  
cut-elim (cut  P2 P i )  P3. 

cut-elim (Sigma --> Phi) (cut  ( ex i s t s - r  P i )  (ex is t s -1  P2)) P3 :- 
proof (Gamma --> [(A T) I Delta]) P i ,  
p i  Y\ (proof ( [(A Y) 1 Thetal --> Lambda) (P2 Y)) , 
d i s  joint-union Gamma Theta Sigma, 
d i s  joint-union Del ta  Lambda Phi ,  
cut-elim (cut  P i  (P2 T)) P3. 

In this program, we once again use the proof program for proof-checking when necessary. We 

must also check that the left and right of the conclusion sequent are composed of the disjoint 

union of the formulas in the left and right of the premises. (This is different than the LKC 
rules where all of the formulas in the conclusion appeared in the left and right of two-premise 

inference rules.) Note that there is more non-determinism in this program than in others. For 

example, Gamma, Delta, Theta, and Lambda are not instantiated when the proof subgoals are 

attempted. They must eventually match Sigma and P h i  which insures that they are correct, 
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but there will most likely be a lot of backtracking before a match occurs. 

If none of the above transformations can be performed, this means that the cut formula is 

not involved in at  least one of the inference rules in the premises of the cut rule. In this case 

we can push the application of the cut rule past this inference. We will need definite clauses 

to  handle every inference rule on both the left and right premise of the cut rule. The following 

two inference figures illustrate this transformation for the A-R rule in the right premise and 

the 3-L rule in the left premise. In pushing an application of cut past 3-L, we clzoose a new 

variable y' such that y' does not appear in the conclusion. Then we replace y with y' in XI.  

A,O -A ,B  A,@ - A , C  
A . @ - A . B A C  A-R 3 

I?,@ - A , A , B A C  cut 

C C2 C C3 
r - A , A  A,@ - A,B r - A , A  A,@ - A , C  cut cut r,e - A,A,  B I'1@ - A,A,C A-R 

I ' , O - A , A , B A C  

C1 [ ~ / ~ ' l ~ l  C 2 
Ix/y]B, I' - A,A 

3-L Cz * [x/y11B, I' - A, A  A , @ - A  
32 B , r - A , A  A,@ -A cut 

cut Iz/yl]B, I', O  - A,A 
3 x  B,I',@ - A,A 3x B,I',@ - A , A  3-L 

The definite clauses corresponding to these inference figures are given below. The clauses for 

the other inference rules in each premise may be specified similarly. 

cut-elim (Sigma --> Phi) (cut  P i  (and-r P2 P3)) P4 :- 
proof ( ~ m a  --> [A 1 Delta]) P i ,  
proof ([A I Theta] --> [B I Lambda]) P2, 
proof ([A I Theta] --> [C I Lambda]) P3, 
d is jo in t -union  Gamma Theta Sigma, 
d is jo in t -union  Del ta  Lambda Phi ,  
cut-elim (Sigma --> Phi) (and-r (cut  P i  P2) (cu t  P i  P3)) P4. 

cut-elim (Sigma --> phi) (cut  (ex is t s -1  P i )  P2) P3 :- 
p i  Y\ (proof ([(B Y) I Gamma1 --> [A I Delta]) (Pi  Y)), 
proof ([A I ~ h e t a l  --> Lambda) P2, 
d i s  joint-union Gamma Theta Sigma, 
d is jo in t -union  Del ta  Lambda Phi ,  
cut-elim (Sigma --> Phi)  (ex is t s -1  ( X \  (cut  (P i  X) ~ 2 ) ) )  P3. 

An application of the cut rule is eliminated once it gets pushed to the leaves. The following 

is an example of a final step in the transformation. 
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C 
I? - A , A  A - A  

cut 3 
I?-A,A 

The definite clause specifications for these transformations are straightforward. 

cut-elim (Gamma --> [A I Delta]) (cut  Pi ( i n i t i a l  A ) )  P2 :- 
cut-elirn (Gamma --> [A I Delta]) P I  P2. 

cut-elim ([A I Gamma] --> Delta)  (cut  ( i n i t i a l  A)  PI) P2 :- 
cut-elim ( [A 1 Gamma] --> ~ e l t a )  P1 P2. 

To complete the algorithm, we need definite clauses that traverse past inference rules that are 

not applications of the cut rule. These clauses must simply call the cut-elim predicate with 

the proofs of the premises as arguments. The program terminates when all instances of the 

cut rule have been pushed beyond the leaves of the proof tree. 

7.5 Constructing Proofs By Analogy 

Proof by analogy has been recognized as a powerful tool used in human mathematical reason- 

ing, one that is important yet difficult to  incorporate in machine theorem provers [Bledsoe 86, 

Bledsoe 871. Though not much has been done in this area, there have been some attempts 

to construct analogous proofs based on structural similarities. In [de la Tour & Caferra 871, 

abstractions over rules or series of rules are used to capture the generalities in the structure of 

a proof that may carry over to  other proofs. This requires higher-order variables to represent 

"proof schema," which require, at the very least, second-order matching to instantiate. Our 

extended logic programming language provides a medium to  experiment with such techniques 

and algorithms. For example, the "transformation rules" of [de la Tour & Caferra 871 can eas- 

ily be implemented in our setting, and the second-order matching that is required to instantiate 

them is already available through the higher-order unification of our language. 

In [Brock, Cooper & Pierce 861 an analogous resolution proof of a calculus theorem about 

the limit of a product is constructed using a proof of a similar theorem about the limit of a sum 

as a guiding proof. The analogy is based on structural similarity between terms in the clauses. 

In the Nuprl proof system [Constable et al. 861, proof by analogy is considered in the tactic 

setting, using "transformation tactics.'' This technique also involves building proofs that are 

structurally similar, in this case by starting with one proof and constructing an analogous one 

step by step. 

We will discuss some simple techniques for this kind of step by step proof analogy in our 

setting. We return to the tactic style theorem provers of Section 6. First we add a copy 
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tactical to the T a c t i c a l  module. Along with the other tacticals, it will be available to any 

tactic prover. It takes as arguments a predicate used in applying tactics (e.g. ru le  or p r o v e  

from our natural deduction tactic prover), and a goal structure which contains the completed 

proof(s) or verifications to be used in building analogous proofs. Thus copy is declared with 

the following type. 

copy : ( t a c t i c a l e x p  -> goalexp -> goalexp -> o) -> goalexp -> t a c t i c a l e x p .  

A proof is just one kind of structure that can be used in building analogous structures. We 

use the more general term "verification" to emphasize that this tactical can be used with any 

tactic prover. As an example, we will discuss how it can be used to do proof by analogy in our 

natural deduction tactic prover. The copy tactical is defined by the definite clause below: 

prove (copy TacPred CopyGoal) InGoal OutGoal :- 
copy-verif icat ion TacPred CopyGoal InGoal OutGoal. 

where the copy-ver i f  i c a t i o n  procedure is defined by the following definite clauses. 

copy-verif icat ion TacPred (andgoal CopyGoali CopyGoal2) 
(andgoal InGoali InGoal2) OutGoal :- 

copy-verif i c a t i o n  TacPred CopyGoali InGoall OutGoali , 
copy-verif icat ion TacPred CopyGoal2 InGoal2 OutGoal2, 
goalreduce (andgoal OutGoali OutGoal2) OutGoal. 

copy-verif icat ion TacPred (orgoal  CopyGoali CopyGoal2) 
(orgoal  InGoali InGoal2) OutGoal :- 

copy-verif icat ion TacPred CopyGoali InGoali OutGoal; 
copy-verif icat ion TacPred CopyGoal2 InGoal2 OutGoal. 

copy-verif i c a t i o n  TacPred ( a l l g o a l  ~opyGoal )  ( a l l g o a l  InGoal) OutGoal : - 
p i  T\ (copy-verif i c a t i o n  TacPred (CopyGoal T) (InGoal T) (OutGoali T)) , 
goalreduce ( a l l g o a l  0utGoali) OutGoal. 

copy-ver i f ica t ion  TacPred CopyGoal InGoal OutGoal :- 
TacPred Tac t i c  CopyGoal NewCopyGoal, 
TacPred Tac t i c  InGoal MidGoal, 
copy-verif icat ion TacPred NewCopyGoal MidGoal OutGoal. 

copy-ver i f ica t ion  TacPred CopyGoal Goal Goal. 

Most of the copy-ver i f  i c a t i o n  definite clauses are included to handle compound goals. In 

this program the goal structure of the new verification must imitate that of the guiding one. 

The heart of the program is the clause that makes calls to TacPred (the second to  last above). 

The first subgoal has CopyGoal as its input goal. This subgoal finds a tactic that can be 

applied based on the structure of the verification in CopyGoal. This tactic is then attempted 

on the input goal InGoal .  The c o p y - v e r i f i c a t i o n  program will continue to apply tactics 
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as long as they can be applied to both CopyGoal and InGoal. As soon as the verifications 

must differ, the last definite clause will be used and the output goal will contain the (possibly 

incomplete) verification for InGoal constructed up to this point. It must then be completed 

by other means. 

In the natural deduction tactic prover, we can use the copy tactical to attempt to  copy as 

much as possible of the structure of a given proof object to the proof of a new formula. If we 

specify TacPred to  be ru l e ,  the new proof will be constructed step by step, applying the same 

inference rules to the new formula as were applied to obtain the guiding proof. This exact 

copying is achieved by the second to last copy-verif i c a t i o n  definite clause, which determines 

the last inference rule applied to the formula in CopyGoal, and then attempts to  apply it to 

the formula in InGoal. It  will copy as much of the structure of the guiding proof as possible 

and end with the (possibly incomplete) proof of the new formula. 

This "verification by analogy" program is limited in that it only handles verifications that 

are analogous in the sense that there is a series of tactics that can be applied in both cases in 

exactly the same order. The additional definite clauses below are some other possibilities to 

include in the copy-verif i c a t i o n  program. For example, it is possible that two verifications 

are similar, yet they differ only in the application of a small number of tactics. The first 

definite clause allows for differences in the tactics that are applied as long as the verifications 

contain the same structure. For example, they must both branch in the same places. This 

new definite clause requires some search since Tact ic2 is not bound when the second call to 

TacPred is made. In our natural deduction prover with r u l e  used for TacPred, such a clause 

will handle the construction of a complete proof for (Vx q(x) A p) > Vx (q(x) A p) given a proof 

for (Vx q(x) V p) I> Vx (q(x) V p). The second clause below encompasses the idea that two 
verifications are analogous if one has an application of a certain tactic, and the second has 

repeated applications of the same tactic. 

copy-verif icat ion TacPred CopyGoal InGoal OutGoal :- 
TacPred Tac t i c1  CopyGoal NewCopyGoal, 
TacPred Tact ic2  InGoal MidGoal, 
copy-verif icat ion NewCopyGoal MidGoal OutGoal. 

copy-verif icat ion TacPred CopyGoal InGoal OutGoal :- 
TacPred Tac t i c  CopyGoal NewCopyGoal, 
prove ( repea t  Tac t ic )  InGoal MidGoal , 
copy-verif icat ion TacPred NewCopyGoal MidGoal OutGoal 

Although these algorithms are very preliminary, they do illustrate that we can guide the 

construction of at least small analogous fragments of proofs or verifications, and indicate how 

one might go about further experimenting with using analogy for theorem proving in a logic 

programming environment. 
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8 Translating LF Signatures to Logic Programming 

One of our goals is to show that our extended logic programming language provides a language 

to specify proof systems for a wide variety of logics. In this respect, we share a common goal 

with the Edinburgh LF system [Harper, Honsell & Plotkin 871. In this section, we compare the 

two methods and show that they are similar in ways that go beyond simply sharing common 

goals. We begin with some observations about natural deduction inference rule specifications 

in logic programming and their corresponding specification within an LF signature. 

Recall the specification of the natural deduction A-I rule using the proof predicate. 

proof (A and B)  (and-i P i  P 2 )  :- proof A P i ,  proof B P 2 .  

It can be considered as a declarative specification defining and-i. In [Avron, Honsell & Mason 

871, first-order logic is one of many logics specified in LF. In this setting A-I is an object whose 

type is specified by the judgement: 

In this judgement, T is a function that takes a formula and produces a type ( T  : bool + 

Type). This T plays a role that is similar to  the proof predicate in the logic programming 

setting. If we take + as >, n as V, and T as proof we get the hereditary Harrop formula 

VA VB ((proof A) > ((proo f B )  > (proof (A a n d  B)))). This is equivalent to the formula 

VA VB (((proo f A) A (proof B)) > (proof (A a n d  B))) which can be abbreviated: 

proof (A and B )  :- proof A ,  proof B 

The arguments to the dependent (n-) types of the LF judgement, A and B ,  correspond to the 

universally quantified logic variables in the definite clause. Note that this clause is the same as 

the one above, but without proof objects. Yet, the notion of proofs as objects inhabiting types 

is central to  LF. For example, the judgement above specifies the type for the A-I object. This 

object is functional and takes four arguments. If A and B have type bool, and if PI is a proof 

that A is "true" (i.e. PI has type T(A)), and similarly P2 is a proof of B, then we can apply 

A-I to these four objects to obtain (A-I A B PI P2) which is a proof of ( A  a n d  B )  (i.e. has 

type T(A and  B)). We can include this kind of proof object in the definite clause specification 

to obtain the following clause that corresponds even more closely to the LF definition of A-I. 

proof (A and B )  (and-i A B P I  P 2 )  :- bool A,  bool B ,  proof A P I ,  proof B P 2 .  

Here, as before, proof corresponds to the LF declaration T : bool -t Type. We also add the 

bool predicate which corresponds to the LF declaration bool : Type. 
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Both the LF declaration and the logic programming definite clause correspond to  declara- 

tive specifications of the meaning of the A - I  (or and-i) constant. The definite clause version 

also has operational meaning and makes explicit the unification and search steps that are in- 

volved in finding a proof of the given formula (or judgement). Finding a universal instance of 

the clause involves finding unifiers for A and B. Then finding a proof of (A and B )  involves 

verifying that A and B are formulas, and searching for subproofs for A and B. 

The LF notions of schematic and hypothetical judgements have corresponding concepts in 

the logic programming setting. Recall the definite clause specifying the V-I rule. 

proof ( f o r a l l  A) ( foral l -r  P) :- p i  T\ (proof (A T) (P TI) .  

Here P is a function which maps arbitrary terms to proofs. The universally quantified goal of 

the logic programming language, which here plays a role in obtaining the function P, shares 

some similarities with an LF schematic judgement. A schematic judgement in LF is of the 

form J(x)  and is proved by a function mapping objects x of type A to proofs of J(x).  

We saw that the AUGMENT goal was important for generating functions from proofs to 

proofs as a result of discharging assumptions. For example, in the definite clause for the >-I 
rule: 

proof (A imp B) (imp-i P) :- p i  PA\ ((proof A PA) => (proof B (P PA) ) )  

P is a function from proofs of A to proofs of B. This use of implication in logic programming 

corresponds to the LF hypothetical judgement. This judgement takes the form J1 t- J2 and 

represents the assertion that J2 follows from J1. Objects of this type are functions mapping 

proofs of J1 to proofs of Jz. 

We now examine the similarities in the two approaches more closely, and based on the 

observations made so far, informally describe an algorithm for translating LF signatures to  

logic programming programs. Using this algorithm, we have been able to translate all of 

the example signatures in [Harper, Honsell & Plotkin 871 and [Avron, Honsell & Mason 871 to 

logic programming programs. First, we take a closer look at LF. 

The syntax of LF is given by the following classes of objects. 

C is used to represent a signature, and I' a context (a set of variables and their types that can 

be used in constructing proofs). M and N range over expressions for objects, A and B over 
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types and families of types, li over kinds, x and y over variables, and c over constants. Another 

notational convention is to write A + B for nX:* .B when x does not occur free in B. Proof 

systems are specified by building signatures. The signatures in [Avron, Honsell & Mason 871 

are divided into four categories: (1) syntactic categories, (2) operations, (3) judgements, and 

(4) axioms and rules. The syntactic categories and judgements correspond to  kind declarations 

(declarations of the form c : K) and the operations, axioms and rules to type declarations (of 

the form c : A). Both LF types (syntax class A) and objects that inhabit these types (syntax 

class M) will be a t  the level of objects in logic programming. LF types cannot correspond 

to logic programming types, since our logic programming language does not have dependent 

types. As we have seen in the exaniple above, we can represent all the necessary information 

as two arguments to the proof clause, and view the first argument as the type of the second. 

Each item in an LF signature will have a type declaration in the logic programming pro- 

gram. The purpose of the logic programming type declarations is different from those in LF. 

The logic programming types are, in a sense, at another level that is used by the logic program- 

ming interpreter to  insure proper typing of the terms it deals with. Each syntactic category 

and judgement (declaration of the form c : K) in LF will correspond to  a predicate used in 

the search for proofs. These predicates are used by the program to  prove that an object has 

the type given by a category or judgement, i.e. each type has its own procedure for proving 

that elements inhabit it. (In the above example, we had proof for T and bool for bool). 

The definite clauses of the logic programming program are obtained from translations of the 

operations, and axioms and rules (declarations of the form c : A).  These definite clauses are 

the logic programming embodiment of the type declarations of the LF signature. 

First, we describe how to  obtain the declarations of the logic programming predicates from 

the syntactic categories and judgements. Any declaration of the form c : Type will have a 

logic programming declaration of the form c : c-proof -> o. Types of the form c-proof are 

generated for each constant c and specify the types in the logic programming setting for LF 

objects (or proofs). In the example above, the declaration bool : Type gave rise to  the bool 

predicate which is declared bool : bool-proof -> o. Judgements of the form c : nx:A.K 

will also correspond to  a logic programming declaration for object c whose last argument has 

type c-proof and whose target type is o. In addition, there will be another argument to 

the predicate c for every argument (of the form x : A) in the judgement. The type of these 

arguments will depend on the term given by A. For example, if A is bool as in T : bool -t Type 

(which is an abbreviation for n,,bool.Type), then the x : bool will correspond to an argument of 

type bool-proof. Thus the predicate corresponding to  T would be declared t : bool-proof 

-> t-proof -> o. (Note that this is the same type as the proof predicate above.) If A has 

more complicated structure as in x : T ( B )  for example, then the corresponding argument 

type in the logic programming predicate depends only on the head of the type expression. In 
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this case it will be t-proof. In summary, for an LF judgement that takes n arguments, the 

corresponding predicate will have n + 1 arguments: one for each LF argument type, plus one 

for the objects (proofs) that inhabit the types specified by the judgement. 

The type declarations for the operations, axioms, and rules (declarations of the form c : A) 

are also obtained by examining the head of the type expressions for each argument. In this 

case, there will be no extra arguments such as those that were needed above for the proof 

objects, and the target type in the logic programming type declaration will correspond to the 

head of the LF target type. For example the LF declaration for A-I: 

would yield the following logic programming declaration. 

and-i : bool-proof -> bool-proof -> t-proof -> t-proof -> t-proof. 

Finally, we need to specify definite clauses that construct objects of the types given by the 

operations, axioms, and rules, such as A-I. We will describe this translation in terms of two rules 

that translate an LF declaration to a hereditary Harrop formula. It is then straightforward 

to obtain a definite clause from this formula. We use the notation [ M : A] to represent the 

translation of an LF declaration to a higher-order hereditary Harrop formula. The translation 

rules are as follows. 

[ M  :n,:,.B] + VX ( [ X :  A] > [ ( M  X ) :  B]) 

[ M : ( t , .  . . , ) I  + ( C  t l  . . . t, M )  

Proof objects are constructed by introducing new logic variables ( e . g .  X in the first rule 

above) which act as place holders for the arguments to the LF signature constants. These 

place holders take on values when the definite clause is used in constructing proofs. The 

second rule is responsible for inserting the appropriate predicates based on the head of the 

type expression. We return to the example above for A-I to illustrate the use of these rules. 

(We use the constant symbol and-i instead of A-I and and instead of A in order to avoid conflict 

with synrtbols of the meta-language, i.e. the logic programming language.) Using the above 

rules, the LF declaration 

and-i : nAZbool .nB:bool .T(A) -+ T(B) -+ T(A and B). 

translates to the formula 

VA ((boo1 A) > VB ((boo1 B )  > VPl  ( ( t  A PI)  > VP2 ( ( t  B P2) 3 

( t  (A and B )  (and-i A B PI P2)))))). 
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This formula is equivalent to the definite clause 

VA VB VPl VP2 (((boo1 A) A (boo1 B) A ( t  A PI) A ( t  B P2)) 3 
( t  ( A  and B )  (and-i A B PI Pz))) 

which can be abbreviated 

t (A and B) (and-i A B PI  P2) :- bool A ,  bool B ,  t A P i ,  t B P2. 

It is exactly the same as the definite clause given above with proof replaced with t. 

We illustrate this translation process with the signature for a natural deduction style modal 

S4 as in [Avron, Honsell & Mason 871. We present the logic programming declarations and 

program obtained by translating the LF declarations of this signature. First, the logic pro- 

gramming declarations are the following. 

bool : bool-proof -> o.  
t a u t  : bool-proof -> taut-proof -> o .  

v a l i d  : bool-proof -> valid-proof -> o.  

PerP 
imp 
box 

C 

r 

imp-i-v 

perp-e 
2neg-e 

imp-i-t 
imp-e-t 
imp-e-v 

box-i 
box-e 

bool-proof. 
bool-proof -> bool-proof -> bool-proof. 
bool-proof -> bool-proof. 
bool-proof -> taut-proof -> valid-proof. 
bool-proof -> bool-proof -> (taut-proof -> valid-proof) -> 

valid-proof -> valid-proof. 
bool-proof -> bool-proof -> (valid-proof -> valid-proof) -> 

valid-proof. 
bool-proof -> taut-proof -> taut-proof.  
bool-proof -> taut-proof -> taut-proof.  
bool-proof -> bool-proof -> (taut-proof -> taut-proof)  -> taut-proof 
bool-proof -> bool-proof -> taut-proof -> taut-proof -> taut-proof.  
bool-proof -> bool-proof -> valid-proof -> valid-proof -> 

valid-proof. 
bool-proof -> valid-proof -> valid-proof.  
bool-proof -> valid-proof -> valid-proof. 

The basic types generated from the syntactic categories and judgements are bool-proof, 

taut-proof,  and valid-proof. The syntactic categories and judgements give us three pred- 

icates (bool, t a u t ,  and va l id)  for proving that an object is a formula, for proving that a 

formula is a tautology, and for proving that a formula is valid, respectively. The latter two 
represent two different predicates for "proving" formulas. The fact that there are two is a result 

of the way the proof system is specified in LF. The operations, axioms, and rules produce the 

following definite clauses. 

bool perp.  
bool (A imp B) :- bool A, bool B.  
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bool (box A) :- bool A. 

v a l i d  A ( c  A P) :- bool A, t a u t  A P. 

v a l i d  B (r A B Pi P2) :- 
bool A, bool B, ( p i  PA\ ( ( t a u t  A PA) => (va l id  B (PI PA)))), v a l i d  A P2. 

v a l i d  ((box A) imp B) (imp-i-v A B P) :- 
bool A, bool B, ( p i  PA\ ( ( v a l i d  (box A) PA) => ( v a l i d  B (P PA)))). 

t a u t  A (perp-e A P) : - bool A, t a u t  perp P. 

t a u t  A (2neg-e A P) :- bool A, t a u t  ((A imp perp) imp perp) P. 

t a u t  (A imp B) (imp-i-t A B P) :- 
bool A, bool B, ( p i  PA\ ( ( t a u t  A PA) => ( t a u t  B (P PA)))). 

t a u t  B (imp-e-t A B Pi ~ 2 )  :- bool A, bool B, t a u t  (A imp B) Pi, t a u t  A P2. 

v a l i d  B (imp-e-v A B Pi P2) :- bool A, bool B, v a l i d  (A imp B) Pi, v a l i d  A P2. 

v a l i d  (box A) (box-i A P) :- bool A, v a l i d  A P. 

va l id  A (box-e A P) :- bool A, va l id  (box A) P. 

We can simplify this program by taking advantage of the type system of our logic program- 

ming language to handle the syntactic categories (declarations of the form c : Type)  in the LF 
signature. In the above program, instead of the predicate bool  used to prove that objects are 

formulas, we could include bool  as one of the basic types, and replace the definite clauses 

bool perp. 
bool (A imp B) :- bool A, bool B .  
bool (box A) :- bool A. 

with the logic programming declarations 

perp : bool 
imp : bool -> bool -> bool 
box : bool -> bool. 

As a result, all of the calls to the boo l  predicate in the old program are eliminated in the new 

program. In this new program, the type-checking for forn~ulas is handled by the type-checking 

of the logic programming interpreter, and no longer needs to be included explicitly in the 

program. 

A query to one of these programs is obtained using the same rules that were used to 

translate LF type declarations to definite clauses. In this case, an LF declaration M : A is 

translated to a goal formula that will be presented to the logic programming interpreter. The 
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example proof for modal S4 given in [Avron, Honsell & Mason 871 would generate the following 

query (to the program where boo1 is a basic type). 

( p i  A\ ( p i  B\ ( va l id  ((box (A imp B)) imp ((box A) imp (box B ) ) )  
(imp-i-v (box (A imp B)) ((box A) imp (box B)) 

Pi \  (imp-i-v A (box B) 
P2\ (box-i B (imp-e-v A B 

(box-e (A imp B) P i )  
(box-e A P 2 ) ) ) ) ) ) ) )  

Since both the formula and the proof are specified, the above program would act as a proof- 

checker in satisfying this query. In actual execution, under the interpreter of Section 2 with 

depth-first search on the above ordering of clauses to resolve all non-determinism, this program 

will be able to  answer such type-checking queries. There is much more non-determinism when 

attempting to use this program as a theorem prover, i.e. when a formula is specified and the 

proof is given as a logic variable. In this case, depth-first search is not sufficient. Alternatively, 

we can specify the above clauses as a set of tactics to use in a tactic prover as in Section 6. 

For example, the definite clause in the program above for the r object (the fifth clause) might 

be specified as the tactic below (where val idgoal  and tau tgoa l  are atomic goal structures 

similar to  proofgoal as in the earlier tactic prover examples). 

prove r-tac (va l idgoal  B (r A B Pi P2)) 
(andgoal ( a l l goa l  PA\ (impgoal ( taut  A PA) (val idgoal  B (Pi  PA)))) 

(val idgoal  A P2 ) ) .  

Such a tactic module would give us a more controllable theorem prover for the modal S4 

system. 
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Other proof systems that are based on tactics and tacticals include LCF [Gordon, Milner 

& Wadsworth 791 and Nuprl [Constable et al. 861 as already mentioned, and Isabelle [Paul- 

son 861. The programming language ML is the meta-language used in all of these systems. 

ML is a functional language with several features that are useful for the design of theorem 

provers. I t  contains a secure typing scheme and is higher-order, allowing complex programs to 

be composed easily. In developing theorem provers, many extensions have been made to ML 
to  increase its capabilities as demand requires. For example, Nuprl uses an extension of ML 

with term destructors so that terms can be decomposed and their components manipulated 

separately. Isabelle [Paulson 861 uses typed A-terms to represent formulas, and higher-order 

unification is added to  manipulate them. In [Paulson 871, the meta-theory of Isabelle is ex- 

tended to  include a fragment of higher-order logic with implication and universal quantification 

which is used to specify inference rules. The operation of "lifting" an object level rule over 

assumptions provides a mechanism for discharging assumptions. "Lifting" an object level rule 

over a universal variable provides a mechanism for reasoning about generic objects. In our 

setting, these capabilities were illustrated using the AUGMENT and GENERIC search oper- 

ations respectively. Isabelle also allows goals containing variables which are instantiated by 

unification. This feature is provided in the logic programming setting by the INSTANCE 

search operation. 

In contrast to ML which was originally designed as a meta-language for theorem proving, 

the theory of higher-order hereditary Harrop formulas on which our extended logic program- 

ming language is based was motivated by a desire to  develop a clean semantics for a general 

purpose programming language. Other applications that have been explored include program 

transformations [Miller & Nadathur 871 and computational linguistics [Miller & Nadathur 86b]. 

Thus, in a sense, we are working in the opposite direction, examining theorem proving as a 

special application of this language. The kinds of features that are being added to  ML and 

LCF are similar to  those that have been identified as useful in the logic programming setting. 

In many ways, the two approaches seem to be converging. 

One thing we have not been concerned with in this paper, that many of the other theorem 

proving efforts have addressed to some extent are issues of efficiency. Once the features of 
the logic programming language that are necessary for good implementations of proof systems 

have been fully identified, the issue of building efficient implementations for a subset of the 

language containing these features can be addressed. 

Of the proof systems mentioned above, only Nuprl has been concerned with constructing 

and storing proof objects and using them in computation. The success of the term extraction 

algorithm for constructing executable programs from proofs will be a good model for contin- 
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uing to examine the realize program in the logic programming setting. Also, as stated in 

Section 7.5, proofs in Nuprl are used for certain kinds of proof by analogy. In goal-directed 

proof, LCF constructs validations which map theorems to theorems. Their purpose is to  insure 

that only provable formulas inhabit the type thm. They are not objects that can be manipu- 

lated. In Isabelle, as inference rules are applied, the internal structure of the proof is discarded 

as theorem proving proceeds. An incomplete proof is considered a derived rule whose premises 

are the subgoals that have not been completed. 

We have discussed higher-order hereditary Harrop formulas in the context of being a spec- 

ification language for a wide class of logics. As already mentioned, this aspect of our work 

is related to  the Edinburgh Logical Framework [Harper, Honsell & Plotkin 871. Again, the 

original motivation for these two approaches differs. LF was developed for the purpose of 

capturing the uniformities of a large class of logics, so that it can be used as the basis for 

implementing proof systems. In our case, we have been exploring the capabilities of our logic 

programming language, including an examination of its potential to naturally specify proof 

systems for certain logics. In addition, we also obtain implementations of theorem provers 

from these specifications. In [Paulson 871, the author is also concerned with expressing vari- 

ous logics within a uniform framework. In this case, a fragment of higher-order logic that is 

essentially a subclass of higher-order hereditary Harrop formulas is used to specify inference 

rules. Here, the development of a specification language is motivated by the desire for a more 

general theorem prover, and results from extensions to the meta-theory of Isabelle. 

In [Schroeder-Heister 841, natural deduction is extended so that rules as well as assumptions 

may be discharged. Such an extension allows additional inference rules to be made available 

at  different points in a proof. During proof construction in our tactic provers this capability 

is provided by the usermodule tactical which allows modules that may contain additional 

tactics to  be imported into the theorem proving environment. The proposed extension to 

natural deduction may provide a formal proof-theoretic semantics for this dynamic access to 

collections of tactics. 
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The main focus in this paper has been to  demonstrate that our extended logic programming 

language based on the theory of higher-order hereditary Harrop formulas is well-suited to  

the task of specifying and implementing theorem provers. We have shown that the six search 

operations of an interpreter based on this language serve as a good mechanism for implementing 

the search required in proof discovery. In addition, we have illustrated that inference rules and 

other formula and proof manipulations can be specified quite naturally. We have demonstrated 

these characteristics on examples from Gentzen sequential and natural deduction systems and 

shown how to extend them to logics represented by LF signatures. The main goal in continuing 

this work will be to extend the techniques used in specifying and implementing theorem provers 

to  larger systems. In particular, we will work with tactic style theorem provers because they 

have proven to  be successful in providing a general framework for integrating user interaction 

with varying degrees of partial and even full automation in the search for proofs. Our goal 

will be to provide a diversified environment for interactive theorem proving, one that provides 

the user with many tools and techniques for proving and manipulating proofs. Such a system 

should allow reasoning in possibly many different logics, and include capabilities for theorem 

proving in more complicated mathematical domains. 

10.1 Extending Tactic Theorem Provers 

In this section, we discuss some of the extensions we will need to  make and some of the issues 

we expect to encounter during the early stages of expanding the theorem proving environment. 

Many of the extensions will involve writing new tactics to  expand the capabilities of the 

theorem prover and to  increase the choices that are available to  the user in constructing 

proofs. We will augment the natural deduction tactic theorem prover as needed to  incorporate 

these capabilities. We will also want to choose some specific domain(s) and build a database 

of theorems and proofs in these domains. As work continues, we expect to address issues such 

as adding techniques and capabilities to  further enhance the theorem proving environment, 

integrating the different techniques, and organizing the tactics, theorems, and proofs into a 

manageable system. 

Specifically, one of the first additions will be the ability to introduce constants into the 

theorem proving environment and include axioms about these constants and the operations 

they represent. We will need to  include tactics that allow us to  use these axioms in searching 

for proofs and constructing proof terms. Induction and reasoning about equality are two more 

facets of theorem proving that will arise when expanding the theorem prover to  handle more 

than simple logical manipulations. In Section 6.4.1 we gave example inference rule tactics that 

might be included for constructing proofs by induction. In the next subsection we will discuss 
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some possible tactics for equality reasoning. In subsection 10.1.2, we will discuss some possible 

methods for building libraries to  organize tactics and theorems so that they may be easily 

accessed during theorem proving. 

10.1.1 Equali ty  Reasoning 

In any system with equality there are several general axioms such as symmetry and transitivity 

that must be included. In addition, when introducing a new domain, we will need to  include 

axioms or equations that are specific to that domain, as well as tactics that reason about them. 

For example, in [Manna & Waldinger 851, when the non-negative integer domain is presented, 

theaxioms - ( x + l  = 0), (x = y) > ( x + 1  = y + l ) ,  x+O = 0, a n d x + ( y + l )  = ( x + y + l )  are 

introduced. They are needed for even the simplest proofs in this domain. There are many ways 

to incorporate such reasoning. We plan to examine them and implement them to sufficiently 

handle large domains. Below are three examples of tactics that might be included in a theorem 

prover for induction on non-negative integers. 

prove succ,axiom-tac (proofgoal ((X + 1) = (Y + 1 ) )  (succ-axiom P)) 
(proof goal ( X  = Y) P) . 

prove trans-query (proofgoal (X = Z) (trans Pi P2)) 
(andgoal (proofgoal (X = Y) PI) (proofgoal (Y = Z) P2)) :- 

write "Enter intermediate value", read Y. 

prove rewrite-tac (proofgoal (F A) (rewrite Pi P2)) 
(andgoal ( ~ r o o f ~ o a l  ( A  = B) Pi) (proofgoal (F B) P2)) 

The first represents the second non-negative integer axiom above in inference rule form. It 

illustrates the fact that any axiom can be included as an inference rule. The second is an 

inference rule specification of transitivity, which allows the user to specify the intermediate 

value Y. The third is quite general. It takes an arbitrary formula, and substitutes an arbitrary 

subexpression with an equivalent expression. A unifies with some term in the formula and F 

is an abstraction over one or more occurrences of A (0 occurrences is also possible, but no 

rewriting is done in that case). If A is equal to some term B, then B replaces the occurrences 

of A that were removed by abstraction. This rule takes advantage of higher-order unification 

and as a result is quite powerful. There might be many unifiers for F and A and backtracking 

will be used to try each one. As it is written, the user has no control over the choice of A 

or B. An alternative version could query the user for this information and avoid some of the 

backtracking. The third tactic above incorporates transitivity, and thus when it is used in a 

theorem prover, the second tactic above would not be needed. On the other hand, many such 

tactics can exist simultaneously in a tactic prover, giving the user more choice in constructing 

proofs. 
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10.1.2 Building Libraries 

Referencing Existing Theorems Another capability that we would like our theorem 

provers to have is the ability to use existing theorems that have already been proven as lemmas. 

This capability is very important, especially in mathematical domains. For example, in the 

non-negative integer domain, the proof for commutativity of addition ( i .e .  x + y = y + x) is 

based on another fact that must be proven first: x + 1 = 1 + x. The ability to reference such 

theorems requires that we have a mechanism for storing and retrieving proofs. One way to 

organize proofs is to give them names and define a predicate (which we will call theorem) to 

associate a name with a formula and its proof. Such a predicate will be declared as follows. 

theorem:name -> bool -> proof-object -> o. 

The following is an example of a tactic that can retrieve existing proofs stored using this 

predicate during construction of a new proof. 

prove lemma-tac (proofgoal A (lemma PB P)) 
(impgoal (proof B PB) (proofgoal A P)) :- 

write "Enter theorem name", read Name, 
theorem Name B PB. 

Here, the proof predicate is used to add the lemma to the goal structure. It  will then be added 

to  the program in the same manner as discharged assumptions. 

Definitions We will also want to have the capability to incorporate definitions into the 

theorem proving process. We define a d e f i n i t i o n  predicate with type name -> A -> A -> 
o. Here, A is a logical variable because we want to allow definitions of any type, though the 

defined object and its meaning must have the same type. For example, we may define logical 

equivalence as follows. 

<=> : bool -> bool -> bool. 

def ini t ion equiv (B <=> C) ((B imp C) and (C imp B)).  

In this case type variable A gets assigned bool. The parameters to a definition are represented 

using (universally quantified) logic variables, so that as a result, instantiating them simply 

requires unification. One possibility for a tactic that does the instantiation using input from 

the user is as follows. 

prove instantiate-def (proofgoal (F A)  (def P)) (proofgoal (F B) P) :- 
write "Enter term", read A ,  
write "Enter name of definit ion", read Name, 
def ini t ion Name A B. 
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This tactic uses higher-order unification in the same way as rewrite-tac.  In this case it 

substitutes expressions with their expanded definitions. For example, if the input formula that 

must unify with (F A )  is (p imp (q <=> r) ) , and the user inputs (q <=> r )  and equiv, for 

A and Name respectively, then X\  (p imp X) is one unifier for F. (F B) will then be (p imp 

((q imp r )  and (r imp q ) ) ) .  

Accessing Libraries The organization and modularization of libraries will become more 

important as the number of theorems, definitions, and tactics grows. In Section 6.4.3, we 

discussed accessing groups of tactics by importing modules using the usemodule tactic. These 

modules could actually be libraries that contain definitions and theorems in addition to tactics. 

Then, the use-module tactical would allow a user to add a library to the current program which 

would be available during the execution of a tactical expression. This capability allows a user 

to limit the search environment. As an example of when this might be useful, a user might, 

during the proof of a theorem, first add a library containing the theorems about the properties 

of the objects in the theorem. If a proof is not found, then a library of definitions pertaining 

to the objects in the theorem could be loaded and a proof attempted in this environment. 

Limiting the amount of information in the search space could be informative in the sense that 

it tells the user what kind of information is and is not needed in the proof of a theorem. A 
smaller search space, of course, also contributes to greater efficiency. 

Another possibility is that modules will contain groups of tactics that define the inference 

rules for a particular logic. This kind of module allows a user to define specialty logics. A 
user could then work exclusively in this specialized domain by using usemodule to include 

this module, while excluding all others. The signatures of LF, for example, could be included 

into our theorem proving environment in this way. 

10.2 Proof Objects 

The programs in Section 7 demonstrated some potentially important applications for proof 

objects, and raised the issue of what information to include in these objects. As a result of 

implementing a larger domain, we will have a database of proof objects which we can examine 

closely to  give us more insight into when and in what forms these objects are really useful. 

Extracting programs from proofs has obvious value, and it will be important to examine the 

r e a l i z e  program more deeply. In the simple propositional example we presented in Section 7.3 

the program simply constructed an object of a certain type based on the type of the input. 

We will need to extend this program to incorporate program constructs for quantifiers and 

possibly domain specific objects. We will need to discover what kinds of information is needed 

to extract executable programs from more complicated proofs. 
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Including more information in proof terms might be useful in general for practical and 

efficiency concerns. For example, in some of the programs such as cut-elimination and nor- 

malization, a lot of proof-checking was needed to obtain information. While this gives a clear 

declarative reading, it may mean a lot of extra work computationally. In cut-elimination, the 

situation is even worse since there is a lot of non-determinism in the proof-checking resulting 

from having to  deduce the cut formula each time. Since knowing the formulas t o  which infer- 

ence rules are applied is fundamental to this algorithm, i t  might be worthwhile to  store these 

formulas explicitly in the proofs. 

In analogy, the structure of the guiding proof is very important in the determination of the 

structure of the new proof. We might want to consider other forms that allow more flexibility 

in determining when two proofs are analogous. For example, we could define a new tactic 

like i n t r o  of Section 6.4.2, so that the proof term, instead of being a series of introduction 

rules (e.g. (and-i ( a l l - i  (imp-i X\  (and-i . . . ) would contain some other encoding that 

indicated that a series of introduction rules was applied. Since this could be any series of 

introduction rules, a proof would be considered analogous if it also had a series of introduction 

rules, though not necessarily the same ones. We might even replace certain subproofs with 

logic variables. Proof terms containing such variables will be "proof schema" which can then 

be instantiated in different ways to obtain analogous proofs. 

It appears that some algorithms will benefit from more information in proofs (e.g. cut- 

elimination), while others will require less (e.g. analogy). We may want to choose an inter- 

mediate representation during theorem proving and provide programs that do some sort of 

preprocessing of the proof terms to transform them to a form suitable for specific algorithms. 

10.2.1 Analogy 

With the exception of analogy, most of the algorithms in Section 7.5, although their exact 

form and degree of efficiency will depend on how they are implemented and on the form of 

proof objects, are fairly straightforward manipulations on proofs. Analogy on the other hand 

is not well-defined as an algorithm. The copy-verif i ca t ion  program encompassed some ideas 

about when two proofs are structurally analogous, but it is difficult to assess how it will behave 

on larger proofs. For example, even the clause that involves some search (the second to last in 

Section 7.5) requires that the two proofs have exactly the same branching structure. This may 

be too rigid for larger proofs. Experimenting with alternative proof structures as mentioned 

above might prove advantageous. In any case, with a database of proofs to  work with, we hope 

to  gain some insight into this difficult problem. 
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Tactic provers are inherently modular in the sense that each tactic can be considered a separate 

program that can be called during theorem proving. The theorem prover as a whole can be 

viewed as a collection of these smaller programs. In addition, as we have illustrated, these 

programs generally have a natural declarative reading. Both the relatively small size and the 

naturalness of specification should contribute to the facilitation of the usually very difficult 

task of proving programs correct. We are concerned with program correctness because we 

want to be able to make claims about the capabilities of tactics in our theorem prover. For 

example, we would like to prove the correctness of the LKC prover program, so that we can 

guarantee the integration of fully automatic theorem proving into the tactic theorem proving 

setting. In addition, in expanding the theorem prover we will want to prove correctness of new 

tactics as they are added. 
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