
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1987

Implementing Theorem Provers in Logic Programming Implementing Theorem Provers in Logic Programming

Amy Felty
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Amy Felty, "Implementing Theorem Provers in Logic Programming", . November 1987.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-87-109.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/631
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F631&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/631
mailto:repository@pobox.upenn.edu

Implementing Theorem Provers in Logic Programming Implementing Theorem Provers in Logic Programming

Abstract Abstract
Logic programming languages have many characteristics that indicate that they should serve as good
implementation languages for theorem provers. For example, they are based on search and unification
which are also fundamental to theorem proving. We show how an extended logic programming language
can be used to implement theorem provers and other aspects of proof systems for a variety of logics. In
this language first-order terms are replaced with simply-typed λ-terms, and thus unification becomes
higher-order unification. Also, implication and universal quantification are allowed in goals. We illustrate
that inference rules can be very naturally specified, and that the primitive search operations of this
language correspond to those needed for searching for proofs. We argue on several levels that this
extended logic programming language provides a very suitable environment for implementing tactic style
theorem provers. Such theorem provers provide extensive capabilities for integrating techniques for
automated theorem proving into an interactive proof environment. We are also concerned with
representing proofs as objects. We illustrate how such objects can be constructed and manipulated in the
logic programming setting. Finally, we propose extensions to tactic style theorem provers in working
toward the goal of developing an interactive theorem proving environment that provides a user with many
tools and techniques for building and manipulating proofs, and that integrates sophisticated capabilities
for automated proof discovery. Many of the theorem provers we present have been implemented in the
higher-order logic programming language λProlog.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-87-109.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/631

https://repository.upenn.edu/cis_reports/631

IMPLEMENTING THEOREM
PROVERS IN LOGIC

PROGRAMMING
Amy Felty

MS-CIS-87-109
LlNC LAB 87

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04-6389

December 1987

Acknowledgements: This research was supported in part by DARPA grants NO001 4-85-
K-0018, NSF grants CCR-87-05596,MCS-8219196-CER and U.S. Army grants DAA29-84-
K-0061, DAA29-84-9-0027.

Implementing Theorem Provers in Logic Programming

Dissertation Proposal

Amy Felty

University of Pennsylvania

November 6, 1987

Abst rac t

Logic programming languages have many characteristics that indicate that they should

serve as good implementation languages for theorem provers. For example, they are based
on search and unification which are also fundamental to theorem proving. We show how

an extended logic programming language can be used to implement theorem provers and

other aspects of proof systems for a variety of logics. In this language first-order terms are

replaced with simply-typed A-terms, and thus unification becomes higher-order unification.

Also, implication and universal quantification are allowed in goals. We illustrate that

inference rules can be very naturally specified, and that the primitive search operations

of this language correspond to those needed for searching for proofs. We argue on several

levels that this extended logic programming language provides a very suitable environment

for implementing tactic style theorem provers. Such theorem provers provide extensive

capabilities for integrating techniques for automated theorem proving into an interactive

proof environment. We are also concerned with representing proofs as objects. We illustrate

how such objects can be constructed and manipulated in the logic programming setting.

Finally, we propose extensions to tactic style theorem provers in working toward the goal

of developing an interactive theorem proving environment that provides a user with many

tools and techniques for building and manipulating proofs, and that integrates sophisticated

capabilities for automated proof discovery. Many of the theorem provers we present have

been implemented in the higher-order logic programming language AProlog.

Advisor: Dale Miller

Committee: Val Breazu-Tannen

Robert Constable

Jean Gallier (Chair)

Andre Scedrov

Contents

1 Introduction 1

2 Extended Logic Programs 4

. 2.1 A Logic Programming Language and Interpreter 4
. 2.2 An Example 6

. 2.3 Notation 7

3 Manipulation of Formulas 10

4 Specifying Inference Rules 13

. 4.1 Definite Clauses for Sequential Proof Systems 14
. 4.2 Definite Clauses for Natural Deduction 17

5 An Automatic Theorem Prover Using Depth-First Control 19

6 Construction of Tactic Theorem Provers 24

. 6.1 Definite Clauses for Tactic Provers 25

6.1.1 Definite Clauses for Tacticals . 26

. 6.1.2 Definite Clauses for Goal Reduction 27
. 6.2 Specifying Tactics 28

. 6.2.1 Inference Rules as Tactics 28

. 6.2.2 AProof Editor 31

. 6.3 A Tactic Theorem Prover 32
. 6.4 Defining New Tactics and Tacticals 33

. 6.4.1 Induction 33

. 6.4.2 Compound Tactics 34

. 6.4.3 Accessing Modules Dynamically 35

7 Proof Manipulations 36

7.1 Building Explanations from Proofs . 37

. 7.2 FindingInterpolants 39

7.3 Extracting Programs from Proofs . 41
. 7.4 Proof Normalization and Cut Elimination 43

7.5 Constructing Proofs By Analogy . 49

8 Translating LF Signatures to Logic Programming 5 2

9 Related Work 5 9

10 Conclusion and Proposal for Future Research 61

10.1 Extending Tactic Theorem Provers . 61

10.1.1 Equality Reasoning . 62

10.1.2 Building Libraries . 63

10.2 Proofobjects . 64

10.2.1 Analogy . 65

10.3 Correctness of Programs . 66

1 Introduction

Logic programming languages have many characteristics that indicate that they should serve as

good implementation languages for theorem provers. First, at the foundation of computation

in logic programming is search. While logic programs are specified declaratively, the execution

of logic programming programs is based on an underlying search algorithm. Search is also

fundamental to theorem proving. The process of discovering a proof involves traversing an

often very large search space in some controlled manner. Second, unification is an important

mechanism in logic programming which is used to solve equations between various objects. This

mechanism is crucial to the theorem proving process, in particular for the proper treatment of

formulas and proofs. Also, the fact that programs have a declarative reading is an important

characteristic of logic programming languages: one can often write programs that represent

natural specifications for a given task. The capability to both write and understand programs

easily is especially valuable in theorem proving because the tasks involved are often complex

and because soundness and completeness results must often be proved.

Traditional logic programming languages such as Prolog are not sufficient for handling cer-

tain aspects of implementing proof systems. One deficiency, as argued in [Miller & Nadathur 871,

is that first-order ternis are quite inadequate for a clean representation of formulas. For in-

stance, first-order terms provide no mechanism for representing variable abstraction required

for quantification in first-order formulas. Quantification must be specially encoded. For ex-

ample, in Prolog, we can represent abstractions in formulas by including the bound variables

as arguments in the terms. The formula Vx3yP(x, y) could be written as the first-order term

f o r a l l (x , exists (y ,p(x , y))) . The logic variables of Prolog cannot be used to represent

variables in the formula because we need to distinguish between variables within the scope

of a quantifier, and those outside it. Thus the substitution and unification that is available

on logic variables is not available for these terms. The programmer would have to write new

procedures that accomplish these tasks for the encoded representation. In addition, by ma-

nipulating such an encoding, we lose much of the declarative nature that should be present in

logic programming programs.

In this paper, we will introduce a higher-order logic programming language that extends

the first-order Horn clause theory on which Prolog is based. The logical foundation of this

language is a collection of formulas called higher-order hereditary Harrop formulas [Miller,

Nadathur, & Scedrov 871. This language replaces first-order terms with simply typed X-terms.

The abstractions built into X-terms can thus be used to represent quantification. Our extended

language also permits goal formulas to be both implications and universally quantified and we

shall show how such goal formulas are, in fact, necessary for implementing various kinds of

theorem provers. Many of the programs that we present in this paper have been tested using

1 Introduction

a logic programming language called XProlog which is based on these higher-order hereditary

Harrop formulas. Various aspects of this language have been discussed in [Miller & Nadathur

86a, Miller & Nadathur 86b, Miller & Nadathur 87, Nadathur 861.

Our main claim in this paper is that such a language is a very suitable environment for

implementing theorem provers. We will show that search and unification accommodate the

tasks involved in theorem proving very naturally. In this case search is based on our extended

set of goals and unification is over higher-order terms. Most of our theorem provers will have

a clean declarative reading which provides them with implementation independent semantics.

In particular, one of our main goals is to use such a language to build a theorem proving

environment in which a user can become involved in the search for proofs. Such an environment

should provide the user with many tools and techniques for searching for and constructing

proofs, and should contain somewhat sophisticated capabilities for automated proof discovery.

In working toward this goal, we will illustrate how to implement a theorem prover based on

tactics and tacticals as in the LCF theorem prover, [Gordon, Milner & Wadsworth 791 and the

Nuprl proof system [Constable et al. 861.

We are also interested in representing and storing proofs as they are discovered, so that

they can be used in computations. We discuss the formulas-as-types paradigm [Howard 801

within our setting, where we consider formulas to be types and proofs to be the objects that

inhabit these types. We will demonstrate how such proof objects can be constructed and

manipulated in our environment. Some examples include constructing programs from proofs,

building natural language explanations from proofs, and using proof objects to do proof by

analogy.

Another goal is to show that this logic programming language can be used to specify

proof systems for a wide class of logics. In this respect, we share a common goal with the

Edinburgh Logical Framework (LF) [Harper, HonselI & Plotkin 871. LF is a logic developed to

provide a general theory of inference systems that captures many uniformities across different

logics. We have been able to show that all the example signatures specified in LF in the paper

[Avron, Honsell & Mason 871 can be specified as logic programming programs. In addition to

natural specifications, these programs represent non-deterministic theorem provers for these

logics.

In the next section, we will present the subset of the class of higher-order hereditary Harrop

formulas on which we base our logic programming language, and describe an interpreter for this

language. In Section 3 we present some simple programs to manipulate formulas in this lan-

guage. It will become evident that simple operations on formulas are handled quite differently

in this setting than by traditional methods. This is followed, in Section 4, by a discussion of

how to specify inference rules. Each rule will correspond to a definite clause. Theorem provers

1 Introduction 3

are implemented using collections of such clauses. We discuss both the declarative reading

and the operational meaning (under the interpreter of Section 2) of these clauses. We will also

consider the specification of proof objects.

In Section 5 we begin to consider some issues in controlling the search for proofs. We

present an automatic theorem prover for a variant of the Gentzen LK proof system for classical

first-order logic. In Section 6 we discuss the implementation of tactic style theorem provers

which allow greater control in searching for proofs and provide means for user participation

in the theorem proving process. We first present the tacticals and other general definite

clauses that will be used in any tactic prover. As an example, we build a theorem prover for

natural deduction where the basic tactics are the inference rules of this proof system, and then

present ways in which we can add to the tactic database to enhance the basic theorem proving

environment.

In Section 7, we discuss some algorithms that use proof objects for different purposes,

including those mentioned above. It will become apparent that there are many options for

representing proof objects and that choosing a representation should depend on how the proofs

will be used.

In Section 8, we give an informal presentation of the algorithm used to translate the ex-

ample L F signatures in [Harper, Honsell & Plotkin 871 and [Avron, Honsell & Mason 871 to

specifications for theorem provers in our extended logic programming language. In Section 9,

we discuss related work, and finally in Section 10, we discuss future research.

4 2.1 A Logic Programming Language and Interpreter

2 Extended Logic Programs

We shall need to extend the logic of first-order positive Horn clauses in two essential ways.

The first extensions provide for the interpretation of queries (goals) which can be implications,

disjunctions, universally and existentially quantified, as well as the usual conjunction which is

permitted in Horn clause theorems. Although the addition of disjunctive and existential goals

does not depart much from the usual presentation of Horn clauses, the addition of implicational

and universal goals makes a significant departure. The second extension makes this language

higher-order in the sense that it is possible to quantify over function symbols. In order to

represent constructions which can be functions, first-order terms are replaced with simply

typed A-terms. To implement the application of function terms, A-conversion is also required.

Finally, to perform unification on A-terms, higher-order unification is required.

The logic programming language presented in this section is a subset of the class of higher-

order hereditary Harrop formulas which was presented in [Miller, Nadathur & Scedrov 871. The

richer language permits quantification over predicate variables and permits A-terms to contain

logical connectives. Neither of these features are needed in this paper so we shall simplify our

presentation by ignoring these possibilities.

2.1 A Logic Programming Language and Interpreter

In the logic programming language used in the remainder of this paper, we will assume that

a certain set of non-functional types is provided, which contains at least one type, namely o,

which denotes the type of logic programming propositions. The full set of types is then all the

non-functional types along with all functional types, that is, types of the form cr + P where

cr and p are (non-functional or functional) types. Simply typed A-terms are then built in the

usual fashion. A-terms which are propositions, i.e. of type o, will be called atomic formulas.

In this section we shall let A be a syntactic variable for atomic formulas.

We now define two new classes of formulas, called gar1 formuhs and definite clauses. Let G
be a syntactic variable for goal formulas and let D be a syntactic variable for definite clauses.

These two classes are defined by the following mutual recursion.

A logic program or just simply a program is a finite set, say P, of closed definite formu-

las. The following theorem on definite clauses follows immediately from theorems in [Miller,

Nadathur, & Scedrov 871.

2.1 A Logic Programming Language and Interpreter 5

Theorem 1 Let I-I denote intuitionistic provability for this higher-order logic and
assume that the formulas G, G1,G2,A and D are closed formulas. Then all the
following hold.

1. P k I G1 A G2 if and only i f P F I G1 and P G2.
2. P F r G1 v G2 if and only i f P tI G1 or P I - I G2.
3. P I-I D > G if and only if P, D k r G. Here P, D denotes the set P U {D).
4. P k I Vx G if and only if for any parameter c which does not occur in P or G,

P I-I [x/c]G.
5. P I - I 32 G if and only if there exists a closed A-term t of the same type as x

such that P k I [x/t]G.
6. If A is atomic, then P F I A if and only if either some universal instantiation

of a D E P is either A or is of the form G > A and P tI G.

Notice that these properties of I - I can be used to describe a very high-level interpreter which

can determine if a given goal is provable from a given program. This interpreter will be called

the non-deterministic interpreter. Assume that a program P and a closed goal formula G are

given and we wish to determine if G is intuitionistically provable from P. This interpreter

can be described non-deterministically as being composed of the following six basic search
operations.

AND If G is G1 A G2 then try to show that both G1 and G2 follow from P

OR If G is G1 V G2 then try to show that either G1 or G2 follows from P.

AUGMENT If G is D > G' then add D to the current program and try to prove the goal

G' .
GENERIC If G is Vx G' then pick a new parameter c and try to prove the goal [x/c]G1.

INSTANCE If G is 32 G' then pick some closed A-term t and try to prove [x/t]Gt.

BACKCHAIN If G is atomic, we must now consider the current program. If there is a

universal instance of a definite clause which is equal to G then we have found a

proof. If there is a definite clause with a universal instance of the form G' > G
then try to prove G' from P. If neither case holds then there is no proof of G

from P.

There are actually many ways to implement the GENERIC search operation. The descrip-

tion above indicates one possibility. It is not necessarily the best for implementation purposes,

yet is a good conceptual description. We are not concerned with the implementation of the

interpreter in this paper, but will consider it to be implemented in this way for the purpose of

discussion. Everything that is said will still hold for any other implementation.

In actual operation of this interpreter, the INSTANCE operation will introduce a variable

which will become instantiated as necessary through unification. Thus, it will not be forced to

6 2.2 An Example

commit to a particular closed A-term at the time it is invoked. This corresponds to the notion

of "logic variables" in Prolog.

This logic programming language properly contains first-order positive Horn clauses. That

is, if Ao, A1,. . . ,An are all atomic formulas then the formula V x l . . .Vxn (Al A . . . A An 3 Ao)

is both a positive Horn clause and a definite clause (in our sense). Hence, any pure Prolog

program is also a program in our setting. Richer programs are, of course, possible. We give

an example in the next subsection.

2.2 An Example

The following definite clauses are motivated by an example of John McCarthy.

Vy(Vx((bug x) > ((i n x y) > (dead x))) 3 (sterile Y))

VxVy((heated y) A (in x y) A (bug x) > (dead x))

(heated j)

Given two types, jar and insect , the predicates in the above formula could be given the

"functional" types

sterile: jar + o
bug: insect + o

dead: insect -t o

heated: jar -, o
in: insect + jar + o

j : jar.

A-terms of functional types which map to propositions can be thought of as predicates. Notice

that while the last two formulas above are Horn clauses, the first is not. All three, however,

are definite clauses. Let Po denote the set of these three definite formulas. Given the above

description of provability, it is easy to show that Po k I (sterile j) . The following represents

the search strategy the above interpreter could follow to find a proof.

Po t - ~ (steri le j)

Po I - I Vx((bug x) > ((i n x j) 3 (dead x)))

Po t - I (bug r) > ((i n T j) 3 (dead r))

PO, (bug r) I -I (i n r j) 3 (dead r)

Po, (bug r) , (i n r j) I-I (dead r)
Po , (bug r) , (i n r j) I-I (heated j) A (i n r j) A (bug r)

Po, (bug r) , (in r j) I -I (heated j)

P O , (bug r) , (i n r j) I -I (in r j)

2.3 Notation 7

The last three lines are proved immediately by the BACKCHAIN rule. Here, it was necessary

to argue generically about an arbitrary bug, called r of type insect.

It is important to realize that the metatheory of definite clauses is intuitionistic logic, a

logic which is weaker than classical logic. (See [Miller 86, Miller, Nadathur & Scedrov 871 for

a discussion on the role of intuitionistic logic in this extended notion of logic programming.)

Hence, there are inferences from formulas in classical logic which can not be inferred by the

kind of interpreter described above. For example, the goal formula 3x (bug x) V Vy (sterile y)

can be classically inferred from Po. Our interpreter would try either to prove that there

exists an insect which is a bug or to prove that all jars are sterile. Neither attempt to find

a proof will succeed. Because classical logic contains the axiom scheme of excluded middle

(absent from intuitionistic logic), classical derivations do not obey all the above six search

rules: in particular, the OR and INSTANCE rules are seldom valid. For example, although

3x (bug x) ~ V y (sterile y) is classically provable, neither of its disjuncts are provable separately.

The classical proof of this formula would start by noting that

3s (bug x) V Vx -(bug 2).

If we assume that there does exist an insect which is a bug, the formula follows immediately.

On the other hand, if we assume that all insects are not bugs, then it is easy to show that all

jars must be sterile.

We will present further examples of definite clauses, in particular higher-order examples,

in later sections.

Our main claim in this paper is that the above six search operations along with higher-

order unification, A-convertibility, and the notion of a "logic variable" provide a very valuable

environment for the design of theorem proving programs.

2.3 Notation

For readability, we will use some abbreviations when writing definite clauses. For the most

part, these abbreviations define the syntax of the logic programming language AProlog (which

adopts much of the syntax of Prolog).

A-Terms Variables are represented by tokens with an upper case initial letter, and con-

stants are represented by tokens with a lower case initial letter. Function application will be

represented using curried notation i.e. juxtaposition of terms represents application and this

application associates to the left. A-abstraction is represented using the infix symbol \. A term

8 2.3 Notation

of the form Ax T is written as X\T. Terms are most accurately thought of as being represen-

tatives of apq-conversion equivalence classes of terms. For example, the terms X\ (f XI, Y\ (f

Y) , (F\Y\ (F Y) f) , and f all represent the same class of terms. Since bound variables have no

distinct "name," the programmer will not have to deal with renaming bound variables. Also,

substitutions are handled directly because of the availability of A-conversion.

As in Prolog, we allow infix operators, and will use infix notation when appropriate to

enhance readability. For example, we could have considered the i n predicate in the above

example as an infix operator, and written (X i n Y) instead of (i n X Y) .

Search Connectives The symbols , and ; represent A and V respectively, and , binds

tighter than ;. The symbol : - represents the top-level implication in a definite clause. Clauses

of this form are written backwards i .e . a clause G > A is written A :- G. Implications at all

other levels are represented using the symbol => in the forward direction. We omit the outer-

most universal quantifiers in a definite clause, and existential quantifiers in a goal. Thus, free

variables in a definite clause are assumed to be universally quantified, while free variables in a

goal are assumed to be existentially quantified. Internal universal quantification is represented

with the p i constant and the A operator (\). A formula of the form Vx P is represented by

(pi X\ PI, where X is a capital letter and all occurrences of x in P occur as X in P.

The program in the previous subsection can be abbreviated:

s t e r i l e Y :- p i X\ ((bug X) => ((in X Y) => (dead X))).
dead X :- heated Y, in X Y, bug X.
heated j.

Modules We sometimes want to think of a set of definite clauses as a module that can be

imported by a goal formula so that the clauses in this module will be available when attempting

to satisfy the goal formula. For more on the theory of adding modules to logic programming

see [Miller 861. Here, we simply allow a name (e . g . ~ o d) to be associated with a set of definite

clauses and allow abbreviations of the form (Mod => G) where G is a goal formula. The

AUGMENT search operation must then be extended to allow sets of definite clauses to be

added to the current program.

Types As we saw in the example in the last subsection, a set of type declarations will be

associated with each logic program. In addition to functional types, other type constructors

are allowed. In many of our programs we will use list structures, and so l i s t will be the only

type constructor needed in this paper. It takes one type as an argument. In the previous

example, (l i s t insect) and (l i s t jar) are also types. The syntax for lists will be the same

as in Prolog.

2.3 Notation 9

Sometimes, we will use capital letters to represent variables in type declarations. Such a

declaration represents an infinite number of declarations, each of which is obtained by sub-

stituting closed types for the variables that occur in the type. For example, most of the list

manipulation functions can operate on lists of any type. Some of predicates used in this paper

and their declarations are as follows:

member : A -> (list A) -> o.
append : (list A) -> (list A) -> (list A) -> o.

member-and-rest : A -> (list A) -> (list A) -> o.

These three predicates have the following definitions.

member X [X I L] .
member X CY I L l :- member X L .

append L L.
append CX I L i l L2 CX I L31 : - append L l L2 L 3 .

member-and-rest X CX I L1 L.
member-and-rest X [Y I L i] [Y I L21 :- member-and-rest X L i L 2 .

The type variable A must be instantiated before the interpreter can use these definite clauses.

10 3 Manipulation of Formulas

3 Manipulation of Formulas

As was argued earlier, first-order terms of traditional logic programming languages are not

adequate for representing formulas. In particular it is awkward to represent quantification

using such terms. Our higher-order language replaces these terms with simply typed A-terms.

Using these terms, we can still easily represent first-order terms. Data structures that can be

built using first-order terms such as lists, trees, and even propositional formulas are represented

in essentially the same way in this setting. The additional ability to represent abstractions

directly within terms makes it possible to very directly represent quantified formulas.

We use A-terms to represent formulas as introduced by Church in his formulation of the

simple theory of types [Church 401, and adopted by many others (e.9. [Paulson 86, Miller &
Nadathur 87, Harper, Honsell & Plotkin 871). We introduce a new type bool, and specify the

logical connectives of the object language by introducing new constants and giving them types.

In Section 2 we said that we would not permit logical constants to appear in A-terms. That

restriction was on logical constants which involved the special type o of search propositions.

This special type was reserved for the interpreter of hereditary Harrop formulas, and was needed

since the behavior of formulas of type o, as described by Theorem 1, is very specialized. Thus

our hereditary Harrop formula language will presuppose nothing about our newly introduced

constants. Another way to look at this is that at the program- or meta-level, the logical

constants have a very set meaning, i.e. provided by a higher-order intuitionistic logic. At the

term- or object-level, logical connectives have only the meaning which is attributed to them

by the programs which use them.

For classical first-order formulas, which we present as an example, in addition to the new

type bool, let us introduce the type i to represent the domain of first-order individuals. We

then declare the following constants and types.

and : bool -> bool -> boo1

o r : bool -> bool -> bool

imp:bool -> bool -> boo1

neg : bool -> bool

f o r a l l : (i -> bool) -> bool

e x i s t s : (i -> bool) -> bool

We will demonstrate in this and the next sections that the extended logic programming lan-

guage presented in Section 2 gives us a language in which we can write programs to manipulate

these A-terms in sophisticated ways. We begin here with some basic formula manipulation pro-

grams. These programs will illustrate that certain simple operations on formulas are handled

quite differently in this setting than by traditional methods. The following is a small program

3 Manipulation of Formulas 1 I

which can be used to instantiate a universally quantified formula. The program produces an

"instance" of a formula by replacing the outermost variables bound by universal quantifica-

tion with new logic variables which can later become instantiated with specific terms. The

ins tant iate predicate has type bool -> bool -> o where the first argument is the (possibly)

universally quantified formula, and the second is its instantiated form.

instantiate (foral l A) B :- instantiate (A T) B .
instantiate A A .

Note that each time the first definite clause is used, it introduces a new logic variable T. For

example, it might instantiate the formula (f o r a l l X\ (f o r a l l Y \ ((p XI imp (p Y) 1) to

((p Ti) imp (p T2) 1. These logic variables can later be instantiated through unification.

As another example, the following program illustrates how to construct the negation normal

form of a formula. There is one predicate, called nnf which has type bool -> bool -> o.

The first argument is the input formula and the second is the output formula in negation

normal form. The behavior of the program is fairly straightforward for propositional formulas.

Since first-order unification is all that is needed to break a propositional formula into its

subformulas, the algorithm proceeds by recursively descending the structure of the formula,

building the normal form from the normal forms of the subformulas. The main departure

from traditional algorithms occurs when determining the negation normal form of quantified

formulas. For example, traditionally, finding the negation normal form of the formula ~ (V X A)
entails changing it to 32 1 A and then finding the negation normal form of TA. The quantifier

and bound variable are stripped off and x becomes a free variable in A during the rest of the

procedure. Using our representation for formulas, the formula (neg (f o r a l l A)) becomes

(e x i s t s X\ (neg (A X)) 1. In order to obtain a subformula for which we can take the negation

normal form, we must first apply the A-term (X\ (neg (A X I) 1 to something. The universal

goal can be used here to put in a generic constant for X as in the following definite clause:

nnf (neg (fora l l A)) (ex i s t s B) :- p i X\ (nnf (neg (A x)) (B x)) .

The GENERIC search operation will pick a constant c, and then the interpreter will search

for the normal form (B c) of (neg (A c)). The use of the universal goal insures that the new

constant used for X will not appear in B, and thus B will be an abstraction over this constant.

The final negation normal form is then (e x i s t s B). The complete algorithm is described by

the following set of definite clauses.

nnf (A and B) (C and D) :- nnf A C, nnf B D.
nnf (A or B) (C or D) :- nnf A C , nnf B D .
nnf (A imp B) (C or D) :- nnf (neg A) C , nnf B D .
nnf (f oral l A) (f ora l l B) :- p i X\ (nnf (A X) (B X)) .
nnf (ex i s t s A) (ex i s t s B) :- p i X\ (nnf (A X) (B XI).

12 3 Manipulation of Formulas

nnf (neg (neg A)) B :- nnf A B.
nnf (neg (A and B)) (C or D) :- nnf (neg A) C , nnf (neg B) D .
nnf (neg (A o r B)) (C and D) :- nnf (neg A) C , nnf (neg B) D .
nnf (neg (A imp B)) (C and D) :- nnf A C , nnf (neg B) D .
nnf (neg (f o r a l l A)) (ex i s t s B) :- p i X\ (nnf (neg (A XI) (B XI).
nnf (neg (ex i s t s A)) (f o r a l l B) :- p i X\ (nnf (neg (A x)) (B x)) .

nnf A A .

Other programs for normal form algorithms such as conjunctive, disjunctive, and prenex

normal forms can be written similarly. For prenex normal form, as for negation normal form,

the universal goal is used to handle quantified formulas.

Formula manipulation plays a large role in the task of implementing theorem provers. For

example, inference rules are generally applied to specific formulas, modifying them as the search

for a proof proceeds. Thus, the ways in which formulas are manipulated will continue to be

important in the next sections as we discuss the construction of theorem provers in our logic

programming setting. We begin, in the next section, by discussing how to specify inference

rules for various proof systems.

4 Specifying Inference Rules

4 Specifying Inference Rules

In this section we discuss how to specify inference rules of proof systems as definite clauses and

illustrate the role of the six search operations of our extended logic programming language in

using these rules to search for proofs.

In the examples below, each inference rule can be very naturally understood as combining

a unification step and a search step, and thus has a natural rendering as a logic programming

definite clause. We obtain complete non-deterministic theorem provers under the interpreter

described in Section 2 from a set of definite clauses representing all of the inference rules for a

proof system. This is the basis for our claim that logic programming is a suitable domain for

specifying natural theorem provers.

In this section we will draw examples from a Gentzen sequent system and a natural de-

duction system. In addition to determining whether or not a sequent or formula is provable,

the programs will also build and store the proofs as they are discovered. We use a particular

representation for our proofs in the examples below. It is important to note that our main

point is not to promote a particular representation as the "correct" one for sequent systems or

natural deduction, but to illustrate that it is straightforward to represent proofs for many proof

systems. The particular representation chosen should correspond to what the proof objects

will be used for in a given proof system.

To place these inference rules in the context of the theorem provers in which they appear,

we must consider the type declarations associated with the programs. The declarations for

a theorem prover will consist of first, a set of declarations for the logical constants used in

constructing formulas, such as those used in the negation normal form program in the previous

section. Second, they will include declarations for specifying the terms used in constructing

proof objects. Finally, they include the types given to the predicates used in search. For the

theorem provers from which we draw our example inference rules, we will define one predicate

called proof which has two arguments: a sequent or formula and its proof. Thus the type of

the proof predicate in a sequential system and a natural deduction system are, respectively

sequent -> proof-object -> o and boo1 -> proof-object -> o.

We will give examples of objects of type proof-object as we present the inference rules.

It is important to note that we do not always need to construct proof objects. We may

define the proof predicate to take only a formula as an argument. In this case, when a formula

is provable, the result will simply be a "yes" answer. In all of our examples, we include the

second argument for the proof objects to illustrate how they can be constructed. Then later,

we demonstrate some possibilities for using them in computations.

The type declarations, as above, for the program predicates and terms are specified at

14 4.1 Definite Clauses for Sequential Proof Systems

the meta-level and are used by the interpreter to insure proper types. On another level more

important to theorem proving, we would like to represent formulas as types and proofs as

objects inhabiting these types as in [Howard 80, Martin-Lof 82, Harper, Honsell & Plotkin

871, so that theorem proving corresponds to type checking and type inference as in systems

based on these formalisms (e.g. [Constable et al. 86, deBruijn 801). On this level, formulas and

sequents will represent the types for their corresponding proofs (i.e. the first argument to the

proof predicate will represent the type of the second).

In Section 4.1, we begin with some examples of inference rules for the Gentzen LJ system

for intuitionistic logic. Then, in Section 4.2, we consider the specification of natural deduc-

tion inference rules, which requires investigating some additional issues. The inference rules

presented in each section will be discussed on two levels. First, they will have a declarative

meaning, defining what a proof of the conclusion of a rule will be, based on the proofs of

its premises. On this level, these clauses will give meaning to the objects used to represent

proofs. Additionally, these clauses will have operational meaning. On this level, there will be

a discussion of how each definite clause will be used by the interpreter of Section 2 during the

search for proofs. In this discussion, we will exhibit the correspondence between the logical

connectives of the object-language and the search operations of the meta-language.

4.1 Definite Clauses for Sequential Proof Systems

For the LJ proof system, in addition to the logical constants defined in Section 3, we need an

additional constant to represent sequents. A sequent, in this system, has the form I' ---t A
where I' is a list of formulas and A is a formula. We add sequent to our set of primitive types

(bool and i) and define --> as an infix operator as follows.

--> : (l is t bool) -> bool -> sequent

We begin with the following inference rule for a conjunction on the right side of the sequent

(the LJ A-R rule).

--+ A r + B
I ? - A A B A-R

It can be represented by the following definite clause.

proof (Gamma --> (A and B)) (and-r PI P2) :- proof (Gamma --> A) Pi,
proof (Gamma --> B) P2.

The declarative meaning of such a clause may be stated: if P l is a proof of (Gamma --> A) and

P2 is a proof of (Gamma --> B), then (and-r P1 P2) is a proof of (Gamma --> (A and B)).

4.1 Definite Clauses for Sequential Proof Systems 15

The rule essentially gives meaning to a d s : it is a function from two proofs (the premises of

the A-R rule) to a new proof (its conclusion). In the context of logic programming declarations,

the type of this term is specified as follows.

and-r : proof-obj ect -> proof -obj ect -> proof-ob j ect

In the formulas-as-types paradigm, as we stated, one way to view any of the inference rule

definite clauses that we present is that they define the objects (proofs) that inhabit the types

specified by a sequent or formula. In the case of the and-r rule, notice the correspondence

to the constructive logic declaration (and-r PI P2) : I' ---+ A A B where (and-r PI P2) is a

proof of the judgement I' + A A 3 when PI and P2 are proofs of I' ---+ A and I' ---+ B
respectively.

Operationally, this definite clause may be used by the interpreter when a goal matches a

universal instance of the right side (a unification step). It is used, for example, in goal-directed

search when attempting to find a proof of a sequent of the form (Gamma --> (A and B)) .
An AND search operation is then necessary to handle the conjunctive goal that results after

backchaining. Thus one role of the AND search operation in theorem proving is to handle the

subgoals generated by inference rules with more than one premise.

Next we consider the two LJ inference rules for proving disjunctions.

-+ A v-R r - f l
I?-AVB I '---+AVB V-R

These rules have a very natural rendering as the following logic programming clause.

proof (Gamma --> (A o r B)) (or-r P) :- proof (Gamma --> A) P ;
proof (Gamma --> B) P .

Declaratively, this clause specifies the meaning of a proof of a disjunction. Here P is either a

proof of (Gamma --> A) or (Gamma --> B). Operationally, the OR search operation is used

here to arbitrate between choices of inference rules that can be applied to the same sequent.

All propositional rules for Gentzen sequential systems can be very naturally understood as

combining a first-order unification step, possibly followed by an AND or an OR search opera-

tion.

In the next examples, we will present some quantifier rules. Operationally, they will illus-

trate a use of the INSTANCE and GENERIC search operations and higher-order unification

for theorem proving. Consider the following 3-R inference rule

16 4.1 Definite Clauses for Sequential Proof Systems

which can be written as the following definite clause.

proof (Gamma --> (exis ts A)) (exists-r P) :- proof (Gamma --> (A T)) P.

Note that T is a new logic variable introduced in the subgoal. This T is existentially quantified

i.e. in its unabbreviated hereditary Harrop form the subgoal is equivalent to

(3T (proof I? - (A T) P)).

Declaratively, the clause reads: if there exists a term T (of type i) such that P is a proof

of (Gamma --> (A T)) , then (e x i s t s 2 P) is a proof of (Gamma --> (e x i s t s A) 1. Opera-

tionally, we rely on higher-order unification (in this case, second-order matching) to match the

A of (e x i s t s A) to a function of type i -> bool. Then (e x i s t s A) is replaced by (A T) in

the sequent to form the subgoal, where A-application and normalization substitutes T for the

bound variable in A. By making T a logic variable, we do not need to commit to a specific

term for the substitution. It will later be assigned a value through unification if there is one

that results in a proof. This introduction of a new logic variable is the role of the INSTANCE

search operation.

Next consider the following V-R inference figure.

with the condition that x is not free in r or A. This restriction is handled by universally

quantifying the subgoal to obtain:

proof (Gamma --> (f o r a l l A)) (foral l - r P) :- p i T\ (proof (Gamma --> (A T)) (P T)) .

Declaratively, it will read: if we have a function P that maps arbitrary terms T to proofs (P

T) of the sequent (Gamma --> (A T)), then (f o r a l l - r P) is a proof of (Gamma --> (f o r a l l

A) 1. In this case, the proof object (f o r a l l - r P) contains a functional argument, and thus

f o r a l l r is declared as follows.

f o r a l l - r : (i -> proof-object) -> proof-object

Operationally, the GENERIC goal is necessary to achieve the subgoal (p i T\ (proof (Gamma

--> (A T)) (P T))) . As stated in Section 2, one way to view the operational use of this goal

is that the interpreter will pick a new constant c for the universally quantified variable, in this

case for T. In the logic programming setting, in order for c to be a truly generic constant, we
must insure that it will not appear in any of the logic variables in subsequent unifications. In

this clause, in addition to not appearing in the sequent, c cannot appear in the proof. As a

result we have a proof P which is a function from arbitrary terms (of type i) to a proof -ob j e c t .

The fact that P must be a function agrees with our declarative reading of this definite clause.

4.2 Definite Clauses for Natural Deduction 17

In our discussion of each of the inference rules, we have been considering the operational

meaning of each of the definite clauses because we would like to use the proof program as a

whole to do theorem proving. To use the interpreter of Section 2 for this task, we can present

it with a goal formula of the form (proof (Gamma --> Delta) PI, where the sequent will be

specified and the proof will not. (It will be a logic variable.) When we start with a god of this

form, at each step of the proof, the initial unification step needed to determine if a definite

clause can be used involves only the first argument. This argument acts as the input while

the second argument (the proof) is the output, which gets constructed as the subgoals are

completed. Clearly, it is possible to give both arguments at the onset, and thus both would

be important for the initial unification step. In this case, the program acts as a proof-checker.

This dual role of theorem prover/proof-checker applies to all of the theorem provers we discuss

in this paper.

4.2 Definite Clauses for Natural Deduction

The natural deduction inference rules presented in this section are from Gentzen's system as

presented in [Prawitz 651. Several of the introduction rules from this system resemble rules that

apply to formulas on the right of the sequent in the LJ proof system. Those that correspond

to the example inference rules given in the previous section are as follows.

A - I A A B

The V-I rule also has the proviso that y cannot appear in A.

They can be translated to the following definite clauses which are all similar in appearance

to their corresponding definite clauses presented in the previous section.

proof (A and B) (and-i Pi P2) :- proof A Pi, proof B P2.

proof (A o r B) (or - i P) :- proof A P; proof B P.

proof (e x i s t s A) (e x i s t s - i P) :- proof (A T) P.

proof (f o r a l l A) (f o r a l l - i P) :- p i T\ (proof (A T) (P T)).

Clearly, they have similar declarative readings, and proof .terms are built in the same way

18 4.2 Definite Clauses for Natural Deduction

as in their LJ counterparts. Operationally they also require the AND, OR, INSTANCE, and

GENERIC search operations respectively.

In natural deduction, we have the additional task of specifying the operation of discharging

assumptions. We illustrate how this can be accomplished using the >-I rule below.

We can translate this rule to the following definite clause (which uses implication).

proof (A imp B) (imp-i P) :- p i PA\ ((proof A PA) => (proof B (P PA))).

This clause represents the fact that if P is a "proof function" which maps proofs of A to proofs

of B such that given an arbitrary proof PA of A, (P PA) is a proof of B, then (imp-i P) is a

proof of (A imp B). Here, the proof of an implication is represented by a function from proofs

to proofs. The discharge of assumptions will always result in such proof functions. In this

case, imp-i has the following type.

imp-i : (proof -ob j e c t -> proof -obj e c t) -> proof -ob j e c t

Operationally, the AUGMENT search operation plays a role in the discharge of assump-

tions. In this case, to solve the subgoal (p i PA\ ((proof A PA) => (proof B (P PA))) 1,
the GENERIC goal is needed to pick a generic proof pa for the formula A. Then the AUG-

MENT goal is used to add the clause (proof A pa), a proof of the discharged assumption, to

the current program. This clause is then available to use in the search for a proof of B. The

proof of B will most likely contain instances of the proof of A (the term pa). The resulting

function P is the abstraction over this term.

Representing proofs as functions, in addition to being a natural encoding of the operation

of discharging assumptions, provides abstractions over proofs that can actually be applied to

subproofs. For example, if we have a proof of (A imp B), and if A were a lemma that was later

proved, we could apply P to this proof of A and obtain a proof of B directly. A definite clause

to perform this operation might be as follows.

proof B (P PA) :- proof (A imp B) (imp-i PI, proof A PA.

In the term (P PA), A-application followed by normalization results in a new proof term with

the actual proof term PA replacing all occurrences of the variable bound by A-abstraction in

P. When viewed in terms of proof trees of the style found in [Prawitz 651, this operation has

the effect of substituting the proof of A above all occurrences of A that were discharged by this

application of the >-I rule.

5 An Automatic Theorem Prover Using Dep th-First Control 19

5 An Automatic Theorem Prover Using Depth-First Control

Complete non-deterministic theorem provers are obtained by translating all of the rules of a

proof system to definite clauses using techniques such as those in the previous section. There,

we demonstrated that such specification can be quite straightforward. If we want to go further

and consider these specifications as executable programs for finding proofs, many more issues

are raised. Controlling the search for a proof (i . e . forcing determinism) is a much more com-

plicated task. For example, if we adopt the simple depth-first search algorithm of traditional

logic programming, the order of the clauses (inference rules) becomes very important. It is un-

likely that they can be ordered in such a way as to always avoid running into infinite branches

in the search tree which cause the program to loop forever. Also, proofs of completeness for

theorem provers using depth-first search might become quite complex. As a simple example,

the left contraction rule of the Gentzen LK system and its corresponding definite clause are

given below.

- A contract - L A , r - A

proof ([A I Gamma] --> Delta) (contract-1 P) :-
proof ([A , A I G a m m d --> Delta) P .

This rule always produces a subgoal with an extra copy of the first formula on the left of the

sequent. Thus it will always be applicable when there is at least one formula on the left. This

causes a problem since it could be applied repeatedly, making multiple copies of the same

formula and preventing rules that appear after it from ever being attempted. Even if no other

rules appear after i t , its interactions with other rules must be considered. For example, both

contraction rules have the same problem, so that when one is placed before the other, the

second may never get applied. Also, since either contraction rule will always be applied to the

first formula in a list, in order to insure completeness, we need a guarantee that each formula

that needs to be doubled will appear at the front of the list at some point.

Although depth-first search is a naive and limited approach to the complex task of searching

for proofs, at times it can be exploited successfully to build complete automatic theorem

provers. As an example, in this section we will construct a theorem prover for a sequent-style

calculus for first-order classical logic. In this case, by slightly modifying the LK inference

rules, we are able to obtain a reasonable automatic theorem prover. We present the system,

called LKC (C for Computational) and discuss the changes to the inference rules. The purpose

of these changes is to minimize non-determinism in the search for proofs. The changes are

similar to those made to LK to obtain the system G in [Gallier 861. There, a search algorithm

20 5 An Automatic Theorem Prover Using Dep th-First Control

used to find proofs in the G system is described, and a completeness result for this algorithm

established. The changes made to LK to obtain LKC are as follows.

(1) The interchange, contraction, thinning, and cut rules are removed.

We eliminate the cut rule because in goal-directed automatic proof, we would have to specify

the "cut formula7' that appears in the premises by introducing a new logical variable, and it

is unlikely that unification could determine such cut formulas. By cut-elimination, this rule is

not needed to obtain a complete theorem prover. We eliminate the structural rules since they

can be applied to almost any sequent and to any formula in the sequent. We are then left with

the rules that apply to a formula of a particular form (based on the main logical connective)

in the conclusion, i.e. the introduction rules.

(2) An inference rule can be applied to a formula at any position on the left or

right of the sequent in the conclusion of a rule. In the premises, the subformulas

will appear at the beginning of the lists of formulas on the left and right of the

sequent. For example, the rule for implication on the right will have the following

form.

(3) Initial sequents are of the form rl, A, r2 - Al , A, A2.

(2) above eliminates the need for the interchange rules, and allowing initial sequents as in (3)

eliminates the need for the thinning rules. The remaining changes to the inference rules are

those that must be made to account for the removal of the contraction rules. For a proof that

these changes preserve completeness, see [Miller 871.

(4) The 3 - L rule has the following form.

In the LK 3 - L rule, each formula in the conclusion appears in only one of the premises. The

LICC 3 - L rule differs only in that all formulas (except the implication to which the rule is

being applied) are duplicated in the premises. This is equivalent to repeatedly applying the

contraction rule before applying the LK 1 - L rule. The LKC rule is better suited for goal-

directed proof since, when applying the rule, it will not be known which formulas are needed

in each premise to complete their respective proofs.

5 An Automatic Theorem Prover Using Depth-First Control

(5) The two rules for A-L and V-R are combined into one for each as follows.

A, B,rl,I '2 - A A-L
r l , A A B , r 2 --+ A

In the LK rules, only one of the two conjuncts on the left or disjuncts on the right appears

in the premise. Again, the LKC A-L and V-R rules are a combination of contraction and the

corresponding LK rules. At the time of application it will not be known which conjunct on

the left or disjunct on the right will be needed to complete the proof.

(6) The V-L and 3-R rules are of the following form.

j x / t] ~ , r ~ , r ~ , v x A -+ A
rl,Vx A , r z ---+ A V-L

The V-L and 3-R rules also encompass a contraction, in this case, of the quantified formula.

In addition, the quantified formula appears at the end of the list while the formula to which

the substitution is applied appears at the beginning. The quantified formula is put a t the

end so that we can write a goal-directed theorem prover that applies rules to formulas in the

order they appear in a list, so that all other formulas in the sequent will be examined before

the quantifier rule is applied to the same formula again. Note that we will have to include

a definite clause that applies both of these rules at once. Otherwise, in the case when both

are applicable, placement of the definite clause for one before the clause for the other in any

ordering would cause one to be applied repeatedly and prevent the other from ever being

applied. These are the only rules that need this treatment because all other rules replace a

formula in the conclusion with subformulas in the premises, and thus the sequent becomes

"smaller" in the sense that the total number of logical connectives decreases. The program

below represents a depth-first theorem prover for the LKC system. Based on the observations

above, it should be straightforward to show that it is complete.

The sequents in the LK (and thus LKC) proof system are of the form I' - A where I?
and A are both lists of formulas. Thus, for this program the sequent arrow is an infix operator

with the following declaration.

--> : (list bool) -> (list bool) -> sequent

This program also makes extensive use of the list predicates discussed in Section 2.

22 5 An Automatic Theorem Prover Using Depth- First Control

proof (Gamma --> Delta) (i n i t i a l A) :- member A Gamma, member A Delta .

proof (Gamma --> Delta) (and-1 P) :-
member-and-rest (A and B) Gamma Gammai,
proof ([A,B 1 Gammall --> Delta) P.

proof (Gamma --> Delta) (and-r P i P2) :-
member-and-rest (A and B) Delta De l t a i ,
proof (Gamma --> [A I Del t a i l) P i ,
proof (Gamma --> [B I D e l t a i l) P2.

proof (Gamma --> Delta) (or-r P) :-
member-and-rest (A o r B) Delta De l t a i ,
proof (Gamma --> [A,B I Del ta l l) P.

proof (Gamma --> Delta) (or-1 PI P2) :-
member-and-rest (A o r B) Gamma Gammai,
proof ([A 1 Gammai] --> Delta) P I ,
proof (CB I Gammall --> Delta) P2.

proof (Gamma --> Delta) (imp-r P) : -
member-and-rest (A imp B) Delta De l t a i ,
proof ([A I Gammal --> CB I Deltai]) P.

proof (Gamma --> Delta) (imp-1 P i P2) :-
member-and-rest (A imp B) Gamma Gammai,
proof (Gammai --> [A I De l ta l) P i ,
proof ([B 1 ~ammai] --> Delta) P2.

proof (Gamma --> Delta) (neg-1 P) :-
member-and-rest (nag A) Gamma Gammal ,
proof (Gammal --> [A I Del tal P.

proof (Gamma --> Delta) (neg-r P) :-
member-and-rest (neg A) Delta De l t a i ,
proof ([A I Gammal --> Del t a l) P.

proof (Gamma --> Delta) (f o r a l l - r P) :-
member-and-rest (f o r a l l A) Delta De l t a l ,
p i T\ (proof amma ma --> [(A T) 1 Del ta i l) (P T)) .

proof (Gamma --> Delta) (ex i s t s -1 P) :-
member-and-rest (e x i s t s A) Gamma Gammai,
p i T\ (proof ([(A T) I Gammai] --> Delta) (P T))

proof (Gamma --> Delta) (f o r a l l - r (ex is t s -1 PI) :-
member-move-to-end (f o r a l l Ai) Gamma Gammai,
member-move-to-end (e x i s t s A2) Delta De l t a i ,
proof ([(A1 T i) I Gammai] --> [(~ 2 T2) I D e l t a i l) P.

proof (Gamma --> ~ e l t a) (ex i s t s - r P) :-

5 An Automatic Theorem Prover Using Dep th-First Control

member-move-to-end (exists A) Delta Deltal,
proof (Gamma --> [(A T) I Deltall) P.

proof (Gamma --> Delta) (forall-1 P) :-
member-move-to-end (f oral1 A) Gamma Gamma1 ,
proof ([(A T) I Gammal] --> Delta) P.

24 6 Construction of Tactic Theorem Provers

6 Construction of Tactic Theorem Provers

Tactics and tacticals provide a powerful and flexible device for building proof systems, and

have been used with much success in recent years. As mentioned, examples of systems

that have been developed using this style of theorem proving include the Edinburgh LCF

theorem prover [Gordon, Milner & Wadsworth 791, and the Nuprl proof system at Cornell

[Constable et al. 861. Tactics and tacticals promote modular design of proof systems and pro-

vide flexibility in controlling the search for proofs. They allow an interactive proof environment

to be enhanced with partial automation. Tactics provide the basic operations and inference

rules for a particular proof system, while tacticals provide control mechanisms which can be

used in combination with tactics to automate tedious details of building proofs, as well as to

develop more complex proof strategies. As a result of the success of current tactic style proof

systems in providing a mechanism for direct user involvement in the incremental construction

of proofs, this method continues to receive much support in the theorem proving community

[Milner 871.

Logic programming provides a very suitable environment for writing tactics and tacticals.

They can be used to develop an interpreter that provides a much richer mechanism for con-

trolling the search for proofs than depth-first search. In this section, we will illustrate how to

construct tactic style theorem provers in our extended logic programming language.

In building tactic theorem provers, there will be certain definite clauses that will be common

to all tactic provers while others will be specific to a particular logic. We will group sets of

definite clauses together in program fragments or modules as described in Section 2. We will

first present the modules that are general to all tactic theorem provers and then discuss the

set of definite clauses that will be needed to specialize to a particular logic. We will illustrate

with a theorem prover for natural deduction.

There will be one main predicate in any tactic prover which we call prove and give the

following type.

prove : tact ica lexp -> goalexp -> goalexp -> o

This predicate has three arguments, the first of which is a tactical expression used in controlling

search. The simplest kind of tactical expression is the name of a tactic (often corresponding to

an inference rule). The second argument is the input goal which can be a complex structure

containing formulas or sequents and their corresponding proofs. At the onset, the proofs will

most likely be logic variables, which will become instantiated step by step as the formulas or

sequents are proven. The third argument is the output goal which will contain the subgoals

remaining after applying the tactical expression. There are three types of prove clauses.

The first two are general to all tactic provers. They are the tacticals and the goal reduction

6.1 Definite Clauses for Tactic Provers 25

clauses. Together they form the interpreter which controls the search for proofs. The tacticals

specify control based on the first argument to the prove clause-the tactical expression-which

indicates which inference rule(s) to apply. The goal reduction clauses are needed in the logic

programming setting to handle complex goals that may be generated when applying inference

rules. They specify control based on the structure of the second argument. We provide a goal

structure corresponding to each of the search operations discussed in Section 2. The third type

of prove clause includes all the definite clauses that are specific to a given proof system. These

clauses are the tactics. The basic tactics encode the inference rules of a proof system. We

translate each inference rule to a tactic, similar to the specification of inference rules presented

in Section 4.

When gathered together, the modules presented in this section can be considered, on one

hand, as a declarative specification for a tactic theorem prover. Under the interpreter described

in Section 2 such programs specify non-deterministic theorem provers. On the other hand, we

want to consider our theorem provers as deterministic executable programs. One purpose

of adopting the tactic paradigm was to provide more control in the search for proofs. For

example, we give "names" to the basic tactics. This allows search to be directed by specifying

which rule to apply by calling it by name, so that only one (or a very small number) of tactics

will be applicable at any one time. To obtain completely deterministic theorem provers, we

must resolve the remaining non-determinism that results when more than one definite clause

is applicable. We will resolve these cases as in Prolog where the clauses are attempted in

the order they appear. Thus we still assume depth-first search control of the underlying logic

programming language, but we write an interpreter on top of this language for tactics and

tacticals.

6.1 Definite Clauses for Tactic Provers

In this section we will specify the modules Tacticals and GoalRed for the tacticals and goal

reduction clauses, respectively. Together they form the meta-interpreter for tactic provers since

they provide the mechanisms for controlling the application of the individual inference rules of

proof systenzs. We first present the type declarations for both of these sets of definite clauses.

The types tact ica lexp and goalexp introduced earlier comprise the set of primitive types

(along with the type o for logic programming propositions). The first group of declarations

are the tacticals used in building tactical expressions. The second group is used to construct

compound goals.

then : tact icalexp -> tact icalexp -> tact ica lexp

ore lse : tact icalexp -> tact icalexp -> tact ica lexp

idtac : tact ica lexp

6.1.1 Definite Clauses for Tacticals

repeat : tacticalexp -> tacticalexp

try : tacticalexp -> tacticalexp

complete : tacticalexp -> tacticalexp

truegoal : goalexp

andgoal : goalexp -> goalexp -> goalexp

orgoa1:goalexp -> goalexp -> goalexp

a l lgoal : (A -> goalexp) -> goalexp

existsgoal : (A -> goalexp) -> goalexp

impgoal : o -> goalexp -> goalexp

prove : tacticalexp -> goalexp -> goalexp -> o

goalreduce :goalexp -> goalexp -> o

Here, andgoal corresponds to the AND search operation, orgoal to OR, al lgoal to GENERIC,

existsgoal to INSTANCE, and impgoal to AUGMENT. The meaning of these goal struc-

tures as well as the tactical expressions will become apparent as we present the definite clauses

in the next sections. The prove predicate is the main theorem proving predicate. goalreduce

is an auxiliary predicate used in the GoalRed module to handle completed subgoals. Note the

presence of the logic variable A in specifying the type of al lgoal and existsgoal . We want

the interpreter to be able to universally or existentially quantify over any type in any tactic

prover. The type assigned to A in any given instance will depend on the particular tactic prover

and the goal structures within that prover.

6.1.1 Definite Clauses for Tacticals

The definite clauses below provide control based on the structure of the tactical expression in

the first argument. They correspond to the tacticals found in [Gordon, Milner & Wadsworth

79, Constable et al. 861. and [Constable et al. 861

(1) prove (then Tacl Tac2) InGoal OutGoal :-
prove Tacl InGoal MidGoal, prove Tac2 HidGoal OutGoal

(2) prove (orelse Tacl Tac2) InGoal OutGoal :-
prove Tacl InGoal OutGoal; prove Tac2 InGoal OutGoal.

(3) prove idtac Goal Goal.

(4) prove (repeat Tac) InGoal OutGoal :-
prove (orelse (then Tac (repeat Tac)) idtac) InGoal OutGoal.

(5) prove (try Tac) InGoal OutGoal :- prove (orelse Tac idtac) InGoal OutGoal.

6.1.2 Definite Clauses for Goal Reduction

(6) prove (complete Tac) InGoal t ruegoal :- prove Tac InGoal t ruegoa l

The then tactical allows composition of tactics. Tacl is applied to the input goal, and then

Tac2 is applied to the resulting goal. This tactical plays a fundamental role in combining the

results of step-by-step proof construction. This role will become apparent in later examples.

Here, we will simply note that MidGoal provides the sharing of logic variables across the two

separate calls to tactics, so that the results from applying these tactics get combined. The

o r e l s e tactical simply uses the OR search operation so that Tacl is attempted, and if it fails

(in the sense that the logic programming interpreter cannot satisfy the meta-goal), then Tac2

is tried. The notion of success and failure of tactic application is defined here directly in terms

of the success and failure of the interpreter of Section 2. The third tactical, id tac , returns

an input goal unchanged. It is useful in constructing compound tactical expressions such as

the one found in the repea t tactical. repeat is defined in terms of the other tacticals. It

repeatedly applies a tactic until it is no longer applicable. The t r y tactical prevents failure

by applying i d t a c when Tac does not succeed. It might be used, for example, in the second

argument of an application of the then tactical. It prevents failure when the first argument

tactic succeeds and the second does not. Finally the complete tactical tries to finish all goals.

It will fail if there are any subgoals remaining after Tac is applied.

6.1.2 Definite Clauses for Goal Reduction

In contrast to the tacticals which break down tactical expressions, the following definite clauses

direct control by examining goal expressions, in this case the input goal given by the second

argument to the prove predicate. The definite clauses below represent the interpreter for the

goal structures corresponding to the logic programming search operations.

(7) prove Tac t ruegoa l t ruegoal .

(8) prove Tac (andgoal InGoali InGoal2) OutGoal :-

prove Tac InGoali OutGoall, prove Tac InGoal2 OutGoal2,
goalreduce (andgoal OutGoall OutGoal2) OutGoal.

(9) prove Tac (orgoal InGoall InGoal2) OutGoal :-
prove Tac InGoali OutGoal; prove Tac InGoal2 OutGoal.

(10) prove Tac (a l l g o a l InGoal) OutGoal :-
p i T\ (prove Tac (InGoal T) (OutGoall T)) ,
goalreduce (a l l g o a l OutGoall) OutGoal.

(11) prove Tac (ex i s t sgoa l InGoal) OutGoal :-
prove Tac (InGoal T) OutGoal.

6.2.1 Inference Rules as Tactics

(12) prove Tac (impgoal D InGoal) OutGoal :-
(D => (prove Tac InGoal OutGoali)) ,
goalreduce (impgoal D OutGoali) OutGoal.

goalreduce (andgoal t ruegoal Goal) OutGoal :- goalreduce Goal OutGoal.

goalreduce (andgoal Goal t ruegoal) OutGoal :- goalreduce Goal OutGoal

goalreduce (orgoal t ruegoal Goal) t ruegoal .

goalreduce (orgoal Goal t ruegoal) t ruegoal .

goalreduce (a l lgoa l T\ t ruegoal) t ruegoal .

goalreduce (impgoal D t ruegoal) t ruegoal .

goalreduce Goal Goal.

Note that clause (8) transfers the object level andgoal to an A (represented by ,) at the

meta-level (the logic programming language). The other definite clauses behave similarly for

the other corresponding search operations.

In writing programs for tactic theorem provers, we can actually eliminate the definite clause

above for exis tsgoal from the interpreter because this goal can be handled directly. We can

introduce a new logic variable directly into the program. This is achieved by replacing every

goal of the form (existsgoal G) by (G T) for some new T. The remaining compound goals

require the extra control of the interpreter given by the definite clauses above.

The goalreduce predicate is provided to handle the cases when a subgoal is achieved.

Then the output goal (third argument) gets the value truegoal.

6.2 Specifying Tactics

The modules of the previous section will be included in any tactic theorem prover. In this

section we illustrate how to specialize tactic provers to a particular proof system. We choose

the Gentzen NK natural deduction system, and in the next subsections specify definite clauses

for the inference rules and for a proof editor to interface to the user. Each new module will add

some new declarations and new clauses for the prove predicate. In Section 6.3, we demonstrate

how to put these modules together to obtain a complete tactic prover.

6.2.1 Inference Rules as Tactics

We will call the module containing the inference rules for natural deduction NDrules. The

declarations for this set of clauses will include those for basic first-order logic as discussed in

6.2.1 Inference Rules as Tactics 29

Section 3. Again, we will construct proofs, so we also include the declarations for natural

deduction proof objects. The exact form that these proof objects take will not be important

to the presentation in this section. Finally, we must add declarations for the basic tactical

expressions and goals. We begin with the tactics corresponding to the inference rules. Each

inference rule tactic is given a name which is a token of type tac t ica lexp . Thus declarations

of the form:

and-i-tac : t a c t icalexp

are included for every tactic. The basic goal will contain the formula to be proved and its

proof and is declared as follows.

proofgoa1:bool -> proof-object -> goalexp

We will call goals of the form (proofgoal A PI the atomic goals of the natural deduction

theorem prover, in contrast to compound goals built from the goal constructors in Section 6.1.2.

We also introduce a new predicate called r u l e which has the same arguments and function as

the prove predicate, but allows the inference rules to be distinguished from the more general

prove definite clauses. We then include the clause

prove Tac InGoal OutGoal :- r u l e Tac InGoal OutGoal.

In Section 4, we required the premises of an inference rule to have proofs in order to build

a proof for the conclusion. Here, an inference rule tactic will only complete one step of the

proof. The input goal specifies the formula to be proven and the output goal specifies the

subgoals (premises of an inference rule) which still need to be proven after a rule is applied.

The interpreter can then take control to direct the remaining search to achieve the incomplete

subgoals. The basic form of a tactic is illustrated by the following example for /\-I.

r u l e and-i-tac (proofgoal (A and B) (and-i P i P2))
(andgoal (proofgoal A P i) (proofgoal B P2)).

It can be applied whenever the formula in the input goal is a conjunction. Since there are two

subgoals which must both be completed, the output goal is specified using andgoal, which is

later handled by clause (8) from the GoalRed module.

We will use another predicate, called proof (similar to the proof predicate in Section 5) to

represent discharged assumptions. As assumptions are discharged, clauses of the form (proof

A PI will be added to the goal structure and eventually to the program as in the following

definite clause for the >-I rule.

r u l e imp-i-tac (proofgoal (A imp B) (imp-i P))
(a l lgoa l PA\ (impgoal (proof A PA) (proofgoal B (P PA)))) .

30 6.2.1 Inference Rules as Tactics

These proof clauses, once they are added to the program by clause (12) from the GoalRed

module are examined by many of the tactics for elimination rules which build upon the proofs

contained in them, and add these larger proofs to the program in the form of new proof

clauses. For example the tactic for the A-E rule looks for a program clause of the form (proof

(A and B) P).

r u l e and-e-tac (proofgoal C PC)
(impgoal (proof A (and-el P))

(impgoal (proof B (and-e2 P)) (proofgoal C PC))) :-
proof (A and B) P.

The two new clauses (proof A (and-el PI) and (proof B (and-e2 PI) become part of the

output goal. They will then be added to the program also. The remaining inference rules are

given below. We use the constant perp of type boo1 to represent the formula I.

r u l e or- i- tac (proofgoal (A o r B) (or - i P))
(orgoal (proofgoal A P) (proofgoal B P)) .

r u l e f o r a l l - i - t a c (proofgoal (f o r a l l A) (f o r a l l - i P))
(a l l g o a l T\ (proof goal (A T) (P T)) .

r u l e ex i s t s - i - t ac (proofgoal (e x i s t s A) (ex i s t s - i P))
(ex is t sgoal T\ (proofgoal (A T) P)) .

r u l e neg-i-tac (proofgoal (neg A) (neg-i P))
(a l lgoa l PA\ (impgoal (proof A PA) (proofgoal perp (P PA)))).

r u l e or-e-tac (proofgoal C (or-e P P i P2))
(andgoal (a l l g o a l PA\ (impgoal (proof A PA) (proofgoal C (PI PA))))

(a l lgoa l PB\ (impgoal (proof B PB) (proofgoal C (P2 PB))))) :-
proof (A o r B) P.

r u l e imp-e-tac (proofgoal C PC)
(impgoal (proof B (imp-e P PA)) (proofgoal C PC)) :-

proof (A imp B) P, proof A PA.

r u l e fo ra l l - e - t ac (proofgoal C PC)
(ex i s t sgoa l T\ (impgoal (proof (A T) (fo ra l l - e P))

(proofgoal C PC))) :-
proof (f o r a l l A) P.

r u l e exists-e- tac (proofgoal C (ex is t s -e P PC))
(a l l g o a l T\ (a l lgoa l PA\ (impgoal (proof (A T) PA)

(proof goal C (PC T PA)) 1)) : -
proof (e x i s t s A) P.

r u l e neg-e-tac (proofgoal perp (neg-e P i P2)) t ruegoal :-

proof (neg A) P i , proof A P2.

6.2.2 A Proof Editor

r u l e perp-tac (proofgoal A (contra PA))
(a l l g o a l P\ (impgoal (proof (neg A) P) (proof goal perp (PA P) 1)) .

r u l e close-tac (proofgoal A P) t ruegoal :- proof A P.

6.2.2 A Proof Editor

Providing a means for accommodating user interaction is one of the strong points of tactic

theorem provers. One way to provide an interface to the user in this paradigm is by writing

tactics that request input. A very simple tactic for this purpose is as follows.

prove query (proofgoal A P) OutGoal :-
w r i t e A , wri te "Enter t a c t i c : ", read Tac.
prove Tac (proofgoal A P) OutGoal.

Here we have a tactic that, for any atomic input goal, will present the formula to be proved

to the user, query the user for a tactic to apply to the input goal, then apply the input

tactic. We restrict its application to atomic goals so that the GoalRed clauses will break down

compound goals and present the subgoals one by one to the user. Note that the wr i t e and

read predicates used here are outside the logic of hereditary Harrop formulas, yet they are

necessary for a practical proof editor. As in Prolog, (wri te A) prints A to the screen and will

always succeed and (read A) prompts the user for input and will succeed if A unifies with the

input.

Using this tactic, the following tactic, named in t e rac t ive , represents a proof editor for

natural deduction for which the user must supply all steps of the proof.

prove i n t e r a c t i v e InGoal OutGoal :- prove (repea t query) InGoal OutGoal.

Note that the query tactic only operates on atomic goals. This means that any assumptions

that have been discharged along the way (causing them to become part of an impgoal structure)

must be added to the current program using definite clause (12) before the query tactic can

be attempted. A practical interactive prover needs to present these assumptions to the user

so that it is possible to work forward from the assumptions in addition to backward from the

conclusion. One way to add this capability is to use the following goal reduction clause in

place of (12) during interactive proof construction.

prove Tac (impgoal D InGoal) OutGoal :-
w r i t e "Adding", wr i t e D ,
(D => (prove Tac InGoal OutGoall)),
wr i t e "Removing", wr i t e D ,
goalreduce (impgoal D OutGoall) OutGoal;
wr i t e "Removing", wr i te D , f a i l .

32 6.3 A Tactic Theorem Prover

This clause will inform the user of the clause that is being added to the program, which

will then be available during the execution of the tactical expression Tac. If the tactical

expression is completed successfully (i . e . at the meta-interpreter level the goal (prove Tac

InGoal OutGoal) succeeds), the user is informed that D is no longer available. If OutGoal

still contains subgoals to be completed, the task of completing them must be accomplished in

the program environment that no longer contains D (unless it is added again). D also becomes

unavailable in the case when the goal fails during the execution of the tactical expression. The

user is notified and the definite clause as a whole fails.

These additions to the tactic prover will still not be sufficient, in general, for interactive

theorem proving in a natural deduction setting. For example, if there is more than one con-

junction among the discharged assumptions, the A-I rule will be applicable in more than one

way. The user needs the capability to specify which formula to apply the tactic to. One way

to solve this problem is to extend the program with inference rule tactics that request input

from the user. Since tactics are modular, this is easily accomplished by adding to NDrules or

creating a new module with tactics such as:

r u l e and-e-query (proof goal C PC)
(impgoal (proof A (and-e I P))

(impgoal (proof B (and-e:! P)) (~ r o o f ~ o a l C PC))) :-
wri t e "Enter conjunction:", read (A and B), proof (A and B) P

The user must then enter enough information so that the input will unify with the desired

conjunction.

All of the definite clauses above will be grouped in a module called ProofEd. In general,

proof editors will be specific to the proof system that is being implemented. The above ex-

amples for natural deduction illustrate that the tactic paradigm provides flexibility in writing

such proof editors.

6.3 A Tactic Theorem Prover

We can now define the top level module for the natural deduction theorem prover. This
program will be named TacProver and contains only the following definite clause.

prove-top Tac InGoal OutGoal :-
(Tac t i ca l => (GoalRed => (NDrules => (ProofEd => (prove Tac InGoal OutGoal))))).

As stated in Section 2, the use of a module name in a definite clause stands for the set of all

of the definite clauses in that module.

6.4 Defining New Tactics and Tacticals 33

Using this program, we can, for example, attempt to prove some formula A with the

i n t e r a c t i v e tactic. This entails trying to establish

TacProver k I prove-top in t e rac t ive (proof goal A P) t ruegoal .

The P of the goal formula is an existentially quantified variable i .e . it is a logic variable that

will be instantiated to a proof (or partial proof) if the interpreter succeeds on this goal.

In the next subsections we will discuss other tactics that may be used to extend the natural

deduction theorem prover specified by TacProver. To include them, we can either import them

by including them as in the above prove-top definite clause, or we can access them during the

proof process as will be discussed in Section 6.4.3.

6.4 Defining New Tactics and Tacticals

So far we have presented the core of a tactic style theorem prover for natural deduction in-

cluding the inference rule tactics and a facility for interactive theorem proving. We will now

describe some possibilities for adding new tactics and tacticals to enhance the proof environ-

ment.

6.4.1 Induction

There are many other inference rules that we could add to increase the capabilities of our

natural deduction theorem prover. Like the main core of inference rules, new rules can be added

as basic tactics. In this section, we discuss the addition of induction rules. We present inference

rules for induction on different kinds of structures. We will also want to add information about

the relations and operations on these structures to the theorem proving environment. Here we

discuss only the induction inference rules, and illustrate the form that these new rules take in

the tactic setting.

An inference rule for non-negative integer induction in the natural deduction proof system

might look something like the following where the base case and the inductive case specify two

separate subproofs.

We translate it to the following definite clause.

rule induction (proofgoal (forall A) (ind Pi P2))
(andgoal (proofgoal (A 0) Pi)

6.4.2 Compound Tactics

(a l lgoa l N\ (a l lgoa l P\ (impgoal (proof (A N) P)
(proofgoal (A (N + 1)) (P2 W P)))))) .

In a similar manner, we can specify definite clauses for induction over other structures. For

example a rule for induction on lists could be specified as follows.

r u l e l i s t - i nduc t ion (proofgoal (f o r a l l A) (l i s t - i n d P1 ~ 2))
(andgoal (proofgoal (A n i l) P i)

(a l l g o a l L\ (a l lgoa l PL\ (impgoal (proof (A L) PL)
(a l lgoa l X\ (proof goal (A (cons X L)) (P2 L PL X) 1)) 1) 1.

6.4.2 Compound Tactics

Another way to add to the tactic database is to use existing tactics and tacticals to define

compound tactics. Such tactics provide partial automation by applying some combination of

inference rules. They range in complexity from automating simple details of proof construction

to encoding more complex proof heuristics and strategies. The interactive tactic was a simple

example of a compound tactic. Another example is the following tactic, named i n t r o which

does backward construction of a proof by applying some of the introduction rules to a formula

before giving control to the user.

prove i n t r o InGoal OutGoal :-
prove (repea t (ore lse imp-i-tac (o re l se and-i-tac (o re l se ex is t s - i - tac

(o re l se f o r a l l - i - t a c query))))) InGoal OutGoal.

It is also possible to write tactics which integrate other programs written in the logic

programming language. For example, in a tactic theorem prover for the LKC system of Sec-

tion 5, if the automatic theorem prover presented there were available, the automatic tactic

below could be included, so that the tactic prover has access to completely automated proof

construction.

prove automatic (proofgoal (Gamma --> Delta) P) t ruegoal :- proof (Gamma --> Delta) P .

This tactic works by "calling" the proof predicate of the automatic theorem prover to complete

the proof of the sequent. Automatic construction of proofs in LKC also provides an example

of a tactic that can be constructed from existing tactics. If there were tactics corresponding

to each LKC rule, the following tactic would furnish the same automation.

prove automatic InGoal OutGoal :-
prove (repea t (o r e l s e i n i t i a l - t a c and-1-tac and-r-tac or-r-tac or-1-tac

imp-r-tac imp-1-tac neg-1-tac neg-r-tac f o r a l l - r - t a c
exists-1-tac (then exis t s - r - tac f oral l -1-tac)
ex is t s - r - tac fora l l -1- tac))

InGoal OutGoal .

6.4.3 Accessing Modules Dynamically 35

For readability, we use the abbreviation (o re l se Tacl . . . Tac,) to represent (o re l se Tacl . . .
(o re l se Tac,-l Tac,) . . .) . Note that the expression (then ex is t s - r - tac f orall-1-tac)

has the effect of applying both the 3-R and V-L rules. As was argued in Section 5 this com-

bination is essential for insuring the completeness of the theorem prover and the termination

of the program for provable sequents. In the tactic setting, we do not need a separate definite

clause to handle this case as we did in the direct implementation.

6.4.3 Accessing Modules Dynamically

One can imagine that with a growing library of tactics, it might be desirable to organize tactics

into modules containing sets of related tactics and be given the flexibility to access only those

that are needed at different points during proof construction. This selective use of tactics can

be achieved using the AUGMENT search operation which allows dynamic access of modules.

To do this we first add a new tactical called usermodule which takes a module name and

a tactical expression, and adds the module to the current program so that the new definite

clauses are available during the execution of the tactical expression. To add this capability we

add the definite clause below to the Tac t i ca l s module.

prove (use-module Mod Tac) InGoal OutGoal :- (Mod => (prove Tac InGoal OutGoal)).

If this clause is used in a setting where the current program is the set of clauses Prog, then after

a BACKCHAIN on this clause followed by an AUGMENT operation which adds the module

Mod we are left with the following meta-level sequent to establish.

Prog,ModFI (prove Tac InGoal OutGoal).

The effect here is similar to that described for discharging assumptions. In this case, all of

the clauses in Mod will be available during the execution of the tactical expression Tac. Upon

completion of Tac there may be subgoals remaining in OutGoal. Unless added again, the

clauses of Mod will not be available during the completion of these subgoals.

Note the distinction between theorem proving in the meta-language (Fr) and theorem

proving in the object language (establishing t ruegoal under the rules for the NK system).

Successful completion of Tac means that the above meta-sequent has been proven by the

interpreter. If OutGoal still contains incomplete subgoals, then at the object level, the formula

has not yet been proven. In this case, the object-level search for a natural deduction proof

may continue in the previous environment that did not contain Mod.

36 7 Proof Manipulations

7 Proof Manipulations

One important characteristic of all of the inference rules and theorem provers that we have

been discussing in this paper is that they can construct proof terms as they prove theorems.

There are many options for representing proof terms and example representations were given

whenever inference rules were presented. In this section, we show that such proof objects can

be useful by presenting some procedures that employ these objects for different purposes.

From the straightforward declarative interpretations, we saw that all of the logic program-

ming renderings of the inference rules and theorem provers that have been presented are quite

natural, and that the proof terms represent fairly natural encodings of the application of these

inference rules. The first procedure we discuss below takes this idea a step further and pro-

duces English text, a more natural rendering of these proof terms. This procedure takes the

form of a simple mapping from proof terms to strings of text. The second procedure below

constructs Craig style interpolation formulas based on the structure of proof terms. This is

followed by a discussion of some possibilities for constructing programs from proofs.

The remaining procedures involve transformations of proofs to different proofs. We discuss

how one might go about specifying algorithms for proof normalization of natural deduction

proofs and cut-elimination for sequential proofs. Finally, we discuss some possibilities for proof

by analogy, in this case using one proof as a guiding proof to construct a structurally analogous

proof of a related theorem.

All of these procedures proceed by recursively descending through the structure of proof

terms. At many points in these algorithms, we need to know the formula or sequent associated

with a proof or subproof. In the formulas-as-types paradigm, this information corresponds

to the type of the object. On one hand, we may be given the formula or sequent as an

additional argument along with its proof object, but we still might need to know the types of

the subproofs. This is the situation in many of the programs presented in this section. In each

case, we are able to get the type of subproofs from the type of the input proof by using the

proof program in its proof-checking capacity. On the other hand, for the case when the type

of the proof is not explicitly given, the question is whether or not it can be obtained from the

proof. It might be contained explicitly in the proof term, or it might be possible to deduce it.

We have discussed the proof program in terms of theorem proving and proof-checking. We can

now ask if it is possible to use it for "type inference" where the proof object is specified at the

onset and the formula or sequent is not (i . e . is a logic variable). Using the proof representation

we have chosen, this is usually not possible. Proof terms, as we have specified them, store the

complete structure of proof trees, but contain very little type information. For example, using

the LKC prover we obtain the proof term

(a n d 2 (or-r (fo ra l l -1 (i n i t i a l (q (f b))))))

7.1 Building Explanations from Proofs 3 7

for the sequent ~ (a) /\ V x q (x) -+ V y s(y) V q (f (b)) . But note that this also is a proof for

v x q (x) A r --. q (f (b)) V z.

There is clearly a tradeoff between the amount of information stored in proof terms and the

extra work that must be done to obtain type information. In this presentation, we emphasize

the declarative reading of the programs and continue to opt for economy and readability in

proof objects. Thus we include the type of proofs as an argument, and demonstrate how we

use the proof predicate to associate subproofs with types. In terms of program execution, this

extra computation is often inefficient, so it is important to be aware of other possibilities.

7.1 Building Explanations from Proofs

We will illustrate the construction of explanations using proof terms as generated by the LKC

theorem prover of Section 5. These proof terms can be viewed functionally. In the case of

proof explanation, each inference rule in a term can be thought of as being a function from

text to text. Under this interpretation, a proof term for a sequent would be interpreted as a

textual argument for the proposition represented by that sequent or formula. For example, a

term of the form (or-1 P1 P2) generated by the definite clause for the V-L rule:

proof (Gamma --> Delta) (or-1 Pi P2) :-
member-and-rest (A or B) Gamma Gammai,
proof ([A 1 Gammal] --> Delta) PI,
proof ([B 1 Gammal] --> Delta) P2.

represents a proof using case analysis. Assume that P i is interpreted as T e x t l which argues

that D e l t a follows from A and Gammal, and that T2 is interpreted as T e x t 2 which argues that

D e l t a follows from B and Gammal. The interpretation of (or-1 P1 P2) would then need to be

an argument that Delta follows from (A or B) and Gammal. This is easily done if we make the

interpretation of or-1 be the function which takes T e x t l and T e x t 2 into the following text.

We have two cases. Case 1: Assume A. T e x t l Case 2: Assume

B. T e x t 2 Thus, in either case, we have De l t a .

We will have one logic programming definite clause corresponding to the lexical interpre-

tation of each inference rule. Using the above interpretation, the following is the clause for the

V-L rule.

explain (Gamma --> Delta) (or-1 Pi P2) Text :-
member-and-rest (A or B) Gamma Gammal,
explain ([A I Gammai] --> Delta) Pi Texti,
explain ([B I Gammai] --> Delta) P2 Text2,
append [(boolstr "Assume"),A I Textl]

[(boolstr "AssumeU),B I Text21 Text3,
append Text3 [(boolstr "Thus in either case we have") 1 Delta] Text.

38 7.1 Building Explanations from Proofs

There are several technical details to note about this program. First of all we will only be

concerned here with "lexicalizing" inference rules. Formulas themselves will be left as formulas.

Also, we represent explanations as lists of formulas (items of type bool) . We define a function

b o o l s t r which acts as a coercion function from strings to type bool (i.e. has type s t r i n g ->
bool) so that both formulas and strings may appear in the list. We can then write a program

which takes an explanation and prints it out in a slightly more readable form without the list

notation, string quotations, or coercion functions.

The above clause is actually the same as the clause specifying the V-L rule in the LKC

prover, except that the explain predicate has an extra argument for the explanation. Opera-

tionally, the explain program will have both a theorem prover and proof-checker within it. If

only the sequent is specified, the explanation and proof will be constructed simultaneously. If

the sequent and proof are specified, the program will act as a proof-checker at the same time

that it is building an explanation. This proof-checking is an example of how we obtain the

"type" of the subproofs given a proof object and its type. In this clause, there may be more

than one disjunction in Gamma. The member-and-rest predicate extracts the first one, and the

next two subgoals attempt to verify that the subproofs P1 and P2 are proofs of the sequents

with the V-L rule applied to the chosen disjunction. If these subgoals fail, backtracking takes

place, and the member-and-rest predicate must find another disjunction, continuing until the

correct one is found.

In sequent proof systems, recall that in proof terms of the form (e x i s t s - 1 P) and (f ora l l -r

P) corresponding to the 3-L and V-R rules, the proof P of the premise is an abstraction

from terms to proofs (has type i -> proof-object). The explanation for the correspond-

ing premise, Text, will also be an abstraction over terms (will have type i -> (l i s t boo l)) .

In these cases, we explain the proof using an arbitrary term obtained by introducing a new log-

ical variable, Var, and applying the explanation to it. Then, using the following explanations,

the clauses for these rules would be as below.

Explanations:

3-L: Choose Var such that (A Var). (Text Var)

V-R: (Text Var) Since Var was arbitrary we have Delta.

Clauses:

explain (Gamma --> ~ e l t a) (exists-1 P) Text :-
member-and-rest (ex i s t s A) Gamma Gammal,
p i T\ (explain ([(A T) I Gamma11 --> Delta) (P T) (Text I T)) ,
append [(boolstr "Choose"), (var Var) , (boolstr "such that"), (A ~ a r)]

(Text1 Var) Text.

explain (Gamma --> Delta) (forall-r P) Text :-
member-and-rest (f orall A) Delta Delta1 ,

7.2 Finding Interpolants

p i T\ (explain (Gamma --> [(A T) 1 Deltal]) (P T) (Text1 T)),
append (Text1 ~ a r) [(boolstr " ~ i n c e ") , (var ~ a r) ,

(boolstr "was arbitrary we have") 1 Delta] Text

Note that we have introduced the additional coercion function: v a r : i -> boo1 to allow

terms of type i to appear in explanations. The following is a complete explanation obtained

from a proof term for the formula which states that a reflexive transitive relation is sym-

metric on its domain: VxVyVz (R(x, y) A R(y, z) > R(x, z)) A VxVy (R(x, y) > R(y, x)) >
Vx(3y R(x, Y) 3 R(x, x)).

Assume ((f o r a l l X\ (f o r a l l Y\ (f o r a l l Z\ (((r X Y) and (r Y Z)) imp (r X Z)))))
and (f o r a l l X\ (f oral1 Y\ ((r X Y) imp (r Y X))))) .
Assume (e x i s t s Y\ (r V l Y)). Choose V2 such that (r V i V2).
By modus ponens, we have (r V2 Vi) . Hence, ((r V i V2) and (r V2 Vi)) .
By modus ponens, ue have (r V l V1). Since V i was arbitrary, we have
(f o r a l l X\ (e x i s t s Y\ (r X Y)) imp (r X X)) .

7.2 Finding Interpolants

In this section, we describe a program to construct an interpolation formula from proof terms

representing proofs for Craig-sequents as defined in [Smullyan 681. A formula X is called an

interpolation fornzula for a sequent r ---t A if all predicates and constants of X occur in both

r and A, and r - X and X -+ A are both provable. Craig's Interpolation Lemma states

that for any provable sequent - A, if I' and A have at least one predicate in common,

then it has an interpolation formula. We introduce a new set of definite clauses that will specify

a theorem prover for Craig's sequent style proof system. In addition, we add a third argument,

as we did in the explain program, in this case for the interpolation formula.

Craig-sequents are similar to Gentzen sequents, except that they contain an interpolation

formula. When a Craig-sequent I' -t X -t A is provable in this system, this means that the

ordinary sequent r --+ A is provable and X is its interpolant. In the proof system presented

in [Smullyan 681, the negation normal form of the formulas in the sequent is constructed

"during" the proof process. For example, if a formula l (A V B) appears on the left of the

sequent, the A-L rule is applied to the formula - A A 1B . To simplify matters, we will assume

all formulas in the sequent are initially in negation normal form. The resulting program could

easily be expanded to the more general system. The inference rules for this system, and thus

their definite clause specifications are similar to those in the Gentzen LI< system. As examples,

the A-R and V-R rules are given below. In the V-R rule, the proviso that y cannot appear in the

conclusion also applies to the interpolant X since the interpolant can only contain constants

that appear on both sides.

40 7.2 Finding Interpolants

I ' + X + A , A I ' - t Y - t B , A
r + X A Y + A A B , A

A-R
r -t X -t [y/x]A, A
I ' + X + V x A , A V-R

They may be specified as follows with the interpolant as the third argument.

interpolate (Gamma --> Delta) (and-r PI P2) (X and Y) :-
member-and-rest (A and B) Delta Deltai ,
interpolate (Gamma --> [A I Deltai]) P i X ,
interpolate (Gamma --> [B I Deltai]) P2 Y .

interpolate (Gamma --> Delta) (f orall-r P) X :-
member-and-rest (f o ra l l A) Delta Deltal ,
p i T\ (interpolate (Gamma --> [(A T) I Deltai]) (P T) X) .

For the 3-R and V-L rules, there is more than one possibility for the interpolant depending

on whether or not the substitution term still appears on both sides of the conclusion after the

rule is applied. The rules for 3-R, for example, are as below where the first one applies when

t does not occur in X at all, or if it does, it also occurs in I' and 32 A, A, i .e . if t occurs in the

interpolant of the premise, then after the rule is applied, t must still occur on both sides of the

conclusion. The second applies when t, which appears on the right of the premise, does not

occur on the right of the conclusion. As a result t cannot appear in the interpolation formula.

These conditions represent a new kind of proviso that must be satisfied by the interpolation

program.

We can represent these two possibilities using the following definite clauses.

interpolate (Gamma --> Delta) (exists-r P) X :-
member-and-rest (exis ts A) Delta Deltai,
interpolate (Gamma --> [(A T) I Deltail) P X .

interpolate (Gamma --> Delta) (exists-r P) (exists X) :-
member-and-rest (exis ts A) Delta Deltai,
interpolate (Gamma --> [(A T) I Deltall) P (X T).

To satisfy the conditions, we must insure that only the correct one will be applied. We will

show that such a proviso can be satisfied by requiring queries of a particular form. We illustrate

the form these queries take with an example (from [Gallier 861). Suppose we have the proof

(and-1 (or-r (forall-1 (i n i t i a l (q (f b))))))

7.3 Extracting Programs from Proofs 41

for the sequent p(a) A Vx q(z) - Vy s(y) V q(f (b)). To find the interpolant, we form a query

by taking the universal closure (in the meta-language) over all of the predicates and constants

in the sequent, and then specifying which ones can appear in the interpolant (i . e . those that

appear in both sides of the sequent). In our example, only q appears on both sides. We query

the logic programming interpreter with the following goal.

(p i P\ (p i A\ (p i Q\ (p i S\ (p i F\ (p i B\
(interpolate

([((P A) and (fora l l X\ (q X)))] --> [((fora l l Y\ (S Y)) or (Q (F B)))])
(and-1 (or-r (foral l -1 (i n i t i a l (Q (F B))))))
(I q))))))))

Upon successful completion of this goal, none of the variables of the universal closure will

appear in I since I is within their scope, and only Q will appear at all in the interpolation

formula (I 9). As a result I will be an abstraction over the predicate Q. We can view this as

"permitting" Q to appear in the interpolation formula, while preventing the appearance of any

of the other constants or variables. Note that we can similarly view the subgoal

interpolate (Gamma --> [(A T) I Del ta i l) P (X T)

in the second definite clause for the 3-R rule as permitting an additional constant T to appear

in the interpolation formula of the subtree above the conclusion of this rule.

7.3 Extracting Programs from Proofs

One way we have been viewing proofs of formulas is that the proof exhibits an element of

the type specified by the formula. Certain formulas such as A > B can be considered to

have "functional type" and in certain cases, when the proof contains "constructive content,"

we can view their proofs as functions from elements of type A into elements of type B. We

would like to be able to use the proof terms to extract executable code for these functions.

Such program extraction from proofs provides a method for verified programming [Bates &
Constable 85, Martin-Lijf 82, Manna & Waldinger 801. We show how programs might be

extracted in the logic programming setting. We should be able to apply the mechanisms

for extracting programs from proofs in the logic programming setting to proof objects with

"constructive content" from many different logics. In the realize program, each definite

clause will specify the code fragment associated with an inference rule. This investigation is

preliminary and we illustrate it on a simple propositional example.

Each logical connective corresponds to a type constructor. For example, we mentioned

that A > B corresponds to a function type i.e. A -+ B. The definite clause below constructs

the function corresponding to the proof of (A imp B). Here, functions are represented by

A-abstractions in the A-calculus of our logic programming language.

42 7.3 Extracting Programs from Proofs

r e a l i z e (A imp B) (imp-i P) Prog :-
(p i Q\ (p i X\ ((r e a l i z e A Q X) => (rea l i ze B (P Q) (Prog X))))) .

Here, Prog is a function from A to B if for any program X that produces an element of type

A, (Prog X) returns an element of type B. Note the equating of formulas and types implicit

in this definite clause. Prog, a function from type A to type B, is constructed based on the

structure of P, a function from proofs of formula A to proofs of formula B.

We view the formula (A and B) as the product type where the constructor p a i r builds

objects of this type, and the destructors f st and snd extract elements of A and B, respectively.

The formula (A o r B) represents the disjoint union type where the constructors in1 and inr

construct elements of the disjoint union type from elements of A and B, respectively. The
V-E rule generates conditional statements from disjoint union types (A o r B), which allow

branching in one of two ways depending on whether an object is from A or B. The construct

i s - l e f t is the test used to determine if an object originates from the left or right of the

disjunctive type. The use of these constructs is illustrated by the definite clauses of the

following program.

r e a l i z e (A and B) (and-i Pi P2) (pai r X i X2) :-
r e a l i z e A P i X i ,
r e a l i z e B P2 X2.

r e a l i z e (A or B) (or- i i P) (in1 X) :- r e a l i z e A P X .

r e a l i z e (A or B) (o r 3 2 P) (i n r X) :- r e a l i z e B P X .

r e a l i z e (A imp B) (imp-i P) Prog :-

(p i q\ (p i X\ ((r e a l i z e A q X) => (rea l i ze B (P 4) (Prog X))))) .

r e a l i z e A (and-el P) (f s t X) :- rea l i ze (A and B) P X .

r e a l i z e B (and-e2 P) (snd X) :- rea l i ze (A and B) P X .

r e a l i z e C (or-e P1 P2 P3) (i f (i s - l e f t Xi) (X2 Xi) (X3 Xi)) :-

r e a l i z e (A o r B) P i X i ,
(p i Q\ (p i X\ ((r e a l i z e A Q X) => (rea l i ze C (P2 Q) (X2 X))))) ,
(p i Q\ (p i X\ ((r e a l i z e B X) => (rea l i ze C (P3 Q) (X3 X))))) .

r e a l i z e B (imp-e P 1 P2) (XI X2) :-
r e a l i z e (A imp B) P i X i ,
r e a l i z e A P2 X2.

Given the formula (a V (y A 2)) > ((a V y) A (x V z)) and its proof

(imp-i P\ (or-e P Q\ (and-i (o r - i i Q) (or- i l 9))
Q\ (and-i (or-i2 (and-el 4)) (or-i2 (and-e2 Q)))))

7.4 Proof Normalization and Cut Elimination

we obtain the program

X\ (i f (i s - l e f t X)
(pair (in1 X) (in1 XI)
(pair (inr (f st X)) (inr (snd X)))) .

7.4 Proof Normalization and Cut Elimination

Both proof normalization in natural deduction and cut-elimination in sequent systems are

procedures which, given a proof, perform a transformation on the proof to obtain a new

proof. Such proof transformations involve examining the structure of a proof and altering

it as necessary. The transformations that are at the heart of these procedures can easily be

specified in our logic programming setting by unifying over proof terms, breaking them up so

that new proofs may be composed from the subproofs. We do not present the entire algorithms

here-only some of the definite clauses that illustrate the central ideas.

Proof normalization, as presented in [Prawitz 651, is based on proof reductions that are

performed when a formula occurrence is a conclusion of an introduction rule and the premise

of an elimination rule. For example, the two below are reductions for A and > with the initial

proof on the left and the reduced proof on the right.

E l z2
A B

A A B

We define a reduce predicate used to specify definite clauses to apply these reductions

to proof terms. There are three arguments to this predicate: a formula and two proofs.

The second argument is the initial proof of the specified formula, and the third argument is

its reduced proof. The subgoals are calls to the proof predicate. Again, proof-checking is

necessary to insure that the subproofs are proofs of the appropriate formulas in order for the

reduction to take place. The definite clauses for the transformations above, and for all the

other connectives are as follows.

44 7.4 Proof Normalization and Cut Elimination

reduce A (and-e (a n d 2 P i P2)) P i :-
proof (A and B) (and- i P i P2) .

r e d u c e B (and-e (and- i P i P2)) P2 :-
proof (A and B) (and-i P i P2) .

r e d u c e B (imp-e P i (imp-i P2)) (P2 P I) :-
proof A P i ,
p roof (A imp B) (imp-i P2) .

r educe C (or-e (o r 2 P I) P2 P3) (P2 P I) :-
proof A ,PI ,
p i P\ ((p roof A P) => (proof C (P2 P))) .

r e d u c e C (or-e (o r - i P i) P2 P3) (P3 P i) :-
proof B P i ,
p i P\ ((p roof B P) => (proof C (P3 P I)) .

r e d u c e (A T) (f o r a l l - e (f o r a l l - i P)) (P T) :-
proof (f o r a l 1 A) (f o r a l l - i P) .

r e d u c e B (e x i s t s - e (e x i s t s - i P I) P2) (P2 T P I) :-
proof (A T) P I ,
p i Y\ (p i P\ ((proof (A Y) P) => (proof B (P2 Y P)))) .

This algorithm in an illustration of how "proof functions" may be used. For example, in 3-

reduction, the argument to imp-i is a proof function, in this case a function that takes proofs

of A to proofs of B. But P1 is a proof of A, so a simpler proof (the "reduced proof" of B) is

obtained by applying P2 to Pi directly. In V-reduction, P is an abstraction over terms which

gets applied to the term T that appears in the formula (A T).

In proof normalization for intuitionistic logic, in addition to the above reductions, we

also need clauses to remove occurrences of an application of the 11 rule, followed by an

application of an elimination rule, and clauses to reduce the length of maximum segments

(series of repeated occurrences of a formula in a string of applications of V-E and 3-E). The

former are fairly straightforward. We will demonstrate the latter. These proof transformations

have the following form.

C1 - C2 - C3
A V B F F

C 2 - - C3
A F C4 F C4 * A V B C C

C

7.4 Proof Normalization and Cut Elimination

In both cases, there are several possibilities for the last inference rule. (If it does not branch

then Cq will be empty.) Below are the definite clauses for the case when this last rule is 3-E.

reduce C (imp-e (or-e PI P2 P3) P4)
(or-e Pi (X\ (imp-e (P2 X) P4)) (X\ (imp-e (P3 X) P4)) 1.

reduce C (imp-e PI (or-e P2 P3 P4))
(or-e P2 (X\ (imp-e Pi (P3 XI)) (X\ (imp-e P l (P4 X)))) .

reduce D (imp-e (ex i s t s - e PI P2) P3)
(ex i s t s - e Pi (X \ (imp-e (P2 X) P3))) .

reduce D (imp-e PI (ex i s t s - e P2 P3))
(ex i s t s - e P2 (X\ (imp-e PI (P3 X))))

Similar clauses are needed for each of the other possibilities. In these reductions the structure of

the "proof functions" is altered. As a result, the scope of the variable X bound by A-abstraction

changes.

In implementing the complete normalization algorithm given by the proof of normalization

for intuitionistic logic in [Prawitz 651, the order in which the above reductions get applied

is very important. Although insuring the correct order is non-trivial, it should be possible

to specify a complete algorithm that operates by repeatedly searching for possible reductions,

checking to see whether these reductions can be applied without violating the required ordering,

and applying only the appropriate ones, continuing until there are no more possible reductions.

In cut-elimination [Gentzen 351 (discussed here in the context of the LK system), instead

of reductions, each instance of the cut rule is "pushed" up the tree as far as possible, until it

"disappears" at the leaves. There are several cases to consider in order to push an application

of a cut past other inference rules. The cases depend on whether the cut formula is involved in

the inference rules immediately preceding the cut in both the left and right premises, just one

of the premises, or neither of the premises. We first consider some cases when the cut formula

is involved in both inference rules immediately preceding the cut. The transformations below

are those that apply when the cut formula is of the form A A B and Qx A respectively. (We

only show one possibility for the A-L rule. The other is analogous.)

7.4 Proof NormaIization and Cut Elimination

C Cz C3
r - A , A r - A , B A , @ - A A-R A-L +

I? - A , A A B A A B , O - A
I?,@ - A, A cut

C1 C3
r - A , A A , O -A cut I ' ,@-A,A

C C2
r - A> [XIYIA v - R [~ / t ~ ~ , @ - A [YI~ICI cz V-L VxA,O -A I' - A , [x/t]A r - A , V x A [x/t]A, O - A

cut cut j r , O - A , A r ,0 - A , A

The cut-elimination program has one predicate called cut-slim which takes a sequent and

two proofs. Whenever the first proof is a proof of the sequent, then the second proof will be

its corresponding cut-free proof. This procedure operates by examining the structure of the

last inference rule in a proof tree, and whenever there is an application of the cut rule, either

reducing the size of the cut formula (as in the transformations above), or pushing the cut

formula further up the tree (as will be demonstrated next), then repeating the same procedure

until all applications of the cut rule are eliminated. The definite clauses for the transformations

above, and for the others that occur when the cut formula is involved in the inference rules

of both premises are given below. The third definite clause (for the V transformation above)

illustrates the instantiation of a proof term that is an abstraction over terms.

cut-elim (Sigma --> Phi) (cut (and-r P i P2) (and-1 P3)) P4 :-
proof (Gamma --> [A I Delta]) P i .
proof (Gamma --> CB I Delta]) P2,
proof ([A I Thetal --> Lambda) P3,
d is jo in t -union Gamma Theta Sigma,
d i s j o i n t -union Del ta Lambda Phi ,
cut-elim (cut P i P3) P4.

cut-elim (Sigma --> Phi) (cut (and-r Pi ~ 2) (and-1 P3)) P4 :-
proof (Gamma --> [A I Delta]) P i ,
proof (Gamma --> [B 1 Del t a l) P2,
proof ([B I Theta] --> Lambda) P3,
dis jo in t -union Gamma Theta Sigma,
d i s j o i n t -union Del ta Lambda Phi,
cut-elim (cut P2 P3) P4.

cut-elim (Sigma --> Phi) (cut (fo ra l l - r PI) (f o r a l l - 1 P2)) P3 : -
p i Y\ (proof (Gamma --> [(A Y) I De l ta l) (Pi Y)) ,
proof ([(A T) I Theta] --> Lambda) P2,

7.4 Proof Normalization and Cut Elimination

d i s j oint-union Gamma Theta Sigma,
d i s j oint-union Del ta Lambda Phi ,
cut-elim (Sigma --> Phi) (cut (P i T) P2) P3.

cut-elim (Sigma --> Phi) (cut (or-r P i) (or-1 P2 P3)) P4 : -
proof (Gamma --> [A 1 Delta]) P i ,
proof ([A I Theta] --> Lambda) P2,
proof ([B 1 Theta] --> Lambda) P3,
d is jo in t -union Gamma Theta Sigma,
d i s j oint-union Del ta Lambda Phi ,
cut-elim (cut P i P2) P4.

cut-elim (Sigma --> Phi) (cut (or-r P i) (or-1 P2 P3)) P4 :-
proof (Gamma --> [B I Delta]) P i ,
proof ([A I Theta] --> Lambda) P2,
proof ([B 1 Theta] --> Lambda) P3,
d is jo in t -union Gamma Theta Sigma,
d i s j oint-union Del ta Lambda Phi ,
cut-elim (cut P i P3) P4.

cut-elim (Sigma --> Phi) (cut (imp-r P i) (imp-1 P2 P3)) P4 :-
proof ([A 1 Gamma] --> [B I Delta]) P i ,
proof (Theta1 --> [A 1 Lambdail) P2,
proof ([B I Theta21 --> Lambda2) P3,
d i s joint-union Thetal Theta2 Theta, d i s j oint-union Gamma Theta Sigma,
d i s j oint-union Lambda1 Lambda2 Lambda, d i s joint-union Del ta Lambda Phi ,
cut-elim (cut (cu t P2 P i) P3) P4.

cut-elim (Sigma --> Phi) (cu t (neg-r P i) (nag-1 P2)) P3 :-
proof ([A I ~ m a] --> Delta) P i ,
proof (Theta --> [A I Lambda]) P2,
d i s joint-union Gamma Theta Sigma.
d is jo in t -union Del ta Lambda Phi ,
cut-elim (cut P2 P i) P3.

cut-elim (Sigma --> Phi) (cut (ex i s t s - r P i) (ex is t s -1 P2)) P3 :-
proof (Gamma --> [(A T) I Delta]) P i ,
p i Y\ (proof ([(A Y) 1 Thetal --> Lambda) (P2 Y)) ,
d i s joint-union Gamma Theta Sigma,
d i s joint-union Del ta Lambda Phi ,
cut-elim (cut P i (P2 T)) P3.

In this program, we once again use the proof program for proof-checking when necessary. We

must also check that the left and right of the conclusion sequent are composed of the disjoint

union of the formulas in the left and right of the premises. (This is different than the LKC
rules where all of the formulas in the conclusion appeared in the left and right of two-premise

inference rules.) Note that there is more non-determinism in this program than in others. For

example, Gamma, Delta, Theta, and Lambda are not instantiated when the proof subgoals are

attempted. They must eventually match Sigma and P h i which insures that they are correct,

48 7.4 Proof Normalization and Cut Elimination

but there will most likely be a lot of backtracking before a match occurs.

If none of the above transformations can be performed, this means that the cut formula is

not involved in at least one of the inference rules in the premises of the cut rule. In this case

we can push the application of the cut rule past this inference. We will need definite clauses

to handle every inference rule on both the left and right premise of the cut rule. The following

two inference figures illustrate this transformation for the A-R rule in the right premise and

the 3-L rule in the left premise. In pushing an application of cut past 3-L, we clzoose a new

variable y' such that y' does not appear in the conclusion. Then we replace y with y' in XI.

A,O -A ,B A,@ - A , C
A . @ - A . B A C A-R 3

I?,@ - A , A , B A C cut

C C2 C C3
r - A , A A,@ - A,B r - A , A A,@ - A , C cut cut r,e - A,A, B I'1@ - A,A,C A-R

I ' , O - A , A , B A C

C1 [~ / ~ ' l ~ l C 2
Ix/y]B, I' - A,A

3-L Cz * [x/y11B, I' - A, A A , @ - A
32 B , r - A , A A,@ -A cut

cut Iz/yl]B, I', O - A,A
3 x B,I',@ - A,A 3x B,I',@ - A , A 3-L

The definite clauses corresponding to these inference figures are given below. The clauses for

the other inference rules in each premise may be specified similarly.

cut-elim (Sigma --> Phi) (cut P i (and-r P2 P3)) P4 :-
proof (~ m a --> [A 1 Delta]) P i ,
proof ([A I Theta] --> [B I Lambda]) P2,
proof ([A I Theta] --> [C I Lambda]) P3,
d is jo in t -union Gamma Theta Sigma,
d is jo in t -union Del ta Lambda Phi ,
cut-elim (Sigma --> Phi) (and-r (cut P i P2) (cu t P i P3)) P4.

cut-elim (Sigma --> phi) (cut (ex is t s -1 P i) P2) P3 :-
p i Y\ (proof ([(B Y) I Gamma1 --> [A I Delta]) (Pi Y)),
proof ([A I ~ h e t a l --> Lambda) P2,
d i s joint-union Gamma Theta Sigma,
d is jo in t -union Del ta Lambda Phi ,
cut-elim (Sigma --> Phi) (ex is t s -1 (X \ (cut (P i X) ~ 2))) P3.

An application of the cut rule is eliminated once it gets pushed to the leaves. The following

is an example of a final step in the transformation.

7.5 Constructing Proofs By Analogy

C
I? - A , A A - A

cut 3
I?-A,A

The definite clause specifications for these transformations are straightforward.

cut-elim (Gamma --> [A I Delta]) (cut Pi (i n i t i a l A)) P2 :-
cut-elirn (Gamma --> [A I Delta]) P I P2.

cut-elim ([A I Gamma] --> Delta) (cut (i n i t i a l A) PI) P2 :-
cut-elim ([A 1 Gamma] --> ~ e l t a) P1 P2.

To complete the algorithm, we need definite clauses that traverse past inference rules that are

not applications of the cut rule. These clauses must simply call the cut-elim predicate with

the proofs of the premises as arguments. The program terminates when all instances of the

cut rule have been pushed beyond the leaves of the proof tree.

7.5 Constructing Proofs By Analogy

Proof by analogy has been recognized as a powerful tool used in human mathematical reason-

ing, one that is important yet difficult to incorporate in machine theorem provers [Bledsoe 86,

Bledsoe 871. Though not much has been done in this area, there have been some attempts

to construct analogous proofs based on structural similarities. In [de la Tour & Caferra 871,

abstractions over rules or series of rules are used to capture the generalities in the structure of

a proof that may carry over to other proofs. This requires higher-order variables to represent

"proof schema," which require, at the very least, second-order matching to instantiate. Our

extended logic programming language provides a medium to experiment with such techniques

and algorithms. For example, the "transformation rules" of [de la Tour & Caferra 871 can eas-

ily be implemented in our setting, and the second-order matching that is required to instantiate

them is already available through the higher-order unification of our language.

In [Brock, Cooper & Pierce 861 an analogous resolution proof of a calculus theorem about

the limit of a product is constructed using a proof of a similar theorem about the limit of a sum

as a guiding proof. The analogy is based on structural similarity between terms in the clauses.

In the Nuprl proof system [Constable et al. 861, proof by analogy is considered in the tactic

setting, using "transformation tactics.'' This technique also involves building proofs that are

structurally similar, in this case by starting with one proof and constructing an analogous one

step by step.

We will discuss some simple techniques for this kind of step by step proof analogy in our

setting. We return to the tactic style theorem provers of Section 6. First we add a copy

50 7.5 Constructing Proofs By Analogy

tactical to the T a c t i c a l module. Along with the other tacticals, it will be available to any

tactic prover. It takes as arguments a predicate used in applying tactics (e.g. ru le or p r o v e

from our natural deduction tactic prover), and a goal structure which contains the completed

proof(s) or verifications to be used in building analogous proofs. Thus copy is declared with

the following type.

copy : (t a c t i c a l e x p -> goalexp -> goalexp -> o) -> goalexp -> t a c t i c a l e x p .

A proof is just one kind of structure that can be used in building analogous structures. We

use the more general term "verification" to emphasize that this tactical can be used with any

tactic prover. As an example, we will discuss how it can be used to do proof by analogy in our

natural deduction tactic prover. The copy tactical is defined by the definite clause below:

prove (copy TacPred CopyGoal) InGoal OutGoal :-
copy-verif icat ion TacPred CopyGoal InGoal OutGoal.

where the copy-ver i f i c a t i o n procedure is defined by the following definite clauses.

copy-verif icat ion TacPred (andgoal CopyGoali CopyGoal2)
(andgoal InGoali InGoal2) OutGoal :-

copy-verif i c a t i o n TacPred CopyGoali InGoall OutGoali ,
copy-verif icat ion TacPred CopyGoal2 InGoal2 OutGoal2,
goalreduce (andgoal OutGoali OutGoal2) OutGoal.

copy-verif icat ion TacPred (orgoal CopyGoali CopyGoal2)
(orgoal InGoali InGoal2) OutGoal :-

copy-verif icat ion TacPred CopyGoali InGoali OutGoal;
copy-verif icat ion TacPred CopyGoal2 InGoal2 OutGoal.

copy-verif i c a t i o n TacPred (a l l g o a l ~opyGoal) (a l l g o a l InGoal) OutGoal : -
p i T\ (copy-verif i c a t i o n TacPred (CopyGoal T) (InGoal T) (OutGoali T)) ,
goalreduce (a l l g o a l 0utGoali) OutGoal.

copy-ver i f ica t ion TacPred CopyGoal InGoal OutGoal :-
TacPred Tac t i c CopyGoal NewCopyGoal,
TacPred Tac t i c InGoal MidGoal,
copy-verif icat ion TacPred NewCopyGoal MidGoal OutGoal.

copy-ver i f ica t ion TacPred CopyGoal Goal Goal.

Most of the copy-ver i f i c a t i o n definite clauses are included to handle compound goals. In

this program the goal structure of the new verification must imitate that of the guiding one.

The heart of the program is the clause that makes calls to TacPred (the second to last above).

The first subgoal has CopyGoal as its input goal. This subgoal finds a tactic that can be

applied based on the structure of the verification in CopyGoal. This tactic is then attempted

on the input goal InGoal . The c o p y - v e r i f i c a t i o n program will continue to apply tactics

7.5 Constructing Proofs By Analogy 51

as long as they can be applied to both CopyGoal and InGoal. As soon as the verifications

must differ, the last definite clause will be used and the output goal will contain the (possibly

incomplete) verification for InGoal constructed up to this point. It must then be completed

by other means.

In the natural deduction tactic prover, we can use the copy tactical to attempt to copy as

much as possible of the structure of a given proof object to the proof of a new formula. If we

specify TacPred to be ru l e , the new proof will be constructed step by step, applying the same

inference rules to the new formula as were applied to obtain the guiding proof. This exact

copying is achieved by the second to last copy-verif i c a t i o n definite clause, which determines

the last inference rule applied to the formula in CopyGoal, and then attempts to apply it to

the formula in InGoal. It will copy as much of the structure of the guiding proof as possible

and end with the (possibly incomplete) proof of the new formula.

This "verification by analogy" program is limited in that it only handles verifications that

are analogous in the sense that there is a series of tactics that can be applied in both cases in

exactly the same order. The additional definite clauses below are some other possibilities to

include in the copy-verif i c a t i o n program. For example, it is possible that two verifications

are similar, yet they differ only in the application of a small number of tactics. The first

definite clause allows for differences in the tactics that are applied as long as the verifications

contain the same structure. For example, they must both branch in the same places. This

new definite clause requires some search since Tact ic2 is not bound when the second call to

TacPred is made. In our natural deduction prover with r u l e used for TacPred, such a clause

will handle the construction of a complete proof for (Vx q(x) A p) > Vx (q(x) A p) given a proof

for (Vx q(x) V p) I> Vx (q(x) V p). The second clause below encompasses the idea that two
verifications are analogous if one has an application of a certain tactic, and the second has

repeated applications of the same tactic.

copy-verif icat ion TacPred CopyGoal InGoal OutGoal :-
TacPred Tac t i c1 CopyGoal NewCopyGoal,
TacPred Tact ic2 InGoal MidGoal,
copy-verif icat ion NewCopyGoal MidGoal OutGoal.

copy-verif icat ion TacPred CopyGoal InGoal OutGoal :-
TacPred Tac t i c CopyGoal NewCopyGoal,
prove (repea t Tac t ic) InGoal MidGoal ,
copy-verif icat ion TacPred NewCopyGoal MidGoal OutGoal

Although these algorithms are very preliminary, they do illustrate that we can guide the

construction of at least small analogous fragments of proofs or verifications, and indicate how

one might go about further experimenting with using analogy for theorem proving in a logic

programming environment.

52 8 Translating L F Signatures to Logic Programming

8 Translating LF Signatures to Logic Programming

One of our goals is to show that our extended logic programming language provides a language

to specify proof systems for a wide variety of logics. In this respect, we share a common goal

with the Edinburgh LF system [Harper, Honsell & Plotkin 871. In this section, we compare the

two methods and show that they are similar in ways that go beyond simply sharing common

goals. We begin with some observations about natural deduction inference rule specifications

in logic programming and their corresponding specification within an LF signature.

Recall the specification of the natural deduction A-I rule using the proof predicate.

proof (A and B) (and-i P i P 2) :- proof A P i , proof B P 2 .

It can be considered as a declarative specification defining and-i. In [Avron, Honsell & Mason

871, first-order logic is one of many logics specified in LF. In this setting A-I is an object whose

type is specified by the judgement:

In this judgement, T is a function that takes a formula and produces a type (T : bool +

Type). This T plays a role that is similar to the proof predicate in the logic programming

setting. If we take + as >, n as V, and T as proof we get the hereditary Harrop formula

VA VB ((proof A) > ((proo f B) > (proof (A a n d B)))). This is equivalent to the formula

VA VB (((proo f A) A (proof B)) > (proof (A a n d B))) which can be abbreviated:

proof (A and B) :- proof A , proof B

The arguments to the dependent (n-) types of the LF judgement, A and B , correspond to the

universally quantified logic variables in the definite clause. Note that this clause is the same as

the one above, but without proof objects. Yet, the notion of proofs as objects inhabiting types

is central to LF. For example, the judgement above specifies the type for the A-I object. This

object is functional and takes four arguments. If A and B have type bool, and if PI is a proof

that A is "true" (i.e. PI has type T(A)), and similarly P2 is a proof of B, then we can apply

A-I to these four objects to obtain (A-I A B PI P2) which is a proof of (A a n d B) (i.e. has

type T(A and B)). We can include this kind of proof object in the definite clause specification

to obtain the following clause that corresponds even more closely to the LF definition of A-I.

proof (A and B) (and-i A B P I P 2) :- bool A, bool B , proof A P I , proof B P 2 .

Here, as before, proof corresponds to the LF declaration T : bool -t Type. We also add the

bool predicate which corresponds to the LF declaration bool : Type.

8 Translating L F Signatures to Logic Programming 53

Both the LF declaration and the logic programming definite clause correspond to declara-

tive specifications of the meaning of the A - I (or and-i) constant. The definite clause version

also has operational meaning and makes explicit the unification and search steps that are in-

volved in finding a proof of the given formula (or judgement). Finding a universal instance of

the clause involves finding unifiers for A and B. Then finding a proof of (A and B) involves

verifying that A and B are formulas, and searching for subproofs for A and B.

The LF notions of schematic and hypothetical judgements have corresponding concepts in

the logic programming setting. Recall the definite clause specifying the V-I rule.

proof (f o r a l l A) (foral l -r P) :- p i T\ (proof (A T) (P TI) .

Here P is a function which maps arbitrary terms to proofs. The universally quantified goal of

the logic programming language, which here plays a role in obtaining the function P, shares

some similarities with an LF schematic judgement. A schematic judgement in LF is of the

form J(x) and is proved by a function mapping objects x of type A to proofs of J(x).

We saw that the AUGMENT goal was important for generating functions from proofs to

proofs as a result of discharging assumptions. For example, in the definite clause for the >-I
rule:

proof (A imp B) (imp-i P) :- p i PA\ ((proof A PA) => (proof B (P PA)))

P is a function from proofs of A to proofs of B. This use of implication in logic programming

corresponds to the LF hypothetical judgement. This judgement takes the form J1 t- J2 and

represents the assertion that J2 follows from J1. Objects of this type are functions mapping

proofs of J1 to proofs of Jz.

We now examine the similarities in the two approaches more closely, and based on the

observations made so far, informally describe an algorithm for translating LF signatures to

logic programming programs. Using this algorithm, we have been able to translate all of

the example signatures in [Harper, Honsell & Plotkin 871 and [Avron, Honsell & Mason 871 to

logic programming programs. First, we take a closer look at LF.

The syntax of LF is given by the following classes of objects.

C is used to represent a signature, and I' a context (a set of variables and their types that can

be used in constructing proofs). M and N range over expressions for objects, A and B over

54 8 Translating L F Signatures to Logic Programming

types and families of types, li over kinds, x and y over variables, and c over constants. Another

notational convention is to write A + B for nX:* .B when x does not occur free in B. Proof

systems are specified by building signatures. The signatures in [Avron, Honsell & Mason 871

are divided into four categories: (1) syntactic categories, (2) operations, (3) judgements, and

(4) axioms and rules. The syntactic categories and judgements correspond to kind declarations

(declarations of the form c : K) and the operations, axioms and rules to type declarations (of

the form c : A). Both LF types (syntax class A) and objects that inhabit these types (syntax

class M) will be a t the level of objects in logic programming. LF types cannot correspond

to logic programming types, since our logic programming language does not have dependent

types. As we have seen in the exaniple above, we can represent all the necessary information

as two arguments to the proof clause, and view the first argument as the type of the second.

Each item in an LF signature will have a type declaration in the logic programming pro-

gram. The purpose of the logic programming type declarations is different from those in LF.

The logic programming types are, in a sense, at another level that is used by the logic program-

ming interpreter to insure proper typing of the terms it deals with. Each syntactic category

and judgement (declaration of the form c : K) in LF will correspond to a predicate used in

the search for proofs. These predicates are used by the program to prove that an object has

the type given by a category or judgement, i.e. each type has its own procedure for proving

that elements inhabit it. (In the above example, we had proof for T and bool for bool).

The definite clauses of the logic programming program are obtained from translations of the

operations, and axioms and rules (declarations of the form c : A). These definite clauses are

the logic programming embodiment of the type declarations of the LF signature.

First, we describe how to obtain the declarations of the logic programming predicates from

the syntactic categories and judgements. Any declaration of the form c : Type will have a

logic programming declaration of the form c : c-proof -> o. Types of the form c-proof are

generated for each constant c and specify the types in the logic programming setting for LF

objects (or proofs). In the example above, the declaration bool : Type gave rise to the bool

predicate which is declared bool : bool-proof -> o. Judgements of the form c : nx:A.K

will also correspond to a logic programming declaration for object c whose last argument has

type c-proof and whose target type is o. In addition, there will be another argument to

the predicate c for every argument (of the form x : A) in the judgement. The type of these

arguments will depend on the term given by A. For example, if A is bool as in T : bool -t Type

(which is an abbreviation for n,,bool.Type), then the x : bool will correspond to an argument of

type bool-proof. Thus the predicate corresponding to T would be declared t : bool-proof

-> t-proof -> o. (Note that this is the same type as the proof predicate above.) If A has

more complicated structure as in x : T (B) for example, then the corresponding argument

type in the logic programming predicate depends only on the head of the type expression. In

8 Translating L F Signatures to Logic Programming 55

this case it will be t-proof. In summary, for an LF judgement that takes n arguments, the

corresponding predicate will have n + 1 arguments: one for each LF argument type, plus one

for the objects (proofs) that inhabit the types specified by the judgement.

The type declarations for the operations, axioms, and rules (declarations of the form c : A)

are also obtained by examining the head of the type expressions for each argument. In this

case, there will be no extra arguments such as those that were needed above for the proof

objects, and the target type in the logic programming type declaration will correspond to the

head of the LF target type. For example the LF declaration for A-I:

would yield the following logic programming declaration.

and-i : bool-proof -> bool-proof -> t-proof -> t-proof -> t-proof.

Finally, we need to specify definite clauses that construct objects of the types given by the

operations, axioms, and rules, such as A-I. We will describe this translation in terms of two rules

that translate an LF declaration to a hereditary Harrop formula. It is then straightforward

to obtain a definite clause from this formula. We use the notation [M : A] to represent the

translation of an LF declaration to a higher-order hereditary Harrop formula. The translation

rules are as follows.

[M :n,:,.B] + VX ([X : A] > [(M X) : B])

[M : (t , . . . ,) I + (C t l . . . t, M)

Proof objects are constructed by introducing new logic variables (e . g . X in the first rule

above) which act as place holders for the arguments to the LF signature constants. These

place holders take on values when the definite clause is used in constructing proofs. The

second rule is responsible for inserting the appropriate predicates based on the head of the

type expression. We return to the example above for A-I to illustrate the use of these rules.

(We use the constant symbol and-i instead of A-I and and instead of A in order to avoid conflict

with synrtbols of the meta-language, i.e. the logic programming language.) Using the above

rules, the LF declaration

and-i : nAZbool .nB:bool .T(A) -+ T(B) -+ T(A and B).

translates to the formula

VA ((boo1 A) > VB ((boo1 B) > VPl ((t A PI) > VP2 ((t B P2) 3

(t (A and B) (and-i A B PI P2)))))).

56 8 Translating L F Signatures to Logic Programming

This formula is equivalent to the definite clause

VA VB VPl VP2 (((boo1 A) A (boo1 B) A (t A PI) A (t B P2)) 3
(t (A and B) (and-i A B PI Pz)))

which can be abbreviated

t (A and B) (and-i A B PI P2) :- bool A , bool B , t A P i , t B P2.

It is exactly the same as the definite clause given above with proof replaced with t.

We illustrate this translation process with the signature for a natural deduction style modal

S4 as in [Avron, Honsell & Mason 871. We present the logic programming declarations and

program obtained by translating the LF declarations of this signature. First, the logic pro-

gramming declarations are the following.

bool : bool-proof -> o.
t a u t : bool-proof -> taut-proof -> o .

v a l i d : bool-proof -> valid-proof -> o.

PerP
imp
box

C

r

imp-i-v

perp-e
2neg-e

imp-i-t
imp-e-t
imp-e-v

box-i
box-e

bool-proof.
bool-proof -> bool-proof -> bool-proof.
bool-proof -> bool-proof.
bool-proof -> taut-proof -> valid-proof.
bool-proof -> bool-proof -> (taut-proof -> valid-proof) ->

valid-proof -> valid-proof.
bool-proof -> bool-proof -> (valid-proof -> valid-proof) ->

valid-proof.
bool-proof -> taut-proof -> taut-proof.
bool-proof -> taut-proof -> taut-proof.
bool-proof -> bool-proof -> (taut-proof -> taut-proof) -> taut-proof
bool-proof -> bool-proof -> taut-proof -> taut-proof -> taut-proof.
bool-proof -> bool-proof -> valid-proof -> valid-proof ->

valid-proof.
bool-proof -> valid-proof -> valid-proof.
bool-proof -> valid-proof -> valid-proof.

The basic types generated from the syntactic categories and judgements are bool-proof,

taut-proof, and valid-proof. The syntactic categories and judgements give us three pred-

icates (bool, t a u t , and va l id) for proving that an object is a formula, for proving that a

formula is a tautology, and for proving that a formula is valid, respectively. The latter two
represent two different predicates for "proving" formulas. The fact that there are two is a result

of the way the proof system is specified in LF. The operations, axioms, and rules produce the

following definite clauses.

bool perp.
bool (A imp B) :- bool A, bool B.

8 Translating LF Signatures to Logic Programming

bool (box A) :- bool A.

v a l i d A (c A P) :- bool A, t a u t A P.

v a l i d B (r A B Pi P2) :-
bool A, bool B, (p i PA\ ((t a u t A PA) => (va l id B (PI PA)))), v a l i d A P2.

v a l i d ((box A) imp B) (imp-i-v A B P) :-
bool A, bool B, (p i PA\ ((v a l i d (box A) PA) => (v a l i d B (P PA)))).

t a u t A (perp-e A P) : - bool A, t a u t perp P.

t a u t A (2neg-e A P) :- bool A, t a u t ((A imp perp) imp perp) P.

t a u t (A imp B) (imp-i-t A B P) :-
bool A, bool B, (p i PA\ ((t a u t A PA) => (t a u t B (P PA)))).

t a u t B (imp-e-t A B Pi ~ 2) :- bool A, bool B, t a u t (A imp B) Pi, t a u t A P2.

v a l i d B (imp-e-v A B Pi P2) :- bool A, bool B, v a l i d (A imp B) Pi, v a l i d A P2.

v a l i d (box A) (box-i A P) :- bool A, v a l i d A P.

va l id A (box-e A P) :- bool A, va l id (box A) P.

We can simplify this program by taking advantage of the type system of our logic program-

ming language to handle the syntactic categories (declarations of the form c : Type) in the LF
signature. In the above program, instead of the predicate bool used to prove that objects are

formulas, we could include bool as one of the basic types, and replace the definite clauses

bool perp.
bool (A imp B) :- bool A, bool B .
bool (box A) :- bool A.

with the logic programming declarations

perp : bool
imp : bool -> bool -> bool
box : bool -> bool.

As a result, all of the calls to the boo l predicate in the old program are eliminated in the new

program. In this new program, the type-checking for forn~ulas is handled by the type-checking

of the logic programming interpreter, and no longer needs to be included explicitly in the

program.

A query to one of these programs is obtained using the same rules that were used to

translate LF type declarations to definite clauses. In this case, an LF declaration M : A is

translated to a goal formula that will be presented to the logic programming interpreter. The

58 8 Translating L F Signatures to Logic Programming

example proof for modal S4 given in [Avron, Honsell & Mason 871 would generate the following

query (to the program where boo1 is a basic type).

(p i A\ (p i B\ (va l id ((box (A imp B)) imp ((box A) imp (box B)))
(imp-i-v (box (A imp B)) ((box A) imp (box B))

Pi \ (imp-i-v A (box B)
P2\ (box-i B (imp-e-v A B

(box-e (A imp B) P i)
(box-e A P 2))))))))

Since both the formula and the proof are specified, the above program would act as a proof-

checker in satisfying this query. In actual execution, under the interpreter of Section 2 with

depth-first search on the above ordering of clauses to resolve all non-determinism, this program

will be able to answer such type-checking queries. There is much more non-determinism when

attempting to use this program as a theorem prover, i.e. when a formula is specified and the

proof is given as a logic variable. In this case, depth-first search is not sufficient. Alternatively,

we can specify the above clauses as a set of tactics to use in a tactic prover as in Section 6.

For example, the definite clause in the program above for the r object (the fifth clause) might

be specified as the tactic below (where val idgoal and tau tgoa l are atomic goal structures

similar to proofgoal as in the earlier tactic prover examples).

prove r-tac (va l idgoal B (r A B Pi P2))
(andgoal (a l l goa l PA\ (impgoal (taut A PA) (val idgoal B (Pi PA))))

(val idgoal A P2)) .

Such a tactic module would give us a more controllable theorem prover for the modal S4

system.

9 Related Work

9 Related Work

Other proof systems that are based on tactics and tacticals include LCF [Gordon, Milner

& Wadsworth 791 and Nuprl [Constable et al. 861 as already mentioned, and Isabelle [Paul-

son 861. The programming language ML is the meta-language used in all of these systems.

ML is a functional language with several features that are useful for the design of theorem

provers. I t contains a secure typing scheme and is higher-order, allowing complex programs to

be composed easily. In developing theorem provers, many extensions have been made to ML
to increase its capabilities as demand requires. For example, Nuprl uses an extension of ML

with term destructors so that terms can be decomposed and their components manipulated

separately. Isabelle [Paulson 861 uses typed A-terms to represent formulas, and higher-order

unification is added to manipulate them. In [Paulson 871, the meta-theory of Isabelle is ex-

tended to include a fragment of higher-order logic with implication and universal quantification

which is used to specify inference rules. The operation of "lifting" an object level rule over

assumptions provides a mechanism for discharging assumptions. "Lifting" an object level rule

over a universal variable provides a mechanism for reasoning about generic objects. In our

setting, these capabilities were illustrated using the AUGMENT and GENERIC search oper-

ations respectively. Isabelle also allows goals containing variables which are instantiated by

unification. This feature is provided in the logic programming setting by the INSTANCE

search operation.

In contrast to ML which was originally designed as a meta-language for theorem proving,

the theory of higher-order hereditary Harrop formulas on which our extended logic program-

ming language is based was motivated by a desire to develop a clean semantics for a general

purpose programming language. Other applications that have been explored include program

transformations [Miller & Nadathur 871 and computational linguistics [Miller & Nadathur 86b].

Thus, in a sense, we are working in the opposite direction, examining theorem proving as a

special application of this language. The kinds of features that are being added to ML and

LCF are similar to those that have been identified as useful in the logic programming setting.

In many ways, the two approaches seem to be converging.

One thing we have not been concerned with in this paper, that many of the other theorem

proving efforts have addressed to some extent are issues of efficiency. Once the features of
the logic programming language that are necessary for good implementations of proof systems

have been fully identified, the issue of building efficient implementations for a subset of the

language containing these features can be addressed.

Of the proof systems mentioned above, only Nuprl has been concerned with constructing

and storing proof objects and using them in computation. The success of the term extraction

algorithm for constructing executable programs from proofs will be a good model for contin-

60 9 Related Work

uing to examine the realize program in the logic programming setting. Also, as stated in

Section 7.5, proofs in Nuprl are used for certain kinds of proof by analogy. In goal-directed

proof, LCF constructs validations which map theorems to theorems. Their purpose is to insure

that only provable formulas inhabit the type thm. They are not objects that can be manipu-

lated. In Isabelle, as inference rules are applied, the internal structure of the proof is discarded

as theorem proving proceeds. An incomplete proof is considered a derived rule whose premises

are the subgoals that have not been completed.

We have discussed higher-order hereditary Harrop formulas in the context of being a spec-

ification language for a wide class of logics. As already mentioned, this aspect of our work

is related to the Edinburgh Logical Framework [Harper, Honsell & Plotkin 871. Again, the

original motivation for these two approaches differs. LF was developed for the purpose of

capturing the uniformities of a large class of logics, so that it can be used as the basis for

implementing proof systems. In our case, we have been exploring the capabilities of our logic

programming language, including an examination of its potential to naturally specify proof

systems for certain logics. In addition, we also obtain implementations of theorem provers

from these specifications. In [Paulson 871, the author is also concerned with expressing vari-

ous logics within a uniform framework. In this case, a fragment of higher-order logic that is

essentially a subclass of higher-order hereditary Harrop formulas is used to specify inference

rules. Here, the development of a specification language is motivated by the desire for a more

general theorem prover, and results from extensions to the meta-theory of Isabelle.

In [Schroeder-Heister 841, natural deduction is extended so that rules as well as assumptions

may be discharged. Such an extension allows additional inference rules to be made available

at different points in a proof. During proof construction in our tactic provers this capability

is provided by the usermodule tactical which allows modules that may contain additional

tactics to be imported into the theorem proving environment. The proposed extension to

natural deduction may provide a formal proof-theoretic semantics for this dynamic access to

collections of tactics.

10 Conclusion and Proposal for Future Research

10 Conclusion and Proposal for Future Research

The main focus in this paper has been to demonstrate that our extended logic programming

language based on the theory of higher-order hereditary Harrop formulas is well-suited to

the task of specifying and implementing theorem provers. We have shown that the six search

operations of an interpreter based on this language serve as a good mechanism for implementing

the search required in proof discovery. In addition, we have illustrated that inference rules and

other formula and proof manipulations can be specified quite naturally. We have demonstrated

these characteristics on examples from Gentzen sequential and natural deduction systems and

shown how to extend them to logics represented by LF signatures. The main goal in continuing

this work will be to extend the techniques used in specifying and implementing theorem provers

to larger systems. In particular, we will work with tactic style theorem provers because they

have proven to be successful in providing a general framework for integrating user interaction

with varying degrees of partial and even full automation in the search for proofs. Our goal

will be to provide a diversified environment for interactive theorem proving, one that provides

the user with many tools and techniques for proving and manipulating proofs. Such a system

should allow reasoning in possibly many different logics, and include capabilities for theorem

proving in more complicated mathematical domains.

10.1 Extending Tactic Theorem Provers

In this section, we discuss some of the extensions we will need to make and some of the issues

we expect to encounter during the early stages of expanding the theorem proving environment.

Many of the extensions will involve writing new tactics to expand the capabilities of the

theorem prover and to increase the choices that are available to the user in constructing

proofs. We will augment the natural deduction tactic theorem prover as needed to incorporate

these capabilities. We will also want to choose some specific domain(s) and build a database

of theorems and proofs in these domains. As work continues, we expect to address issues such

as adding techniques and capabilities to further enhance the theorem proving environment,

integrating the different techniques, and organizing the tactics, theorems, and proofs into a

manageable system.

Specifically, one of the first additions will be the ability to introduce constants into the

theorem proving environment and include axioms about these constants and the operations

they represent. We will need to include tactics that allow us to use these axioms in searching

for proofs and constructing proof terms. Induction and reasoning about equality are two more

facets of theorem proving that will arise when expanding the theorem prover to handle more

than simple logical manipulations. In Section 6.4.1 we gave example inference rule tactics that

might be included for constructing proofs by induction. In the next subsection we will discuss

62 10.1 .I Equality Reasoning

some possible tactics for equality reasoning. In subsection 10.1.2, we will discuss some possible

methods for building libraries to organize tactics and theorems so that they may be easily

accessed during theorem proving.

10.1.1 Equali ty Reasoning

In any system with equality there are several general axioms such as symmetry and transitivity

that must be included. In addition, when introducing a new domain, we will need to include

axioms or equations that are specific to that domain, as well as tactics that reason about them.

For example, in [Manna & Waldinger 851, when the non-negative integer domain is presented,

theaxioms - (x + l = 0), (x = y) > (x + 1 = y + l) , x+O = 0, a n d x + (y + l) = (x + y + l) are

introduced. They are needed for even the simplest proofs in this domain. There are many ways

to incorporate such reasoning. We plan to examine them and implement them to sufficiently

handle large domains. Below are three examples of tactics that might be included in a theorem

prover for induction on non-negative integers.

prove succ,axiom-tac (proofgoal ((X + 1) = (Y + 1)) (succ-axiom P))
(proof goal (X = Y) P) .

prove trans-query (proofgoal (X = Z) (trans Pi P2))
(andgoal (proofgoal (X = Y) PI) (proofgoal (Y = Z) P2)) :-

write "Enter intermediate value", read Y.

prove rewrite-tac (proofgoal (F A) (rewrite Pi P2))
(andgoal (~ r o o f ~ o a l (A = B) Pi) (proofgoal (F B) P2))

The first represents the second non-negative integer axiom above in inference rule form. It

illustrates the fact that any axiom can be included as an inference rule. The second is an

inference rule specification of transitivity, which allows the user to specify the intermediate

value Y. The third is quite general. It takes an arbitrary formula, and substitutes an arbitrary

subexpression with an equivalent expression. A unifies with some term in the formula and F

is an abstraction over one or more occurrences of A (0 occurrences is also possible, but no

rewriting is done in that case). If A is equal to some term B, then B replaces the occurrences

of A that were removed by abstraction. This rule takes advantage of higher-order unification

and as a result is quite powerful. There might be many unifiers for F and A and backtracking

will be used to try each one. As it is written, the user has no control over the choice of A

or B. An alternative version could query the user for this information and avoid some of the

backtracking. The third tactic above incorporates transitivity, and thus when it is used in a

theorem prover, the second tactic above would not be needed. On the other hand, many such

tactics can exist simultaneously in a tactic prover, giving the user more choice in constructing

proofs.

10.1.2 Building Libraries

10.1.2 Building Libraries

Referencing Existing Theorems Another capability that we would like our theorem

provers to have is the ability to use existing theorems that have already been proven as lemmas.

This capability is very important, especially in mathematical domains. For example, in the

non-negative integer domain, the proof for commutativity of addition (i .e . x + y = y + x) is

based on another fact that must be proven first: x + 1 = 1 + x. The ability to reference such

theorems requires that we have a mechanism for storing and retrieving proofs. One way to

organize proofs is to give them names and define a predicate (which we will call theorem) to

associate a name with a formula and its proof. Such a predicate will be declared as follows.

theorem:name -> bool -> proof-object -> o.

The following is an example of a tactic that can retrieve existing proofs stored using this

predicate during construction of a new proof.

prove lemma-tac (proofgoal A (lemma PB P))
(impgoal (proof B PB) (proofgoal A P)) :-

write "Enter theorem name", read Name,
theorem Name B PB.

Here, the proof predicate is used to add the lemma to the goal structure. It will then be added

to the program in the same manner as discharged assumptions.

Definitions We will also want to have the capability to incorporate definitions into the

theorem proving process. We define a d e f i n i t i o n predicate with type name -> A -> A ->
o. Here, A is a logical variable because we want to allow definitions of any type, though the

defined object and its meaning must have the same type. For example, we may define logical

equivalence as follows.

<=> : bool -> bool -> bool.

def ini t ion equiv (B <=> C) ((B imp C) and (C imp B)).

In this case type variable A gets assigned bool. The parameters to a definition are represented

using (universally quantified) logic variables, so that as a result, instantiating them simply

requires unification. One possibility for a tactic that does the instantiation using input from

the user is as follows.

prove instantiate-def (proofgoal (F A) (def P)) (proofgoal (F B) P) :-
write "Enter term", read A ,
write "Enter name of definit ion", read Name,
def ini t ion Name A B.

64 10.2 Proof Objects

This tactic uses higher-order unification in the same way as rewrite-tac. In this case it

substitutes expressions with their expanded definitions. For example, if the input formula that

must unify with (F A) is (p imp (q <=> r)) , and the user inputs (q <=> r) and equiv, for

A and Name respectively, then X\ (p imp X) is one unifier for F. (F B) will then be (p imp

((q imp r) and (r imp q))) .

Accessing Libraries The organization and modularization of libraries will become more

important as the number of theorems, definitions, and tactics grows. In Section 6.4.3, we

discussed accessing groups of tactics by importing modules using the usemodule tactic. These

modules could actually be libraries that contain definitions and theorems in addition to tactics.

Then, the use-module tactical would allow a user to add a library to the current program which

would be available during the execution of a tactical expression. This capability allows a user

to limit the search environment. As an example of when this might be useful, a user might,

during the proof of a theorem, first add a library containing the theorems about the properties

of the objects in the theorem. If a proof is not found, then a library of definitions pertaining

to the objects in the theorem could be loaded and a proof attempted in this environment.

Limiting the amount of information in the search space could be informative in the sense that

it tells the user what kind of information is and is not needed in the proof of a theorem. A
smaller search space, of course, also contributes to greater efficiency.

Another possibility is that modules will contain groups of tactics that define the inference

rules for a particular logic. This kind of module allows a user to define specialty logics. A
user could then work exclusively in this specialized domain by using usemodule to include

this module, while excluding all others. The signatures of LF, for example, could be included

into our theorem proving environment in this way.

10.2 Proof Objects

The programs in Section 7 demonstrated some potentially important applications for proof

objects, and raised the issue of what information to include in these objects. As a result of

implementing a larger domain, we will have a database of proof objects which we can examine

closely to give us more insight into when and in what forms these objects are really useful.

Extracting programs from proofs has obvious value, and it will be important to examine the

r e a l i z e program more deeply. In the simple propositional example we presented in Section 7.3

the program simply constructed an object of a certain type based on the type of the input.

We will need to extend this program to incorporate program constructs for quantifiers and

possibly domain specific objects. We will need to discover what kinds of information is needed

to extract executable programs from more complicated proofs.

10.2.1 Analogy 65

Including more information in proof terms might be useful in general for practical and

efficiency concerns. For example, in some of the programs such as cut-elimination and nor-

malization, a lot of proof-checking was needed to obtain information. While this gives a clear

declarative reading, it may mean a lot of extra work computationally. In cut-elimination, the

situation is even worse since there is a lot of non-determinism in the proof-checking resulting

from having to deduce the cut formula each time. Since knowing the formulas t o which infer-

ence rules are applied is fundamental to this algorithm, i t might be worthwhile to store these

formulas explicitly in the proofs.

In analogy, the structure of the guiding proof is very important in the determination of the

structure of the new proof. We might want to consider other forms that allow more flexibility

in determining when two proofs are analogous. For example, we could define a new tactic

like i n t r o of Section 6.4.2, so that the proof term, instead of being a series of introduction

rules (e.g. (and-i (a l l - i (imp-i X\ (and-i . . .) would contain some other encoding that

indicated that a series of introduction rules was applied. Since this could be any series of

introduction rules, a proof would be considered analogous if it also had a series of introduction

rules, though not necessarily the same ones. We might even replace certain subproofs with

logic variables. Proof terms containing such variables will be "proof schema" which can then

be instantiated in different ways to obtain analogous proofs.

It appears that some algorithms will benefit from more information in proofs (e.g. cut-

elimination), while others will require less (e.g. analogy). We may want to choose an inter-

mediate representation during theorem proving and provide programs that do some sort of

preprocessing of the proof terms to transform them to a form suitable for specific algorithms.

10.2.1 Analogy

With the exception of analogy, most of the algorithms in Section 7.5, although their exact

form and degree of efficiency will depend on how they are implemented and on the form of

proof objects, are fairly straightforward manipulations on proofs. Analogy on the other hand

is not well-defined as an algorithm. The copy-verif i ca t ion program encompassed some ideas

about when two proofs are structurally analogous, but it is difficult to assess how it will behave

on larger proofs. For example, even the clause that involves some search (the second to last in

Section 7.5) requires that the two proofs have exactly the same branching structure. This may

be too rigid for larger proofs. Experimenting with alternative proof structures as mentioned

above might prove advantageous. In any case, with a database of proofs to work with, we hope

to gain some insight into this difficult problem.

10.3 Correctness of Programs

Tactic provers are inherently modular in the sense that each tactic can be considered a separate

program that can be called during theorem proving. The theorem prover as a whole can be

viewed as a collection of these smaller programs. In addition, as we have illustrated, these

programs generally have a natural declarative reading. Both the relatively small size and the

naturalness of specification should contribute to the facilitation of the usually very difficult

task of proving programs correct. We are concerned with program correctness because we

want to be able to make claims about the capabilities of tactics in our theorem prover. For

example, we would like to prove the correctness of the LKC prover program, so that we can

guarantee the integration of fully automatic theorem proving into the tactic theorem proving

setting. In addition, in expanding the theorem prover we will want to prove correctness of new

tactics as they are added.

References

[Avron, Honsell & Mason 871 Arnon Avron, Furio A. Honsell, and Ian A. Mason. Using Typed

Lambda Calculus to Implement Formal Systems o n a Machine. Technical Report ECS-

LFCS-87-31, University of Edinburgh, Edinburgh, Scotland, June 1987.

[Bates & Constable 851 Joseph L. Bates and Robert L. Constable. Proofs as Programs. A C M

Transactions on Programming Languages and Systems, 7(1):113-136, January 1985.

[Bledsoe 771 W. W. Bledsoe. Non-resolution Theorem Proving. Artificial Intelligence, 9:l-35,

1977.

[Bledsoe 861 W. W. Bledsoe. Some Thoughts on Proof Discovery. In Third Annual IEEE

Symposium on Logic Programming, pages 2-10, Salt Lake City, Utah, September 1986.

MCC Tech Report AI-208-86, June 1986.

[Brock, Cooper & Pierce 861 Bishop Brock, Shaun Cooper, and William Pierce. Some Experi-

ments with Analogy in Proof Discovery (Preliminary Report). Technical Report AI-347-86,

MCC, Austin, Texas, October 1986.

[Church 401 Alonzo Church. A Formulation of the Simple Theory of Types. Journal of Sym-

bolic Logic, 5:56-68, 1940.

[Clocksin & Mellish 841 W. F. Clocksin and C. S. Mellish. Programming i n Prolog. Springer-

Verlag, 1984.

[Constable et al. 861 R. L. Constable et al. Implementing Mathematics with the Nuprl Proof

Development System. Prentice-Hall, 1986.

[deBruijn 801 N.G. deBruijn. A Survey of the Project AUTOMATH. In To H. B. Curry:

Essays i n Combinatory Logic, Lambda Calculus, and Formalism, pages 589-606, Academic

Press, New York, 1980.

[de la Tour & Caferra 871 Thierry Boy de la Tour and Ricardo Caferra. Proof Analogy in

Interactive Theorem Proving: A Method to Express and Use it via Second Order Pattern

Matching. In Proceedings of the Sixth National Conference on Artificial Intelligence,

pages 95-99, Seattle, WA, July 1987.

[Felty 861 Amy Felty. Using Extended Tactics to do Proof Transformations. Master's thesis,

University of Pennsylvania, December 1986. Also available as MS-CIS-86-89.

[Gallier 861 Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem

Proving. Harper & Row, 1986.

[Gentzen 351 Gerhard Gentzen. Investigations into Logical Deductions, 1935. In M. E. Szabo,

editor, The Collected Papers of Gerhard Gentzen, pages 68-131, North-Holland Publishing

Co., Amsterdam, 1969.

[Gordon, Milner & Wadsworth 791 Michael J. Gordon, Arthur J. Milner, and Christopher P.

Wadsworth. Edinburgh LCF: A Mechanised Logic of Computation. Volume 78 of Lecture

Notes in Computer Science, Springer-Verlag, 1979.

[Hallnas & Schroeder-Heister 871 Lars Hallnas and Peter Schroeder-Heister. A Proof-

Theoretic Approach to Logic Programming. Unpublished, 1987.

[Harper, Honsell & Plotkin 871 Robert Harper, Furio Honsell, and Gordon Plotkin. A Frame-

work for Defining Logics. In Symposium on Logic in Computer Science, pages 194-204,

Ithaca, NY, June 1987.

[Howard 801 W. A. Howard. The Formulae-as-Type Notion of Construction, 1969. In To H. B.

Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pages 479-490,

Academic Press, New York, 1980.

[Huet 751 G. P. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical Computer

Science, 1:27-57, 1975.

[Manna & Waldinger 801 Zohar Manna and Richard Waldinger. A Deductive Approach to

Program Synthesis. ACM Transactions on Programming Languages and Systems, 2(1):90-

121, 1980.

[Manna & Waldinger 851 Zohar Manna and Richard Waldinger. The Logical Basis for Com-

puter Programming. Volume 1: Deductive Reasoning, Addison Wesley, 1985.

[Martin-Lof 821 Per Martin-LM. Constructive Mathematics and Computer Programming.

In Sixth International Congress for Logic, Methodology, and Philosophy of Science,

pages 153-175, North-Holland, Amsterdam, 1982.

[Martin-Lof 841 Per Martin-Lof. Intuitionistic Type Theory. Studies in Proof Theory Lecture

Notes, BIBLIOPOLIS, Napoli, 1984.

[Miller 861 Dale Miller. A Theory of Modules for Logic Programming. In Third Annual IEEE

Symposium on Logic Programming, Salt Lake City, Utah, September 1986.

[Miller & Felty 861 Dale Miller and Amy Felty. An Integration of Resolution and Natural

Deduction Theorem Proving. In Proceedings of the Fifth National Conference on Artificial

Intelligence, pages 198-202, Philadelphia, PA, August 1986.

[Miller & Nadathur 86a] Dale Miller and Gopalan Nadathur. Higher-Order Logic Pro-

gramming. In Proceedings of the Third International Logic Programming Conference,

pages 448-462, London, June 1986.

[Miller ,& Nadathur 86b] Dale Miller and Gopalan Nadathur. Some Uses of Higher-Order Logic

in Computational Linguistics. In Proceedings of the 24th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 247-255, 1986.

[Miller & Nadathur 871 Dale Miller and Gopalan Nadathur. A Logic Programming Approach

to Manipulating Formulas and Programs. In IEEE Symposium on Logic Programming,

San Francisco, September 1987.

[Miller, Nadathur & Scedrov 871 Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hered-

itary Harrop Formulas and Uniform Proof Systems. In Symposium on Logic in Computer

Science, pages 98-105, Ithaca, NY, June 1987.

[Miller 871 Dale A. Miller. A Compact Representation of Proofs. Studia Logica, 46(4), 1987.

[Milner 871 Robin Milner. Dialogue with a Proof System. In H. Ehrig et al., editors, TAPSOFT

'87, pages 271-275, Springer-Verlag, 1987.

[Nadathur 861 Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming.

PhD thesis, University of Pennsylvania, December 1986.

[Paulson 861 Lawrence C. Paulson. Natural Deduction as Higher-Order Resolution. Journal

of Logic Programming, 3:237-258, 1986.

[Paulson 871 Lawrence C. Paulson. The Representation of Logics in Higher-Order Logic. Draft,

University of Cambridge, July 1987.

[Prawitz 651 Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.

[Schroeder-Heister 841 Peter Schroeder-Heister. A Natural Extension of Natural Deduction.

Journal of Symbolic Logic, 49(4):1284-1300, 1984.

[Smullyan 681 Raymond M. Smullyan. First-Order Logic. Springer-Verlag New York Inc.,

1968.

Engdahl, Elisaber 1984, 'Parasitic gaps, resumptive pronouns, and subject extractions', ms., Univer-
sity of Wisconsin, Madison.

Gazdar, Gerald: 1981, 'Unbounded dependencies and coordinate structure', Linguistic Inquiry, 12,
155-184.

Gazdar, Gerald: 1982, 'Phrase structure grammar', in Pauline Jacobson and Geoffrey K. Pullum,
(eds), On the Nature of Syntactic Representation, Reidel, Dordrecht, pp. 131-186.

Gazdar, Gerald, Ewan Klein, Ivan A. Sag and Geoffrey K. Pullum: 1985, Generalised Phrase Struc-
ture Grammar, Blackwell, Oxford.

Geach, Paul T: 1972, 'A program for syntax', in Donald Davidson and Gilbert Harman, Semantics
of Natural Language, Reidel, Dordrecht, pp. 483-497.

Joshi, Aravind: 1987, 'The convergence of mildly context-sensitive formalisms', Paper to CSLI
Workshop on Processing of Linguistic Structure, Santa Cruz, Jan 1987, ms., U. Pennsylvania.

Katz, Jerrold and Paul Postal: 1964, An Integrated Theory of Linguistic Descriptions, MIT Press,
Cambridge MA.

Keenan, Edward and Bernard Comrie: 1977, 'Noun phrase accessibility and Universal Grammar',
Linguistic Inquiry, 8, 63-100.

Klein, Ewan and Ivan A. Sag: 1984, 'Type-driven translation', Linguistics and Philosophy, 8, 163-
201.

Kuno, Susumo: 1973, 'Constraints on internal clauses and sentential subjects', Linguistic Inquiry, 4,
363-386.

Lambek, Joachim: 1958, 'The mathematics of sentence structure', American Mathematical Monthly,
65, 154-170.

Lambek, Joachim: 1961, 'On the calculus of syntactic types', Structure of Language and its
Mathematical Aspects, Proceedings of the Symposia in Applied Mathematics, XII, American
Mathematical Society, Providence, Rhode Island, pp. 166-178.

Lyons, John: 1968, Introduction to Theoretical Linguistics, Cambridge University Press.

McCloskey, M. James: 1978, A Fragment of a Grammar of Modern Irish, Ph.D Thesis, University of
Texas at Austin. Tenas Linguistic Forum 12.

Moortgat, Michael: 1985, 'Mixed Composition and Discontinuous Dependencies', paper to the
Conference on Categorial Grammar, Tucson, AR, June 1985, in Richard T. Oehrle, E.. Bach
and D. Wheeler, (eds), Categorial Grammars and Natural Language Structures, Reidel, Dor-
drecht, (in press).

Pareschi, Remo: 1985, 'Combinatory Categorial Grammar, Logic Programming, and the Parsing of
Natural Language', DAI Working Paper, University of Edinburgh.

Pareschi, Remo, and Mark Steedman: 1987, 'A lazy way to chart parse with categorial grammars', pa-
per to ACL conference, Stanford July 1987, rns. CIS, University of Pennsylvania.

Perlmutter, David M: 1971, Deep and Surface Structure Constraints in Syntax, Holt Rhinehart and
Winston, New York.

Pollard, Carl: 1985% 'Lectures on HPSG', ms. Stanford University.

	Implementing Theorem Provers in Logic Programming
	Recommended Citation

	Implementing Theorem Provers in Logic Programming
	Abstract
	Comments

	tmp.1190733735.pdf.luyZd

