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ANALYSES OF THE EFFECTS OF MODEL MISMATCH AND 

FLAT MMF FOR ESTIMATING PARTICLE MOTION 

Abstracr 

In this report, we analyze the performance degradation due to three classes of model mismatch: 
parameter jumping, undermodeling and overmodeling, in estimating the particle motion by using the 
orthogonal polynomials to model the trajectory. We find that these model mismatches make the 
'optimal estimator' to have large bias and mean squared error. For the case of undermodeling, the 
estimation error increases, in general, without a bound as the observation interval increases. We then 
propose the Finite Lifetime Alternately Triggered Multiple Model Filter (FLAT MMF), as a solution. 
FLAT MMF is a filter composed of a set of K identical conventional state estimation iilters, each trig- 
gered alternately. After the last filter is triggered, the oldest one is triggered again and so on. The 

structure of Multiple Model Filter is used to combine these estimates optimally, in the sense of 
minimum mean squared error. 

We find that the ratio of weightings in FLAT MMF are related to some independent non-central 
x2 random variables. Consequently, we show that the FLAT MMF can provide an estimate that fol- 
lows abrupt changes in the trajectory and has the small bias for undermodeling. For the case of over- 
modeling or the case that the trajectory model matches to the actual motion, the estimate does not 
degrade significantly. 

A number of simulations are conducted to illustrate the estimation performance degradation due 
to the model mismatches for the conventional Kalrnan filter and the performance improvement as the 
proposed FLAT MMF is used. 



1. INTRODUCTION 

The estimation of the 3-D motion and structure of moving objects in space from video images is one 

of the major problems in computer vision. These estimates may be utilized in building intelligent 

robots, tracking moving objects and implementing autonomous navigation systems. Some of previous 

approaches have relied on a large number of images [Weng87, Broi86a,b, Boll85, Iu89a,b] seeking for 

better performance on noise filtering than two-view or three view motion analysis does [Weng871. 

These approaches are all based upon the basic assumption that the motion of object is matched to the 

motion model which has been fixed prior to the analysis. An example would be a model which 

requires the object to move with a constant acceleration over the time interval of interest. Since an 

object can move almost arbitrarily in front of the camera, such model becomes invalid as the length of 

the observation time interval increases. The mismatch may cause a very large estimation error or even 

make the estimation process diverge. This observation motivates us to study the problem of analyzing 

the object trajectory under unconstrained motion in front of TV camera. We shall first analyze the per- 

formance degradation due to the model mismatch and then propose the Finite Lifetime Alternately Trig- 

gered Multiple Model Filter @TAT MMF), as a new solution. 

The motion analysis of a particle or an isolated target is usually formulated as a state estimation 

problem [Chan84]. There are three major issues involved in motion analysis: the computation speed, 

the nonlinearity and the representation of particle trajectory. Since the moving object must be tracked 

in real time, most batch approaches, such as Newton-type search algorithms, become unattractive. 

Recursive iilters, such as .the (extended) Kalman filter, are normally used in solving the estimation 

problem. In many cases, the plant equation for the particle motion and/or the measurement model are 

nonlinear. Thus, many linear estimation algorithms, such as the Kalman filter, can not be applied 

directly to the problem. The nonlinearity makes the estimate hard to obtain and difficult to analyze. 

One common solution is to linearize the nonlinear equation and then apply the linear algorithm to esti- 

mate the motion. In order to alleviate the effect of the nonlinearity which may cause the large estima- 

tion error or even make the estimation diverge, one may solve for the estimates iteratively or may 

incorporate the non-linear filtering technique [Mayb82]. 

Since we do not know how an object moves in space, we should model its trajectory before we 

can analyze its motion. If we assume that the object moves smoothly, its trajectory may be modeled as 

a power series with the specified order. Consequently, three kinds of model mismatch may be 

occurred. They are the model mismatches of parameter jumping, undermodeling and overmodeling, 

respectively. The problem of parameter jumping arises when the object changes its motion abruptly 



because of the maneuver. An example is the motion of a bouncing ball. Since the order of the power 

series in modeling the trajectory may be less than or greater than that of the actual trajectory, the 

model may undermodel or overmodel the actual motion. The problem of undermodeling is more seri- 

ous than that of overmodeling because in most situations we are forced to use the low-order model. In 

this report, we will concern on the problem of motion analysis under the above three classes of model 

mismatch. 

Since the estimation problem of the particle motion from perspective measurements is nonlinear, 

there is no closed-form solution in general. In order to understand the detail of the performance degra- 

dation due to the model mismatch, in this report, we assume that the particle moves on a plane parallel 

to the image plane. For this kind of '2-D motion', we will find the analytic closed-form solution for 

the estimation and the corresponding mean squared error in case the trajectory model matches to the 

actual trajectory. Then we will analyze the estimation behavior for the model mismatch. For the gen- 

eral particle motion, a number of simulations were conducted in [Iu89b] and it was found that the esti- 

mation have the similar behavior as that of the 2-D motion. In this report, we also assume that the 

positional measurements are available. 

The motion analysis of a target such as an airplane or a missile from radar measurements and that 

of a particle from video images share the same goal: estimating the object motion from the noisy meas- 

urements. An extensive literature has been available in the first area for more than two decades 

[Chant341 while the second problem is more recent [Iu89a]. However, we should notice some major 

differences between these two problems. First of all, although in both cases we do not know the exact 

form of the object trajectory, the trajectory of an airplane or a missile can be modeled adequately as a 

straight line between two maneuvers. On the other hand, the object can move almost arbitrarily in front 

of the camera, and can have very sharp changes, (180" turns) as in the motion of a bouncing ball. 

Second, the relations between the measurement and the motion parameters for the radar data and for 

the video image are different. Third, the noise in the measurement from the optical image data is 

much lower than that from the radar data. Sometimes, the position of object in an optical image can be 

located with the subpixel accuracy. Fourth, from the radar data, we can only locate the object instead 

of the detailed 'look' at the object, while the high quality image of the object can be obtained even 

from the commercial video camera. Because of the above differences between two problems, there is 

no guarantee that some approaches that have been used successfully in one domain can be applied to 

the other. 



In the rest of this section, we will review some existing approaches to the problem of model 

mismatch in the area of motion analysis from the radar or similar data. We will first discuss some gen- 

eral approaches for model mismatches and then discuss some particular approaches for the parameter 

jumping. Finally, we will outline the reason to seek a new algorithm in analyzing the object motion 

from the video images. 

Three major approaches are found in the literature to compensate the effect of model mismatches 

in estimating the object motion. They are the approach of changing the covariance of plant noise adap- 

tively, the finite memory filter and the fading memory filter. Since the plant noise in the Kalman filter 

formulation [Mayb82] is a random process representing the system model error, and since the residual 

process indicates how well the filter operates up to the current measurement, one can monitor the 

fluctuation of residual, and change the covariance of the plant noise adaptively. A number of different 

approaches in forming this adaptation, such as the maximum likelihood estimator, the Bayesian estima- 

tor and the covariance matching technique, have been proposed. A survey of these schemes is given in 

[Chin79]. Although this kind of approaches show that we can adapt the noise covariance systemati- 

cally, the extremely high computational burden makes them to be less attractive for solving the model 

mismatches in real time [Chan84]. Furthermore, it has been observed that this approach was not fast 

enough to compensate the model error due to the maneuver, i.e., the estimation process takes a long 

time to converge or it may even diverge if another maneuvers occur before it converges [Maybsl]. 

The finite memory filter [Jazw70] and the fading memory filter [Gelb74] are motivated by the 

observation that many estimators are of 'growing memory' type, i.e., the estimate is based on the entire 

past history. The evolution of a system may be adequately described by some model over a short time 

interval, but the model may be increasingly inaccurate for the longer interval. For example, in our 

motion problem, the constant acceleration model may describe the trajectory quite well locally, but it is 

obvious that this model is invalid for general trajectory over a large interval. Thus, one may seek for 

an estimator in which the old measurement becomes less important as time increases. 

The basic structure of the finite memory filter is to use two Kalman filters in which their esti- 

mates are based upon all measurements up to current time and up to N samples before the current 

time, respectively. These two estimates are then weighted by the inverse of their covariance matrices, 

and their difference is multiplied by some covariance matrix to yield the final estimate. This estimate 

can be interpreted as the optimal estimate using only the past N measurements. The drawback of the 

finite memory filter is that the computation burden is much higher than that of the conventional Kal- 

man filter, and that N measurements must be stored. 



The fading memory filter weighs the measurement in an exponential manner in time, the most 

recent sample having the largest weight. The filter turns out quite simple, with its covariance being the 

covariance of the normal Kalman filter multiplied by a scalar quantity which amounts to the argument 

of the exponential weighting. The drawback of this filter is that the relative importance of measurement 

is fixed by the exponential-weight model and the weighting argument. Also, the estimation perfor- 

mance will degrade if the model is actually matched to the true system [Simm86]. 

For the motion with maneuver, one common approach to modeling the actual trajectory is to aug- 

ment the original state vector with the dynamics of maneuver. If the maneuver dynamics is totally 

unknown, one may model the acceleration of the maneuver as a Wiener process or may adopt Singer's 

model [Sing70]. Since we do not know when the maneuver occurs, we must keep the augmented state 

vector throughout the entire track. Obviously, the filter performance degrades when the motion is non- 

maneuvering. The above discussion motivates the approach of maneuver detection. 

The basic idea of maneuver detection is to pose two hypotheses which indicate whether a 

maneuver has occurred or not. The detection is performed by using the generalized maximum likeli- 

hood ratio test. Before the maneuver is detected, one may track the object by using the state vector 

without maneuver. Then the filter may be restarted with the augmented state vector at the time the 

maneuver is detected. There are two alternatives in restarting the filter. One is to reprocess a large 

batch of past measurements and the other is just to initialize the filter. The former needs extra storage 

and processing time while the latter may have a large estimate error due to the improper filter initiali- 

zation. Although this kind of detection-directed approach may avoid the performance degradation of 

the augmented state vector, there are some drawbacks of this approach. There is the detection delay, 

and large transient errors may occur during the state vector is switched [Chan84]. These drawbacks 

may be avoided if we use the multiple model filter (MMF). 

The original idea of MMF is due to Magill [Magi65]. The basic idea of MMF is to construct a 

number of Nters each of which is based upon a different system model. The final state estimate is 

given as a linear combination of the estimates from these filters. The weights in this combination are 

changed adaptively according to the residual process of filters. There are some alternatives to applying 

the MMF to the motion analysis. One approach is to construct two filters which use the model with 

and without maneuver, respectively. Since there are two hypotheses at each sampling instant, the total 

number of hypotheses grows exponentially with time. Assumption that the event of the occurrence of 

a maneuver is a Markov process may be used to simplify the computation. Another approach is to use 

several hypotheses to model different maneuvers. A large number of filters are required for fine 



discretized maneuver models. 

As we mentioned earlier the object under consideration can move almost arbitrarily in front of the 

camera. Consequently, motion estimators should have the ability to track trajectories with very sharp 

change. Due to the real-time constraint, the degree of the power series in the trajectory model must be 

kept low. This is especially true for the case of tracking an object in three-dimensional space from the 

projective positional measurement, because the size of the required state vector equals to 3(& + 1) at 

least, where & is the degree of the power series in the model. An estimator is 'good' if it provides an 

estimate that follows abrupt changes in trajectory and suffers only a reasonably small bias in the event 

of undermodeling. Moreover, the performance of the estimator should not degrade significantly for the 

case of overmodeling or the case that the actual trajectory exactly matches the model. Furthermore, due 

to the limited resources, the use of a large number of sub-filters as in the MMF discussed before is 

precluded, even though these sub-filters can be operated simultaneously. (Note that, although the MMF 

in [Maybgl] only consists of four sub-filters, all these sub-filters have been tuned to some specific 

values in order to match a certain type of particular maneuver). Thus, based upon the requirements 

discussed above, none of the approaches reviewed so far are satisfactory. This motivates us to seek for 

a new filter in order to meet these requirements. 

The rest of this report is organized as follows. Section 2 gives the problem statement of motion 

analysis. Section 3 develops the trajectory model in terms of power series. Since the mathematical 

analysis of the filter performance is formidable when the degree of the power series is greater than 

three, an alternative trajectory model which uses a basis of orthogonal polynomial, is used. We will 

show that the optimal estimates and their corresponding covariances of these two models are identical. 

We note that the optimal estimates with the orthogonal polynomial and that from Kalman filter are the 

same. Section 4 discusses three classes of model mismatch: parameter jumping, undermodeling and 

overmodeling. The biases and mean squared errors of the 'optimal estimate' for these three mismatch 

are derived. Section 5 introduces the FLAT MMF in order to solve the problems of model mismatch 

and an analysis of the FLAT MMF for the model mismatches are discussed in detail. Some simula- 

tions for sharp maneuvers and circular trajectories are presented to demonstrate the performance of the 

FLAT MMF. Section 6 concludes the paper with discussions and some final comments. 



2. PROBLEM STATEMENT 

For the 2-D motion discussed in the introduction, since the depth does not change and the motion 

parameters related to the X and Y coordinates are decoupled, without loss of generality, the motion 

analysis can be reduced to the following 1-D motion problem. 

Let m(t) be the positional measurement at time t of the trajectory of a moving particle in one 

dimension. Assume that the actual trajectory X,(t) is piecewise differentiable up to $-th order. The 

subscript 's' denotes the actual signal (trajectory). Let ~,["](t) be the m-th derivative of X,(t). Let A be 

the time separation between measurement samples. Suppose that (J - Jo) total samples of m(t) at time 

t. = j A, j = J,, J 
. - J - 1, are available, and we model them as 

where n(tj) is a discrete-time random process describing the noise in the measurements. Throughout 

this report, the ( n(tj) )!:d is assumed to be white zero mean Gaussian random sequence with common 

variance 0'. Let %, Jo,J - ,(t) be the estimates of ~ [ ~ l ( t ) ,  m = 0, . - - , a  and deline the error correlations 

as 

The subscript 'm, Jb J - 1' of xrn, J w J  - ,(t) denotes that we use the measurements ( m(t,) )/;i to find the 

estimates of p ] ( t ) .  The auto-correlations L, J(r,l(t) are called mean squared error of the estimates 

%, Ja J-l(t). Then the goal is to find the estimates %, Jo,J - ,(t), m = 0. . . . , 4, optimally, in the sense 

of the minimum mean squared error (MMSE), by using all the available measurements. 

In the numerical analysis context, the above problem is called data (curve) fitting, and the objec- 

tive is to find the function itself and its derivatives from noisy measurements. According to the filtering 

terminology, the problem is named as filtering, smoothing, forward prediction and backward prediction 

in case of t = t~-,, t~ I t < t ~ - ~ ,  t > tJ-l, and t < tJo, respectively. In this report, we will focus our discus- 
0 

sion on filtering and on one-step forward prediction, i.e., the estimation at t = tJ-, and t = tJ, respec- 

tively. 

3. ORTHOGONAL POLYNOMIAL FORMULATION AND KALMAN FILTER SOLUTION 

In this section, we model the actual trajectory as power series and orthogonal polynomials. Based 

upon these two models, their optimal estimates of ximl(t) and the corresponding covariances will be 

found. We will show that these optimal estimates are identical and will discuss the advantages of 



using the orthogonal polynomial over the power series. Then we will formulate the motion estimation 

as the state estimation problem and will summarize the Kalman filter solution. We observe that the 

optimal estimates of xJrnl(t) in terms of orthogonal polynomial and the estimates from Kalman filter are 

identical. 

In general, we do not know the exact form of actual trajectory X,(t). However, if we assume that 

the particle moves smoothly, we may model the X,(t) as a finite order power series; 

where 4, stands for the degree (order) of trajectory model X(t), and the parameters 0,. Jo, p = 0, ..., 4,, 

denote the p-th derivatives of X(t) at time tJo, respectively. The symbol ' is used to distinguish from 

the parameters of using orthogonal polynomials which will be introduced shortly. Let - 0' be the vector 

of these unknown motion parameters defined as 

where the symbol 'T' denotes the transpose. Define the composite vector which comprises the meas- 

urement m(t) from ti to tj, and denote it as Mi, j, such that 

If the trajectory model X(t) in (3.1) matches to the actual trajectory X,(t), i.e., X,(t) = X(t), then the joint 

probability density function p ( MJm ; $) of the measurement vector MJD,-, can be represented as 

Also, from (3.1), 

Thus. xJrn1(tJ~ = 0 ,  Jo. We may be tempted to find the unknown parameters 0;. Jo from the measure- 

ments and then use (3.5) to obtain the estimates of ~ : ~ ] ( t ) .  However, we will see that the estimates of 

~!"'(t) can be found directly from the measurements. The unknown parameters 0 ,  Jo are useful for 

describing the trajectories X,(t) and X(t) as well as for deriving the estimators. 



The minimum variance unbiased (MVUB) estimates k:, ,,,(t) of &['](t), m = 0, 1, ..., &, are 

given by [Peeb70] as 

where 'In' stands for natural logarithm and I'm denotes the pq-th element of the inverse of the Fisher 

information matrix [I*] having elements 

Note that the first term in the right hand side of (3.6), ~,["](t), will be canceled out by a part of the 

second term. Also, the estimates in (3.6) are equal to the MMSE estimates [Mayb82], because of the 

earlier assumption of Gaussian noise in the measurement. The covariances of the estimates K, Jo, ,,(t) 

and 2;. Jo, J-l(t), for m. n = 0. 1, ..., 4, are given by 

dm dm axslm1(t) ax,[nl(t) 
= C  C I ' m .  

p = 0 q = 0 ae;, Jo ae;, Jo 

Using (3.4), (3.1) and (3 .3 ,  we obtain 

where 

dm dm ( t - t ~ g ) P - ~  (t-  tjJq-" 
vIL. I,,, 1-1 0) = C C (p-m)! (q-n)! 

I ' m .  
p = m  q = n  

Although we could find the element of the (& + 1) x (d, + 1) matrix [I'] from 

it is not feasible to derive the closed-form analytical solution for the estimators and the corresponding 

covariances in (3.9) and (3.11) when & 2 3 because we need invert the matrix [I'] to obtain I'm. 



However, this problem can be solved if we represent the trajectory model X(t) in terms of orthogonal 

polynomials, 

N-1 
Let { tp, N ( ~ )  J p  = be a set of orthogonal polynomials with respect to the discrete points u = 1, 2, 

. . .  , N. The function tpVN(u) is a p-degree polynomial and its factorial representation is given by 

[Rals65] as 

where 

+ k  (p + k)! (N - k - l)! (p!)2 
dk, p. N = 

(2p)! @ -  k)! ( N - p -  I)! (k!)2 
' 

Note that the leading coefficient of 5 ,  N ( ~ )  is equal to one, i.e., dp, p, = 1.  The first four of these poly- 

nomials can be written as follows. 

The orthogonal polynomials satisfy the recursion relationship 

and the orthogonality property 

N 

where 

I =  -p 

S(P9 = (2p)! (2p + l)! 

and l$, , is the Kronecker delta. The following three theorems will play the integral role for the further 

discussion. Their proofs are given in Appendix. 



Theorem 1 

r 

Theorem 2 

The p-th derivative of 5 ,  .(u) is given as 

\$L(u) = p! p 5 N . 

For large u and m < p I N, the m-th derivatives of t,, .(u) can be approximated as 

Theorem 3 

Let 

then the followings are true. 

(iii) V@, N, N + 1, m) = 0, if p < m. Furthermore, for m I p I N and large N, 

V@, N , N +  1, m) = VP)! ( 2 ~  + 111 m+ 1 ) - ( ~ + 1 )  
@!)' ((p - m)!)' 

(iv) V@, N, N, m) = 0, if p < m . Furthermore, for m I p I N and large N, 



We can express the trajectory model X(t) alternatively in terms of orthogonal polynomial as fol- 

lows. 

where the argument of E,(.) is the normalized and shifted function 

The m-th derivatives of X(t) are given by 

where ~j~j-j, ( u ~ ~ ( t ) )  stands for the m-th derivatives of ep, J-Jo (u) with respect to u at u = uJo(t). Similarly 

to (3.6) and (3.8), the MVUB (and the MMSE) estimator g m ,  lo, J-l(t) of xLml(t) and the corresponding 

covariances are given by 

dm dm a ~ ~ [ ~ l ( t )  ax,r"l(t) 
Vmn, J, J-I(~) = C. C. I" ,  

p = 0 q = 0 aep. Jo, J-l aeq. J, J-1 

where p ( MJ,  J-l ; 8 ) is the joint probability density function of the measurement vector gJ, J-l in 

terms of the unknown parameter vector 

Note that there is difference between V-, ,, ,-,(t) and R-, Jo, J_l(t). The former is the covariance of the 

estimate km, J,,, ,,(t) and the latter is the correlation between the errors [ 8,. J-,(t) - xLrn1(t) 1 and 

[ 8 ,  J, ~ - l ( t )  - xCn1(t) I. The IN is the pq-th element in the inverse of the information matrix [I] having 

elements 

a~ (M_J,,J-I ; g )  a i n p  (M_~, , -~  
I, = E 

a e p ,  Jo, J-1 a e q ,  J,, J-l 



By using (3.30) and the orthogonality property in (3.17), it can be shown that [Peeb70] 

where 

Note that if X(t) = X,(t), then xLml(t) = ~!"](t), and we can verify that the estimates km, J-l(t) of x!"' 
are unbiased by using (2. I), (3.28) and (3.17); 

The relation between the estimates obtained from the above two models (one in terms of power 

series and the other in terms of orthogonal polynomials) is given in the following theorem. 

Theorem 4 

Two estimators, A:, J-l(t) in (3.6) and k,, Jo, ,,(t) in (3.31), are identical. Their corresponding covari- 

ances in (3.8) and (3.32) are also the same. 

The proof of this theorem is given in Appendix. Because the estimators k,, Jo, ,-,(t) and their covari- 

ances in terms of the orthogonal polynomials have the explicit expressions (3.35) and (3.37) even for 



d,,, > 3, and because, as we shall see, the orthogonality property in (3.17) is very useful for analyzing 

the estimators in case of model mismatch, we shall use the orthogonal polynomial instead of the con- 

ventional power series in describing the actual and model trajectories. 

The second half of this section is to formulate the problem of motion estimation as the state esti- 

mation problem. Let the state vector be 

The evolution of state and the discrete measurement satisfy the following plant equation and measure- 

ment equation, 

where A is a (& + 1) x (d, + 1) matrix with elements 

and .the 1 x (& + 1) matrix H is given by 

Then the state estimation problem is to estimate the state ~ ( t )  at time tJ-l based upon all measurements 

( m (tj) 1;J-lj0. 

It is well known that the optimal solution of the above state estimation problem, in the sense of 

MMSE, is given by the Kalrnan filter. Let $(&- ; Jo) and - S(4+ ; Jo) be the optimal estimate of state ~ ( t )  at 

time 6, given ( m(tj) )j:lJ0 and { m (tj) lji= Jo, respectively. Let the (4, + 1) x (4, + 1) matrices P(4- ; Jo) 

and P(c+ ; Jo) be the covariances of $(G- ; Jo) and - 3(6+ ; Jo), respectively. Then the optimal state estimates 

5(~+ ; Jo) and the covariances P(G+ ; Jo), i = Jo, 1, ..., J-1, can be obtained recursively as follows - 

[Mayb82]. The state estimate - S(4- ; Jo) and the covariance P(4- ; Jo) are propagated from measurement 

time ti, to 6 by the relations 

where @(ti, tGl) is the state transition matrix of (3.40). Since the matrix A in (3.40) is time invariant 

with elements Aj given in (3.42), it can be shown that 



and the pq-th elements of @(ti, ti-1) are given by 

for n = 0, ..., q and p, q = 0, ..., &. The estimate and the covariance are then updated by the follow- 

ing relations, using the newly measurement m(tJ. 

K(tJ = P(411 ; Jo) H~ [ H P(411 ; Jo) H~ + o2 I-' , (3.48) 

i(t;' ; Jo) = $(c- ; Jo) + K(tJ [ m(tJ - H $(&- ; Jo) I , - (3.49) 

P(6' ; Jo) = P(f ; Jo) - K(tJ H P(6- ; Jo) . (3.50) 

where K(t) is called the Kalrnan gain at time t. The initial condition for the recursion is given by 

3(t:o-l ; Jo) = E [ ~ ( t  ~~ -1 )  1 = $ J,-1 , - (3.51) 

and P contain the prior information of the state before the recursion starts. One may set them 

to be a zero vector and a diagonal matrix with very large diagonal value, respectively, if apriori infor- 

mation is not available. Or, one may initialize the state vector and covariance matrix from the meas- 

urements directly and then start the recursion. The second approach will be discussed in a more detail 

later. 

Since the state estimation problem discussed above is exactly equivalent to the estimation prob- 

lem in terms of power series which we had discussed in the beginning of this section, the optimal solu- 

tion of these two problems are the same. Using theorem 4, we have 



where Pm(q ; Jo) and P-(G+ ; Jo) are the mn-th elements of P(G- ; Jo) and P(&+ ; Jo), respectively, for m, n 

= 0, 1, ..., &. The above observation is important in three ways. First, the Kalman iilter solution in 

(3.44)-(3.50) gives us a procedure for finding the estimates recursively, i.e., we do not need to store 

and process the entire history of the measurement every time when a new measurement comes in. 

Second, we can obtain the initial state estimate and its covariance by using the measurements 

{ m(tj) ):ziJO from (3.54) and (3.56), if we model the trajectory as a &-degree polynomial. Subsequent 

estimates can be obtained by starting the Kalman filter at time td,+ Third, the optimal solutions 

in terms of orthogonal polynomials in (3.35) and (3.37) give us explicit expressions for the estimates 

( L,,, ,-,(t) )go and their covariances. These expressions are very useful in analyzing the perfor- 

mance degradation for the model mismatch which we will discuss in next section. 

4. PERFORMANCE ANALYSIS UNDER MODEL MISMATCH 

In this section, the performance degradation of the estimation due to three classes of model mismatch 

discussed in the introduction are discussed. Note that if the trajectory model X(t) in (3.28) is true, i.e. 

Xs(t) = X(t), then the estimates %, Jo, of xP1(t) in (3.35) are unbiased; the corresponding variances 

V-, J& ~-l(t) in (3.37) achieve the MMSE and the error correlations Rmn, J-l(t) become equal to the 

covariances V-, Jo, ,,(t). If the trajectory model does not match the actual trajectory, then the above 

properties may not be valid, i.e., the estimators L, J@ J-,(t) may have biases 

and the error correlations become 

Note that the biases B,, ,@,-,(t) and the mean squared error Rmm, Jo, J-l(t) are two useful quantities in 

measuring the performance of the estimators. The former one indicates how far the estimate k,, J@ ,-,(t) 

in average to the true value xjml(t) is and the latter measures how large the error of the estimate makes 

in average. 

4.1 MODEL MISMATCH DUE TO PARAMETER JUMPING 

Let us start our discussion on the parameter jumping by a simple example. 



Example 1 

Suppose we use a constant value model for X(t) to estimate a piecewise constant trajectory Xs(t) at time 

tJ-l from the noisy measurements { m(tj) )I:lJo, i.e., 

where 6 ,  = sw A is the time at which the trajectory switches its value. We assume that it is at one of 

the discrete measurement times. Then, fmm (3.39, (3.37) and (3.15), the optimal estimate ko, ~ - ~ ( t )  of 

x[O1(t) = X,(t) and the corresponding variance are given by 

Substituting (2.1) and (4.4) into (4.5) and taking the expectation, we have 

Thus the bias and the mean squared e m r  of the estimate A,, ,,, J-l(t) at time tJ-I are given by 

02 (SW - ~ 0 ) ~  
ROO, J, J-I(~J-I) = - + ( ~ ~ 1 ,  J,, 1-1 - 052. J, 1-I)2 . J - Jo (J - ~ 0 ) ~  

Figure 1 shows the mean of the estimate and the original trajectory for QS1, Jo, < eS2 ,,. J-l. The bias in 

sw - Jo 
(4.8) is proportional to the difference of OS1, and Os2. and the value of - . Although this 

J - Jo 

bias will decrease as J increases, a large number of J is required to suppress it if sw is large. For 



example, if we want the bias B ,  J, J-l(tJ-l) = (Osl,  Jo, J-l - Os2, Jo, J-l) / 2, then (J - Jo) = 2(sw - Jo). It means 

that, after the trajectory switches its value from €Is1, Jo, J-l to Os2 J-l at time (sw - Jo)A, we need another 

total (sw - Jo) samples to get an estimate whose value, in average, equals to the average of OS1, Jo, rl and 

Os2 Jo, J-l. The physical interpretation of this bias is that the filter based upon the proposed model has 

memorized all the past 'invalid' measurements. Therefore a large number of new measurements are 

required in order to nullify these invalid values. This is the reason that the estimate is so bad after the 

trajectory jumps to a new value and that the estimate takes a long time to converge to a reasonable 

value. 

For the general case, we may describe the actual trajectory for which the particle changes its 

motion abruptly at time 2, as 

If we use the &-degree polynomial X(t) in (3.28) to model Xs(t) and assume d, = &, then the mean of 

the estimates L, J, J-l(t) of xP1(t) are given by 

where rswl is the smallest integer which is greater than or equal to sw. Similarly to the deriva~on of 

(3.38), one may show that the first term in the right hand side of (4.1 1) is equal to ximl(t) if t 2 2,. So 

the biases of the estimates at time tJ-I are: 

and the error correlations of the estimates R,(tJ-,) are given in (4.2) with the above Bm, Jo, J-l(tJ-l). 

More generally, if the trajectory switches L times within the time interval [ tJo, tJ -~  I and is 

described by 



where &wk indicates the k-th switch time, 5% = tJo and G,(~+ = t,-l, then it can be shown that the biases 

of the estimates L, Jo, ,,(t) at time tJ-, are given by 

and the error correlations are given in (4.2) with these biases. 

4.2 MODEL MISMATCH DUE TO UNDERMODELING 

Suppose that the actual trajectory X,(t) is described by 

then xLm](t) which we would like to estimate is given as 

Based upon the trajectory model in (3.28), the estimates k,,,, Jo, J-l(t) of xLml(t) and the covariances 

Vmn, J,,, ~ - ~ ( t )  are given in (3.35) and (3.40), respectively. If the model is correct, i.e., & = 4 ,  then these 

estimates are optimal. The estimation problems are called undermodeling and overmodeling if 4 , 4  d, 

and & > 4 ,  respectively. We will analyze the performance of the estimators of (3.35) for these two 

cases in this sub-section and next sub-section. We motivate the discussion on the issue of undermodel- 

ing by a simple example. 

Example 2 

Suppose we use a constant value model for X(t) to estimate a constant velocity trajectory &(t) at time 

tJ-l from the noisy measurements ( m(tj) )/:lJ0, i.e., 



Then the optimal estimate ko, J-l(t) of xfO](t) = Xs(t) and the corresponding variance are again given by 

Taking the expectation of (4.19) and using (2.1) and (4.18), we have 

Thus the bias and the mean squared error of the estimate at time tJ-, are given by 

o2 es1, I,, 1-1 (J - Jo - 1) 
Roo, J, J-I(~J-I) = - J - Jo 

The value of the actual trajectory and the mean of the estimate are depicted in figure 2. It shows that 

the bias of the estimate is small around the initial time tJo and then increases as the time increases. It 

means that the estimate will not converge to the true value in average, even if we use more and more 

measurements! Hence, it is not a consistent estimate. The reason is that, although the trajectory may 

be well approximated by the constant value model in the small time interval around time tJo, the model 

error will becomes larger as the length of the interval increases. 

For the general trajectory in (4.15) and model in (3.28), we can find the mean of estimates 

Xm, J,, ~-~(t),  similarly to the derivation in (3.38), as follows. 

Thus, from (4.16), (4.1), (4.2) and (3.37), the biases and the error correlations at tJ-I are given by 



The mean squared error of the estimates L, Jo, ,-,(t) at time tJ-l become 

The first term in the right hand side of (4.27) is proportional to the common variance of the noise. 

From theorem 3, each term in the summation will converge to zero at the rate of (J - Jo)-(hi l )  as J 

increases. The second term in (4.27) reveals the extra error due to the undermodeling. From theorem 2, 

- A (J - J0)p-". Consequently, as J increases, the extra error term as well as the 5:?1- l0(J - Jo) - @ - m,! 

absolute value of the biases in (4.25) will increase, in general, without a bound! 

4.3 MODEL MISMATCH DUE TO OVERMODELING 

In the following, we will show that in the case of overmodeling, the estimates km, ,@ ,-,(t) of xirn](t) are 

still unbiased but the mean squared errors increase as the degree of the model d, increases. The fol- 

lowing is a simple example to illustrate the effect of overmodeling. 

Example 3 

Suppose we use a constant velocity model X(t) to estimate a constant value trajectory X,(t) at time t,-, 

from the noisy measurements ( m(tj) }/=lJ0, i.e., 

From (3.33, (3.18) and (3.13, the optimal estimate &, ,@,-,(t) of xim](t) = Xs(t) , for m = 0, 1, have 

means as follows. 



d Note that x,[O1(t) = Xs(t) = O,, Jo, J-l and x!lJ(t) = - Xs(t) = 0. Hence, the above estimates are unbiased. 
dt 

Then, from (3.37) and (4.2), the mean squared errors of the estimates km, Jo, ,,(t), for m = 0, 1, at time 

t ~ - ~ ,  are given by 

[ 51, J -  J , (UJ~(~J-~) )  12 
S(1, J - Jo) J 

Although the estimates do not have biases, the above mean squared errors show the performance 

02 degradation. In the right hand side of (4.32), the first term - is equal to the minimum mean 
J - Jo 

squared error if we use the correct model, i.e., the constant value model. The second term indicates the 

extra error due to the overmodeling. It equals about three times of - . The error variance in (4.33) 
J - Jo 



shows the similar degradation. Note that Rll, J, J-](tJ-l) is equal to zero if we use the constant value 

model. Fortunately, these extra errors converge to zero at the rate of (J - J,)-' and (J - J,)-~, respec- 

tively, as J increases. 

Similarly to the discussion on the undermodeling in previous sub-section, we can show that the 

mean of estimates L, ,,, ,,(t) for the general trajectory model (4.15) are given by 

From (4.16) and using d, > 4, 

Thus, the estimates are unbiased and the error correlations R,, JW ,,(t) are equal to the covariances of 

estimates V,, J,J-l(t), i.e., 

It implies that the mean squared errors R-, Jo, J-l(t) of km, J-l(t) at time tJ-] are given by 

The first term in the right hand side of (4.37) is equal to the minimum mean squared errors if the 

degree of the trajectory model d, = 4. By using theorem 3, each term in the summation converge to 

zero at the rate of (J - Jo) -'h"+ ') as J increases. The second term is the extra error due to the overmo- 

deling. Since S@, J - Jo) is greater than zero for (J - Jo) > d, > 4, this extra error is positive and will 

increase as d, increases. Fortunately, this term will also converge to zero at the rate of (J - Jo) -(h + ') 

as J increases. 



5. FLAT MMF 

In this section, we propose a new filter called FLAT MMF in an attempt to solve the problem of the 

model mismatches we have discussed in previous sections. Section 5.1 discusses the motivation for 

this filter. Section 5.2 reviews the multiple model filter and describes the basic structure of FLAT 

MMF. Section 5.3 analyzes the behavior of FLAT MMF on the model mismatches. Section 5.4 sum- 

marizes some simulation results of applying FLAT MMF on the model mismatches. 

5.1 MOTIVATION FOR FLAT MMF 

Let us consider the problem of parameter jumping first. As we discussed in section 4.1, the reason 

that the estimates of the parameter jumping have a very large biases and mean squared errors after the 

particle switches its value is that the filter has memorized many invalid measurements. For example 1 

in section 4.1, one may expect that if we start another filter some time after the first one, then the esti- 

mate from this filter will have smaller error since it has memorized less invalid measurements. In the 

extreme case, if the filter is started after .the switch time, then the estimates will be unbiased because 

the Kalman filter provides the unbiased estimates with minimum mean squared error if .the trajectory 

model matches to the actual motion. Thus, we would like to design a filter in which part or all of 

these invalid measurements are suppressed. To illustrate this discussion further, let us conduct a sim- 

ple experiment. 

Experiment 1 

Consider a particle that moves from (5, 5, 20) units to (-4, 2, 20) units with velocity (-4.16, -1.38, 0) 

unitslsecond then moves to (0, -5, 20) units with velocity (2.176, -3.81, 0) unitslsecond. Thus, there is 

no depth change in the motion and the velocity is piecewise constant. Assume we use a constant velo- 

city model to estimate this motion and we start the estimator at time 0, 20, 40, 60 and 80 samples. 

Figure 3a depicts the estimates of velocity xrll(t) 1 Z(0). (Detail of the experiment setup and the pro- 

cedure for finding the estimate will be discussed in section 5.4). As we expected, the model error due 

to the velocity jumping makes the estimates possess a very large error and the filters started later pro- 

vide better estimate after the velocity jumping. Note that the older filter has the better noisy suppres- 

sion than the younger one if there is no velocity jumping since they have started. 

The above observation may suggest that we restart the filter at every few samples in order to 

keep the number of invalid measurements small. But this does not work because the filter needs 

enough samples in finding the estimates and suppressing the noise. However, if we use two or more 



filters which are started (triggered) at different times and combine the estimates from these filters prop- 

erly, then we may be able to obtain the estimates which have good noise suppression and minimize the 

effect of parameter jumping. It is because that the older filter provides the estimates from more meas- 

urements while the younger one memorize less invalid measurements. Moreover, we may restart the 

oldest flter again after a reasonable period, say 100 samples, because the extra old measurements 

memorized in this filter become out of date. The above discussion motivates us to propose the FLAT 

MMF. We will discuss it in next section in more detail. 

The proposed FLAT MMF may also solve the problem of undermodeling. As we discussed in 

section 4.2, if we use a low-order model to estimate a high-order trajectory, the estimates will have 

biases and these biases increase without a bound in general. However, we observe that these biases are 

small around the time the filter is started because the trajectory can be approximated well there. The 

following experiment is conducted to illustrate this point. 

Experiment 2 

Suppose a particle moves with constant acceleration without depth change. We use a constant velocity 

model to estimate its motion. The initial position of the particle is (-6.8, -6.8, 20) units. It moves with 

velocity [ 3.4 10 0 lT + [ 0 -5 0 lT - t units/second. Figure 4a shows the estimates of y[ll(t) 1 Z(0) as 

the filter is started at different times. It confirms that the model error due to undermodeling makes the 

estimates diverge. However, the estimates from the filter started later are better than those from the 

filter started earlier, and the estimation error around the time the filter is started is small. 

Thus, if a new filter is started after the first one, it will provide better estimates from the time it 

is started than the estimates from the older one. Similarly to the discussion on the filter restarting and 

noise suppression for the case of parameter jumping, we may conclude that if we use a number of 

filters triggered at different times and combine the estimates from them properly, then the effect of 

undermodeling is reduced. 

For the problem of overmodeling, the situation reverses. The estimates for overmodeling are 

unbiased and the extra mean squared error due to the 'over-freedom' contaminates the estimates 

further. If the trajectory model is fixed, then the only way to achieve the better estimates, i.e., less 

mean squared errors, is to use more measurements. Consequently, the estimates from the filter started 

later will have larger mean squared errors because it has used less measurement. However, if one can 

conceive a mechanism that combines the estimates from multiple filters so that the final estimates are 

dominated by that from the oldest filter, then the estimates obtained from these filters do not degrade 



significantly, compared to that from a single filter. Note that, due to the real-time constraints, the order 

of the trajectory model can not to be high. This is especially true for estimating 3-D object motion 

from perspective measurements because the size of the state vector equals at least three times of the 

order of the trajectory model we use. Thus, the problem of overmodeling is less serious than the prob- 

lem of undermodeling and parameter jumping. 

Up to this point, we observe that we may solve the problem of parameter jumping, undermodel- 

ing and overmodeling by using a number of differently triggered filters if we combine the estimates 

from these filters properly. Thus, one may raise two questions: How do we combine these estimates 

properly and what do we mean 'properly'? The multiple model fdter discussed in the next section pro- 

vides an answer to these questions. 

5.2 BASIC STRUCTURE OF FLAT MMF 

In this section, we will first review briefly the existing multiple model filter (MMF) and then describe 

the basic structure of the proposed FLAT MMF. The idea of multiple model filter is first proposed by 

Magill for estimating the state of system with uncertainty [Magi65]. Since then, a number of applica- 

tions have been reported and several results on the behavior of MMF have been published. The detail 

of MMF can be found from the references in [Mayb82]. We give a brief description of MMF. 

Suppose we want to estimate the state - s(t) at time 6 of a system of interest from the measure- 

ments { ~ ( t ~ ) ) j , ~ .  Assume that this state estimation problem can be modeled properly by the one in 

which the plant equation and measurement equation are linear, except there are some uncertainties in 

the modeling, such as the covariance matrices of the model noise and measurement noise, and some 

parameters defining the state transition matrix. Let - a denote the vector of these uncertain parameter; 

and assume that - a belongs to the set of values {a&= Then, for each j ,  we may construct a Kalman 

filter, based upon the model associated with j ,  to estimate the state. Note that these K filters can be 

processed simultaneously. The final estimate of the state is obtained by combining the estimate of 

these K filters. The state estimation based upon the above structure is called multiple model filtering. 

It can be shown that for the above MMF structure, the optimal state estimate, in the sense of MMSE, 

is given by 

where &(t;+) is the state estimate produced by k-th Kalman filter based on the assumption that the 

parameter vector equals g [Mayb82]. pk(tJ is the hypothesis conditional probability and 



- - f ( 2  (ti) I 3, g o ,  i-1) ~k(ti-I)  
K 9 

The covariance of - ;(ti+) is 

where Vk(~+) is the covariance of &(c+) computed by the k-th Kalrnan filter. The conditional probability 

f@ (ti) I &. go, i-l) in (5.2) can be evaluated as 

where 

where &(ti-), Vk(~-) and 3 ( ~ )  are the state estimate, the covariance and the residual at ti of the k-th Kal- 

man filter, based upon the measurements {"f(tj))!ilo, respectively. R, H and n, are the covariance 

matrix of measurement noise, the measurement matrix and the total number of measurements at each 

time, respectively. Note that A k ( ~ )  and a(ti) are available as the intermediate result of the k-th Kalman 

filter. Thus, the conditional probability f@(tJ I 3 , Mo, as well as the weighting factors pk(tJ can be 

obtained with a small amount of increase of computation. 

In summary, the MMF is composed of a bank of K separate Kalman filters, each of which is 

based on a particular parameter vector %. The overall state estimate is the linear combination of the 

state estimates generated by these Kalman filters. The weighting factors p k ( ~ )  is updated recursively 

according to (5.2), using the current Ak(tJ and rk(tJ. The block diagram of the MMF is depicted in 

figure 5. All the filters are run simultaneously and the extra computation in updating the weighting 

factors pk(Q compared to the normal Kalman filter is negligible. 

The FLAT MMF is composed of a set of K identical Kalman filters, each triggered at different 

time. The overall state estimate is the probabilistically weighted average of the state estimates gen- 

erated by these Kalrnan filters, as we discussed for the MMF. Without loss of generality, we assume 

that the k-th filter is triggered at time (k - 1) Jt A, where Jt is an integer. Each filter will die out every 



(K Jt A) seconds and then the filter will be triggered again, i.e., each filter only has a lifetime of 

(K Jt A). Figure 6 shows the timing of the FLAT MMF for K = 4. At any time, in general, there are K 

filters being processed simultaneously. Thus, a FLAT MMF is a MMF in which all the filters are 

identical but have the different starting time, i.e., the uncertain parameter vector discussed before is 

the time that the filter is started. For the nonlinear state estimation problem such as the problem of 

motion estimation from perspective measurements, FLAT MMF can still be used to estimate the state 

if we replace the Kalman filter by the extended Kalman filter or some nonlinear filter. Furthermore, we 

may include other uncertain parameters into the estimation process by replacing each filter with a 

MMF representing those uncertain parameters. 

The key feature of the FLAT MMF is that the differently triggered filters operate on different sets 

of past measurements. Hence, as we discussed in section 5.1, the estimates from these filters contain 

the one that has good noise suppression for the case of the trajectory model matches to the actual tra- 

jectory or the case of overmodeling, the one that contains small number or none of invalid measure- 

ments for the case of parameter jumping, and the one that has a small model error for the case of 

undermodeling. The structure of MMF provides a way to combine these estimates properly, in the 

sense of MMSE, so that the 'best' estimate will 'show up' at the final estimate. The estimation 

behavior of FLAT MMF for model mismatch is discussed further in the next sub-section. Another 

feature of FLAT MMF is that all the filters can be processed simultaneously and the computational 

effort for combining the estimates from the filters is relatively small. Thus, the FLAT MMF can be 

implemented efficiently for real-time applications. 

5.3 FLAT MMF AND MODEL MISMATCH 

In this section, we will analyze three classes of mismatch model discussed in section 4 when the pro- 

posed FLAT MMF is used. Without loss of generality, we will focus on the discussion when K = 2, 

i.e., there are only two Kalman filters in the FLAT MMF and k = 1, 2. Let t; be the time we want to 

estimate, bk be the triggering time of k-th filter, 4 be the order of actual trajectory X,(t) and & be the 

order of trajectory model X(t). Throughout this section, we assume that i > & + ak, to make sure that 

there are enough measurements. Note that the estimates of the filter triggered at tk from the measure- 

ments {m(tj)]ji=o are equal to that from the measurements (m(tj))ji=,k. It means that all the formula 

related to the state estimation in the previous sections can be applied to the filters triggered at different 

time by simple replacing Jo with the corresponding ak. That is why we included the starting time of 

available measurements Jo in the derivations at the previous sections. 



For the 1-D motion problem discussed in section 3, the recursive expression of the weighting fac- 

tors pk(4) can be obtained explicitly as follows. From (3.43), (3.53), (3.55) and (3.35), Ak(t,) in (5.5) 

and the residual rk(ti) in (5.6) are given by 

Note that the total number of measurements at each time is n, = 1 and Ak(ti) > 0 for d f 0. The condi- 

tional probability is given by 

1 rk2(fi) 
f(m (4) 1 4, M_o, i-1) = (2ri)i,~ G / z ( ~  exp { - - 

2 &(ti) - 

The weighting factors p k ( ~ )  in (5.2) are the normalized product of these f(m(4) I 4, go, i-l) by the last 

weighting factors pk(tiS. Define the weighting ratio of pk(4) and pl(t;) as pkll(tJr i.e., 

pkll(tJ = pk(Q I pl(ti). Let zs(i) be the composite vectors which comprise the trajectory &(t), - n(i) be the 

noise n(t) and - m (i) be the measurement m(t) from time to to 4, i.e., 

Let the (i + 1) x 1 vector &(i) has elements bkj(i), for j= 0, 1, ... i, where 

From (5.2) and (5.9), we have 

Let 



It means that 

~ k l l ( t 3  = ~ k ~ l ( t i - 1 )  eOL*'(i) . 

From (5.14), we have 

Note that the norm of b(i), the inner product bT(i) g(i) and the inner product hT(i) &(i) satisfy the fol- 

lowing lemma. 

Lemma 1 

(i) The norm of 4(i) equals to one. 

(ii) The inner product of 4(i) and g(i) equals approximately to one for large i. 

(iii) The inner product of b(i) and &(i) is given by 

where B ,  ak,i-l(ti) is the bias of the estimate 2 ,  ak, i-l(tJ, using the measurement (m(tj)]&lak. 

The proof of this lemma is given in Appendix. The mean and the variance of akI1(i) satisfy the follow- 

ing theorem. 

Theorem 5 

Bo, a,, i - l ( J  Bo, a. i-l(ti> 
- e2(Q 



The proof of this theorem is given in Appendix. 

Note that, from (3.37) and the definition of V(p, N, u,m) in (3.23), the variances of the estimates 

%, i-l(tJ and k, , i(tJ can be represented as 

Thus, from theorem 3, we have the following theorem. 

Theorem 6 

If i > ak + 4, and i > al + &, then the following is true. 

(i) if a1 > ak then VW, a,, i-l(f3 > VOO, a,, i-l(ti), VW, a,, i(C) > VW, a, i(tJ and Al(tJ > Ak(tJ . 

(ii) if a1 > ak then V-, ,, i-l(ti) > V-, i-l(tJ and V-, i(tJ > V- i(tJ, for m > 0 and large i. 

The proof of theorem 6 is given in Appendix. 

5.3.1 PARAMETER JUMPING 

Let tS, be the time at which the actual trajectory switches its parameter values. Without loss of general- 

ity, we assume that 3Jt A < &, 5 4Jt A, where J, A is the time separation between two adjunct trigger- 

ings. We will analyze the behavior of FLAT MMF in the time intervals [ 3Jt A, g ,  ), [ &,, 45, A ) and 

[ 4Jt A, 5Jt A ). Figure 7 depictures the timing of the two parallelly operated filters and the switching 

time of the trajectory. 

Still, we assume that the actual trajectory &(t) is represented as in (4.10) and the trajectory model 

X(t) is given by (3.28) with d,,, = 4. Then the optimal estimates %,ak,i(tJ of x;"'](tJ and the 

corresponding covariances are given by (3.35) and (3.37), respectively as we substitute Jo = %, J = i + 1 

and t = ti to them. 

(i) 3J, A I ti -c 4, : In this interval, the triggered times of the filter are al = 2, and a2 = 3Jt. The mean 

L, ,,, i(Q, from (3.35) and (4.10), is given by 

i i 

[ 'm, ap i(tJ I = Wmj, a,, i(4) Xs(tj) = x Wmj, a,, i(tJ Xsl(tj) . 
j = a, j = a, 



Similarly to the discussion in (3.38), we can prove that the above expression equals to 

x,rm](t) = 
dm X,l(t) at time t = ti. Hence, the estimates Am, ,JtJ are unbiased and the mean squared 

dt"' 

error is given as R-, ak i(tJ = V-, , i(tJ. Similarly, we can show that the estimates &, i-l(tJ are 

also unbiased. Since al c a2, from theorem 6, R-, a,, i(tJ c R-, a2, i(tJ for large i. Thus, the estimates 

from filter 1 are better than that from filter 2 within this interval. This result makes sense because filter 

1 uses more (valid) measurements than filter 2 during the estimation process. In the following, we will 

show that the overall estimates of FLAT MMF are almost equal to that of filter 1. It means that the 

performance of FLAT MMF is similar to that of the normal Kalman filter if the trajectory model 

matches the actual trajectory. 

Since the estimates go, ak i-l(Q are unbiased, i.e. B , ,  i-l(tJ = 0 for k = 1, 2, from theorem 5 the 

mean and the variance of a1 12(i) are given by 

This implies that 

Since a, c a,, from theorem 6 we can derive that plI2(4) > pl12(ti-l). Thus, 

where p,  is a small number, say 0.01, assigned to the weighting factor of the newly starting filter. 

Consequently, the overall estimates of the FLAT MMF in (5.1) are dominated by the estimates from 

filter 1, as we expected. 

(ii) 6 ,  I 4 c 4J, A: In this interval, the triggered times al and a2 are still equal to 27, and 3J,, respec- 

tively. From (4.12), (4.2) and (3.37), the bias and the mean squared error of the estimates k. ap i(tJ 

are given by 

o2 dm [ 5E2-ak+ l ( i -&+  1)12 
K m ,  a,, i(Q = - 

A~ p = m  S (p , i - ak+1)  + [Bm, ak, i(t3 12 



These biases and mean squared errors depend on the values of wmj, akj(4), i, Xsl(tj) and XS2(tj), for 

j = &, ..., ~ S W ]  - 1. Hence, for an arbitrary trajectory, we can not say which filter always produce better 

estimates-less biases and smaller mean squared errors-within the entire interval [ b,, 4J, A ). In figure 8, 

we present some examples and counter-examples. In figures 8a and 8b the mean of the estimated tra- 

jectories from filter 2 is always closer to the actual trajectory than that from filter 1. In figures 8c and 

8d, the estimated trajectory from filter 2 is sometime worse than that from Mter 1. However, since the 

filter 2 uses less invalid measurements than the filter 1, it is expected that, most of the time, the bias of 

the estimates from filter 2 are smaller than that from filter 1. If this is true, then 

B: a,, i-l(ti) ~i a,, i-l(Q 
B$ .,, i-l(t;) > B$ a,, i-l(t,). Since a, < a,, from theorem 6 A1(Q < A2(tJ. Thus, > 

Al(t3 Az(t3 . 
From theorem 5, we have 

2 
a - 1  Bo, a,. i-l(4) - 

A1 (4) Az(Q 

Consequently, we may conclude that the weighting factor p,ll(Q, in (5.16), increases exponentially as i 

increases and the overall estimates of FLAT MMF will be dominated by the estimates from filter 2. 

For the case of & = 0, the above expectation that filter 2 generates better eslimates is always true. 

It is shown as follows. For 4, = 0, the bias and mean squared ermr of estimate k ,  ak i(tJ are given by 

a2 
Rw. aC '(4) = i - ak + 1 + B$ a,, i(Q 

Note that Oslo, = Oslo, and 0s20, al, = 0s20, i. Since a1 c a ,  it can be shown that 

rswl - al rswl - a2 > . From (5.33), 1 BOB i(t) I > I Bo, ,,, i(tJ I ,  i.e., the estimate from filter 1 has the i - a l + l  i - a z + l  

larger bias. For small noise, i.e., c? = 0, the first term in the right hand side of (5.34) can be neglected 

and then Rw, a,, i(4) > ROO, a,, i(Q- 

(iii) 4Jt A I. 4 c 5Jt A: In this interval, al = 4Jt, and a, = 3J,. The estimates k,, a2, i(tJ from filter 2 still 

have biases and mean squared errors given by (5.30) and (5.31), respectively. On the other hand, the 

estimates x., .,, i-l(Q and i[., .,, i(tJ from filter 1 are both unbiased because all the measurements which 

filter 1 uses are valid. The mean squared error of estimates i(.,,,, i(4) is still given in (5.31) except 

B,, i(ti) = 0. Thus, the estimates from filter 1 are better than that from filter 2 within this interval. 



Since Bo, ,,, i-l(tJ = 0, from theorem 5 we have 

Hence, the weighting ratio pl12(6) in (5.16) increases at an exponential rate. Consequently, 'the overall 

estimates of FLAT MMF approach to that of filter 1 exponentially. 

5.3.2 UNDERMODELING 

Without loss of generality, we consider that filter 2 is the 'younger' one, i.e., a, < a2. For the general 

trajectory in (4.15) and trajectory model in (3.28), from (4.25) and (4.27), the bias and the mean 

squared error of the estimates k,, ak, i(tJ are given by 

The above biases and mean squared errors depend upon the values of d,, d,,,, i and 8,. ak, ;, for k = 1,2. 

Hence, for an arbitrary trajectory, we can not say that which filter always produces the better estimate. 

Figure 9 shows an example for the case of 4, = 0, d, = 2. The mean of the estimate ko, ak, i(t.J, k= 1, 2, 

are plotted. It is seen that the bias of the estimate from filter 2 in the interval (t,, tB) is smaller than 

that from filter 1, while it is larger for other interval. However, for large i and using theorem 2, we 

may approximate the biases as follows 

Since 8,,, = OdS, a2, and a, < a,, I B,, ,,, i(t;) I > I B,, a2, i(t.J I .  For small noise and/or large i, 

Rmm, ak, i(tJ = B:, ak, i(t3. This implies that R,,,,, al, i(t.J > &, a2 i(tJ. Thus, the estimate from filter 2 is 

better than that from filter 1. Similarly, for large i, I Bm, al, ,,(t3 I > I B,, a2 ;-,(t.J I .  From theorem 6 

'2 a,, i-I ( 0  '2 a ,  i-l(ti) 
and using a, < a,, A1(t,) < A,($). Hence, > . Using theorem 5, we have 

Al(0  A2(Q 

a,, i-,(ti) - ~2 a ,  i-l(fi) 

A1 (t3 A2(t3 



Thus, we may conclude that the weighting factor p211(tJ, in (5.16), increases exponentially as i 

increases and the estimates from filter 2 dominate the overall estimates of FLAT MMF at an exponen- 

tial rate. 

Although there are still biases in the estimation, the biases are much smaller than that of one Kal- 

man filter. The maximum of the absolute value of the biases of the estimates &, ak i(tJ, from (5.38), is 

1 approximately equal to (- QSd1, ak, 
d,! 

( J, +  IF-^). The maximum bias occurs at the time just 
Am (4 - m)! 

before another filter is triggered. Then the bias decreases dramatically because the newly triggered filter 

provides much better estimates. 

5.3.3 OVERMODELING 

Still, we consider that filter 2 is the 'younger' one, i.e., at < a2. For the actual trajectory in (4.15) and 

the trajectory model in (3.28) with d, < d,,,, from the discussion in section 4.3, the estimates &, ,k i(t.J 

are unbiased and their mean squared error is given by R-, ak, i(tJ = V,,, ,, i(tJ. Since a, < a2, from 

theorem 6,  Ft-, ,,, i(tJ < R-, a2 i(ti) for large i. It means that the estimates from filter 1 are better than 

those from filter 2. Since the estimates k ,  ,, i-l(tJ are also unbiased, similarly to the discussion in (i) 

of sub-section 5.3.1, we conclude that the overall estimates of FLAT MMF are dominated by the esti- 

mates from filter 1. 

5.3.4 SUMMARY OF THE ANALYSIS OF FLAT MMF 

We summarize the analysis of FLAT MMF from previous three sub-sections as follows. 

(i) For the problem of parameter jumping, the overall estimates before the particle switches its value, 

are dominated by the estimates from the oldest filter, i.e., the one that provides the largest noise 

suppression. After the switch occurs, the overall estimates approach exponentially to the estimates 

from the youngest filter which has been started before the switch. Then after another filter is 

triggered, the estimates from this newly started filter get control of the overall estimates exponen- 

tially and the estimation of FLAT MMF approaches to the one with MMSE estimates. 

(ii) For the undermodeling, the overall estimates approach exponentially to the estimates from the 

newly started filter whenever a new triggering occurs. Although the overall estimates have some 

biases, these biases are much smaller than those from a single filter. These biases depend upon 

the time interval between the triggerings (Jt A) and the difference between the trajectory model 

and the true trajectory. 



(iii) For the overmodeling, the overall estimates are dominated by the estimates of the oldest filter. 

Thus, the estimation does not degrade significantly if we use the FLAT MMF instead of the con- 

ventional filter. 

5.4 SIMULATION RESULTS 

In order to illustrate the performance degradation on model mismatches and the performance improve- 

ment when the FLAT MMF is adopted, a number of experiments on simulated data are conducted. 

The noisy measurements of the trajectory at different sampling time tj, j = 0, 1, - . , are generated by 

adding white zero mean Gaussian noise to the actual trajectory. The standard deviations of the noise 

are set to 2.5 pixels. The focal length of the camera is set to one unit. The visible portion of the 

image plane is (-0.36, 0.36) x (-0.36, 0.36) units. This portion corresponds to the viewing angle of 2 

20 degrees. The size of observed image is considered as 256 x 256 pixels. The time interval between 

frames is 0.04 second. Kalman filter is used to find the unknown states. The initial estimates of posi- 

tion are set to their measurements at b and those of the states corresponding to their derivatives are set 

to zero. 

Experiment 1 and 2 (continue) 

For experiments 1 and 2 discussed in section 5.1, we use the FLAT MMF with two Kalman filters. 

Each filter is triggered at every 25 samples. Figures 3b and 4b depict the estimates of x[ll(t) / Z(0) and 

y[ll(t) / Z(0) for these experiments, respectively. These results show that the FLAT MMF works quite 

well in handling the model mismatches. If we compare figures 3b and 4b to 3a and 3b respectively, 

one may find that the overall estimates of FLAT MMF are formed by just 'cutting out' the correct por- 

tions of the estimates from two filters. 

Experiment 3: parameter jumping 

In this experiment, the particle moves on the plane Z = 20 units from the initial position (-5, 0, 20) 

units. After six turns, the particle moves back to its starting position. The angles of these six turns are 

90°, 120°, -60°, 180°, -120" and 150°, respectively. Figure 10a shows the trajectory and its noisy meas- 

urement. Figures lob and 10c depict the estimates of velocity x[ll(t) l Z(0) and the predictions of tra- 

jectory respectively, for the normal Kalman filter and the FLAT MMF. The motion is modeled with 

constant velocity. Two Kalman filters are used in the FLAT MMF and they are triggered at every 25 

samples. From these results, we observe that the single filter almost losses track of the motion after 



the first turn. On contrast, the FLAT MMF provides very good estimates even at the place having very 

sharp velocity change (180" turn). 

For the case that the particle moves three times faster, the estimation performance using the 

above FLAT MMF becomes worse, but the estimates are still fairly good. Figure l l a  shows the esti- 

mate of xrll(t) 1 Z(0). In order to improve the estimation, one may add more filters to the FLAT MMF. 

Figure l l b  shows the estimate of xt1](t) 1 Z(0) from the FLAT MMF using five filters. Each filter is 

triggered at every ten samples. 

Experiment 4: undermodeling 

In this experiment, the particle moves on the plane Z = 20 units, along an ellipse with angular velocity 

0.15 radians/second. The lengths of the x and y axis of the ellipse are 12 and 8 units, respectively. 

The particle is at (6 ,  0, 20) units initially. Figure 12a shows the exact and noisy trajectories of the first 

160 samples. The model with constant acceleration is used in modeling. This experiment is highly 

undermodeled because the circular motion requires very high order of power series to describe it accu- 

rately. Figures 12b and 12c show the estimate of velocity xrl](t) / Z(0) and the prediction of trajectory 

respectively, both for the normal Kalrnan filter and for the FLAT MMF with two filters triggered at 

every 25 samples. From these results, we observe that the estimation using one filter has a very large 

error while the estimation using FLAT MMF is quite good. Figure 13a and 13b depict the estimates 

of x[ll(t) I Z(0) using the FLAT MMF with two and five filters respectively, for the case that the parti- 

cle moves four times faster. These results show that even for such high-speed circular motion, FLAT 

MMF can still provide fairly good estimates and one may improve these estimates by adding more 

filters at the expense of more computation. 

6. CONCLUSION 

In this report, we have shown that the estimation performance would degrade significantly if the 

motion model did not match to the actual trajectory. In order to solve such model mismatch problem, 

we proposed the FLAT MMF. Since the filters in FLAT MMF operate on different sets of past meas- 

urements, they can provide the estimates that contain the one that has good noisy suppression for the 

case of overmodeling or the case that the trajectory model matches to the actual trajectory, the one that 

contains small number or none of invalid measurements for the case of parameter jumping, and the one 

that has a small model error for the case of undermodeling. Also, the FLAT MMF uses the structure 

of Multiple Model Filter to combine these estimates optimally, in the sense of MMSE, so that the best 



of them shows up at the final estimate. Thus, it is not surprise that the FLAT MMF is quite effective 

in suppressing the adversary effect due to the modeling error. Furthermore, all filters in the FLAT 

MMF can be run in parallel and the computational burden of combining the estimates from these filters 

to yield the final estimate is relatively small, i.e., the computational speed of obtaining the state esti- 

mate using FLAT MMF is similar to that using conventional filter. 

APPENDIX 

Theorem 1 

Proof: (i) We prove this claim by induction. From (3.15), it is easy to see that the claim in (3.19) is 

true for p = 0, 1, 2. Suppose this is true for p = m, where m 2 2. Then 

(m!)2 5,. N(N + = - II ( N + r ) .  
(2m)! 1 = 1  

2 m - l  

' k m - l , N ( N +  
( (  - 1 )  n (N + r) . 
(2(m - I))! r =  i 

From the recursion relationship of the orthogonal polynomials in (3.16), 



Hence, the claim in (3.19) is also true for p = m+l. Consequently, this claim is proved. 

(ii) The proof is similar to that of (i). Q.E.D. 

Theorem 2 

The p-th derivative of E , ,  ,(u) is given as 

E,$k(u) = p! p I N . 

For large u and m < p I N, the m-th derivatives of kp, .(u) can be approximated as 

Proof: By using the factorial representation of orthogonal polynomial in (3.13), it is easy to see that 

E,$~(U) = p! and, for large u, we may approximate cp, N ( ~ )  = UP. Note that the leading coefficient in 

(3.13) $, , = 1. Consequently, the m-th derivatives of E , ,  N(u) is given by (3.22) and the theorem is 

proved. Q.E.D. 

Theorem 3 

Let 

then the followings are true. 

(iii) V(p, N, N + 1, m) = 0, if p < m. Furthermore, for m I p I N and large N, 

V@, N , N +  1, m) -- ( 2 ~ ) !  @ P +  I)! m+ l ) - ( h + ~ )  
(p!)2 (@ - m)!)2 

(iv) V(p, N, N, m) = 0, if p < m . Furthermore, for m 5 p 5 N and large N, 



Proof: (i) From (3.18) and (3.15), tOsN(u) = 1 and S(0, N) = N, this implies that V(0, N, N+1, 0) = 1/N. 

Substituting (3.18) into (3.23). we have 

From theorem 1 and for p > 0, 

Consequently, the claim in (3.24) is followed. 

(ii) The proof is similar to that of (i). 

(iii) Since 6 ,  N ( ~ )  is a pdegree polynomial, the m-th derivatives of it, for m > p, is zero. Thus, from 

P 
(3.23), V@, N, N + 1, m) = 0,  for m > p. For large N, I3 (N - r) -- (N + 112p+ ' and from theorem 2, 

r = - p  

cjy&N + 1) = A (N + l)P-'". Hence, from (a.4), we may approximate V(p, N, N + I,  m) as in 
@ - m)! 

(iv) The proof is similar to that of (iii). Q.E.D. 

Theorem 4 

Two estimators, 8.. ,@ ,,(t) in (3.6) and k, ,.,(t) in (3.31), are identical. Their corresponding covari- 

ances in (3.8) and (3.32) are also the same. 

Proof: For convenience, we rewrite the trajectory model in (3.1) and (3.28) as follows. 



From (3.13) and (3.29), (a.8) can be written as 

Note that Jo = 1. Thus, by expanding and combining the terms, we can represent the parameter 

vector - 8' in terms of - 8 as 

~ ' = B c ,  - (a. 10) 

where $ and 8 are defined in (3.2) and (3.33), respectively. The B is a (dm + 1) x (dm + 1) upper tri- 

1 angular matrix with diagonal elements B, = -. Hence, the matrix B is nonsingular, i.e., the inverse of 
A1 

B exists. Thus, the parameters ( 8,. J0 1:; and ( 8 ,  Jo,, )EO satisfy an unique and invertible linear 

transformation. Define 

X(t) = [ xJOl(t) xi11(t) . . xLdm1(t) lT , - (a. 1 1) 

?(t) = l 20 ,  JoJ-1(Q $, J@ I-I(~) - . . 2.h. ,@ J-I(~) lT - (a. 12) 

Let V(t) and G(t) be the (dm + 1) x (dm + 1) matrices with elements, respectively, V,, ,-,(t) and 

Let e be a (dm + 1) x 1 vector with elements 

(a. 1 3) 

(a. 14) 

%(t), ~ ' ( t ) ,  ~ ' ( t )  and e' can be defined similarly. Then, ftom (3.6), (3.3 I), (3.8) and (3.32), the estima- - 

ton K, J-l(t) and i(, Jo, ,,(t) as well as their covariances can be put into the matrix form as follows. 

(a. 15) 

(a. 16) 

(a. 17) 

(a. 18) 

Using (a.10), it can be shown that G ' (~)=G(~)B,  ~ ' ( t ) = ~ ~ e ( t ) ,  and < = B = I B .  Then, 
I' -1 = B-11-1 pT)-'. Thus, 



and 

~ ' ( t )  = G(t) B [B-' I-' (BT)-' ] BT GT(t) 

= G(t) I-' GT(t) 

= V(t) . 

Consequently, the theorem is proved. Q.E.D 

Lemma 1 

(i) The norm of g(i) equals to one. 

(ii) The inner product of &(i) and g(i) equals approximately to one for large i. 

(iii) The inner product of &(i) and S( i )  is given by 

(a. 19) 

where B ,  ak, ,,(g) is the bias of the estimate $ ak, using the measurement (rn(tj)):dak. 

Proof: (i) From (5.13), the norm of 4(i) is given by 

i - l  I 
- 1 dm Spl, i - ak(i - ak + 1) Sp,, i - ak(j - ak + 1) 
- + i=l [ , 

[ 1 + VOO. a,, i-l(C) I j = ak p1 = 0 S(PI, i - ak) I 



The third equality of above expressions is obtained by using the orthogonal property of orthogonal 

polynomial. From (3.37), the last term is equal to one and the claim is proved. 

(ii) For large i, (i - ak) =: (i - q). This implies that g(i) = g(i). Thus, h(i) = g ( i )  g(i) = 1. 

(iii) Since bT(i) has elements bkj(i) in (5.13), we have 

Q.E.D. 

Theorem 5 

BC?. a,. i- ti) BI?, a,. i-l(tJ 
- 

Al(t3 Ak(t3 

Bo, 9, i-l(Q Bo, a,, i-,(ti) - 
Ak1I2(t3 

(5.22) 

In order to prove theorem 5, we first show the following lemma. 

Lemma 2 

Let - m be an (i + 1) x 1 Gaussian random vector with probability density N&, o2 I), where 5 is an 

(i + 1) x 1 vector. Let B be an (i + 1) x (i + 1) symmetric matrix and let the random variable 

(a.23) 



Then the mean and the variance of y are given by 

E [ y ]  = & T ~ ( B )  + Z ? B  3, 

Var [ y  1 = 2 d  T ~ ( B ~ )  + 402 z: B2 & , 

where the symbol 'Tr' denotes the trace of a matrix. 

Proof of lemma 2: Since B is symmetric, there exists an (i + 1) x (i + 1) orthonormal matrix Q and an 

(i + 1) x (i + 1) diagonal matrix A = diag ( 2+, hl, - , h, ), such that 

where ( h, ):= 0 are the eigenvalues of B. Let = QT - m I 0. Obviously, is a Gaussian random vector 

with density NQ, I), where p = QT - X, / 0. Denote the p-th element of 5 and as xp and y, respectively, 

then { xi 1; = are independent noncentral x2 random variables with one degree of freedom and noncen- 

trality parameter ( b2 1: =o. The mean and the variance of x; are given by [Kotz82] 

E [ x ; ] = ~ + $ ,  (a.27) 

Var [ x; ] = 2(1 + 2$) . (a.28) 

From (a.23) and (a.26), we have 

Thus, the mean of y is given by 

Since ( X; 1: = are independent , the variance of y is given by 

From (a.26) and the definition of g, the followings are true. 

(a. 30) 



Consequently, the claim in (a.24) and (a.25) are true. Q.E.D. 

Proof of theorem 5: Let 

B(i) = g(i) gT(i) - b(i) g ( i )  , 

then, from (5.17), we have 

From the definition of B(i) and using part (1) and (2) of lemma 1, the followings are true. 

Tr(B(i)) = 0 (a.38) 

T r (~~( i ) )  = 2 ( 1 - hT(i) g(i)12) (a.39) 

= 0 (a.40) 

x T(i) B(i) s ( i )  = I gT(i)gs(i) 1 - I t$(i)&(i) l 2  
-S (a.41) 

x i )  B )  X (i) = 1 ( i ) )  1' + 1 ( i ) ( i )  l 2  - 2 ( i )  h i ) )  h i )  ( i ) )  ( i )  ( i ) )  (a.42) 4 -s - 

- [ t$(i) %(ill - bT(i) s(i)) 12 (a.43) 

Using lemma 2, part (3) of lemma 1 and (5.7), the claims in this theorem are true. Q.E.D. 

Theorem 6 

If i > ak + d,,, and i > al + &, then-the followings are true. 

if a1 > ak then VOO, a,, i-l(G > VOO, a,. i-l(Qr VOO, a,, i(c) > VOO, a,, i(0 and Al(Q > Ak(ti) . 

(ii) if a1 > ak then V-, ap i-l(ti) > V-, ak, i-l(Q and V-, a,, i(tJ > V-, a,, i(tJ, for m > 0 and large i. 

Proof: (i) By applying the fact (i) of theorem 3 with N = i - ak and m = 0 to (5.3.4), we have 



1 
Since a, > a,, (i - a3 > dm and (i - a$ > dm, we can show that - >- and i -a ,  1-ak 

i - a l + r  i - + + r  
> , for r = 1, . .. , dm. Consequently, from (a.44), V,, i-l(tJ > V,, i-l (tJ. From 

i - a l - r  i - % - r  

(5.7), we have Al(Q > A,(tJ. Similarly, we can prove that V,, ap ;(tJ > V,, ak, i(ti). 

(ii) Using the fact (iii) of theorem 3 with N = i - ak, we can approximate V,,, , ,  i-l(tJ in (5.3.4), for 

m > 0, as 

02 'Irn (2p)! (2p + I)! 
Vmm. ak, i-1 (ti)=- C. (i - a, + I ) - ( ~ + ' )  

A;?" , = , @!12 ((p - m)!12 

If a, > ak, then (i - al + 1)- "n + '1 > (i - a, + 1)- (;?" + I). It implies that V-, i-l(ti) > V-, , ,  idl(tJ. Simi- 

larly, we can prove that V,,, ,,, i(ti) > V-, ar i(tJ. Q.E.D. 
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Fig. 1. Mean of the estimate % , J ~ , ~ ( ~ E - ~ )  and the 
original trajectory XXt) for example 1, Jo = 0. 

Exact and estimated XI1l(t) / Z(0) versus frames 
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Fig. 2. Mean of the estimate %,,,J~E-~(~L~) and the 
original trajectory X.(t) for example 2, JO = 0. 

Exact and estimated XI1](t) I Z(0) versus frames 
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Fig. 3a Exact and estimated X[ll(t) / Z(0) versus Fig. 3b. Exact and estimated X['](t) 1 Z(0) versus 
number of frames for experiment 1. Estimators are number of frames by using FLAT MMF, for experi- 
triggered at samples 0 (O), 20 (A), 40 (U), 60 (x) ment 1. 
and 80 (+). 



Exact and estimated vl](t) l Z(0) versus frames 
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Fig. 4a Exact and estimated Y'll(t) / Z(0) versus - 
number of frames for experiment 2. Estimators are 
triggered at samples 0 (0), 20 (A), 40 (0). 60 (x) 
and 80 (+). 
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Fig. 4b. Exact and estimated Y'll(t) / Z(0) versus 
number of frames by using FLAT MMF, for experi- 
ment 2. 

Fig. 5. Block diagram of multiple model filter. 
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Fig. 6 .  Timing of FLAT MMF for Kd. - 

Fig. 7. Timing of the two panllelly operated filters and the switching time of h e  uajcctory. 
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Fig. 8a. Example that filter 2 always better Fig. 8b. Exampk that filter 2 always provides 
estimate for the analysis of FLAT MMF on parame- better estimate for the analysis of FLAT MMF on 
ter jumping, Jo = 0. parameter jumping, Jo = 0. 
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Fig. 8c. Counter-example that filter 2 always pro- 
vides better estimate for the analysis of FLAT MMF 
on parameter jumping, Jo = 0. 
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Fig. 8d. Counter-example that filter 2 always pro- 
vides better estimate for the analysis of FLAT MMF 
on parameter jumping, JO = 0. 



Fig. 9. Counter-example that filter 2 always pro- 
vides better estimate for the analysis of FLAT MMF 
on undermodeling, d, = 0, d, = 2, Jo = 0. 
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Fig. lob. Exact and estimated X[ll(t) / Z(0) versus 
number of frames by using normal filter (0) and 
FLAT MMF (0). for experiment 3. 

Fig. 10a Exact and noisy trajectories for experi- 
ment 3. Standard deviation of the noise is 2 5  pixels. 
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Fig. 10c. Exact and predicted trajectories by using 
normal filter and FLAT MMF, for experiment 3. 
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Exact and estimated X[ll(t) / Z(0) vems frames 
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Fig. lla. Exact and estimated xrl](t) / Z(0) versus 
number of frames by using FLAT MMF with two 
filters, for experiment 3 (faster motion). 

Exact and noisy tmjectories (160 samples only)- 

0.24 

Fig. 12a. Exact and noisy trajectories for experi- 
ment 4. Standard deviation of the noise is 2.5 pixels. 

Fig. llb. Exact and estimated XrlJ(t) / Z(0) versus 
number of frames by using FLAT MMF with five 
filters, for experiment 3 (faster motion). . . 
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Fig. 12b. Exact and estimated Xfl'(t) I Z(0) versus 
number of frames by using normal filter (0) and 
FLAT MMF (D), for experiment 4. 



Exact and predicted trajeaories (160 samples only) 

Fig. 12c. Exact and predicted trajectories by using , 

normal filter and FLAT MMF, for experiment 4. 
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Fig. 13a. Exact and estimated xtll(t) / Z(0) versus 
number of frames by using FLAT MMF with two 
filters, for experiment 4 (faster motion). 

Fig. 13b. Exact and estimated ~ [ ' ' ( t )  l Z(0) versus 
number of frames by using FLAT MMF with five 
filters, for experiment 4 (faster motion). 
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