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Two-Port Stacked Piezoelectric Aluminum Nitride Contour-Mode
Resonant MEMS

Abstract
This paper reports on design, fabrication and experimental testing of a new class of two-port stacked
piezoelectric aluminum nitride contour-mode micromechanical resonators that can be used for RF filtering
and timing applications. This novel design consists of two layers of thin film AlN stacked on top of each other
and excited in contour mode shapes using the d31 piezoelectric coefficient. Main feature of this design is the
ability to reduce capacitive parasitic feedthrough between input and output signals while maintaining strong
electromechanical coupling. For example, these piezoelectric contour-mode resonators show a quality factor
of 1,700 in air and a motional resistances as low as 175 Ω at a frequency of 82.8 MHz. The input to output
capacitance has been limited to values below 80 f F, therefore simplifying signal detection even at high
frequencies.
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Abstract 

This paper reports on design, fabrication and experimental testing of a new class of two-port 

stacked piezoelectric aluminum nitride contour-mode micromechanical resonators that can be 

used for RF filtering and timing applications.  This novel design consists of two layers of thin 

film AlN stacked on top of each other and excited in contour mode shapes using the d31 

piezoelectric coefficient.  Main feature of this design is the ability to reduce capacitive parasitic 

feedthrough between input and output signals while maintaining strong electromechanical 

coupling.  For example, these piezoelectric contour-mode resonators show a quality factor of 

1,700 in air and a motional resistances as low as 175 � at a frequency of 82.8 MHz.  The input to 

output capacitance has been limited to values below 80 fF, therefore simplifying signal detection 

even at high frequencies. 

Keywords:  Piezoelectric resonators, two-port resonators, RF MEMS, contour-mode, aluminum 

nitride. 

 

Introduction 

Next-generation RF communications links will require integrated, miniaturized and 

microfabricated vibrating microstructures that will perform time keeping and filtering functions, 

consume little power and be able to span multiple frequencies on the same chip. Recent research 

results have demonstrated high-Q, electrostatically actuated resonators [1-4].  Although very 
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promising, these devices suffer from a large motional resistance, which makes their interface 

with 50 � systems very difficult.  Recent efforts trying to lower the motional resistance by acting 

on geometrical parameters [5, 6] have not shown very significant improvements. The use of an 

internal electrostatic transduction mechanism [7-9] (a high-K dielectric is used to produce 

electrostatic forces) is very promising, but is limited by the intrinsically large capacitance that 

make signal detection extremely complicated at high frequencies.   

Piezoelectric resonators such as thin film bulk acoustic resonators (FBARs) [10, 11] and 

quartz shear resonators [12] have demonstrated high quality factors and low motional resistance 

(few �s) even at GHz frequencies. Despite being proven technologies, FBARs and shear-mode 

quartz resonators do not permit the manufacturing of a single-chip RF module, because multiple 

frequency selective arrays of piezoelectric resonators cannot be fabricated on the same substrate, 

since film thickness sets frequency.   

AlN contour-mode resonators, recently introduced by the same authors [13-15], have 

instead demonstrated the ability to provide multiple frequency of operation on the same substrate 

in combination with low motional resistance (50-700 �) and high quality factors (up to 4,300).  

At high frequencies (GHz range), these piezoelectric microstructures seem to be primarily 

limited by capacitive feedthrough.  The resonator signal is masked by a parallel parasitic 

capacitance due to the fabrication process and the use of one-port configurations.  In this work, a 

new class of contour-mode piezoelectric resonators that eliminates this feedthrough problem is 

introduced.  This novel design consists of two AlN contour-mode microresonators stacked on top 

of each other and having a common ground electrode in the middle of the structure.  Each 

resonator can be employed either as an actuation or sensing element.  By physically separating 

the input from the output, true two-port micromechanical resonators (or resonant transformers) 
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have been fabricated. The only feedthrough capacitance that can ultimately limit the high 

frequency performance of these microdevices derives from the substrate or the AlN film itself. 

These resonators, in the shape of either rectangular plates or circular rings, have initially been 

demonstrated at frequencies as high as 214.5 MHz with a quality factor, Q, of approximately 

1,500 in ambient conditions and a motional resistance, RM, as low as 150 �.  The feedthrough 

capacitance was always limited to less than 80 fF. These devices resolve the feedthrough 

problem encountered with one-port devices and have the potential to be extended to GHz 

frequencies. 

 In addition this novel topology can be employed to implement single-ended to differential 

microstructures that can reduce the number of components count by eliminating, for example, 

baluns.  It is also possible to envision the use of these two-port stacked resonant microstructures 

for the implementation of mixing functions by using the non-linear actuation principle typical of 

“internal electrostatic” transduction that can be obtained from very thin dielectric layers [7-9].    

 
Design of Two-Port Stacked Resonators 

 
Figure 1 shows a possible embodiment of a two-port stacked contour-mode AlN 

piezoelectric resonator.  This rectangular plate is formed by two c-axis oriented aluminum nitride 

layers, each sandwiched between two electrodes (platinum or aluminum) and vibrates in a 

contour mode shape.  A similar stacked topology can also be realized in circular ring structures.  

A vertical electric field is applied to one of the two layers and induces in plane dilation of the 

plate through the d31 piezoelectric coefficient. The rectangular plate can be excited into two 

fundamental modes, either a length-extensional (Figure 1b) or a width-extensional (Figure 1c) 

mode, being the center frequency set either by the width or length of the plate, respectively.  

Although lower frequency flexural modes could be excited in this structure (bending can be 
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induced by the non-symmetric application of the input force), these mode shapes are generally 

characterized by larger motional resistance and very small quality factor in air and therefore go 

undetected (as proven by the experimental results). In a similar manner the circular ring can be 

excited in a radial-extensional mode of vibration, whose fundamental frequency is determined by 

the width of the annulus (Figure 2).  At resonance, the large strain induced in the plate produces 

a charge that can be piezoelectrically sensed by the other layer. This vertical two port topology 

permits the physical separation of the input electrode from the output electrode, therefore 

reducing parasitic feedthrough.  This two port implementation differs from the one reported by 

the same authors in [16] (Figure 3), because the whole top surface of the plate is now covered by 

one electrode and maximum electromechanical coupling is achieved [17, 18]. By moving from a 

horizontal two-port configuration to a vertical two-port topology, the direct feedthrough that is 

experienced through the device in [16] and that would have been extremely problematic at very 

high frequencies is eliminated (Figure 3).  For the same geometry reported in [16] (200x50 �m) 

the feedthrough level was reduced from -40 dB to – 58 dB at approximately 19 MHz, therefore 

obtaining approximately an 8 fold reduction in the feedthrough capacitance from 640 fF to 80 fF. 

In Figure 4 is shown the equivalent electrical model of such resonant microstructure.  

Each layer can be modeled using the standard Mason’s model [17] (Figure 4a), for which the 

conversion from electrical to mechanical energy, EM, is represented by a transformer with a turn 

ratio equivalent to the electromechanical coupling, �.   As derived in [15] the equivalent 

parameters of the resonator are expressed by the following equations (these values are for the 

length-extensional mode, but apply to the width-extensional mode if L is substituted by W and 

vice versa)  : 
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where �o and �33  are the dielectric permittivity of air and the relative permittivity of AlN in the 3 

direction (c-axis); W, L and T refers to the geometrical dimensions of the structure being 

respectively the width, the length and the thickness of the plate; Eeq and �eq are the equivalent in-

plane modulus of elasticity and mass density of AlN and the stacked electrodes and �o is the 

natural frequency of the resonator.  Similar equations apply for the circular ring and are given 

by: 
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where the variables are the same that were defined for equation (1), RAVE is the average 

radius of the ring and � is the in-plane equivalent Poisson’s ratio for AlN.   

The overall model describing the two-port stacked system can be obtained by combining 

two Mason’s models together, using one for the actuation element and one for the sensing 

element and assuming that the two are exchanging the same electromechanical energy.  As 

shown in Figure 4, the overall microsystem can be described by a transformer, a single resonator 

in the series branch and two physical parallel capacitors.  The equivalent parameters of the two-

stacked system can be expressed as: 
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where the subscript 1 and 2 refers to the actuation and sensing elements, respectively.  This 

description represents the most general case; in this particular work �1 and �2 are designed to be 

the same and N is equal to one.  The feedthrough capacitor, Cft, that is included in the model 

(Figure 4) takes into account parasitic capacitances through the substrate, the AlN film and air.  

This capacitor differs from the one in [16] because it is not due to the device itself and therefore 

takes on a much lower value.  Similar equations can also be derived for the equivalent electrical 

parameters of the ring structure.   

It is also important to note that in this configuration the current flows in different 

direction in the actuation and sensing elements, as indicated by the dots in the transformer.  This 

feature permits to avoid Q loading induced by the electrical resistance in the ground electrode.  

The currents are flowing in and out of the ground electrode, creating a virtual ground at this 

location (Figure 5).  Ideally, a thin Pt electrode (< 50 nm) can be chosen for the ground 

electrode.  Different thicknesses can be selected for the two stacked layers.  A symmetric 

configuration, with the same thickness for both layers, can reduce the out-of-plane motion of the 

structure and improve isolation between input and output.  The use of a thin layer might instead 

enable new applications, such as mixing, induced by “internal electrostatic” actuation [7-9].  

Fabrication issues also set limitations in the choice of the layer thickness.  In the fabrication 

section it will be shown that films deposited on a very thin seed layer generally show larger 

value of the full width half maximum (FWHM) angle that is obtained from rocking curve 
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measurements.  FWHM values are a measure inversely proportional to the degree of crystallinity 

of the film and consequently of its quality.  Two main configurations have been analyzed 

experimentally: a non-symmetric topology in which a 1.95 �m thick layer is deposited on top of 

a 150 nm thick AlN film and a symmetric structure with two stacked layers having the same 

thickness of 1 �m.  For the ring structure, just the second type of implementation was tested 

experimentally. 

 
Fabrication Process 

 

Figure 6 schematically represents the simple process flow that was employed for the 

fabrication of these microstructures.  The steps are substantially the same that were presented in 

[14], except for the patterning of the intermediate Pt electrode.  For the intermediate Pt electrode, 

a lift off process was performed with the attention to use an ion-free developer that would not 

attack the AlN film. All the steps involved in the fabrication process occur at low temperature 

(Tmax < 400 °C), therefore making these microdevices potentially post-CMOS compatible.  Also, 

this two-layer structure requires two subsequent depositions of AlN films.  Highly 

polycrystalline AlN piezoelectric films are sputter-deposited using an AMS single module tool 

and show very good rocking curve values of approximately 1.3°.  It is worth reporting that the 

overall quality of the stack is slightly degraded when the second layer is deposited on top of a 

very thin (150 nm) AlN layer; for this case the rocking curve value is approximately 2.6°.  

Figure 7 shows a cross sectional view of the 1μm/1�m AlN stack for which columnar growth is 

evident and a rocking curve value of 1.3° was obtained. 

Scanning electron micrographs of the fabricated microstructures are shown in Figure 8.  

The rectangular plate has an aspect ratio of 4:1 (length of 200 �m and width of 50 �m).  Two 
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implementations were used for the stacked topology. In the first one a very thin AlN layer 

(approximately 150 nm thick) was used and on top of it a 1.95 �m thick AlN layer was 

deposited.  In the second one the structure was kept symmetric by making both layers 

approximately 1 �m thick.  The two AlN layers are stacked on top of each other and sandwiched 

between two electrodes. In the first configuration the Pt electrodes are both 100 nm thick, 

whereas the top Al electrode is 150 nm thick; in the second configuration the bottom electrode is 

220 nm thick, whereas the ground is only 40 nm thick; the same thickness is used for the top Al 

electrode.  A very thin electrode layer was used for the ground in the second configuration to 

prove that electrical loading in the ground electrode is negligible for this two port configuration.  

A 40 nm thick ground platinum electrode is in fact responsible for approximately 20-30 � of 

resistance in the rectangular plate configuration and would significantly load the resonator Q 

when excited in the width extensional mode.  The circular ring has an average radius of 100 �m, 

a width of 20 �m and is formed by two stacked AlN layers, each having a thickness of 1 �m.  In 

order to improve the structural symmetry of the ring, 220 nm thick Pt electrodes were used for 

the top and bottom electrode, whereas a thin 40 nm Pt layer was employed for the ground 

electrode.  In order to minimize the anchors’ interference with the fundamental radial-

extensional mode shape, the ring structure (as shown in Figure 8) was anchored at a single 

location requiring routing the output signal in close proximity of the input signal.  Although in 

this case the feedthrough capacitance was limited to 70 fF, this routing selection could ultimately 

limit the effectiveness of the isolation induced by the two port solution. 

 
Experimental Results 

 
Two-port contour-mode resonators were tested in an RF probe station at ambient 

pressure, using ground-signal-ground (GSG) probes.  Standard Short Open Load and Through 
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(SOLT) calibration was performed on a ceramic substrate from Picoprobe.  The microfabricated 

rectangular plate (Figure 8) can be excited in both length-extensional and width-extensional 

mode shapes.  Both solutions with different layer thicknesses (from here on the 150 nm/1.95 �m 

stack is named solution 1 and the 1 �m/1 �m stack is named solution 2) were analyzed. 

The typical electrical response of a rectangular plate resonator excited in a length 

extensional mode and implementing solution 2 is shown in Figure 9.  The resonator shows 

relatively high quality factor of 2,600 in air at 19.31 MHz and a motional resistance of 

approximately 650 �.  An even lower motional resistance of 175 � is recorded for the same 

resonator excited in the width extensional mode (Figure 10). Despite the lower quality factor 

(1,700), the resonator has a larger electromechanical coupling because it is now effectively using 

the length of the plate for actuation and therefore achieves a lower motional resistance. 

Fundamental results for both implementations are summarized in Table I.  Both solutions 

exhibited similar quality factors, Q, in both mode shapes, showing that the Q is probably limited 

by the mechanical structure and electrodes material.  Also, the use of a thin electrode for the 

ground electrode in configuration 2 proves that a virtual ground was established and no electrical 

loading is experienced in this two-port configuration. 

Lower motional resistance is recorded for the resonators in solution 2 and it is probably 

due to a larger piezoelectric coefficient than the one exhibited by the 150 nm thick element.  It is 

believed that the very thin layer does not have the same piezoelectric coefficient of the thicker 

counterparts as it is also attested by the higher overall rocking curve value reported for stacked 

films in solution 1 (2.6° for solution 1 vs. 1.3° for solution 2). 

Figure 10 compares the experimental results for a 200 x 50 �m rectangular plate excited 

in a width-extensional mode shape with the theoretical predictions based on the model shown in 
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the design section. The Q of the resonator was taken from the experimental results (a method to 

theoretically derive the Q factor of the resonator has not yet been devised) and a 20 fF 

capacitance between the input and output stages was included in the model to improve the 

agreement between theory and practice. This capacitance models the feedthrough introduced by 

the substrate, the AlN film and air. As shown by the two traces in Figure 10, there is a relatively 

close agreement between the predicted resonator performance and the experimental data.  The 

equivalent mechanical properties (Young’s modulus and density) of the resonator stack were 

computed by taking into account the mass loading effect due to Pt as discussed in [15, 19]. 

The circular ring response (Figure 11) is not as clean as the one of the rectangular plate 

and spurious modes tend to overlap with the fundamental mode.  The resonator still has an 

unloaded Q of 1,500 and an RM of 150 � at 214.5 MHz.  In this case, the feedthrough 

capacitance is in the order of 70 fF.  This is due to the proximity of input and output electrodes 

that are routed through the same anchor.  The S21 plots for both the rectangular plate and circular 

ring apparently show responses that can be generated by pure LCR circuits (without a parallel or 

feedthrough capacitance) or devices with large electromechanical coupling coefficient, kt
2 (from 

plot kt
2 is larger than 8%) if the coupling is computed directly from the plot as 

S

SP

f

ff −

4

2π
 

(where fP and fS correspond to the parallel and series resonant frequency, respectively).  This is 

just an artifact of the measurement method in which the large input and output capacitances 

(approximately 1.6 pF for the rectangular plate) are shunted and masked by the 50 � termination 

resistors of the network analyzer.    The overall model presented in the design section should 

instead apply, and the input and output capacitances need to be taken into account, especially 

when the resonators are arranged in filter arrays or placed in oscillator circuits.  The 

electromechanical coupling for these devices should be correctly computed as the ratio of the 
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motional capacitance to the static capacitance of the device (
out

m
t C

C
k

8

2
2 π

= ) and it is 

approximately 0.41%.  Although the two port implementation does not improve the effective 

electromechanical coupling, nonetheless it does offer the capability of reducing electrical 

feedthrough between input and output ports. 

The same resonator can be operated as a resonant transformer.  As shown in Figure 12, 

voltage gain of approximately 4 can be obtained with a rectangular plate vibrating in the width-

extensional mode at approximately 83 MHz.  The curve shown in Figure 12 is simulated and it is 

based on the S-parameter extracted from direct measurements of the device.  The resonant 

transformer is driving a purely resistive load of 100 k�.  In general, most of the loads driven by 

resonant transformers have a capacitive component in parallel with the resistive element.  This 

particular transformer is limited to drive a max capacitance value of 4 pF, beyond which the 

voltage gain is reduced to less than 1.  Although interesting from an academic point of view, the 

use of this transformer for practical applications is limited by the power handling of the device 

which cannot exceed few mW.   

 
Conclusions 

 
For the first time, two-port stacked contour-mode AlN piezoelectric micromechanical 

resonators have been presented.  These resonators were designed with the precise intent of 

reducing parasitic feedthrough between the input and the output stages of the device by 

physically separating the two locations. As shown by the experimental results, the feedthrough   

capacitance was reduced to few 10s fF, while high electromechanical coupling was maintained. 

At the same time, high Q factors and low motional resistance even in ambient conditions were 

demonstrated, showing the possibility to use these microsystems for time keeping and filtering 
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functions.  The reduction in feedthrough capacitance makes possible the measurement of 

resonators at higher frequencies (GHz), previously impossible because of the large feedthrough 

capacitance that masked the resonator response.  Therefore the authors believe that this new 

design will enable the contour-mode piezoelectric technology to reach GHz frequencies. 
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List of Figures and Tables 
 
Figure 1: (a) Schematic representation of a two-port contour-mode piezoelectric resonator; (b) 
ANSYS simulation for the length-extensional mode of the same resonator; (c) ANSYS simulation 
of the width-extensional mode shape for the same resonator. 
Figure 2: ANSYS simulation of the radial-extensional mode of vibration for the circular ring 
structure.  The width of the ring sets the resonator center frequency. 
Figure 3: Schematic representation of the reduction in parasitic feedthrough capacitance 
obtained by moving from a horizontal to a vertical two-port topology.  The vertical stack suffers 
solely from substrate parasitics, whereas the horizontal structure suffers from a direct 
capacitance through the device. 
Figure 4: Equivalent electrical model for the two-layer stacked resonator. The model includes a 
feedthrough capacitance due only to the substrate and possibly the AlN film.  No direct 
feedthrough comes from the electrode layout itself.  Please note the dots notation for the 
transformer.  The current flows in different directions in the actuation and sensing elements. 
Figure 5:  Simplified equivalent electrical representation of two stacked resonators, showing 
that the current is flowing in opposite direction through the ground resistor, therefore realizing a 
virtual ground node. 
Figure 6: Schematic representation of the process flow used to fabricate the two-port contour-
mode piezoelectric resonators. (a) Low-stress nitride (LSN) is used for isolation purpose; on top 
of it Pt is patterned by lift off; a thin layer of AlN is sputter deposited; afterwards the second Pt 
electrode is patterned by lift off and a thicker AlN layer is sputtered deposit to form the second 
structural layer. (b) The Al top electrode is sputter-deposited and patterned by dry etch in a Cl2-
based RIE system. (c) Contacts to the bottom and intermediate electrode are opened by wet etch 
of AlN in hot H3PO4. (d) AlN is masked by low-temperature oxide (LTO) and dry etched in a Cl2-
based RIE system. LTO and LSN are then etched and removed by dry etch.  The final structure is 
dry released in XeF2. 
Figure 7: Cross sectional view of two layer process.  Two 1 �m AlN layers were deposited on 
top of each other.  
Figure 8: Scanning electron micrographs of: (a) two-port contour-mode piezoelectric 
rectangular plate resonator and (b) two-port contour-mode piezoelectric ring resonators. 
Figure 9: Electrical response of a two-port rectangular plate piezoelectric resonator excited in 
the length-extensional mode shape. The stack is formed by two 1 �m thick AlN layers. 
Table I: Summary of the experimental results obtained for two different stacked configurations. 
(150 nm/1.95 �m is named solution 1; 1 �m/1 �m is named solution 2). Slight differences in the 
feedthrough capacitance value of Sol.1 are limited by the dynamic range of the measurements 
and accuracy of the calibration process. 
Figure 10: S21 parameters for a 200x50 �m rectangular plate excited in the width-extensional 
mode shape.  Experimental results (continuous line) are compared with theoretical predictions 
(dashed line) based on the equivalent electrical model proposed in the design section. Q value 
was taken from the experimental results. A 80 fF feedthrough capacitance between the input and 
output stages was included in the theoretical model to account for the parasitics introduced by 
the substrate, the AlN film and air.  The larger than expected value of the input and output 
capacitances is due to capacitive feedthrough between the routings of the input or output 
electrodes and the ground plane, which extend beyond the rectangular plate itself.  Equivalent 
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values of the Young’s modulus, Eeq, and density, �eq, for the stacked resonator take into account 
the loading due to the electrode materials as specified in [19].  
Figure 11: S21 response for a two-port stacked circular ring resonator having a width of 20 �m 
and average radius of 100 �m.  Despite the spurious modes, the response shows limited 
capacitive feedthrough (70 fF) between input and output. 
Figure 12: Experimental data for a 200 x 50 �m rectangular plate vibrating in the width-
extensional mode and operated as a transformer.  The 100 k� load is simulated and the device 
performance was derived from the scattering parameters of the device.   It should be noted that 
the maximum capacitive load that can be drive in parallel with the resistive load is 4 pF.  
Capacitances beyond 4 pF can degrade the performance of the resonant transformer and reduce 
its gain below 1. 
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Figure 1: (a) Schematic representation of a two-port contour-mode piezoelectric resonator; (b) 
ANSYS simulation for the length-extensional mode of the same resonator; (c) ANSYS simulation 
of the width-extensional mode shape for the same resonator. 
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Figure 2: ANSYS simulation of the radial-extensional mode of vibration for the circular ring 
structure.  The width of the ring sets the resonator center frequency. 
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Figure 3: Schematic representation of the reduction in parasitic feedthrough capacitance 
obtained by moving from a horizontal to a vertical two-port topology.  The vertical stack suffers 
solely from substrate parasitics, whereas the horizontal structure suffers from a direct 
capacitance through the device. 
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Figure 4: Equivalent electrical model for the two-layer stacked resonator. The model includes a 
feedthrough capacitance due only to the substrate and possibly the AlN film.  No direct 
feedthrough comes from the electrode layout itself.  Please note the dots notation for the 
transformer.  The current flows in different directions in the actuation and sensing elements. 
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Figure 5:  Simplified equivalent electrical representation of two stacked resonators, showing 
that the current is flowing in opposite direction through the ground resistor, therefore realizing a 
virtual ground node. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 21 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)

(c) (d)

�� �� ��� �����

(a) (b)

(c) (d)

(a) (b)

(c) (d)

�� �� ��� �����

(a) (b)

(c) (d)

 
 
 
Figure 6: Schematic representation of the process flow used to fabricate the two-port contour-
mode piezoelectric resonators. (a) Low-stress nitride (LSN) is used for isolation purpose; on top 
of it Pt is patterned by lift off; a thin layer of AlN is sputter deposited; afterwards, the second Pt 
electrode is patterned by lift off and a thicker AlN layer is sputtered deposit to form the second 
structural layer. (b) The Al top electrode is sputter-deposited and patterned by dry etch in a Cl2-
based RIE system. (c) Contacts to the bottom and intermediate electrode are opened by wet etch 
of AlN in hot H3PO4. (d) AlN is masked by low-temperature oxide (LTO) and dry etched in a Cl2-
based RIE system. LTO and LSN are then etched and removed by dry etch.  The final structure is 
dry released in XeF2. 
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Figure 7: Cross sectional view of two layer process.  Two 1 �m AlN layers were deposited on 
top of each other.  
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Figure 8: Scanning electron micrographs of: (a) two-port contour-mode piezoelectric 
rectangular plate resonator and (b) two-port contour-mode piezoelectric ring resonators. 
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Figure 9: Electrical response of a two-port rectangular plate piezoelectric resonator excited in 
the length-extensional mode shape. The stack is formed by two 1 �m thick AlN layers. 
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Table I: Summary of the experimental results obtained for two different stacked configurations. 
(150 nm/1.95 �m is named solution 1; 1 �m/1 �m is named solution 2). Slight differences in the 
feedthrough capacitance value of Sol.1 are limited by the dynamic range of the measurements 
and accuracy of the calibration process. 
 

Stack Type Mode fo [MHz] Q Rx [�] Cf [fF] 
Length-Ext. 20.24 2,300 2,900 15 Sol. 1 
Width-Ext. 86.1 1,700 600 10 
Length-Ext. 19.31 2,600 650 80 Sol. 2 
Width-Ext. 82.8 1,700 175 80  
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Width-Ext. Plate Resonator Variable 
THEORY EXPERIM. 

fo [MHz] 82.82 82.82 
LM [�H] 555.6 571.8 
CM [fF] 6.65 6.46 
RM [�] 184 175 
Cin, Cout [pF] 0.88 1.6 

Parameter Value 
Eeq 380 GPa 
�eq 5,527 kg/m3 
d31 2 pC/N 
�33 10 

 
 
Figure 10: S21 parameters for a 200x50 �m rectangular plate excited in the width-extensional 
mode shape.  Experimental results (continuous line) are compared with theoretical predictions 
(dashed line) based on the equivalent electrical model proposed in the design section. Q value 
was taken from the experimental results. A 80 fF feedthrough capacitance between the input and 
output stages was included in the theoretical model to account for the parasitics introduced by 
the substrate, the AlN film and air.  The larger than expected value of the input and output 
capacitances is due to capacitive feedthrough between the routings of the input or output 
electrodes and the ground plane, which extend beyond the rectangular plate itself. Equivalent 
values of the Young’s modulus, Eeq, and density, �eq, for the stacked resonator take into account 
the loading due to the electrode materials as specified in [19].  
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Figure 11: S21 response for a two-port stacked circular ring resonator having a width of 20 �m 
and average radius of 100 �m.  Despite the spurious modes, the response shows limited 
capacitive feedthrough (70 fF) between input and output. 
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Figure 12: Experimental data for a 200 x 50 �m rectangular plate vibrating in the width-
extensional mode and operated as a transformer.  The 100 k� load is simulated and the device 
performance was derived from the scattering parameters of the device.   It should be noted that 
the maximum capacitive load that can be drive in parallel with the resistive load is 4 pF.  
Capacitances beyond 4 pF can degrade the performance of the resonant transformer and reduce 
its gain below 1. 
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