
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

July 1992

Optimal Mesh Algorithms for the Voronoi Diagram of Line Optimal Mesh Algorithms for the Voronoi Diagram of Line

Segments, Visibility Graphs and Motion Planning in the Plane Segments, Visibility Graphs and Motion Planning in the Plane

Sanguthevar Rajasekaran
University of Pennsylvania

Suneeta Ramaswami
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Sanguthevar Rajasekaran and Suneeta Ramaswami, "Optimal Mesh Algorithms for the Voronoi Diagram
of Line Segments, Visibility Graphs and Motion Planning in the Plane", . July 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-57.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/518
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76365325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/518
mailto:repository@pobox.upenn.edu

Optimal Mesh Algorithms for the Voronoi Diagram of Line Segments, Visibility Optimal Mesh Algorithms for the Voronoi Diagram of Line Segments, Visibility
Graphs and Motion Planning in the Plane Graphs and Motion Planning in the Plane

Abstract Abstract
The motion planning problem for an object with two degrees of freedom moving in the plane can be
stated as follows: Given a set of polygonal obstacles in the plane, and a two-dimensional mobile object B
with two degrees of freedom, determine if it is possible to move B from a start position to a final position
while avoiding the obstacles. If so, plan a path for such a motion. Techniques from computational
geometry have been used to develop exact algorithms for this fundamental case of motion planning. In
this paper we obtain optimal mesh implementations of two different methods for planning motion in the
plane. We do this by first presenting optimal mesh algorithms for some geometric problems that, in
addition to being important substeps in motion planning, have numerous independent applications in
computational geometry.

In particular, we first show that the Voronoi diagram of a set of n nonintersecting (except possibly at
endpoints) line segments in the plane can be constructed in O(√n) time on a √n x √n mesh, which is
optimal for the mesh. Consequently, we obtain an optimal mesh implementation of the sequential motion
planning algorithm described in [14]; in other words, given a disc B and a polygonal obstacle set of size n,
we can plan a path (if it exists) for the motion of B from a start position to a final position in O (√n) time
on a mesh of size n. Next we show that given a set of n line segments and a point p, the set of segment
endpoints that are visible from p can be computed in O (√n) mesh-optimal time on a √n x √n mesh. As a
result, the visibility graph of a set of n line segments can be computed in O(n) time on an n x n mesh. This
result leads to an O(n) algorithm on an n x n mesh for planning the shortest path motion between a start
position and a final position for a convex object B (of constant size) moving among convex polygonal
obstacles of total size n.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-57.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/518

https://repository.upenn.edu/cis_reports/518

Optimal Mesh Algorithms For The Vironoi Diagram
Of Line

Segments, Visibility Graphs and Motion Planning In
The Plane

MS-CIS-92-57
GRASP LAB 324

Sanguthevar Rajasekaran
Suneeta Ramaswami

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

July 1992

Optimal Mesh Algorithms for the Voronoi Diagram of Line Segments,
Visibility Graphs and Motion Planning in the Plane

Sangut hevar Raj asekaran Suneeta Ramaswami

Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104

Abstract The motion planning problem for an object
with two degrees of freedom moving in the plane can be stated
as follows: Given a set of polygonal obstacles in the plane, and
a two-dimensional mobile object B with two degrees of freedom,
determine if i t is possible to move B from a start position to a
final position while avoiding the obstacles. If so, plan a path for
such a motion. Techniques from computational geometry have
been used to develop exact algorithms for this fundamental case
of motion planning. In this paper we obtain optimal mesh imple-
mentations of two different methods for planning motion in the
plane. We do this by first presenting optimal mesh algorithms
for some geometric problems that, in addition to being impor-
tant substeps in motion planning, have numerous independent
applications in computational geometry.

In particular, we first show that the Voronoi diagram of a set
of n nonintersecting (except possibly at endpoints) line segments
in the plane can be constructed in O(f i) time on a f i x f i
mesh, which is optimal for the mesh. Consequently, we obtain an
optimal mesh implementation of the sequential motion planning
algorithm described in [14]; in other words, given a disc B and a
polygonal obstacle set of size n, we can plan a path (if it exists)
for the motion of B from a start position to a final position in
O (6) time on a mesh of size n. Next we show that given a set
of n line segments and a point p, the set of segment endpoints
that are visible from p can be computed in O (G) mesh-optimal
time on a f i x f i mesh. As a result, the visibility graph
of a set of n line segments can be computed in O(n) time on
an n x n mesh. This result leads to an O(n) algorithm on
an n x n mesh for planning the shortest path motion between
a start position and a final position for a convex object B (of
constant size) moving among convex polygonal obstacles of total
size n.

1 Introduction

The problem of algorithmic motion planning has received
considerable attention in recent years. The automatic plan-
ning of motion for a mobile object moving amongst obsta-
cles is a fundamentally important problem with numerous
applications in con~puter graphics and robotics. The study
of algorithmic techniques for planning motion, with prov-
able worst-case perforn~ance guarantees, has been spurred
by recent research that has established the mathematical

depth of this problem (see [16, 20, 211 for comprehensive
surveys). In particular, the design and analysis of geometric
algorithms has proved to be very useful, resulting in consid-
erable interplay between computational geometry and algo-
rithmic motion planning for numerous special cases.

We are interested in studying special cases of algorithmic
motion planning and the related geometric problems using
parallelism. For a number of special cases of motion plan-
ning, optimal or near optimal sequential algorithms have
been discovered. Our research aims at obtaining optimal
parallel algorithms for these problems and will be aided by
the significant progress that has been made in the area of
parallel algorithms for computational geometry in recent
years ([I, 4, 6, 7, 12, 151, for example).

In this paper we develop efficient parallel mesh algo-
rithms for two different techniques of planning motion for
an object with two degrees of freedom moving in the plane
among polygonal obstacles. One technique for this funda-
mental case of motion planning uses Voronoi diagram con-
struction for a set of line segments as a subroutine, and the
other technique uses planar visibility graph construction.

Visibility graph construction and Voronoi diagrams are
geometric problems which, in addition to being tools for
motion planning, have many useful applications. Given a
set of line segments in the plane, the construction of the
visibility graph can lead t o information about that part of
the plane t,hat is hidden from a given point. This has useful
applications in computer graphics. Visibility graphs of line
segments also enable us to find the shortest path between
two points in the plane while avoiding the line segments.
The Voronoi diagram is an elegant and versatile geometric
structure and has applications for a wide range of problems
in computational geometry and in other areas. For exam-
ple, comput,ing the minimum weight spanning tree, or the
all-nearest neighbor problem for a set of line segments can
be solved immediately from the Voronoi diagram. An effi-
cient PRAM algorithm for computing visibility from a point
is given by At,allah et. a1 in [4] and Goodrich et al. give a
CREW PRAM algorithm for constructing the Voronoi di-
agram of a set of line segments in the plane [GI. However,
to our knowledge, these problems have not been solved on

fixed-connection networks. In this paper, we develop effi-
cient parallel algorithms for these geometric problems on
the mesh-connected-computer and as a result, for the cor-
responding motion planning problems.

The mesh-connected computer (mesh) of size n is a fixed-
connection network of n simple processing elements (PEs)
that are arranged in a f i x fi two-dimensional grid. Each
PE is connected to its (at most) four nearest neighbors.
Attractive features such as simple near-neighbor wiring and
ease of scalability have made the mesh-connected computer
the focus of considerable attention in parallel algorithms
research. The following mesh operations, which will be used
in the remainder of this paper, can be implemented in B (f i)
time on a f i x f i mesh[l2, 221: perfect shuffle, perfect
unshuffle, sorting, selected broadcasting, segmented prefix
scan, Random Access Read (RAR), and Random Access
Write (RAW). The commonly used indexing schemes on
the mesh are row-major, shuffled row-major, snake-like and
proximity [12]. An implicit lower bound of R(f i) holds
for most algorithms on the mesh, because nontrivial data
movement takes a (6) steps.

In the next section we give some important definitions
and a brief introduction to relevant background. In Sec-
tion 3, we develop an optimal mesh algorithm for the con-
struction of the Voronoi diagram of a set of line segments
in the plane. We summarize the resulting mesh algorithm
for the related motion planning technique at the end of that
section. In Section 4, we give an optimal mesh algorithm for
determining visibility from a point, and therefore for visi-
bility graph construction. The resulting mesh algorithm for
planning motion is also given in that section.

2 Background and Definitions

The motion planning problem of interest to us can be stated
in the following way [16]: Given an initial starting position
PI, a final destination position PF and a set of stationary
obstacles whose geometry is known to B, determine if there
exists a continuous obstacle-avoiding motion for B from PI
to PF. If one exists, construct the path for such a motion.
Let n be the size of the obstacle set and let k be the number
of degrees of freedom1 (dofs) of the mobile object B. Every
position of B can be thought of as a point in k-dimensional
parametric space. Let a free configuration be a placement
of B in which it does not intersect with any of the obsta-
cles. Define FP to be the subset of k-dimensional space
that contains all the free configurations of B. In general,
FP will consist of many path-connected components. A
collision-free path from PI t o PF exists if and only if the
corresponding k-dimensional configurations lie in the same

'The degrees of freedom of an object can be defined as the
number of parameters that need to be specified in order to com-
pletely determine the position of the object.

connected component.
There are, in general, two kinds of strategies to solve

the motion planning problem. The first general approach,
which runs in time polynomial in n and doubly exponen-
tial in k, was first demonstrated by Schwartz and Sharir
in [IS], and was applied to numerous special cases (see [17],
for example; the runtimes for some of these cases have since
been improved). The important step in this approach is to
construct a connectivity graph that represents the connec-
tivity information of the cells of FP. Planning motion for
B then reduces to performing a graph search on the con-
nectivity graph. The second general approach is to find
a one-dimensional representation of FP (called the "skele-
ton" or the "road-map") such that it is possible for B to
move from PI to PF iff it is possible to move between two
corresponding points on the skeleton. This generalized ap-
proach was given by Canny [5] and runs in time polyno-
mial in n and single exponential in k. Techniques based on
the ideas of the first approach will be called the projection
methods, and those based on the second approach will be
called the retraction methods. The planar motion planning
algorithm given by 0 ' ~ l i n l a i n ~ and Yap [14], which uses
the Voronoi diagram of a set of line segments, employs the
retraction met,hod, and the method given by Lozano-Pdrez
and Wesley [Ill , which uses visibility graphs, is an approx-
imate projection method (later in the paper, we develop
parallel algorithms for the exact version of their method).

2.1 Notation and Important Definitions

2.1.1 Voronoi Diagram of a Set of Line Seg-
ments in the Plane

Let S be a set of nonintersecting closed line segments in
the plane. Following the convention in [9, 251, we will con-
sider each segment s e S to be composed of three distinct
objects: the two endpoints of s and the open line segment
bounded by those endpoints. Following [6, 91, we now estab-
lish some basic definitions. The Euclidean distance between
two points p and q is denoted by d(p, q) . The projection
of a point q on to a closed line segment s with endpoints
a and b , denoted proj(q, s) , is defined as follows: Let p
be the intersection point of the straight line containing s
(call this line T), and the line going through q that is per-

i

pendicular to s . If p belongs to s, then proj(q, s) = p.
If not, then proj(q, s) = a if d(q, a) < d(q, b) and
proj(q, s) = b , otherwise. The distance of a point q from
a closed line segment s is nothing but d(q, proj(q, s)). By
an abuse of notation, we denote this distance as d(q, s).
Let sl and sz be two objects in S. The bisector of sl and
s 2 , B(sl , s2) , is the locus of all points q that are equidistant
from sl and S? i.e, d(q, s l) = d(q, s z) Since the objects
in S are either point,s or open line segments, the bisectors
will either be parts of lines or parabolas. The bisector of

IS1 = n that run in O(n2) time. Unfortunately, neither
of these two sequential techniques lends itself t o efficient
parallelizat ion.

The problem of computing visibility from a point, i.e.
identifying those vertices of S that are visible from some
specified point p, has a lower bound of R(n1ogn). This
lower bound can be established by showing a straightfor-
ward reduction from sorting. assuming that we want the
output in sorted order about p (by polar angle with respect

ive an to some fixed axis through p). Atallah et. al. [4] g'
optimal CREW PRAM algorithm for computing visibility
from a point that runs in O(1og n) time using n processors.
The visibility graph can thus be constructed by repeating

Figure 1: T h e bisector of two line segments sl and sz.
this algorithm for each of the endpoints of S, which takes
O(1ogn) time with n2 processors. All the visibility algo-

two line segments is shown in Figure 1. rithms mentioned here (and those that will be described
in the coming sections) are described for a set of line seg-

Definition 2.1 [9] The Voronoi region, Vor(e), associ- ments. When the input is a disjoint set of polygons, we
ated with an object e i n S is the locus of all points use the polygon edges as the input set S to construct the
that are closer to e than to any other object in S 2.e. visibility graph.
Vor(e) = {p I d(p, e) 5 d(p, el) for all el E S). The
Voronoi diagram of S , Vor(S), is the union of the Voronoi
regions Vor(e), e E S. The boandary edges of the Voronoi 3 Mesh Algorithms for

-

regions are called Voronoi edges, and the vertices of the di-
agram, Voronoi vertices.

the Voronoi Diagram of a Set of
Line Segments and the Related

The following is a very important property of Vor(S) . Motion Planning Problem
Theorem 2.2 (Lee et al. 191) Given a set S of n non-

As we mentioned in Section 1, the Voronoi diagram turns
intersecting closed line segments i n the plane, the number out to be a useful tool in motion planning [14, 13, 241. We
of Voronoi regions, Voronoi edges, and Voronoi vertices of

now describe a mesh-optimal algorithm for the construction
Vor(S) are all O(n). To be precise, for n 1 3, Vor(S)

of the Voronoi diagram of a set of line segments in the plane.
has al most n vertices and at most 3n - 5 edges.

The resulting mesh implementation of the motion planning

Sequential algorithms for the construction of the Voronoi
diagram of a set of line. segments are given by Kirkpatrick
[S], Lee and Drysdale [9], and Yap [25]. The algorithms
in [8, 251 run in O(n1ogn) time, which is optimal since a
lower bound of R(n1ogn) is known for this problem[l9].
The run-time of the algorithm in [9] is 0(nlog2n). We will
repeatedly refer to Yap's algorithm in the coming sections,
since it lends itself to efficient parallelization, whereas the
other two techniques do not. Goodrich et al. [6] give a
CREW PRAM algorithm for Voronoi diagram construction
that uses n processors and runs in 0(log2 n) time.

2.1.2 Visibility Graphs

Given a set S of n line segments in the plane, its visibil-
ity graph Gs is the undirected graph which has a node for
every endpoint of the segments in S, and in which there is
an edge between two nodes if and only if they are visible to

algorithm by 0 ' ~ r i n l a i n ~ and Yap [14] is given in the last
part of this section.

3.1 Voronoi Diagram of a Set of Line Seg-
ments in the Plane

In this section, we develop a parallel algorithm for con-
structing the Voronoi diagram of a set of N line segments
in the plane on a $ x fi mesh (n = 2N) that runs in
O(&) time, which is optima1 for the mesh. We would like
to point out that there is an optimal O(&) time parallel
algorithm for the Voronoi diagram of a set of n points in the
plane, on a mesh with as many PEs (Jeong and Lee [7]),
but none, to our knowledge, for line segments.

The general idea behind the sequential algorithm? for the
construction of Vor(S) (S is the input set of line segments)
is as follows: S is divided into sets of equal size, Sl and
S2. Vor(S1) and Vor(Sa) are then recursively computed.

each other, assuming the line segments are opaque. Welzl In order to merge these two Voronoi diagrams to form the
[23] and Asano et al. [2] give sequential algorithms for con- final diagram Vor(S), we need to construct the con,tour
strutting the visibility graph of a set S of line segments with between Sl and S z . The contour is the locus of all points

in the plane that are equidistant from S1 and S2. Thus, Let vzi and vz;+l be the two endpoints of segment si, such
assuming the correct orientation on the contour, all points that 2(v2;) < X (V ~ ~ + ~) . Each segment s of S is actually
lying to the left (right) of the contour are closer to S1 (5'2) represented as three elements: the two endpoints and the
than to S2 (S1). Now, we discard that part of the diagram open line segment. Let E = (po, p l , . . . , p,-1) be the or-
of Vor(S1) that lies t o the right of the contour, and that dered set consisting of these endpoints sorted according to
part of the diagram of Vor(S2) that lies to the left of the their 2-coordinates (each pj is some vi and n = 2N). The
contour. The remaining edges of the two diagrams, and the mesh algorithm for constructing Vor(S) will be a divide-
contour edges give us the final Voronoi diagram Vor(S). and-conquer algorithm, and so we will assume shuffled row-
This is the motivation behind the sequential approaches major indexing on the mesh. Suppose a vertical line is
used by [8, 9, 251. drawn through each point in S . The vertical strip of region

Thus, the construction of the contour is the single most between any two such (not necessarily adjacent) vertical
important step in the merge phase of the divide-and- lines is called a &. Consider the set of segments that
conquer algorithm for Voronoi diagram construction. For span a slab U. The region of U that is enclosed between
the case of a set of points in the plane, we have the nice two such coizsecutive spanning segments is called a - quad of
property that there is exactly one contour to be constructed, U . A quad is said t o be an active quad if it contains an
and this contour is monotone with respect to the y axis. In endpoint of S in its interior. Let U be a slab. The subset of
[7], Jeong and Lee exploit this property by first identifying E in the interior of U will be referred to as Eu (thus, end-
those Voronoi edges of Vor(S1) and Vor(S2) that are in- points lying on the vertical boundaries of U do not count).
tersected by the contour. They then use the monotonicity The set of segments obtained by restricting S to the slab
property to explicitly sort these edges according to the order U will be called Su i.e. S u = {s n U I s E S and
in which they are intersected. Once this is done, some ad- s n U # 0). Yap's sequential algorithm is a divide-and-
ditional computation gives us the contour. For the Voronoi
diagram of line segments, however, i t is much more compli-
cated t o ensure that this property of the contour holds. As
mentioned before, Goodrich et al. [6] give a CREW PRAM
algorithm for Voronoi diagram cosntruction that runs in
0(log2n) time using n processors. Their algorithm makes
uses of data structures that are of size O(n log n). We can-
not make use of such data structures if we assume constant
storage per PE on a mesh-connected-computer of size n. In
addition, their method performs numerous pointer manipu-
lations, which are very difficult to implement on the mesh.
We circumvent these difficulties by developing an algorithm
that performs simpler data manipulation on the mesh. Be-
fore we proceed, we state two results that are of relevance
t o Voronoi diagram construction on the mesh.

Lemma 3.1 Given a linearly ordered set of elements L
and a set of elements E such that each e E E lies be-
tween exactly two elements of L (call these e" and e*), and
ILI + IEl = n. The problem offinding ea and eb for every
e E E can be solved in O(&) time on a fi x fi mesh.
Call this Algorithm SIMULTSRCH.

Proof: Omitted.

Lemma 3.2 (J eong and Lee [?I) Given an arbitrary set
of segments S in the plane and a set of points P such that
IS1 + IPI = n. Let pa be the segment from S that lies
immediately above (below) p. The problem offinding pa and
pb for every point p E P (also known as the MultiLocation
problem) can be solved in O(&) time on a 1/;6 x f i mesh.
Call this Algorithm MULTILOC.

Let S = {so, sl, . . . , sjv-1) be the input set of line seg-
ments that do not intersect (except possibly a t endpoints).

conquer algorithm that computes the Voronoi diagram for
the segments in each slab. However, a naive implementa-
tion of this strategy would take O(n2) time in the worst
case. Yap overcomes this by computing, for every slab U ,
the Voronoi diagram for only those segments of S u that
belong t o some a.ctive quad of U.

Let U be the slab obtained by merging the adjacent slabs
U1 and U2. The merge step computes the Voronoi diagram
in all the active quads of U ; this is done by using, with some
additional computat.ion, the recursively computed Voronoi
diagrams of the active quads of U1 and Uz to construct
the contour. Thus, the most important step in the merge
procedure is to compute efficiently, for every active quad
Q in U, Vor(Su n Q). Following [6], we let VorSet(Su)
represent the set containing the Voronoi diagrams of all the
active quads Q of U i.e. VorSet(Su) = {Vor(Su n Q) (Q
is an active quad of U}. At the topmost level of recursion,
the entire plane is the slab U , and the algorithm computes
Vor(S), since VorSet(Su) is nothing but Vor(S).

Initially, ea.ch PE contains an endpoint vi (i t . the coor-
dinates of vi), the segment that vi is an endpoint of2, and
the other endpoint of that segment. In other words, each
PE Pi, 0 5 i < n - 1 has a packet that contains vi, SLiI2J
and V ~ + (- ~) E . Initially vi is used as the key for processor Pi's
information.
Preprocessing: In this step, (a) first we sort the pack-
ets according t o the x-coordinate of the key. Notice that
now the arrangement of the keys of the packets is as in
the ordered set E. (b) Next, we run Algorithm MULTILOC
(refer Lemma. 3.2), using S and E as the set of segments

'When we sag that a particular segment s, is stored in PE:
Pi, we mean that the index j of that segment is ~t~ored. We will,
however, cont,i~~lie to refer to this as "storing the segment s,".

and points, respectively. At the end of this step, we will
have for every endpoint pi in P E Pi, the segments that lie
vertically above and below it. Call these pia and pib, re-
spectively. pia will be represented by its two endpoints and
its index; similarly for p i b . pia and pib are now added on
t o the packet in PE Pi. I t will become clear later on that
this preprocessing step is necessary in order t o determine
active quads. Clearly, (a) and (b) take O (6) time on a
f i x f i mesh.

Basis: The base step is executed when there is exactly one
point in the interior of the slab. This point will be pi, for
odd i, 1 < i < n - 1. The slab that pi lies in is defined by
the vertical lines going through pi-1 and pi+l (p,, is some
dummy point that lies to the right of all points in E) . The
active quad t o which pi belongs (obviously, it is the only
active quad in said slab) is given by the spanning segments
pia and pib. Clearly, the Voronoi diagram of this quad can
be computed in constant time. Hence the base step takes
constant time.

Merging: Let UI and U, be two adjacent slabs, and let
IEul 1 = IEu,l = k (i.e. each slab has k endpoints in its
interior). Suppose that VorSet(Su,) and VorSet(Su,) have
been recursively computed in two adjacent sub-blocks of the
mesh, where each sub-block is of size x m.
Let the left sub-block be called MI and the right sub-block
M,. We will show that we can perform the merge in o(&)
time, using O(k) PEs.

The information that is necessary for the merge proce-
dure is available in MI in the following manner.
(1) Active Quads of Uf : The active quads in Uf have a
sorted order defined on them in the natural way. Let A1
be the number of active quads in Ul (A1 5 k); let these
be QII , Qi2, . . . , QIAl in sorted order (from top to bot-
tom, say). See Figure 2 for an example. Let the number
of endpoints in these active quads be krl, k12, . . . , klA,,
respectively. Note that kll + kl2 + . . . + klAl = k.
In MI, the endpoints in Qrl are in the first kll processors,
the endpoints in Q12 are in the next k12 processors and so
on. We will call this the active-quad-wise ordering of the
endpoints of Eu, . Each endpoint in Qli will specify its quad
by the upper and lower bounding segments of Qli.

(2) Voronoi Edges of VorSet(Su,) : As stated earlier,
VorSet(Sq) is the collection of the Voronoi diagrams of
all the active quads in Ul. Because of the quad-wise com-
putation of the Voronoi diagram, the Voronoi edges of
VorSet(Su,) are stored in a quad-wise manner. In other
words, in Ml, we will first have the Voronoi edges of
Vor(Sul n Qll), followed by the edges of Vor(Sul n Qlz),
and so on. Notice that since VorSet(Su,) consists of the
Voronoi diagram of at most O(k) line segments (since only
the active quads are considered), it will have O(k) Voronoi
edges; there will be a constant number of these Voronoi
edges in each processor of Mr. More importantly, the follow-
ing observation holds, which follows directly from a lemma

by Yap [[25], Lemma 51: The number of Voronoi edges in
the Voronoi diagram of an active quad Qld of Uf is propor-
tional t o the number of segments in that quad. In other
words, the number of Voronoi edges in Vor(SU, n Qli) is
O(kIi)3. Therefore, the PEs of MI that store active quad
Qli suffice to store the complete diagram Vor(Su, n Qji),
with just a constant number of Voronoi edges per PE.
Let A, be the number of active quads of U, , and let kri be
the number of points in the i-th (in the sorted order) active
quad Qri , 1 5 i 5 A, (see Figure 2). The informa-
tion about the active quads of U, and the Voronoi edges of
VorSet(Su,) are available in M, in a similar and analogous
way.

For the sake of brevity, we will give a very general de-
scription of the merge step on the mesh without going into
the details.
S u m m a r y of t h e M e r g e S t e p on t h e M e s h The merge
part of this divide-and-conquer algorithm consists of three
important substeps: the determination of the active quads
of U, the vertical merge, and the horizontal merge.
(1) Determina t ion of t h e ac t ive q u a d s of U : In this
step we compute the active quads of U by using the in-
formation about the active quads of Ul and U, available
in MI and M,, respectively. This is done by merging the
endpoints in MI with the endpoints in MT (recall that these
endpoints are in active-quad-wise ordering) according to the
upper bounding segment of the quad that they belong to
(some Qli or Qrs) . This merge can be done by performing
the standard shuffle-exchange step. This step ensures that
all the points in Eu lie in MI U M, in the correct active-
quad-wise ordering. An appropriate selected broadcasting
step can now update, for every endpoint in Err, the upper
and lower bounding segments of the active quad of U that
it lies in. This step takes o(&) time on the mesh A41 U M,
(which has 2k + 2 PEs).
Note: Consider an active quad Q from the slab U. Let Q,
(9,) represent the part of Q that lies in the left (right) slab
Ul (U,). In other words, Ql = Q n Ul and Q, = Q n U , .
Observe that Ql (Q,) is the union of a contiguous set of
quads of slab Ul (U,). Some of these quads may be active
and some or all of them may not be (see Figure 2 for an
example). We will call these quads (whether active or not)
the Ql-quads (&,-quads). In order to find the Voronoi dia-
gram of Q , Vor(Su n Q), we need to "merge" the Voronoi
diagrams of all the Ql-quads and the Q,-quads in the ap-
propriate way. This merging is achieved by first doing a
uertical merge, followed by a horizonlal merge.
(2) T h e vert ical merge: In this step we find, for every ac-

31ntuitively speaking, the lemma states that for any two
quads Q1 and Q* in a slab U', the objects in QI and the ob-
jects in Qz do not interact with each other. In other words, the
Voronoi edges of the diagram Vor(Su, n Q1) will not be af-
fected by the segments in Su, n Q2. Hence the assertion that
the number of edges in Vor(Sv , n Q l ,) is O(kli) .

Figure 2: T h e Qr-quads and t he Q,-quads of an active

quad Q of U .

tive quad Q of U , the Voronoi diagram of Su, n Ql, called
the Ql-diagram and of Sv, n Q,, called the &,-diagram.
Notice that the Voronoi diagram of the non-empty Qpquads
(&,-quads) has already been recursively computed. The
Voronoi diagram of an empty Qr-quad (&,-quad) can be
computed in constant time. Thus, determining the empty
quads is the important step.
Consider an empty Ql-quad; call it Q'. On the mesh
MI U M,, we arrange the upper and lower bounding seg-
ments of Q' in such a way that there are no endpoints of
Eu, between the two processors that hold these segments.
In addition, we arrange all the QI-quads, whether empty or
active, in the correct sorted order on the mesh (it is clear
that such a sorted order on all QI-quads is well-defined).
Similarly for the &,-quads. By defining an appropriate or-
dering on all the endpoints of Eu, we can sort them into
the arrangement described above. We will not go into the
details of this ordering for lack of space.
Once this is done, we can determine the empty &I-quads
by performing a segmented prefix scan operation that will
count the number of endpoints from Euz between every two
consecutive spanning segments of Ur. Let PEs Pj and Pk
contain two such consecutive spanning segments of Ur . Each
such set of PEs Pj , Pi+ . . . , Pk forms a segment of the
segmented prefix scan. If the result of the scan in Pk is
zero, then these two consecutive spanning segments define
an empty &{-quad and we compute its Voronoi diagram.
This diagram clearly has just a constant number of Voronoi
edges, and hence we can store these edges in Pk. An analo-
gous application of these steps give us the empty &,-quads
and their Voronoi diagrams. The construction of the Ql-
diagram (Q,-diagram) requires us to merge together the
Voronoi diagrams of all the Qr-quads (9,-quads), empty

as well as active. This just requires us t o "concatenate"
the diagrams of all the Ql-quads (&,-quads) in the correct
sorted order (as in [25]). The above computation ensures
that these diagrams are, in fact, already in the right order.
Hence, the horizontal merge takes o(&) time on MI U M,.
(3) The horizontal merge: In this final stage of the merge
step, we obtain the Voronoi diagram of each active quad
Q. This is done by merging the QI- and the &,-diagram,
which involves the construction of the contour. The hori-
zontal merge is the most complicated part of this algorithm.
Once the contour is constructed, the &I-diagram to the left
of the contour, the contour itself, and the &,-diagram to
the right of the contour give us the final Voronoi diagram
Vor(Su n Q) for every active quad Q of U . Our discussion
will describe the computation performed for one active quad
Q, with the assumption that the same steps are carried out
for all the active quads of U.

As in the sequential methods of [8, 251 and the PRAM
method of [6], we manipulate objects known as primitive
regions for the construction of the contour. For the rest
of this discussion, we will assume that the QI-diagram is
augmented in the following way (the &,-diagram will be
augmented in a similar way): For every element e (either a
point or an open line segment) in Sv, n & I , we add spokes
[8] t o the Voronoi region Vor(e) of e. If v is a Voronoi
vertex of Vor(e), and if v' = proj(v, e) (the projection
of v on e), then the line segment obtained by joining v
and v' is a spoke of Vor(e). See Figure 3 for a Voronoi
diagram augmented with spokes. In [6], the authors add
some additional spokes. For all e that are point elements,
we check if the horizontal left-ward ray from e crosses any
spokes before it intersects the boundary of Vor(e). If not,
then let p be the point of intersection on the boundary.
The line segment from e to p is also added as a spoke. We
do a similar step for the right-ward ray from e. If these
left-ward and right-ward rays do not intersect any spokes
or Voronoi edges, then these rays are also considered to
be spokes. These additional spokes are indicated by bold
dotted lines in Figure 3. All spokes define new sub-regions
within Vor(e). These sub-regions bounded by two spokes
on two sides, part of e on one side, and a piece of Voronoi
edge on the other side are called primitive regions (prims
for short) [GI. The piece of Voronoi edge that forms one
of the bounda.ry edges of each prim is called a semi-edge
[6]. Notice that since VorSet(Su,) consists of at most O(k)
Voronoi edges and vertices, the number of prims will also
be O(k). For the rest of this discussion, we will call the
spokes of the QI-diagram as Ql-spokes, the prims of the &I-
diagram as Ql-prims, and the semi-edges of the QI-diagram
as Ql-semi-edges (similarly for Q,). The segment endpoints
or open line segments that belong to Su, I, Qr (Su, i l Qr)
will be called Q1-objects (&,-objects).

In the merge computation on the mesh so far, our tech-
nique has been to store a constant number of Voronoi edges

IP(5 n. The problem of finding the Voronoi region that
each point p E P lies in, can be solved in ~ (f i) time on
a f i x f i mesh. Call this Algorithm VORREGIONLOC.

Algorithm VORREGIONLOC can be implemented by us-
ing a technique similar t o that given by Jeong and Lee [7]
for Algorithm MULTILOC, with some minor modifications.

We now outline the important steps in the construction
of the contour on the mesh. Notice that at this stage of
the merge all the active quads of U are in sorted order in
Ml U M,, and within each such Q, we have the Qr-diagram,
followed by the Q,-diagram.

The contour consists of edges that are of the form
B(el, e,), where el is a Ql-object and e, is a &,-object.
Hence our goal is t o identify all such pairs (el, e,). Ob-
viously, if a &{-object el is part of such pairs, then some

Figure 3: A Voronoi diagram augmented with spokes. of its QI-prims will be intersected by the contour (similarly
for Q,-objects). Notice that determining if a prim is in-
tersected by the contour is equivalent to determining if at

per PE. ~ o t i c e that each Voronoi edge (part of B(e11 e2), least one of the spokes of that prim is intersected by the
defines two prims: One in each of the two contour. This is because if the contour intersects a prim

Voronoi regions Vor(el) Vor(e2). we assume without intersecting either of its spokes, then it would have
that both these prims are stored with the VoronOi to intersect tile semi-edge twice, contradicting Lemma 3.5.
edge. It is determine the 'pokes Thus, in order t o construct the contour we have to do the
(mentioned above) that need to be added. Every prim in following:
VoT(el)> where el is either an Or an 'Pen line seg- (,) Identify the Q1-spokes that are intersected by the con-
men' corres~onding to segment '1 in SU, n Q, determines if tour and arrange them in the order that they are inter-
it is intersected in the desired manner by the left-ward and sected by the contour. Such an order exists because of the

right-ward rays from the s l . This can be monotonocity property (Lemma 3.4) of the Call
done in constant time for each prim, and in constant total this sorted list Isla
time for all the prirns since there are a constant number of (b) Identify the Q,-spokes that are intersected by the con-
prims per PE. tour and arrange them in the order that they are intersected

We now want t o construct the contour between the Ql- by the contour. Call this sorted list IS,,
diagram and the Qr-diagram This construction depends (c) From the two sorted lists ISl and IS,, determine the

On certain properties of the We state pairs (el, e,) such that B(el, p . ,) forms part of the contour.
these properties as lemmas and refer the reader to A summary of the implementation of steps (a), (b) and
[6, 251 for the proofs. (c) is given below:

Step (a):
Lemma 3.3 (Goodr ich e t al. [6]) Let cr and /3 be Qi-

(i) Identifying the Ql-spokes that are intersected by the con-
and &,-prims, rrs~ectively. Iet ', e s ~ , and sp € s~~ tour: E~~~~ ~ ~ - ~ ~ ~ k ~ has one endpoint tllat is part of a
be such that cr C Vor(s,) and /3 5 Vor(sp).

Let Ql-object. Obviously, this endpoint will always be closer
b,,p = B(s,, sp) fl (Y n p. If b,,p is non-empty, to the Ql-diagram than to the &,-diagram. However, the
then b,,p defines a piece of the contour.

other endpoint (call this the "free" spoke-endpoint) of the
. Ql-spoke may or may not be closer to the Ql-diagram. If

Lemma 3.4 (Goodr ich et al. [6]) The contour zs
it is not, then the spoke will be intersected by the contour.

monotone with respect to the y-axis.
Apply Algorithm VORREGIONLOC, using the &,-diagram

Lemma 3.5 (Goodr ich et al. [6]) The contour inter- as the Voronoi diagram of the input, and the "free" end-

sects each spoke and each Voronoi semi-edge at most once. points of the Ql-spokes as the point set P of the input.
Clearly this can be done in o(&) time on MI U Mr.

From the above lemmas it is easy t o see that the contour Consider a Ql-spoke 1'; 1' is part of Vor(er), say. suppose
intersects each prim in at most one continuous piece [6]. the "free" endpoint p of I' lies in ~ o r (e ,) , where e, is a

Before we proceed, we state an important lemma. Q,-object. If d(p, e ,) < d(p, er) , then 1' will be inter-
sected by the contour. Since each PE has a constant num-

Lemma 3.6 Given a set P of points in the plane, and the ber of Voronoi edges, we can now identify the intersected
Vo~onoi diagram of a set S of line segments, where IS(+ Ql-spokes in constant time.

(ii) Sorting the intersecied &I-spokes: We now arrange the
intersected Qf-spokes in the order in which they are inter-
sected by the contour (from bottom to top, say). We find
this order by explicitly sorting the spokes4. We will not go
into the details of the ordering here for lack of space. Let
this sorted list of spokes be called ISl. ISI can be found in
o(&) time on MI U M r .
Step (b):
Analogous to steps (a)(i) and (a)(ii) above. Let the sorted
list of intersected 9,-spokes be called IS,.
Step (c):
Note that the sorted order of intersected Qf-prims (Q,-
prims) is implicit in ISl (IS,): call this ordered set IPl
(IP,). Consider some prim a form IP1. We say that a in-
teracts with prim ,b € IP, if beSp (refer to Lemma 3.3) is
non-empty. In general, a will interact with some subset of
prims from IP,. This subset will be a continuous interval
of prirns from IP, [6]. Call this interval of prirns I,. Fur-
thermore, all the prims that lie above a in IPl can interact
only with those prirns of IP, that lie above I, [6].
We implement this step on the mesh in the following way.
For every prim a E IPl, we identify the topmost and
bottommost prim of the interval I,. Sequentially, this can
be done by using binary search for each a. On the mesh,
this step can be done by two applications of Algorithm SI-
MULTSRCH (refer Lemma 3.1), which takes ~ (d) time on
MI U Mr. Let Pt be the P E that holds the topmost prim
of I, and Pb be the PE that holds the bottommost prim
of I,. Each a can now find the length of the interval I,.
Next, we make 11,1 copies of a, and each of those copies
reads ,O E IP, from one of the PEs P t , . . . , Pb. We thus
determine the piece of the contour bat@.
Making]I,) copies of every a in IPI can be done by a prefix
scan on I I, 1 , followed by a one-to-one routing, and finally by
a selected broadcasting step. To determine each be,@ that is
part of the final contour, each of the copies of (Y reads the j3
from one of the PEs from Pt to Pb. This can be done with
one Random Access Read step. Since the lengths of the lists
IPI and IP, are each 0 (k) for all the active quads Q of U ,
the above step can be done in 0(4) time on MI U Mr.

The run-time of the preprocessing step is O(&). From
the summary of the merge step described above, it is seen
that the merge step takes O (f i) time. It therefore follows
that the Voronoi diagram of a set of n line segments in the
plane can be computed in O(f i time on a fi x fi
mesh. We state this result as a theorem.

Theorem 3.7 The Voronoi diagram of a set of n nonin-
tersecting (except posszbly at endpoints) line segments in the
plane can be found on a f i x J;6 mesh in O (f i) time

41n [6], the authors find the ordering of the spokes by creat-
ing a linked list and then using a list ranking algorithm on the
PRAM. Such pointer manipulation is difficult to implement on
the mesh, and so we avoid it.

(with no queueing).

3.2 Motion Planning Using Voronoi Dia-
grams

In [14], 6 ' ~ l i n l a i n ~ and Yap give a retraction method
for planning the motion of an object (a disc) with two
dofs, moving amongst polygonal obstacles5. They use the
Voronoi diagram of the line segments that make up the
obstacles to plan the motion of the object. We give the
mesh-optimal parallel implementation of this method of mo-
tion planning. Let us assume that the object A has to be
moved from point a t o b. First we construct the Voronoi
diagram and this takes O (6) time on a x f i mesh,
as we have just shown. The next step is t o remove all the
Voronoi edges that do not satisfy the minimum clearance
requirement. In other words, we want to delete all Voronoi
semi-edges v' = B(el, e2) such that the minimum distance
of the points on v' from e l and e2 is less than some pre-
specified length r (the radius in the case of a moving disc).
Clearly, assuming that we know r, this deletion can be done
in constant time on the mesh, since each PE has a constant
number of Voronoi edges. The remaining Voronoi edges
define a graph which may be disconnected.

The next step is to find the Voronoi cells Vor, and
Verb that contain the points Q and b, respectively. By
Lemma 3.6, this can be done in O(&) time. The last step
is to find a path from an (undeleted) edge of Vor, to an (un-
deleted) edge of Verb. One way to do this is by constructing
the spanning tree and then finding this path, if one exists.
In [3], Atallah and Hambrusch show that in a graph with
edge set E, we can solve this problem in ~(a) t' ime on
a mesh with IEl PEs. In the graph defined by the Voronoi
diagram, IEl is O(n). Hence, it follows that we can imple-
ment the motion planning technique of [14] in O(f i) time
on a fi x 6 mesh, as stated below.

Theorem 3.8 Given a polygonal set of obstacles of size n,
and a disc B, the motion of B from one position to another
can be plann,ed in O(+) time on a fi x fi mesh.

4 Mesh Algorithms for Visibility
Graphs and the Related Motion
Planning Problem

4.1 Visibility Graphs

We will now describe a mesh algorithm to compute the vis-
ibility graph of a given set of line segments in the plane. As
noted in the earlier sections, the efficient construction of the

5This particular retraction approach can actually be extended
to the motion planning problem for any convex object with 2 dofs
moving among convex polygonal obstacles [20].

visibility graph is an important substep in motion planning.
To our knowledge, this problem has not been solved on the
mesh. We will show that, given an input set S (IS1 = N)
of nonintersecting line segments in the plane, we can iden-
tify mesh-optimally all the segment vertices that are visible
from a given point p in 6(&) (where n = 2N) time on a
f i x f i mesh. This will immediately give us an algorithm
for constructing the visibility graph, Gs.

Let S = {so, s l , . . . , S N - ~) be the input set of line seg-
ments that do not intersect (except possibly at endpoints),
and let p be the point from which we want to determine visi-
bility. Let v2j and v2i+l (we will assume x(v2i) < x (v ~ ~ + ~))
be the two endpoints of segment si . The visibility from a
point problem is t o determine that part of the plane that
is visible from p, assuming that every segment is opaque.
Notice that this is equivalent t o identifying those vertices vi
that are "seen" from p. As in [4], we will assume, without
loss of generality, that p is a point at -m. This is only
t o make the description of the algorithm simpler. The case
when p is not at infinity is a straightforward adaptation of
this algorithm. Since p is at -m , to compute the visibility
from p, we need to compute the lower envelope of the set
of segments in S [4]. The lower envelope is the collection of
those segment parts that can be seen from below.

In [4], the authors give a PRAM algorithm that uses
the cascading divide-and-conquer technique for solving the
visibility from a point problem. Along the same lines, we
will describe a recursive algorithm for computing the lower
envelope on the mesh. We will first describe the merge step
and then give the details of the mesh algorithm. Let S1
be the set consisting of half the elements of S, and let S2
contain the other half. Suppose that we have recursively
computed the lower envelopes of SI and S2. The lower
envelope of the segments in Si (i = 1,2) is available t o
us in the following manner: The endpoints of the segments
in Si have been sorted according to their x-coordinates (for
the sake of simplicity, let us assume that no two endpoints
have the same I-coordinate). In this sorted list (call it K),
assume that a vertical line is placed through each endpoint.
This divides the plane into vertical strips of region called
slabs (call these the &-slabs). The recursive computation
gives, for every &-slab, the segment of S; that is visible
from below (i.e. is part of the lower envelope) in that slab.
Now, we want t o merge these two envelopes t o form the
final lower envelope. First merge Vl and V2 to form V.
The set V defines a new set of slabs. Each V-slab (say u)
lies within some unique q-slab (say ul) and some unique
V2-slab (say 212). Note that u could, in fact, be the same
as either of ul or u2. Let sl and sz be the recursively
computed lower envelope segments in the slabs ul and u2,
respectively. Then, the segment of S that is visible from
below in u is nothing but the lower of sl and s 2 (note that
such an ordering is uniquely defined on the two segments).

The algorithm for computing the lower envelope (i.e. vis-

ibility from -w) is given below.
Algori thm VISFROMPOINT;
Inpu t : The endpoints are distributed one per processor on
a f i x f i mesh with the shuffled row-major indexing
scheme. The PE P j , j E (0, 1, . . . , n - 1) has endpoint
v j and also the segment that vj is an endpoint of.
O u t p u t : The endpoints will be in sorted order on the mesh.
Thus each PE Pi is associated with a slab in the obvious
way. Pi will also have the segment s that is part of the
lower envelope (i.e. is visible) in that slab.
Initialization: Every PE Pi has the following fields as part
of its record: endpoint initialized to vi; lowerseg, which con-
tains, at any stage, the lowest segment (found up to that
stage) for the slab defined by Pi ; whichblock, which indi-
cates (for the merge step) whether an endpoint came from
the left block or the right.
Basis: lowerseg is set to the segment si/2 if i is even and
to 0 otherwise6. Let S1 be the subset of segments of S in
the left block, and S2 be the subset in the right block.
Recursive Step: Solve recursively in parallel using S1 for
S in the left block and S2 for S in the right block.
Merge Step:
(i) Set whichblock to 0 if Pi belongs to the left block and to
1 if it belongs to the right block.
(ii) Merge the two sets S1 and S2 according to the endpoint
field.
Note: We now need to update the lowerseg field in each PE.
As explained earlier, every new slab u of the merged set
needs to compare the recursively computed lowerseg fields
of the two old slabs ul and u2 that it is a part of. This
can be done by using the selected broadcasting operation as
stated below.
(iii) The subset of elements that needs to be broadcast is
the lowerseg field in every processor with whichblock = 0.
Let { I 1 , 12, . . . , ln12) (where n = 21SI) be the set of these
lowersegs in sorted order and let Ili be the index of the
processor in which li resides. The selected broadcasting op-
eration will send I;, 1 5 i 5 n/2 to every PE from PI(I,)
to PI(li+l)-l. Put la in a local register called lowersegl.
(iv) Similar to step (iii), except that the broadcast elements
are the lowerseg fields from processors with whichblock = 1.
Here, the broadcast element is put in a local register called
lowerseg2.
(v) Every PE updates the lowerseg field to the lower of low-
ersegl and lowerseg2.

It is clear that the merge step takes 0(fi) time and thus
we have the following theorem.

T h e o r e m 4.1 Algorithm VISFROMPOINT, which com-
putes the lower envelope of a set of segments S, runs in

%tially, the slabs are those defined by each individual seg-
ment, and hence the lowest segment in that slab is nothing but
the segment itself.

O(&) time (with no queueing) on a fi x fi mesh, the obstacles can be done in at most O(f i) time. Note
where IS[= n/2. that these expanded obstacle edges might now intersect

Notice that the computation of the lower envelope on the
mesh immediately tells us which endpoints of S are visible
from -m. When the point p is not a t -m, the algorithm is
the same as above, except that instead of merging the end-
points of the line segments according to their x-coordinate,
we merge them according t o the polar angle that they make
with p (measured with respect to some fixed axis). In or-
der to construct the entire visibility graph, we can use the
above algorithm in a straightforward way. When a vertex
vi is used as p, we can obtain the set of vertices of S that
are visible from v; . In other words. we know which nodes
are adjacent t o the node corresponding t o vi in the visibility
graph. If we repeat this for every endpoint v, , in parallel,
we can construct the visibility graph of a set S of segments
in B (6) time using n2 processors (i.e. n of the fi x fi
meshes). This is optimal since the visibility graph may have
O(n2) edges in the worst case, and we will need n2 proces-
sors to represent the graph (under the assumption that each
processor has only a constant amount of storage).

4.2 Motion Planning Using Visibility
Graphs

Lozano-P6rez and Wesley [ll] give an approximate projec-
tion method for planning the motion of a convex object
B (of constant size) with two dofs, moving between con-
vex obstacles (total size n). We summarize their sequential
approach briefly: First "expand" each convex obstacle 0
according t o some reference point on B , which can be done
in time proportional to the size of 0. B will not collide
with 0 if and only if the reference point of B lies outside of
the expansion of 0 . Let A be the union of all the expanded
obstacles. Since B has 2 dofs, the configuration space of
B is 2-dimensional. In fact, the complement of A in the
plane is the set of free configurations, FP, for B. Let E
be the set of edges of A. The next step is to compute the
visibility graph of the set of edges E. The visibility graph is
precisely the connectivity graph (of the projection method)
that we are looking for. In addition, we have the useful
property that the shortest possible path for B between two
points in the plane while avoiding the obstacles is given by
the shortest path between the corresponding two nodes in
the visibility graph (where the edge weight is the Euclidean
length of the edge). Thus we can find a shortest path for B
by performing a shortest-path graph search on the visibil-
ity graph. The sequential run-time of this motion planning
method is O(n2).

Assume the obstacle set is stored in a f i x f i mesh.
First we expand the obstacles according to the moving ob-
ject B: We relay the information about B to each of the
PEs in fi time. Since the expansion of each obstacle can be
done in time proportional to its size, the expansion of all

with each other. When the obstacles are convex, it can be
shown that the number of such intersections can be at most
O(n) [20]. Thus the new obstacle edge set will also be O(n)
and there are efficient sequential algorithms to compute it
[20]. We can also find the new obstacle edges by usiiig a
brute force technique which is very inefficient, but will not
alter the run-time of this motion planning algorithm on the
mesh. We can simply compute the intersection of every
edge of the expanded obstacle set with the other edges of
that set. This will give us the new edge segments, and this
can be computed in O(n) time on a mesh with n PEs.

We now have to make n copies of the new obstacle edge
set on n sets of f i x f i meshes so that we may com-
pute visibility from each of the n endpoints. These copies
can clearly be made in O(n) time on a mesh with n2 pro-
cessors. We know, as mentioned above, that the visibility
information from each endpoint can be computed in O(f i)
time by using Algorithm VISFROMPOINT on each of these
submeshes.

Suppose that the object B has to be moved from point a
to point b. First we establish the visibility information from
a and b, which can be done in O (6) time using Algorithm
VISFROMPOINT. We can compute the shortest path from
a to b by solving the all-pairs shortest path problem for the
visibility graph, using the euclidean length of the edges as
the corresponding edge weights7. In order to do this, we
want to convert the information about the visibility graph
into the form of an adjacency matrix on the mesh with n2
PEs. This can be done easily with a sorting stepa, which
will take O(n) time. The all-pairs shortest path can be com-
puted by a method that is very similar to the method used
to compute the transitive closure of a matrix. As shown
in [lo], the all-pairs shortest path problem can be solved in
O(n) time by using a pipelining technique on a n x n mesh.
Thus, planning the motion of a convex object of two dofs
moving among convex obstacles can be done in O(n) time
on a n x n mesh. Even though this mesh algorithm is not
very work-efficient when compared to the O(n2) sequential
algorithm, note that this is the best we can do since we will
need n2 PEs to represent the adjacency matrix.

'Note that, for our purposes here, solving the single-source
shortest path (from a) problem would have sufficed. However,
there are no known opt,imal parallel algorithms for this problem.

'Consider the fi x f i submesh that computed visibility
from a particular endpoint v i . The PEs in this submesh have
the endpoints in sorted order about v,. Consider the PE P'
that holds vertex v,. If v; can see v 3 , then P' will send a 1
to row i and column i of the adjacency matrix. If not, then
P' does nothing. This is a one-to-one routing step and can be
accomplished through sorting.

5 C O ~ C ~ U S ~ O ~ S [lo] F. T. Leighton. Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes. Morgan Kaufmann,

We have given efficient parallel algorithms for some impor- San Mateo, California, 1992.
t an t geometric problems on the mesh-connected-computer.
As a consequence, we obtained efficient parallel motion
planning algorithms for some fundamental special cases.
Speed of execution is a very impor tant consideration for
motion planning problems. T h e development of parallel
algorithms for the interesting and complex geometric prob-
lems t h a t a re of relevance can lead t o significantly faster
solutions. Moreover, different parallel techniques for such
problems could lead t o new insights into planning motion.
For example, there a r e n o know optimal PRAM algorithms
for t h e construction of t h e Voronoi diagram of line segments.
Numerous problems in computat ional geometry t h a t have
n o known optimal deterministic algorithms have yielded
t o techniques such as randomization. Randomization has

[l l] T . Lozano-Perez and M. A. Wesley. An Algorithm for
Planning Collision-Free Paths Among Polyhedral Obsta-
cles. Comm. ACM, 22(10):560-570, 1979.

[12] R. Miller and Q . F. Stout. Mesh Computer Algorithms for
Computational Geometry. IEEE Transactions on Comput-
ers, 38(3):321-340, March 1989.

[13] C. ~ ' ~ ~ n l a i n ~ , M. Sharir, and C. K. Yap. Retraction:
A New Approach to Motion-Planning. In J. E. Hopcroft,
J. T. Schwartz, and M. Sharir, editors, Planning, Geometry
and Complexity of Robot Motion, chapter 7, pages 193-213.
Ablex Pub. Co., Norwood, N.J., 1987.

[14] C. 0 ' ~ f i n l a i n ~ and C. K. Yap. A 'Retraction' Method for
Planning the Motion of a Disc. J. Algorithms, 6:104-111,
1985.

proved to be very for designing parallel algo- [Is] J. H. Reif and S. Sen. Polling: A New Randomized Sam-
rithrns for such problems. I n particular, i t is possible t ha t pling Technique for Computational Geometry. In Proc. e l s t
randomization could lead t o a better parallel algorithm for ACM Symp. on Theory of Computing, pages 394-404,1989.
the construction Of the VoronOi diagram of line segments. [16] J F SchwartZ and M. Sharir. Motion Planning and Related
I n addition, i t would also be interesting t o see if randomiza- Geometric Algorithms in Robotics. Proc. Int,, Congress of
t ion can b e a useful s trategy for designing faster solutions Mathematicians, 2:1594-1611, August 1986.
t o various special cases of motion planning.

[17] J. T . Schwartz and M. Sharir. On the Piano Movers' Prob-
lem: I. The Case of a Two-Dimensional Rigid Polygonal

References Body Moving Amidst Polygonal Barriers. Comm. Pure and
Applied Math., 36:345-398, 1983.

[I] A. Aggarwal, B. Chazelle, L. Guibas, C. o'D&nlaing, and [IS] J. T . Schwartz and M. Sharir. On the Piano Movers' Prob-
C. K. Yap. Parallel Computational Geometry. Algorith- lem: 11. General Techniques for Computing Topological
mica, 3:293-327, 1988. Properties of Real Algebraic Manifolds. Adv. in Appl. Math,

[2] T . Asano, T. Asano, L. Guibas, J. Hershberger, and 4:298-351, 1983.
H. Imai. Visibility of Disjoint Polygons. Algorithmica, 1986. [191 M, 1. shames. ~~~~~~~i~ ~ ~ ~ ~ l ~ ~ i t ~ , proc. 7th ACM

[3] M. Atallah and S. Hambrusch. Solving Tree Problems on Symp. on Theory of Computing, pages 224-233, 1975.

a ~esh-connected Processor Array. Information and Corn- [20] M. Sharir. Efficient Algorithms for Planning Purely Trans-
putation, 69(1-3):168-187, 1986. lational Collision-Free Motion in Two and Three Dimen-

[4] M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading sions. In Proc. IEEE Symp. on Robotics and Automation,

Divide-and-Conquer: A Technique for Designing Parallel pages 1326-1331, Los Alamitos, Calif., 1987. CS Press.

SrAM J . Cornput., 18(3):499-532, June lgg9. [21] M. Sharir. Algorithmic Motion Planning in Robotics. IEEE

[5] J. Canny. Complexity of Robot Motion Planning. PhD Computer, March 1989.
thesis, MIT, 1987. [22] C. D. Thompson and H. T. Kung. Sorting on a Mesh-

[6] M. T. Goodrich, C. d7~f in l a ing , and C. K. Yap. Construct- Connected Parallel Computer. Comnz. ACM, 20(4):263-

ing the Voronoi Diagram of a Set of Line Segments in Paral- 271, April 1977.

lel. In Lecture Notes in Computer Science: 382, Algorithms [23] E. welzl. constructing the visibility ~~~~h for n Line Seg-
and Dato Structures, WADS, pages 12-23. Springer-Verlag, ments in O(n2) Time. Info. Proc. Letters, 20:167-171, 1985. ~.
1989.

[24] C. K. Yap. Coordinating the Motion of Several Discs. Tech-
[7] C. S. Jeong and D. T. Lee. Parallel Geometric Algorithms nical report, Courant Institute of Mathematical Sciences,

on a Mesh-Connected Computer. Algorithmica, 5(2):155- 1983.
177, 1990.

1251 C. K. Yap. An O(n1ogn) Algorithm for the Voronoi Di-
[8] D. G. Kirkpatrick. Efficient Computation of Continuous agram of a Set of Simple Curve Segments. Discrete and

Skeletons. In Proc. 20th IEEE Symp. on Foundations of Computational Geometry, 2:365-393, 1987.
Computer Science, pages 18-27, 1979.

[9] D. T. Lee and R. L. Drysdale. Generalization of Voronoi
Diagrams in the Plane. SIAM J . Comput. , 10(1):73-87,
February 1981.

	Optimal Mesh Algorithms for the Voronoi Diagram of Line Segments, Visibility Graphs and Motion Planning in the Plane
	Recommended Citation

	Optimal Mesh Algorithms for the Voronoi Diagram of Line Segments, Visibility Graphs and Motion Planning in the Plane
	Abstract
	Comments

	tmp.1187708175.pdf.CeX_c

