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Optimal Mesh Algorithms for the Voronoi Diagram of Line Segments, 
Visibility Graphs and Motion Planning in the Plane 

Sangut hevar Raj asekaran Suneeta Ramaswami 
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Abstract The motion planning problem for an object 
with two degrees of freedom moving in the plane can be stated 
as follows: Given a set of polygonal obstacles in the plane, and 
a two-dimensional mobile object B with two degrees of freedom, 
determine if i t  is possible to move B from a start position to a 
final position while avoiding the obstacles. If so, plan a path for 
such a motion. Techniques from computational geometry have 
been used to develop exact algorithms for this fundamental case 
of motion planning. In this paper we obtain optimal mesh imple- 
mentations of two different methods for planning motion in the 
plane. We do this by first presenting optimal mesh algorithms 
for some geometric problems that, in addition to being impor- 
tant substeps in motion planning, have numerous independent 
applications in computational geometry. 

In particular, we first show that the Voronoi diagram of a set 
of n nonintersecting (except possibly at endpoints) line segments 
in the plane can be constructed in O( f i )  time on a f i  x f i  
mesh, which is optimal for the mesh. Consequently, we obtain an 
optimal mesh implementation of the sequential motion planning 
algorithm described in [14]; in other words, given a disc B and a 
polygonal obstacle set of size n, we can plan a path (if it exists) 
for the motion of B from a start position to a final position in 
O ( 6 )  time on a mesh of size n. Next we show that given a set 
of n line segments and a point p, the set of segment endpoints 
that are visible from p can be computed in O ( G )  mesh-optimal 
time on a f i  x f i  mesh. As a result, the visibility graph 
of a set of n line segments can be computed in O(n)  time on 
an n x n mesh. This result leads to an O(n) algorithm on 
an n x n mesh for planning the shortest path motion between 
a start position and a final position for a convex object B (of 
constant size) moving among convex polygonal obstacles of total 
size n. 

1 Introduction 

The problem of algorithmic motion planning has received 
considerable attention in recent years. The automatic plan- 
ning of motion for a mobile object moving amongst obsta- 
cles is a fundamentally important problem with numerous 
applications in con~puter graphics and robotics. The study 
of algorithmic techniques for planning motion, with prov- 
able worst-case perforn~ance guarantees, has been spurred 
by recent research that has established the mathematical 

depth of this problem (see [16, 20, 211 for comprehensive 
surveys). In particular, the design and analysis of geometric 
algorithms has proved to be very useful, resulting in consid- 
erable interplay between computational geometry and algo- 
rithmic motion planning for numerous special cases. 

We are interested in studying special cases of algorithmic 
motion planning and the related geometric problems using 
parallelism. For a number of special cases of motion plan- 
ning, optimal or near optimal sequential algorithms have 
been discovered. Our research aims at obtaining optimal 
parallel algorithms for these problems and will be aided by 
the significant progress that has been made in the area of 
parallel algorithms for computational geometry in recent 
years ([I, 4, 6, 7, 12, 151, for example). 

In this paper we develop efficient parallel mesh algo- 
rithms for two different techniques of planning motion for 
an object with two degrees of freedom moving in the plane 
among polygonal obstacles. One technique for this funda- 
mental case of motion planning uses Voronoi diagram con- 
struction for a set of line segments as a subroutine, and the 
other technique uses planar visibility graph construction. 

Visibility graph construction and Voronoi diagrams are 
geometric problems which, in addition to  being tools for 
motion planning, have many useful applications. Given a 
set of line segments in the plane, the construction of the 
visibility graph can lead t o  information about that part of 
the plane t,hat is hidden from a given point. This has useful 
applications in computer graphics. Visibility graphs of line 
segments also enable us to find the shortest path between 
two points in the plane while avoiding the line segments. 
The Voronoi diagram is an elegant and versatile geometric 
structure and has applications for a wide range of problems 
in computational geometry and in other areas. For exam- 
ple, comput,ing the minimum weight spanning tree, or the 
all-nearest neighbor problem for a set of line segments can 
be solved immediately from the Voronoi diagram. An effi- 
cient PRAM algorithm for computing visibility from a point 
is given by At,allah et. a1 in [4] and Goodrich et  al. give a 
CREW PRAM algorithm for constructing the Voronoi di- 
agram of a set of line segments in the plane [GI. However, 
to our knowledge, these problems have not been solved on 



fixed-connection networks. In this paper, we develop effi- 
cient parallel algorithms for these geometric problems on 
the mesh-connected-computer and as a result, for the cor- 
responding motion planning problems. 

The mesh-connected computer (mesh) of size n is a fixed- 
connection network of n simple processing elements (PEs) 
that are arranged in a f i  x fi two-dimensional grid. Each 
PE  is connected to its (at most) four nearest neighbors. 
Attractive features such as simple near-neighbor wiring and 
ease of scalability have made the mesh-connected computer 
the focus of considerable attention in parallel algorithms 
research. The following mesh operations, which will be used 
in the remainder of this paper, can be implemented in B ( f i )  
time on a f i  x f i  mesh[l2, 221: perfect shuffle, perfect 
unshuffle, sorting, selected broadcasting, segmented prefix 
scan, Random Access Read (RAR), and Random Access 
Write (RAW). The commonly used indexing schemes on 
the mesh are row-major, shuffled row-major, snake-like and 
proximity [12]. An implicit lower bound of R(f i )  holds 
for most algorithms on the mesh, because nontrivial data 
movement takes a ( 6 )  steps. 

In the next section we give some important definitions 
and a brief introduction to relevant background. In Sec- 
tion 3, we develop an optimal mesh algorithm for the con- 
struction of the Voronoi diagram of a set of line segments 
in the plane. We summarize the resulting mesh algorithm 
for the related motion planning technique at the end of that 
section. In Section 4, we give an optimal mesh algorithm for 
determining visibility from a point, and therefore for visi- 
bility graph construction. The resulting mesh algorithm for 
planning motion is also given in that section. 

2 Background and Definitions 

The motion planning problem of interest to us can be stated 
in the following way [16]: Given an initial starting position 
PI, a final destination position PF and a set of stationary 
obstacles whose geometry is known to B,  determine if there 
exists a continuous obstacle-avoiding motion for B from PI 
to PF. If one exists, construct the path for such a motion. 
Let n be the size of the obstacle set and let k be the number 
of degrees of freedom1 (dofs) of the mobile object B. Every 
position of B can be thought of as a point in k-dimensional 
parametric space. Let a free configuration be a placement 
of B in which it does not intersect with any of the obsta- 
cles. Define FP to be the subset of k-dimensional space 
that contains all the free configurations of B. In general, 
FP will consist of many path-connected components. A 
collision-free path from PI t o  PF exists if and only if the 
corresponding k-dimensional configurations lie in the same 

'The degrees of freedom of an object can be defined as the 
number of parameters that need to be specified in order to com- 
pletely determine the position of the object. 

connected component. 
There are, in general, two kinds of strategies to solve 

the motion planning problem. The first general approach, 
which runs in time polynomial in n and doubly exponen- 
tial in k, was first demonstrated by Schwartz and Sharir 
in [IS], and was applied to numerous special cases (see [17], 
for example; the runtimes for some of these cases have since 
been improved). The important step in this approach is to 
construct a connectivity graph that represents the connec- 
tivity information of the cells of FP. Planning motion for 
B then reduces to performing a graph search on the con- 
nectivity graph. The second general approach is to find 
a one-dimensional representation of FP (called the "skele- 
ton" or the "road-map") such that it is possible for B to 
move from PI to PF iff it is possible to move between two 
corresponding points on the skeleton. This generalized ap- 
proach was given by Canny [5] and runs in time polyno- 
mial in n and single exponential in k. Techniques based on 
the ideas of the first approach will be called the projection 
methods, and those based on the second approach will be 
called the retraction methods. The planar motion planning 
algorithm given by 0 ' ~ l i n l a i n ~  and Yap [14], which uses 
the Voronoi diagram of a set of line segments, employs the 
retraction met,hod, and the method given by Lozano-Pdrez 
and Wesley [Ill ,  which uses visibility graphs, is an approx- 
imate projection method (later in the paper, we develop 
parallel algorithms for the exact version of their method). 

2.1 Notation and Important Definitions 

2.1.1 Voronoi Diagram of a Set of Line Seg-  
ments in the Plane 

Let S be a set of nonintersecting closed line segments in 
the plane. Following the convention in [9, 251, we will con- 
sider each segment s e S to be composed of three distinct 
objects: the two endpoints of s and the open line segment 
bounded by those endpoints. Following [6, 91, we now estab- 
lish some basic definitions. The Euclidean distance between 
two points p and q is denoted by d(p, q) .  The projection 
of a point q on to a closed line segment s with endpoints 
a and b ,  denoted proj(q, s) ,  is defined as follows: Let p 
be the intersection point of the straight line containing s 
(call this line T), and the line going through q that is per- 

i 

pendicular to s . If p belongs to s, then proj(q, s)  = p. 
If not, then proj(q,  s) = a if d(q,  a )  < d(q, b) and 
proj(q, s) = b ,  otherwise. The distance of a point q from 
a closed line segment s is nothing but d(q, proj(q, s)). By 
an abuse of notation, we denote this distance as d(q,  s). 
Let sl and sz be two objects in S. The bisector of sl and 
s 2 ,  B(sl ,  s2) ,  is the locus of all points q that are equidistant 
from sl and S? i.e, d(q, s l )  = d(q,  s z )  Since the objects 
in S are either point,s or open line segments, the bisectors 
will either be parts of lines or parabolas. The bisector of 



IS1 = n that run in O(n2) time. Unfortunately, neither 
of these two sequential techniques lends itself t o  efficient 
parallelizat ion. 

The problem of computing visibility from a point, i.e. 
identifying those vertices of S that are visible from some 
specified point p, has a lower bound of R(n1ogn). This 
lower bound can be established by showing a straightfor- 
ward reduction from sorting. assuming that we want the 
output in sorted order about p (by polar angle with respect 

ive an to some fixed axis through p). Atallah et. al. [4] g' 
optimal CREW PRAM algorithm for computing visibility 
from a point that runs in O(1og n) time using n processors. 
The visibility graph can thus be constructed by repeating 

Figure 1: T h e  bisector of two line segments sl and sz. 
this algorithm for each of the endpoints of S, which takes 
O(1ogn) time with n2 processors. All the visibility algo- 

two line segments is shown in Figure 1. rithms mentioned here (and those that will be described 
in the coming sections) are described for a set of line seg- 

Definition 2.1 [9] The Voronoi region, Vor(e), associ- ments. When the input is a disjoint set of polygons, we 
ated with an object e i n  S is  the locus of all points use the polygon edges as the input set S to construct the 
that are closer to  e than to any other object in S 2.e. visibility graph. 
Vor(e) = {p I d(p, e) 5 d(p, el)  for all el E S).  The 
Voronoi diagram of S ,  Vor(S), is the union of the Voronoi 
regions Vor(e), e E S. The boandary edges of the Voronoi 3 Mesh Algorithms for 

- 

regions are called Voronoi edges, and the vertices of the di- 
agram, Voronoi vertices. 

the Voronoi Diagram of a Set of 
Line Segments and the Related 

The following is a very important property of Vor(S) . Motion Planning Problem 
Theorem 2.2 (Lee et al. 191) Given a set S of n non- 

As we mentioned in Section 1, the Voronoi diagram turns 
intersecting closed line segments i n  the plane, the number out to be a useful tool in motion planning [14, 13, 241. We 
of Voronoi regions, Voronoi edges, and Voronoi vertices of 

now describe a mesh-optimal algorithm for the construction 
Vor(S)  are all O(n). To be precise, for n 1 3, Vor(S) 

of the Voronoi diagram of a set of line segments in the plane. 
has al most n vertices and at most 3n - 5 edges. 

The resulting mesh implementation of the motion planning 

Sequential algorithms for the construction of the Voronoi 
diagram of a set of line. segments are given by Kirkpatrick 
[S], Lee and Drysdale [9], and Yap [25]. The algorithms 
in [8, 251 run in O(n1ogn) time, which is optimal since a 
lower bound of R(n1ogn) is known for this problem[l9]. 
The run-time of the algorithm in [9] is 0(nlog2n). We will 
repeatedly refer to Yap's algorithm in the coming sections, 
since it lends itself to efficient parallelization, whereas the 
other two techniques do not. Goodrich et al. [6] give a 
CREW PRAM algorithm for Voronoi diagram construction 
that uses n processors and runs in 0(log2 n) time. 

2.1.2 Visibility Graphs 

Given a set S of n line segments in the plane, its visibil- 
ity graph Gs is the undirected graph which has a node for 
every endpoint of the segments in S, and in which there is 
an edge between two nodes if and only if they are visible to 

algorithm by 0 ' ~ r i n l a i n ~  and Yap [14] is given in the last 
part of this section. 

3.1 Voronoi Diagram of a Set of Line Seg- 
ments in the Plane 

In this section, we develop a parallel algorithm for con- 
structing the Voronoi diagram of a set of N line segments 
in the plane on a $ x fi mesh (n = 2N) that runs in 
O(&) time, which is optima1 for the mesh. We would like 
to point out that there is an optimal O(&) time parallel 
algorithm for the Voronoi diagram of a set of n points in the 
plane, on a mesh with as many PEs (Jeong and Lee [7]), 
but none, to our knowledge, for line segments. 

The general idea behind the sequential algorithm? for the 
construction of Vor(S) ( S  is the input set of line segments) 
is as follows: S is divided into sets of equal size, Sl and 
S2. Vor(S1) and Vor(Sa) are then recursively computed. 

each other, assuming the line segments are opaque. Welzl In order to merge these two Voronoi diagrams to form the 
[23] and Asano et al. [2] give sequential algorithms for con- final diagram Vor(S), we need to construct the con,tour 
strutting the visibility graph of a set S of line segments with between Sl and S z .  The contour is the locus of all points 



in the plane that are equidistant from S1 and S2. Thus, Let vzi and vz;+l be the two endpoints of segment si, such 
assuming the correct orientation on the contour, all points that 2(v2;) < X ( V ~ ~ + ~ ) .  Each segment s of S is actually 
lying to  the left (right) of the contour are closer to  S1 (5'2) represented as three elements: the two endpoints and the 
than to  S2 (S1). Now, we discard that part of the diagram open line segment. Let E = (po, p l ,  . . . , p,-1) be the or- 
of Vor(S1) that lies t o  the right of the contour, and that dered set consisting of these endpoints sorted according to 
part of the diagram of Vor(S2) that lies to  the left of the their 2-coordinates (each pj is some vi and n = 2N). The 
contour. The remaining edges of the two diagrams, and the mesh algorithm for constructing Vor(S) will be a divide- 
contour edges give us the final Voronoi diagram Vor(S). and-conquer algorithm, and so we will assume shuffled row- 
This is the motivation behind the sequential approaches major indexing on the mesh. Suppose a vertical line is 
used by [8, 9, 251. drawn through each point in S .  The vertical strip of region 

Thus, the construction of the contour is the single most between any two such (not necessarily adjacent) vertical 
important step in the merge phase of the divide-and- lines is called a &. Consider the set of segments that 
conquer algorithm for Voronoi diagram construction. For span a slab U. The region of U that is enclosed between 
the case of a set of points in the plane, we have the nice two such coizsecutive spanning segments is called a - quad of 
property that  there is exactly one contour to  be constructed, U .  A quad is said t o  be an active quad if it contains an 
and this contour is monotone with respect to the y axis. In endpoint of S in its interior. Let U be a slab. The subset of 
[7], Jeong and Lee exploit this property by first identifying E in the interior of U will be referred to  as Eu (thus, end- 
those Voronoi edges of Vor(S1) and Vor(S2) that are in- points lying on the vertical boundaries of U do not count). 
tersected by the contour. They then use the monotonicity The set of segments obtained by restricting S to the slab 
property to explicitly sort these edges according to the order U will be called Su i.e. S u  = {s n U I s E S and 
in which they are intersected. Once this is done, some ad- s n U # 0). Yap's sequential algorithm is a divide-and- 
ditional computation gives us the contour. For the Voronoi 
diagram of line segments, however, i t  is much more compli- 
cated t o  ensure that this property of the contour holds. As 
mentioned before, Goodrich et al. [6] give a CREW PRAM 
algorithm for Voronoi diagram cosntruction that runs in 
0(log2n) time using n processors. Their algorithm makes 
uses of data  structures that are of size O(n log n).  We can- 
not make use of such data structures if we assume constant 
storage per PE on a mesh-connected-computer of size n. In 
addition, their method performs numerous pointer manipu- 
lations, which are very difficult to implement on the mesh. 
We circumvent these difficulties by developing an algorithm 
that performs simpler data manipulation on the mesh. Be- 
fore we proceed, we state two results that are of relevance 
t o  Voronoi diagram construction on the mesh. 

Lemma 3.1 Given a linearly ordered set of elements L 
and a set of elements E such that each e E E lies be- 
tween exactly two elements of L (call these e" and e*), and 
ILI + IEl = n. The problem offinding ea and eb for every 
e E E can be solved in O(&) time on a fi x fi mesh. 
Call this Algorithm SIMULTSRCH. 

Proof:  Omitted. 

Lemma 3.2 ( J eong  and Lee [?I) Given an arbitrary set 
of segments S in the plane and a set of points P such that 
IS1 + IPI = n. Let pa be the segment from S that lies 
immediately above (below) p.  The problem offinding pa and 
pb for every point p E P (also known as the MultiLocation 
problem) can be solved in O(&) time on a 1/;6 x f i  mesh. 
Call this Algorithm MULTILOC. 

Let S = {so, sl, . . . , sjv-1) be the input set of line seg- 
ments that do not intersect (except possibly a t  endpoints). 

conquer algorithm that computes the Voronoi diagram for 
the segments in each slab. However, a naive implementa- 
tion of this strategy would take O(n2) time in the worst 
case. Yap overcomes this by computing, for every slab U ,  
the Voronoi diagram for only those segments of S u  that 
belong t o  some a.ctive quad of U. 

Let U be the slab obtained by merging the adjacent slabs 
U1 and U2. The merge step computes the Voronoi diagram 
in all the active quads of U ;  this is done by using, with some 
additional computat.ion, the recursively computed Voronoi 
diagrams of the active quads of U1 and Uz to construct 
the contour. Thus, the most important step in the merge 
procedure is to compute efficiently, for every active quad 
Q in U, Vor(Su n Q). Following [6], we let VorSet(Su) 
represent the set containing the Voronoi diagrams of all the 
active quads Q of U i.e. VorSet(Su) = {Vor(Su n Q) ( Q 
is an active quad of U}. At the topmost level of recursion, 
the entire plane is the slab U ,  and the algorithm computes 
Vor(S), since VorSet(Su) is nothing but Vor(S). 

Initially, ea.ch PE contains an endpoint vi ( i t .  the coor- 
dinates of vi), the segment that vi is an endpoint of2, and 
the other endpoint of that segment. In other words, each 
PE Pi, 0 5 i < n - 1 has a packet that contains vi, SLiI2J 
and V ~ + ( - ~ ) E .  Initially vi is used as the key for processor Pi's 
information. 
Preprocessing: In this step, (a) first we sort the pack- 
ets according t o  the x-coordinate of the key. Notice that 
now the arrangement of the keys of the packets is as in 
the ordered set E. (b) Next, we run Algorithm MULTILOC 
(refer Lemma. 3.2), using S and E as the set of segments 

'When we sag that a particular segment s, is stored in PE: 
Pi, we mean that the index j of that segment is ~t~ored. We will, 
however, cont,i~~lie to refer to this as "storing the segment s,". 



and points, respectively. At the end of this step, we will 
have for every endpoint pi in P E  Pi, the segments that lie 
vertically above and below it. Call these pia and pib, re- 
spectively. pia will be represented by its two endpoints and 
its index; similarly for p i b .  pia and pib are now added on 
t o  the packet in PE Pi. I t  will become clear later on that 
this preprocessing step is necessary in order t o  determine 
active quads. Clearly, (a) and (b) take O ( 6 )  time on a 
f i  x f i  mesh. 

Basis: The base step is executed when there is exactly one 
point in the interior of the slab. This point will be pi, for 
odd i, 1 < i < n - 1. The slab that pi lies in is defined by 
the vertical lines going through pi-1 and pi+l (p,, is some 
dummy point that lies to  the right of all points in E) .  The 
active quad t o  which pi belongs (obviously, it is the only 
active quad in said slab) is given by the spanning segments 
pia and pib. Clearly, the Voronoi diagram of this quad can 
be computed in constant time. Hence the base step takes 
constant time. 

Merging: Let UI and U, be two adjacent slabs, and let 
IEul 1 = IEu,l = k (i.e. each slab has k endpoints in its 
interior). Suppose that VorSet(Su,) and VorSet(Su,) have 
been recursively computed in two adjacent sub-blocks of the 
mesh, where each sub-block is of size x m. 
Let the left sub-block be called MI and the right sub-block 
M,. We will show that we can perform the merge in o(&) 
time, using O(k) PEs. 

The information that is necessary for the merge proce- 
dure is available in MI in the following manner. 
(1) Active Quads of Uf : The active quads in Uf have a 
sorted order defined on them in the natural way. Let A1 
be the number of active quads in Ul (A1 5 k); let these 
be QII ,  Qi2, . . . , QIAl in sorted order (from top to  bot- 
tom, say). See Figure 2 for an example. Let the number 
of endpoints in these active quads be krl, k12, . . . , klA,, 
respectively. Note that kll + kl2 + . . . + klAl = k. 
In MI,  the endpoints in Qrl are in the first kll processors, 
the endpoints in Q12 are in the next k12 processors and so 
on. We will call this the active-quad-wise ordering of the 
endpoints of Eu, . Each endpoint in Qli will specify its quad 
by the upper and lower bounding segments of Qli. 

(2) Voronoi Edges of VorSet(Su,) : As stated earlier, 
VorSet(Sq) is the collection of the Voronoi diagrams of 
all the active quads in Ul. Because of the quad-wise com- 
putation of the Voronoi diagram, the Voronoi edges of 
VorSet(Su,) are stored in a quad-wise manner. In other 
words, in Ml, we will first have the Voronoi edges of 
Vor(Sul n Qll), followed by the edges of Vor(Sul n Qlz), 
and so on. Notice that since VorSet(Su,) consists of the 
Voronoi diagram of at most O(k) line segments (since only 
the active quads are considered), it will have O(k) Voronoi 
edges; there will be a constant number of these Voronoi 
edges in each processor of Mr. More importantly, the follow- 
ing observation holds, which follows directly from a lemma 

by Yap [[25], Lemma 51: The number of Voronoi edges in 
the Voronoi diagram of an active quad Qld of Uf is propor- 
tional t o  the number of segments in that  quad. In other 
words, the number of Voronoi edges in Vor(SU, n Qli) is 
O(kIi)3. Therefore, the PEs of MI that store active quad 
Qli suffice to  store the complete diagram Vor(Su, n Qji), 
with just a constant number of Voronoi edges per PE. 
Let A, be the number of active quads of U, , and let kri be 
the number of points in the i-th (in the sorted order) active 
quad Qri ,  1 5 i 5 A, (see Figure 2). The informa- 
tion about the active quads of U, and the Voronoi edges of 
VorSet(Su,) are available in M, in a similar and analogous 
way. 

For the sake of brevity, we will give a very general de- 
scription of the merge step on the mesh without going into 
the details. 
S u m m a r y  of t h e  M e r g e  S t e p  on t h e  M e s h  The merge 
part of this divide-and-conquer algorithm consists of three 
important substeps: the determination of the active quads 
of U, the vertical merge, and the horizontal merge. 
(1) Determina t ion  of t h e  ac t ive  q u a d s  of U : In this 
step we compute the active quads of U by using the in- 
formation about the active quads of Ul and U, available 
in MI and M,, respectively. This is done by merging the 
endpoints in MI with the endpoints in MT (recall that these 
endpoints are in active-quad-wise ordering) according to the 
upper bounding segment of the quad that they belong to 
(some Qli or Qrs) .  This merge can be done by performing 
the standard shuffle-exchange step. This step ensures that 
all the points in Eu lie in MI U M, in the correct active- 
quad-wise ordering. An appropriate selected broadcasting 
step can now update, for every endpoint in Err, the upper 
and lower bounding segments of the active quad of U that 
it lies in. This step takes o(&) time on the mesh A41 U M, 
(which has 2k + 2 PEs). 
Note: Consider an active quad Q from the slab U. Let Q, 
(9,) represent the part of Q that lies in the left (right) slab 
Ul (U,). In other words, Ql = Q n Ul and Q, = Q n U , .  
Observe that Ql (Q,) is the union of a contiguous set of 
quads of slab Ul (U,). Some of these quads may be active 
and some or all of them may not be (see Figure 2 for an 
example). We will call these quads (whether active or not) 
the Ql-quads (&,-quads). In order to  find the Voronoi dia- 
gram of Q ,  Vor(Su n Q), we need to "merge" the Voronoi 
diagrams of all the Ql-quads and the Q,-quads in the ap- 
propriate way. This merging is achieved by first doing a 
uertical merge, followed by a horizonlal merge. 
(2) T h e  vert ical  merge: In this step we find, for every ac- 

31ntuitively speaking, the lemma states that for any two 
quads Q1 and Q* in a slab U', the objects in QI and the ob- 
jects in Qz do not interact with each other. In other words, the 
Voronoi edges of the diagram Vor(Su,  n Q1) will not be af- 
fected by the segments in Su, n Q2. Hence the assertion that 
the number of edges in Vor(Sv ,  n Q l , )  is O(kli) .  



Figure 2: T h e  Qr-quads and  t he  Q,-quads of an active 

quad Q of U .  

tive quad Q of U ,  the Voronoi diagram of Su, n Ql,  called 
the Ql-diagram and of Sv, n Q,, called the &,-diagram. 
Notice that the Voronoi diagram of the non-empty Qpquads 
(&,-quads) has already been recursively computed. The 
Voronoi diagram of an  empty Qr-quad (&,-quad) can be 
computed in constant time. Thus, determining the empty 
quads is the important step. 
Consider an empty Ql-quad; call it Q'. On the mesh 
MI  U M,, we arrange the upper and lower bounding seg- 
ments of Q' in such a way that there are no endpoints of 
Eu, between the two processors that hold these segments. 
In addition, we arrange all the QI-quads, whether empty or 
active, in the correct sorted order on the mesh (it is clear 
that such a sorted order on all QI-quads is well-defined). 
Similarly for the &,-quads. By defining an appropriate or- 
dering on all the endpoints of Eu,  we can sort them into 
the arrangement described above. We will not go into the 
details of this ordering for lack of space. 
Once this is done, we can determine the empty &I-quads 
by performing a segmented prefix scan operation that  will 
count the number of endpoints from Euz between every two 
consecutive spanning segments of Ur. Let PEs Pj and Pk 
contain two such consecutive spanning segments of Ur . Each 
such set of PEs Pj , Pi+ . . . , Pk forms a segment of the 
segmented prefix scan. If the result of the scan in Pk is 
zero, then these two consecutive spanning segments define 
an empty &{-quad and we compute its Voronoi diagram. 
This diagram clearly has just a constant number of Voronoi 
edges, and hence we can store these edges in Pk. An analo- 
gous application of these steps give us the empty &,-quads 
and their Voronoi diagrams. The construction of the Ql- 
diagram (Q,-diagram) requires us to  merge together the 
Voronoi diagrams of all the Qr-quads (9,-quads), empty 

as well as active. This just requires us t o  "concatenate" 
the diagrams of all the Ql-quads (&,-quads) in the correct 
sorted order (as in [25]). The above computation ensures 
that these diagrams are, in fact, already in the right order. 
Hence, the horizontal merge takes o(&) time on MI U M,. 
(3) The horizontal merge: In this final stage of the merge 
step, we obtain the Voronoi diagram of each active quad 
Q. This is done by merging the QI- and the &,-diagram, 
which involves the construction of the contour. The hori- 
zontal merge is the most complicated part of this algorithm. 
Once the contour is constructed, the &I-diagram to the left 
of the contour, the contour itself, and the &,-diagram to 
the right of the contour give us the final Voronoi diagram 
Vor(Su n Q) for every active quad Q of U .  Our discussion 
will describe the computation performed for one active quad 
Q, with the assumption that the same steps are carried out 
for all the active quads of U. 

As in the sequential methods of [8, 251 and the PRAM 
method of [6], we manipulate objects known as primitive 
regions for the construction of the contour. For the rest 
of this discussion, we will assume that the QI-diagram is 
augmented in the following way (the &,-diagram will be 
augmented in a similar way): For every element e (either a 
point or an open line segment) in Sv, n & I ,  we add spokes 
[8] t o  the Voronoi region Vor(e) of e. If v is a Voronoi 
vertex of Vor(e), and if v' = proj(v, e) (the projection 
of v on e), then the line segment obtained by joining v 
and v' is a spoke of Vor(e). See Figure 3 for a Voronoi 
diagram augmented with spokes. In [6], the authors add 
some additional spokes. For all e that are point elements, 
we check if the horizontal left-ward ray from e crosses any 
spokes before it  intersects the boundary of Vor(e). If not, 
then let p be the point of intersection on the boundary. 
The line segment from e to  p is also added as a spoke. We 
do a similar step for the right-ward ray from e.  If these 
left-ward and right-ward rays do not intersect any spokes 
or Voronoi edges, then these rays are also considered to 
be spokes. These additional spokes are indicated by bold 
dotted lines in Figure 3. All spokes define new sub-regions 
within Vor(e). These sub-regions bounded by two spokes 
on two sides, part of e on one side, and a piece of Voronoi 
edge on the other side are called primitive regions (prims 
for short) [GI. The piece of Voronoi edge that forms one 
of the bounda.ry edges of each prim is called a semi-edge 
[6]. Notice that since VorSet(Su,) consists of at most O(k) 
Voronoi edges and vertices, the number of prims will also 
be O(k). For the rest of this discussion, we will call the 
spokes of the QI-diagram as Ql-spokes, the prims of the &I- 
diagram as Ql-prims, and the semi-edges of the QI-diagram 
as Ql-semi-edges (similarly for Q,). The segment endpoints 
or open line segments that belong to Su, I, Qr (Su, i l  Qr) 
will be called Q1-objects (&,-objects). 

In the merge computation on the mesh so far, our tech- 
nique has been to store a constant number of Voronoi edges 



IP( 5 n. The problem of finding the Voronoi region that 
each point p E P lies in, can be solved in ~ ( f i )  time on 
a f i  x f i  mesh. Call this Algorithm VORREGIONLOC. 

Algorithm VORREGIONLOC can be implemented by us- 
ing a technique similar t o  that  given by Jeong and Lee [7] 
for Algorithm MULTILOC, with some minor modifications. 

We now outline the important steps in the construction 
of the contour on the mesh. Notice that at this stage of 
the merge all the active quads of U are in sorted order in 
Ml U M,, and within each such Q,  we have the Qr-diagram, 
followed by the Q,-diagram. 

The contour consists of edges that are of the form 
B(el, e,), where el is a Ql-object and e, is a &,-object. 
Hence our goal is t o  identify all such pairs (el, e,). Ob- 
viously, if a &{-object el is part of such pairs, then some 

Figure 3: A Voronoi diagram augmented with spokes. of its QI-prims will be intersected by the contour (similarly 
for Q,-objects). Notice that determining if a prim is in- 
tersected by the contour is equivalent to determining if at  

per PE. ~ o t i c e  that each Voronoi edge (part of B(e11 e2), least one of the spokes of that prim is intersected by the 
defines two prims: One in each of the two contour. This is because if the contour intersects a prim 

Voronoi regions Vor(el) Vor(e2). we assume without intersecting either of its spokes, then it would have 
that both these prims are stored with the VoronOi to  intersect tile semi-edge twice, contradicting Lemma 3.5. 
edge. It  is determine the 'pokes Thus, in order t o  construct the contour we have to  do the 
(mentioned above) that need to be added. Every prim in following: 
VoT(el)> where el is either an Or an 'Pen line seg- (,) Identify the Q1-spokes that are intersected by the con- 
men' corres~onding to segment '1 in SU,  n Q, determines if tour and arrange them in the order that they are inter- 
it is intersected in the desired manner by the left-ward and sected by the contour. Such an order exists because of the 

right-ward rays from the s l .  This can be monotonocity property (Lemma 3.4) of the Call 
done in constant time for each prim, and in constant total this sorted list Isla 
time for all the prirns since there are a constant number of (b) Identify the Q,-spokes that are intersected by the con- 
prims per PE. tour and arrange them in the order that they are intersected 

We now want t o  construct the contour between the Ql- by the contour. Call this sorted list IS,, 
diagram and the Qr-diagram This construction depends (c) From the two sorted lists ISl and IS,, determine the 

On certain properties of the We state pairs (el, e,) such that B(el, p . , )  forms part of the contour. 
these properties as lemmas and refer the reader to A summary of the implementation of steps (a), (b) and 
[6, 251 for the proofs. (c) is given below: 

Step (a): 
Lemma 3.3 (Goodr ich  e t  al. [ 6 ] )  Let cr and /3 be Qi- 

(i) Identifying the Ql-spokes that are intersected by the con- 
and &,-prims, rrs~ectively. Iet ', e s ~ ,  and sp € s~~ tour: E~~~~ ~ ~ - ~ ~ ~ k ~  has one endpoint tllat is part of a 
be such that cr C Vor(s,) and /3 5 Vor(sp). 

Let Ql-object. Obviously, this endpoint will always be closer 
b,,p = B(s,, sp) fl (Y n p.  If b,,p is non-empty, to  the Ql-diagram than to the &,-diagram. However, the 
then b,,p defines a piece of the contour. 

other endpoint (call this the "free" spoke-endpoint) of the 
. Ql-spoke may or may not be closer to the Ql-diagram. If 

Lemma 3.4 (Goodr ich  et al. [ 6 ] )  The contour zs 
it is not, then the spoke will be intersected by the contour. 

monotone with respect to the y-axis. 
Apply Algorithm VORREGIONLOC, using the &,-diagram 

Lemma 3.5 (Goodr ich  et al. [6]) The contour inter- as the Voronoi diagram of the input, and the "free" end- 

sects each spoke and each Voronoi semi-edge at most once. points of the Ql-spokes as the point set P of the input. 
Clearly this can be done in o(&) time on MI U Mr. 

From the above lemmas it is easy t o  see that the contour Consider a Ql-spoke 1'; 1' is part of Vor(er), say. suppose 
intersects each prim in at most one continuous piece [6]. the "free" endpoint p of I' lies in ~ o r ( e , ) ,  where e, is a 

Before we proceed, we state an important lemma. Q,-object. If d(p, e , )  < d(p, er) ,  then 1' will be inter- 
sected by the contour. Since each PE has a constant num- 

Lemma 3.6 Given a set P of points in the plane, and the ber of Voronoi edges, we can now identify the intersected 
Vo~onoi diagram of a set S of line segments, where IS( + Ql-spokes in constant time. 



(ii) Sorting the intersecied &I-spokes: We now arrange the 
intersected Qf-spokes in the order in which they are inter- 
sected by the contour (from bottom to  top, say). We find 
this order by explicitly sorting the spokes4. We will not go 
into the details of the ordering here for lack of space. Let 
this sorted list of spokes be called ISl. ISI can be found in 
o(&) time on MI U M r .  
Step (b): 
Analogous to  steps (a)(i) and (a)(ii) above. Let the sorted 
list of intersected 9,-spokes be called IS,. 
Step (c): 
Note that the sorted order of intersected Qf-prims (Q,- 
prims) is implicit in ISl (IS,): call this ordered set IPl 
(IP,).  Consider some prim a form IP1. We say that a in- 
teracts with prim ,b € IP, if beSp (refer to  Lemma 3.3) is 
non-empty. In general, a will interact with some subset of 
prims from IP,. This subset will be a continuous interval 
of prirns from IP, [6]. Call this interval of prirns I,. Fur- 
thermore, all the prims that lie above a in IPl can interact 
only with those prirns of IP, that lie above I, [6]. 
We implement this step on the mesh in the following way. 
For every prim a E IPl, we identify the topmost and 
bottommost prim of the interval I,. Sequentially, this can 
be done by using binary search for each a. On the mesh, 
this step can be done by two applications of Algorithm SI- 
MULTSRCH (refer Lemma 3.1), which takes ~ ( d )  time on 
MI U Mr. Let Pt be the P E  that holds the topmost prim 
of I, and Pb be the PE that holds the bottommost prim 
of I,. Each a can now find the length of the interval I,. 
Next, we make 11,1 copies of a, and each of those copies 
reads ,O E IP, from one of the PEs P t ,  . . . , Pb. We thus 
determine the piece of the contour bat@. 
Making ]I,) copies of every a in IPI can be done by a prefix 
scan on I I, 1 ,  followed by a one-to-one routing, and finally by 
a selected broadcasting step. To determine each be,@ that is 
part of the final contour, each of the copies of (Y reads the j3 
from one of the PEs from Pt to Pb. This can be done with 
one Random Access Read step. Since the lengths of the lists 
IPI and IP, are each 0 ( k )  for all the active quads Q of U ,  
the above step can be done in 0(4) time on MI U Mr. 

The run-time of the preprocessing step is O(&). From 
the summary of the merge step described above, it is seen 
that the merge step takes O ( f i )  time. It therefore follows 
that the Voronoi diagram of a set of n line segments in the 
plane can be computed in O(f i  time on a fi x fi 
mesh. We state this result as a theorem. 

Theorem 3.7 The Voronoi diagram of a set of n nonin- 
tersecting (except posszbly at endpoints) line segments in the 
plane can be found on a f i  x J;6 mesh in O ( f i )  time 

41n [6], the authors find the ordering of the spokes by creat- 
ing a linked list and then using a list ranking algorithm on the 
PRAM. Such pointer manipulation is difficult to implement on 
the mesh, and so we avoid it. 

(with no queueing). 

3.2 Motion Planning Using Voronoi Dia- 
grams 

In [14], 6 ' ~ l i n l a i n ~  and Yap give a retraction method 
for planning the motion of an object (a  disc) with two 
dofs, moving amongst polygonal obstacles5. They use the 
Voronoi diagram of the line segments that  make up the 
obstacles to  plan the motion of the object. We give the 
mesh-optimal parallel implementation of this method of mo- 
tion planning. Let us assume that the object A has to  be 
moved from point a t o  b. First we construct the Voronoi 
diagram and this takes O ( 6 )  time on a x f i  mesh, 
as we have just shown. The next step is t o  remove all the 
Voronoi edges that do  not satisfy the minimum clearance 
requirement. In other words, we want to  delete all Voronoi 
semi-edges v' = B(el,  e2) such that the minimum distance 
of the points on v' from e l  and e2 is less than some pre- 
specified length r (the radius in the case of a moving disc). 
Clearly, assuming that we know r, this deletion can be done 
in constant time on the mesh, since each PE has a constant 
number of Voronoi edges. The remaining Voronoi edges 
define a graph which may be disconnected. 

The next step is to  find the Voronoi cells Vor, and 
Verb that contain the points Q and b, respectively. By 
Lemma 3.6, this can be done in O(&) time. The last step 
is to  find a path from an (undeleted) edge of Vor, to  an (un- 
deleted) edge of Verb. One way to do this is by constructing 
the spanning tree and then finding this path, if one exists. 
In [3], Atallah and Hambrusch show that  in a graph with 
edge set E, we can solve this problem in ~(a) t' ime on 
a mesh with IEl PEs. In the graph defined by the Voronoi 
diagram, IEl is O(n). Hence, it follows that we can imple- 
ment the motion planning technique of [14] in O( f i )  time 
on a fi x 6 mesh, as stated below. 

Theorem 3.8 Given a polygonal set of obstacles of size n, 
and a disc B, the motion of B from one position to another 
can be plann,ed in O(+) time on a fi x fi mesh. 

4 Mesh Algorithms for Visibility 
Graphs and the Related Motion 
Planning Problem 

4.1 Visibility Graphs 

We will now describe a mesh algorithm to compute the vis- 
ibility graph of a given set of line segments in the plane. As 
noted in the earlier sections, the efficient construction of the 

5This particular retraction approach can actually be extended 
to the motion planning problem for any convex object with 2 dofs 
moving among convex polygonal obstacles [20]. 



visibility graph is an important substep in motion planning. 
To our knowledge, this problem has not been solved on the 
mesh. We will show that,  given an input set S (IS1 = N )  
of nonintersecting line segments in the plane, we can iden- 
tify mesh-optimally all the segment vertices that are visible 
from a given point p in 6(&) (where n = 2N) time on a 
f i  x f i  mesh. This will immediately give us an algorithm 
for constructing the visibility graph, Gs. 

Let S = {so, s l ,  . . . , S N - ~ )  be the input set of line seg- 
ments that do not intersect (except possibly at endpoints), 
and let p be the point from which we want to  determine visi- 
bility. Let v2j and v2i+l (we will assume x(v2i) < x ( v ~ ~ + ~ ) )  
be the two endpoints of segment si .  The visibility from a 
point problem is t o  determine that part of the plane that 
is visible from p, assuming that every segment is opaque. 
Notice that this is equivalent t o  identifying those vertices vi 
that are "seen" from p. As in [4], we will assume, without 
loss of generality, that p is a point at  -m.  This is only 
t o  make the description of the algorithm simpler. The case 
when p is not at infinity is a straightforward adaptation of 
this algorithm. Since p is at  -m ,  to compute the visibility 
from p, we need to compute the lower envelope of the set 
of segments in S [4]. The lower envelope is the collection of 
those segment parts that can be seen from below. 

In [4], the authors give a PRAM algorithm that uses 
the cascading divide-and-conquer technique for solving the 
visibility from a point problem. Along the same lines, we 
will describe a recursive algorithm for computing the lower 
envelope on the mesh. We will first describe the merge step 
and then give the details of the mesh algorithm. Let S1 
be the set consisting of half the elements of S, and let S2 
contain the other half. Suppose that we have recursively 
computed the lower envelopes of SI and S2. The lower 
envelope of the segments in Si ( i  = 1,2) is available t o  
us in the following manner: The endpoints of the segments 
in Si have been sorted according to their x-coordinates (for 
the sake of simplicity, let us assume that no two endpoints 
have the same I-coordinate). In this sorted list (call it K), 
assume that a vertical line is placed through each endpoint. 
This divides the plane into vertical strips of region called 
slabs (call these the &-slabs). The recursive computation 
gives, for every &-slab, the segment of S; that is visible 
from below (i.e. is part of the lower envelope) in that slab. 
Now, we want t o  merge these two envelopes t o  form the 
final lower envelope. First merge Vl and V2 to  form V. 
The set V defines a new set of slabs. Each V-slab (say u) 
lies within some unique q-slab (say ul) and some unique 
V2-slab (say 212). Note that u could, in fact, be the same 
as either of ul  or u2. Let sl and sz be the recursively 
computed lower envelope segments in the slabs ul and u2, 
respectively. Then, the segment of S that is visible from 
below in u is nothing but the lower of sl and s 2  (note that 
such an ordering is uniquely defined on the two segments). 

The algorithm for computing the lower envelope (i.e. vis- 

ibility from -w) is given below. 
Algori thm VISFROMPOINT; 
Inpu t :  The endpoints are distributed one per processor on 
a f i  x f i  mesh with the shuffled row-major indexing 
scheme. The PE P j  , j E (0, 1, . . . , n - 1) has endpoint 
v j  and also the segment that vj is an endpoint of. 
O u t p u t :  The endpoints will be in sorted order on the mesh. 
Thus each PE Pi is associated with a slab in the obvious 
way. Pi will also have the segment s that is part of the 
lower envelope (i.e. is visible) in that slab. 
Initialization: Every PE Pi has the following fields as part 
of its record: endpoint initialized to  vi; lowerseg, which con- 
tains, at any stage, the lowest segment (found up to that 
stage) for the slab defined by Pi ; whichblock, which indi- 
cates (for the merge step) whether an endpoint came from 
the left block or the right. 
Basis: lowerseg is set to  the segment si/2 if i is even and 
to 0 otherwise6. Let S1 be the subset of segments of S in 
the left block, and S2 be the subset in the right block. 
Recursive Step:  Solve recursively in parallel using S1 for 
S in the left block and S2 for S in the right block. 
Merge  Step:  
(i) Set whichblock to 0 if Pi belongs to  the left block and to 
1 if it belongs to  the right block. 
(ii) Merge the two sets S1 and S2 according to the endpoint 
field. 
Note: We now need to update the lowerseg field in each PE. 
As explained earlier, every new slab u of the merged set 
needs to compare the recursively computed lowerseg fields 
of the two old slabs ul  and u2 that it is a part of. This 
can be done by using the selected broadcasting operation as 
stated below. 
(iii) The subset of elements that needs to  be broadcast is 
the lowerseg field in every processor with whichblock = 0. 
Let { I 1 ,  12, . . . , ln12) (where n = 21SI) be the set of these 
lowersegs in sorted order and let Ili be the index of the 
processor in which li resides. The selected broadcasting op- 
eration will send I;, 1 5 i 5 n/2 to every PE  from PI(I,) 
to PI(li+l)-l. Put la in a local register called lowersegl. 
(iv) Similar to  step (iii), except that the broadcast elements 
are the lowerseg fields from processors with whichblock = 1. 
Here, the broadcast element is put in a local register called 
lowerseg2. 
(v) Every PE updates the lowerseg field to the lower of low- 
ersegl and lowerseg2. 

It is clear that the merge step takes 0(fi) time and thus 
we have the following theorem. 

T h e o r e m  4.1 Algorithm VISFROMPOINT, which com- 
putes the lower envelope of a set of segments S, runs in 

%tially, the slabs are those defined by each individual seg- 
ment, and hence the lowest segment in that slab is nothing but 
the segment itself. 



O(&) time (with no queueing) on a fi x fi mesh, the obstacles can be done in at most O(f i )  time. Note 
where IS[ = n/2. that these expanded obstacle edges might now intersect 

Notice that the computation of the lower envelope on the 
mesh immediately tells us which endpoints of S are visible 
from -m. When the point p is not a t  -m,  the algorithm is 
the same as above, except that instead of merging the end- 
points of the line segments according to their x-coordinate, 
we merge them according t o  the polar angle that they make 
with p (measured with respect to  some fixed axis). In or- 
der to  construct the entire visibility graph, we can use the 
above algorithm in a straightforward way. When a vertex 
vi is used as p, we can obtain the set of vertices of S that 
are visible from v; .  In other words. we know which nodes 
are adjacent t o  the node corresponding t o  vi in the visibility 
graph. If we repeat this for every endpoint v, , in parallel, 
we can construct the visibility graph of a set S of segments 
in B ( 6 )  time using n2  processors (i.e. n of the fi x fi 
meshes). This is optimal since the visibility graph may have 
O(n2) edges in the worst case, and we will need n2 proces- 
sors to  represent the graph (under the assumption that each 
processor has only a constant amount of storage). 

4.2 Motion Planning Using Visibility 
Graphs 

Lozano-P6rez and Wesley [ll] give an approximate projec- 
tion method for planning the motion of a convex object 
B (of constant size) with two dofs, moving between con- 
vex obstacles (total size n).  We summarize their sequential 
approach briefly: First "expand" each convex obstacle 0 
according t o  some reference point on B ,  which can be done 
in time proportional to  the size of 0. B will not collide 
with 0 if and only if the reference point of B lies outside of 
the expansion of 0 .  Let A be the union of all the expanded 
obstacles. Since B has 2 dofs, the configuration space of 
B is 2-dimensional. In fact, the complement of A in the 
plane is the set of free configurations, FP, for B. Let E 
be the set of edges of A. The next step is to  compute the 
visibility graph of the set of edges E. The visibility graph is 
precisely the connectivity graph (of the projection method) 
that  we are looking for. In addition, we have the useful 
property that the shortest possible path for B between two 
points in the plane while avoiding the obstacles is given by 
the shortest path between the corresponding two nodes in 
the visibility graph (where the edge weight is the Euclidean 
length of the edge). Thus we can find a shortest path for B 
by performing a shortest-path graph search on the visibil- 
ity graph. The sequential run-time of this motion planning 
method is O(n2). 

Assume the obstacle set is stored in a f i  x f i  mesh. 
First we expand the obstacles according to the moving ob- 
ject B: We relay the information about B to each of the 
PEs in fi time. Since the expansion of each obstacle can be 
done in time proportional to  its size, the expansion of all 

with each other. When the obstacles are convex, it can be 
shown that the number of such intersections can be at most 
O(n) [20]. Thus the new obstacle edge set will also be O(n)  
and there are efficient sequential algorithms to compute it 
[20]. We can also find the new obstacle edges by usiiig a 
brute force technique which is very inefficient, but will not 
alter the run-time of this motion planning algorithm on the 
mesh. We can simply compute the intersection of every 
edge of the expanded obstacle set with the other edges of 
that set. This will give us the new edge segments, and this 
can be computed in O(n) time on a mesh with n PEs. 

We now have to make n copies of the new obstacle edge 
set on n sets of f i  x f i  meshes so that we may com- 
pute visibility from each of the n endpoints. These copies 
can clearly be made in O(n) time on a mesh with n2 pro- 
cessors. We know, as mentioned above, that the visibility 
information from each endpoint can be computed in O( f i )  
time by using Algorithm VISFROMPOINT on each of these 
submeshes. 

Suppose that the object B has to  be moved from point a 
to  point b. First we establish the visibility information from 
a and b,  which can be done in O ( 6 )  time using Algorithm 
VISFROMPOINT. We can compute the shortest path from 
a to  b by solving the all-pairs shortest path problem for the 
visibility graph, using the euclidean length of the edges as 
the corresponding edge weights7. In order to do this, we 
want to  convert the information about the visibility graph 
into the form of an adjacency matrix on the mesh with n2 
PEs. This can be done easily with a sorting stepa, which 
will take O(n) time. The all-pairs shortest path can be com- 
puted by a method that is very similar to  the method used 
to compute the transitive closure of a matrix. As shown 
in [lo], the all-pairs shortest path problem can be solved in 
O(n) time by using a pipelining technique on a n x n mesh. 
Thus, planning the motion of a convex object of two dofs 
moving among convex obstacles can be done in O(n) time 
on a n x n mesh. Even though this mesh algorithm is not 
very work-efficient when compared to the O(n2) sequential 
algorithm, note that this is the best we can do since we will 
need n2 PEs to  represent the adjacency matrix. 

'Note that, for our purposes here, solving the single-source 
shortest path (from a)  problem would have sufficed. However, 
there are no known opt,imal parallel algorithms for this problem. 

'Consider the fi x f i  submesh that computed visibility 
from a particular endpoint v i .  The PEs in this submesh have 
the endpoints in sorted order about v,. Consider the PE P' 
that holds vertex v,. If v; can see v 3 ,  then P' will send a 1 
to row i and column i of the adjacency matrix. If not, then 
P' does nothing. This is a one-to-one routing step and can be 
accomplished through sorting. 



5 C O ~ C ~ U S ~ O ~ S  [lo] F. T. Leighton. Introduction to Parallel Algorithms and Ar- 
chitectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 

We have given efficient parallel algorithms for some impor- San Mateo, California, 1992. 
t an t  geometric problems on  the  mesh-connected-computer. 
As  a consequence, we obtained efficient parallel motion 
planning algorithms for some fundamental  special cases. 
Speed of execution is a very impor tant  consideration for 
motion planning problems. T h e  development of parallel 
algorithms for the interesting and complex geometric prob- 
lems t h a t  a re  of relevance can lead t o  significantly faster 
solutions. Moreover, different parallel techniques for such 
problems could lead t o  new insights into planning motion. 
For example, there a r e  n o  know optimal PRAM algorithms 
for t h e  construction of t h e  Voronoi diagram of line segments. 
Numerous problems in computat ional  geometry t h a t  have 
n o  known optimal deterministic algorithms have yielded 
t o  techniques such as randomization. Randomization has 
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