
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

October 1993

Deterministic Selection on the Mesh and Hypercube Deterministic Selection on the Mesh and Hypercube

Sanguthevar Rajasekaran
University of Pennsylvania

Shibu Yooseph
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Sanguthevar Rajasekaran and Shibu Yooseph, "Deterministic Selection on the Mesh and Hypercube", .
October 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-85.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/236
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76365296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/236
mailto:repository@pobox.upenn.edu

Deterministic Selection on the Mesh and Hypercube Deterministic Selection on the Mesh and Hypercube

Abstract Abstract
In this paper we present efficient deterministic algorithms for selection on the mesh connected
computers (referred to as the mesh from hereon) and the hypercube. Our algorithm on the mesh runs in
time O([n/p] log logp + √p logn) where n is the input size and p is the number of processors. The time
bound is significantly better than that of the best existing algorithms when n is large. The run time of our
algorithm on the hypercube is O ([n/p] log log p + Ts/p log nM/em>), where Ts/p is the time needed to
sort p element on a p-node hypercube. In fact, the same algorithm runs on an network in time O([n/p] log
log p +Ts/p log), where Ts/p is the time needed for sorting p keys using p processors (assuming that
broadcast and prefix computations take time less than or equal to Ts/p.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-85.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/236

https://repository.upenn.edu/cis_reports/236

Deterministic Selection on the
Mesh and the Hypercube

MS-CIS-93-85
GRASP LAB 363

Sangut hevaar Rajasekaran
Shibu Yooseph

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

October 1993

Deterministic Selection on
the Mesh and the Hypercubel

Sangut hevar Rajasekaran

Shibu Yooseph

Dept. of CIS, Univ. of Pennsylvania

Philadelphia, PA 19104

Abstract. In this paper we present efficient deterministic algorithms for selection

on the mesh connected computers (referred to as the mesh from hereon) and the

hypercube. Our algorithm on the mesh runs in time O(: log log p + Jii log n),

where n is the input size and p is the number of processors. This time bound is

significantly better than that of the best existing algorithm when n is large. The

run time of our algorithm on the hypercube is O(% log log p + T,' log n) , where

T," is the time needed to sort p elements on a p-node hypercube. In fact, the

same algorithm runs on any network in time 0($ log log p + Ti log n) , where T;

is the time needed for sorting p keys using p processors (assuming that broadcast

and prefix computations take time less than or equal to T,").

1 Introduction

Given a set of n keys, and an integer i (1 5 i 5 n), the problem of selection is to find the

ith smallest key in t,he set. This important comparison problem has an elegant linear time

sequential algorithm [I]. Optimal algorithms also exist for certain parallel models like the

CRCW PRAM, the comparison tree model, etc. We are interested in solving the selection

problem on the mesh connected computers and the hypercube.

1.1 Models Definition

A mesh connected computer is a fi x z/Tj square grid where there is a processor at each grid

point. Each processor is connected to its four or less neighbors through bidirectional links.

'This research was supported in part by an NSF Research Initiation Award CCR-92-09260 and an ARO

grant DAAL03-89-C-0031.

It is assumed that in one unit of time a processor can perform a local cornputation and/or

communicate with all its neighbors.

A hypercube of dimension t consists of p = 2e nodes (or vertices) and Q2'-I edges. Thus

each node in the hypercube can be named with an Q-bit binary number. If x is any node in

V, then there is a bidirectional link from z to a node y if and only if 3: and y (considered

as binary numbers) differ in exactly one bit position (i.e., the hamming distance between x

and y is 1.) Therefore, there are exactly Q edges going out of (and coming into) any vertex.

If a hypercube processor can handle only one edge at any time step, this version of the

hypercube will be called the sequential model. Handling (or processing) an edge here means

either sending or receiving a key along that edge. A hypercube model where each processor

can process all its incoming and outgoing edges in a unit step is called the parullel mode l .

We assume the sequential model in this paper.

1.2 Previous Results

Krizanc and Narayanan [6] have presented efficient algorithms for selection on the mesh.

Their algorithm runs in time O(min{plog E, a x , } However, they only account

for the communication steps in the algorithm. In particular, they discount local computations

performed at individual nodes.

Plaxton [ll] has resented an algorithm for selection out of n elements that runs on a

p-node sequential hypercube in time O((nlp) log log p + (T i + T; logp) log(n/p)), where T;
is the time needed for sorting p keys (located one per processor) on a p-processor hypercube,

and ~ , b is the time needed for broadcasting and summing on a p-node hypercube. He [ll]

has also proved a lower bound of R((n/p) log log p + log p) for selection. For n > log2 p
the lower bound ~natches the upper bound (to within a multiplicative constant). The only

operations allowed on the keys are copying and comparison (for both the upper bound and

the lower bound).

Meggido's [9] algorithm does maximal and median selection in constant time using a linear

number of processors on the comparison tree model. Reischuk's [17] selection algorithm runs

in O(1) time using n cornparisoil tree processors. Floyd and Rivest's [4] sequential algorithm

takes n + min(i, n - i) + o(n) time. In [12], Rajasekaran has presented randomized algorithms

for selection on the hypercube (on both the sequential and parallel versions). Rajasekaran

and Sen [15] give an O(1) time n processor maximal selection algorithm for the CRCW

PRAM model. Krizanc and Narayanan [5] have presented optimal algorithms for selection

on the mesh connected computers. All these results hold for the worst case input with high

probability. For an extensive survey of randomized selection algorithms, see [14]. In this

paper we present deterministic algorithms for selection on the mesh and the hypercube.

1.3 New Results

Our algorithm fbr selection on the mesh runs in time O(Elog1ogp + Jij logn), taking

into account all local computations performed. Since a(: + &) is a trivial lower bound,

our algorithm is very nearly optimal. If we neglect the time spent on local computations,

the run time of our algorithm will be O(& log n). Clearly, this time bound is close to the

trivial lower bound of fl(Jii). For all n > p7/"ogp, our algorithm will have a much better

run time than that of [5].

Our algorithm for selection on the hypercube runs in time 0(9 log log p + T," log n) ,

where T," is the time needed for sorting on a p-node hypercube with one key per node. The

best known value for T," is O(logp1og logp) [3]. With this value for T,", the run time of

our algorithm very nearly matches that of Plaxton [ll]. But if a better sorting algorithm is

discovered, the run time of our algorithm will improve somewhat, whereas [Ill 's algorithm

does not seem to improve.

In fact, our algorithm could be implemented on any network to obtain a run time of

0(5 log logp + T," log n) , where T,' is the time needed for sorting p numbers on a network

of size p.

2 Preliminary Facts

2.1 Sorting

We make use of existing sorting algorithms. The following theorem is due to Schnorr and

Shamir [18]:

Lemma 2.1 S o r t i ~ ~ g on a p-node mesh can be completed in time O (f i) , the queue size being

O(1) 2.f there is a. single key input ut euch node.

Cypher and Plaxton [3] have proven the following:

Lemina 2.2 Sorting on u. p-node hypercube cun be completed in time O(1og p log log p) [3].

2.2 Broadcasting and Summing

Broadcasting is the operation of a single processor sending some information to all the other

processors. The pre-fix sums problem is this: Processor v in a p-node hypercube has an integer

k,, for 1 5 v 5 p. Processor v has to compute Cj",, kj.

Lemma 2.3 Both broadcasting and prefix sums problem can be completed in 0(& steps

on a p-node mesh.

Lemma 2.4 Both broadcasting and prefix sums problem can be completed in O(1ogp) steps

on a p-node sequential hypercube.

3 Summary of our Techniques

The basic idea behind our algorithm is the same as the one employed in [2]. The sequential

algorithm of [2] partitions the input into groups (of say 5) , finds the median of each group,

and computes recursively the median (call it M) of these group medians. Then the rank

r~ of M in the input is computed and as a result, all the elements from the input which

are either 5 M or > M are dropped, depending on whether i > M or i 5 M, respectively.

Finally, an appropriate selection is performed from out of the remaining keys recursively. An

easy analysis will reveal that the run time of this algorithm is O (n) .
The same algorithm can be used in parallel, for instance on a PRAM, to obtain an

optimal algorithm. If one has to employ this algorithm on a network, it seems like one

has to perform periodic load balancing (i.e., distribute remaining keys uniformly among the

processors). In [I l l , an algorithm is given which identifies an M for splitting the input upon,

which automatically ensures (approximate) load balancing. That is, at least one half of the

keys from any node will be eliminated every time the remaining keys are splitted.

In this paper we introduce a different approach. We employ the same algorithm as that

of 121, with a twist. To begin with each node has exactly keys. As the algorithm proceeds,

keys get dropped from future consideration. We never perform any load balancing. The

remaining keys from each node will form the groups. We identify the median of each group.

Instead of picking the median of these medians as the splitter key M , we choose a weighted

median of these medians. Each group median is weighted with the number of remaining

keys in that node. This simple algorithm (with some minor modifications) yields the stated

results.

4 Selection on the Mesh

In this section we show that selection can be done in time 0($ log log p + fi log n) on a

fi x ~ mesh, the input size being n. To begin with, there are exactly keys at each node.

We need to find the i th smallest key.

Algorithm I
N := n

Step 0. .if log(n/p) is < loglogp then

sort the elements at each node

else

partition the keys at each node into logp equal parts.

repeat

Step 1. In parallel find the median of keys at each node. Let My be the

median and N, be the number of keys at node q, 1 5 q < p.

Step 2. Find the weighted median of M I , M2 , . . . , Mp where key Mq
has a weight of N, , 1 < q < p. Let M be the weighted median.

Step 3. Count the rank r M of M from out of all the remaining keys.

Step 4. if i 5 I-M then

eliminate all remaining keys that are > M
else

eliminate all keys that are < M.
Step 5 . Compute E, the number of keys eliminated.

i f ' i > r M then i := i - E ; N := N - E .

until N 5 c , c being a constant.

Output the i th smallest key from out of remaining keys.

Analysis. Step 0 takes time min{log(n/p) , log logp}. Assume here that logp is an

integral power of 2; if not take the nearest power of 2 larger than logp. At the end of Step

0, the keys in any node have been partitioned into nearly log p nearly equal parts. Call each

such part as a block. During the algorithm, a node will delete more and more blocks until

it is left with just a single block. From then on median will be found at this node using a

linear time sequential algorithm.

In Step 1, we could find the median at any node in O(1) time up to at least the end of

the first T = n~ in{ log (n /~) , log log p } runs of the repeut loop, i.e., up to the time that the

node has only one block left. From this time on, finding the median will take time O(%).

Thus in the algorithm, after T runs, we'll allow O(&) time for Step 1, so that each node

is guaranteed to find its median.

In Step 2, we could sort the medians and thereby compute the weighted median. If

Mi, M;, . . . , M i is the sorted order of the medians, then, we need to identify j such that

C:=I N; 2 and N; < :. Such a j can be computed with an additional prefix

computation. Thus M, the weighted median, can be identified in time O(& (c.f. Lemmas

2.1 and 2.3). Step 3 takes O(&) time. Step 4 also takes O(&) time, since it only involves

the broadcast of r ~ ; the deletion takes 0 (1) time if the elements are stored in an array. Step

5 takes O(1) time.

Thus each run of the repeat loop takes O(& + &) time.

How many keys will get eliminated in each run of the repeat loop? Assume that i 5 rM

in a given run. (The other case can be argued similarly). The number of keys eliminated is

at least 121 which is 2 T. Therefore, it follows that the repeat loop will be executed

O(1og n) times. Thus we get (assuming that log n is asymptotically the same as logp):

Theorem 4.1 Selec t io~l 071 a p-node syuure m e s h curl be performed in t i m e 0 (" log logp + fi log n).
P

Often times, the time needed for comlnunication far outweighs the time needed for local

computations in a network based computer. Thus it may be reasonable to neglect local

computatio~ls. I11 [5] , I<rizanc and Narayailan make this assumption t,o derive the run time

of their algorithm. It is easy to compute the run time of our algorithm under this assumption

and obtain the following:

Theorem 4.2 I f local computa t ions are neglected, the r u n t i m e of o u r ulgori thm i s O(JiS log n).

5 Selection on the Hypercube

Our selection algorithm when applied on the hypercube yields a run time of 0(9 log log p + T l log n) ,

where T," is the time needed to sort p keys on a p-node hypercube. With the currently best

known value for T,", the run time of our algorith~n very nearly matches that of [11] . However,

if a better sorting algorithm is discovered, the run time of our algorithm will improve. Our

algorithm is also somewhat simpler than that of [Ill's.

Here also, there are keys to begin with at each node and we have to identify the 'Lth

smallest key.

Algorithm I1
N := n

Step 0. if log(n/p) is 5 loglogp then

sort the elements at each node

else

partition the keys at each node into logp equal parts.

repeat

Step 1. In parallel find the median of keys at each node. Let My be the

median and N, be the number of keys at node q, 1 < q 5 p.

Step 2. Find t,he weighted median of M I , M2, . . . , Mp where key My

has a weight of N,, 1 5 q 5 p. Let M be the weighted median.

Step 3. Count the rank 7-M of M from out of all the remaining keys.

Step 4. if i 5 r M then

eliminate all remaining keys that are > M
else

eliminate all keys that are 5 M.
Step 5. Compute E , the number of keys eliminated.

if i > r~ then i := i - E ; N := N - E.
until N 5 c, c being a constant.

Output the i th smallest key from out of remaining keys.

Analysis. Step 0 takes time miri{log(n/y) , log logy}. At the end of Step 0, the keys

in any node have been partitioned into nearly logp nearly equal parts. Call each such part

as a block. During the algorithm, a node will delete more and more blocks until it is left

with just a single block. From then on median will be found at this node using a linear time

sequential algorithm.

Step 1 takes time O(&) just as in the mesh algorithm. In Step 2 , we could employ

a sorting followed by a prefix computation in order to identify the weighted median. Thus

Step 2 will take time O(T," + logp) (c.f. Lemmas 2.2 and 2.4). Step 3 takes O(1ogp) time

each in accordance with Lemma 2.4. Step 4 also takes O(1ogp) time, since it only involves

the broadcast of r ~ ; the deletion takes O(1) time if the elements are stored in an array. Step

5 takes O(1) time.

Therefore, each run of the repeat loop takes O(+ Ti +log p) time. At least a constant

fraction of the keys get eliminated during each run of the repeat loop (for the same reason as

in the mesh algorithm). Therefore, assuming that logn is asymptotically the same as logp,

the run time of the algorithm is O(E log log p + T," log n) . As a result, we get:

Theorem 5.1 Selection on a p-node hypercube can be performed in t ime O (t log logp + Ti log n),

where T," is the time needed for sorting and n is the input size.

The following theorem is also clear:

Theorem 5.2 Selection on a p-node hypercube can be performed in time 0 ($ log log p + T; log n),

where T,W is the time needed for computing the weighted median of p numbers on a p-node

hypercube.

Our selection algorithm can be implemented on any network to obtain a very nearly

optimal run time. The following theorem assumes that broadcast and prefix computations

take time less than or equal to the time needed for sorting:

Theorem 5.3 Selection can be perfor,med in time O(% log logp + T,S log n) or1 any network

with p processors, where T," is the time needed for sorting p numbers using p processors.

6 Conclusions

We have presented deterministic algorithms for selection on the hypercube as well as the

mesh. Our mesh algorithm has a run time significantly better, when n is large, than the best

existing algorithm. Also, our hypercube selection algorithm will have a better run time with

the discovery of a better sorting algorithm. Our algorithms are very nearly optimal. It is

still open to find optimal algorithms. We could implement the selection algorithm presented

in this paper on any network to obtain near optimal run times.

Acknowledgements

The first author would like to thank Danny Krizanc for many stimulating interchange of

References

[I] A. Aho, J .E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algo-

rithms, Addison-Wesley Publishing Company, 1974.

[2] M. Blum, R. Floyd, V.R. Prat t , R. Rivest, and R. Tarjan, Time Bounds for Selection,

Journal of Computer and System Science, 7(4), 1972, pp. 448-461.

[3] R . Cypher and G. Plaxton, Deterministic Sorting in Nearly Logarithmic Time on the

Hypercube and Related Computers, in Proc. ACM Symposium on Theory of Computing,

1990, pp. 193-203.

[4] R.W. Floyd, and R.L. Rivest, Expected Time Bounds for Selection, Communications

of the ACM, Vol. 18, No.3, 1975, pp. 165-172.

[5] D. Krizanc, and L. Narayanan, Optimal Algorithms for Selection on a Mesh-Connected

Processor Array, Proc. Symposium on Parallel and Distributed Processing, 1992.

[6] D. Krizanc and L. Narayanan, Multi-packet Selection on a Mesh-Connected Processor

Array, in Proc. International Parallel Processing Symposium, 1992.

(71 T . Leighton, I~ltroduction to Parallel Algorithms und Architectures: Arrays-Trees-

Hypercube, Morgan-Kaufmann Publishers, 1992.

[8] T. Leighton, F . Makedon, and I. Tollis, A 2 N - 2 Step Algorithm for Routing in an

N x N Mesh, in Proc. ACM Symposium on Parallel Algorithms and Architectures, 1989,

pp. 328-335.

[9] N. Meggido, Parallel Algorithms for Finding the Maximum and the Median Almost

Surely in Constant Time, Preliminary Report, CS Department, Carnegie-Mellon Uni-

versity, Pittsburg, PA, Oct. 1982.

[lo] D. Nassimi, and S. Sahni, Data Broadcasting in SIMD Computers, IEEE Trar~sactions

on Computers, Vol. C30, No. 2, 1981.

[11] C.G. Plaxton, Efficient Computation on Sparse Interconnection Networks, Ph. D. The-
sis, Department of Computer Science, Stanford University, 1989.

1121 S. Ra,ja.sekaran, Randomized Parallel Selection, Proc. Symposium on Foundations of

Soft~uare Technology and Theoretical Computer Science, 1990, pp. 215-224.

[13] S. Rajasekaran and R. Overholt, Constant Queue Routing on a Mesh, Journal of Parallel

and Distributed Computing 15, pp. 160-166, 1992.

[14] S. Rajasekaran, and J .H. Reif, Derivation of Randomized Sorting and Selection Algo-

rithms, Technical Report, Aiken Computing Lab., Harvard University, March 1987.

[15] S. Rajasekaran, and S. Sen, Random Sampling Techniques and Parallel Algorithms

Design, in Synthesis of Parallel Algorithms, Editor: J.H. Reif, Morgan-Kaufman Pub-

lishers, 1993, pp. 411-451.

[16] J.H. Reif and L.G. Valiant, A Logarithmic Time Sort for Linear Size Networks, Journal

of the ACM 34, 1987, pp. 60-76.

[17] R. Reischuk, Probabilistic Parallel Algorithms for Sorting and Selection, SIAM Journal

of Computing, Vol. 14, No. 2, 1985, pp. 396-409.

[18] C. Schnorr and A. Shamir, An Optimal Sorting Algorithm for Mesh-Connected Com-

puters, in Proc. ACM Symposiunz on Theory of Computing, 1986, pp. 255-263.

[19] L.G. Valiant, and G. J . Brebner, Universal Schemes for Parallel Communication, Proc.

ACM Symposi.c~nz on Theory of Computing, 1981, pp. 263-277.

[20] P. Varman and K. Doshi, Sorting with Linear Speedup on a Pipelined Hypercube, TR-

8802, Department of Electrical and Co~nputer Engineering, Rice University, 1988.

	Deterministic Selection on the Mesh and Hypercube
	Recommended Citation

	Deterministic Selection on the Mesh and Hypercube
	Abstract
	Comments

	tmp.1184178171.pdf.x9SLj

