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Abstract. In this paper we present efficient deterministic algorithms for selection 

on the mesh connected computers (referred to as the mesh from hereon) and the 

hypercube. Our algorithm on the mesh runs in time O(: log log p + Jii log n), 

where n is the input size and p is the number of processors. This time bound is 

significantly better than that of the best existing algorithm when n is large. The 

run time of our algorithm on the hypercube is O(% log log p + T,' log n) ,  where 

T," is the time needed to sort p elements on a p-node hypercube. In fact, the 

same algorithm runs on any network in time 0($ log log p + Ti log n) ,  where T; 

is the time needed for sorting p keys using p processors (assuming that broadcast 

and prefix computations take time less than or equal to T,"). 

1 Introduction 

Given a set of n keys, and an integer i (1 5 i 5 n),  the problem of selection is to find the 

ith smallest key in t,he set. This important comparison problem has an elegant linear time 

sequential algorithm [I]. Optimal algorithms also exist for certain parallel models like the 

CRCW PRAM, the comparison tree model, etc. We are interested in solving the selection 

problem on the mesh connected computers and the hypercube. 

1.1 Models Definition 

A mesh connected computer is a fi x z/Tj square grid where there is a processor at each grid 

point. Each processor is connected to its four or less neighbors through bidirectional links. 

'This research was supported in part by an NSF Research Initiation Award CCR-92-09260 and an ARO 

grant DAAL03-89-C-0031. 



It is assumed that in one unit of time a processor can perform a local cornputation and/or 

communicate with all its neighbors. 

A hypercube of dimension t consists of p = 2e nodes (or vertices) and Q2'-I edges. Thus 

each node in the hypercube can be named with an Q-bit binary number. If x is any node in 

V, then there is a bidirectional link from z to a node y if and only if 3: and y (considered 

as binary numbers) differ in exactly one bit position (i.e., the hamming distance between x 

and y is 1.) Therefore, there are exactly Q edges going out of (and coming into) any vertex. 

If a hypercube processor can handle only one edge at  any time step, this version of the 

hypercube will be called the sequential model. Handling (or processing) an edge here means 

either sending or receiving a key along that edge. A hypercube model where each processor 

can process all its incoming and outgoing edges in a unit step is called the parullel  mode l .  

We assume the sequential model in this paper. 

1.2 Previous Results 

Krizanc and Narayanan [6] have presented efficient algorithms for selection on the mesh. 

Their algorithm runs in time O(min{plog E, a x ,  } However, they only account 

for the communication steps in the algorithm. In particular, they discount local computations 

performed at individual nodes. 

Plaxton [ll] has  resented an algorithm for selection out of n elements that runs on a 

p-node sequential hypercube in time O((nlp) log log p + (T i  + T; logp) log(n/p)), where T; 
is the time needed for sorting p keys (located one per processor) on a p-processor hypercube, 

and ~ , b  is the time needed for broadcasting and summing on a p-node hypercube. He [ll] 

has also proved a lower bound of R((n/p) log log p + log p) for selection. For n > log2 p 
the lower bound ~natches the upper bound (to within a multiplicative constant). The only 

operations allowed on the keys are copying and comparison (for both the upper bound and 

the lower bound). 

Meggido's [9] algorithm does maximal and median selection in constant time using a linear 

number of processors on the comparison tree model. Reischuk's [17] selection algorithm runs 

in O(1) time using n cornparisoil tree processors. Floyd and Rivest's [4] sequential algorithm 

takes n + min(i, n - i) + o(n)  time. In [12], Rajasekaran has presented randomized algorithms 

for selection on the hypercube (on both the sequential and parallel versions). Rajasekaran 

and Sen [15] give an O(1) time n processor maximal selection algorithm for the CRCW 

PRAM model. Krizanc and Narayanan [5] have presented optimal algorithms for selection 



on the mesh connected computers. All these results hold for the worst case input with high 

probability. For an extensive survey of randomized selection algorithms, see [14]. In this 

paper we present deterministic algorithms for selection on the mesh and the hypercube. 

1.3 New Results 

Our algorithm fbr selection on the mesh runs in time O(Elog1ogp + Jij logn), taking 

into account all local computations performed. Since a(: + &) is a trivial lower bound, 

our algorithm is very nearly optimal. If we neglect the time spent on local computations, 

the run time of our algorithm will be O(& log n). Clearly, this time bound is close to the 

trivial lower bound of fl(Jii). For all n > p7/"ogp, our algorithm will have a much better 

run time than that of [5]. 

Our algorithm for selection on the hypercube runs in time 0(9 log log p + T," log n) ,  

where T," is the time needed for sorting on a p-node hypercube with one key per node. The 

best known value for T," is O(logp1og logp) [3]. With this value for T,", the run time of 

our algorithm very nearly matches that of Plaxton [ll]. But if a better sorting algorithm is 

discovered, the run time of our algorithm will improve somewhat, whereas [Ill 's algorithm 

does not seem to improve. 

In fact, our algorithm could be implemented on any network to obtain a run time of 

0(5 log logp + T," log n) ,  where T,' is the time needed for sorting p numbers on a network 

of size p. 

2 Preliminary Facts 

2.1 Sorting 

We make use of existing sorting algorithms. The following theorem is due to Schnorr and 

Shamir [18]: 

Lemma 2.1 S o r t i ~ ~ g  on a p-node mesh can be completed in  time O ( f i ) ,  the queue size being 

O(1) 2.f there is a. single key input ut euch node. 

Cypher and Plaxton [3] have proven the following: 

Lemina 2.2 Sorting on u. p-node hypercube cun be completed in  time O(1og p log log p) [3]. 



2.2 Broadcasting and Summing 

Broadcasting is the operation of a single processor sending some information to all the other 

processors. The pre-fix sums problem is this: Processor v in a p-node hypercube has an integer 

k,, for 1 5 v 5 p. Processor v has to compute Cj",, kj. 

Lemma 2.3 Both broadcasting and prefix sums problem can be completed in  0(& steps 

on a p-node mesh. 

Lemma 2.4 Both broadcasting and prefix sums problem can be completed in  O(1ogp) steps 

on a p-node sequential hypercube. 

3 Summary of our Techniques 

The basic idea behind our algorithm is the same as the one employed in [2]. The sequential 

algorithm of [2] partitions the input into groups (of say 5 ) ,  finds the median of each group, 

and computes recursively the median (call it M) of these group medians. Then the rank 

r~ of M in the input is computed and as a result, all the elements from the input which 

are either 5 M or > M are dropped, depending on whether i > M or i 5 M, respectively. 

Finally, an appropriate selection is performed from out of the remaining keys recursively. An 

easy analysis will reveal that the run time of this algorithm is O ( n ) .  
The same algorithm can be used in parallel, for instance on a PRAM, to obtain an 

optimal algorithm. If one has to employ this algorithm on a network, it seems like one 

has to perform periodic load balancing (i.e., distribute remaining keys uniformly among the 

processors). In [ I l l ,  an algorithm is given which identifies an M for splitting the input upon, 

which automatically ensures (approximate) load balancing. That is, at least one half of the 

keys from any node will be eliminated every time the remaining keys are splitted. 

In this paper we introduce a different approach. We employ the same algorithm as that 

of 121, with a twist. To begin with each node has exactly keys. As the algorithm proceeds, 

keys get dropped from future consideration. We never perform any load balancing. The 

remaining keys from each node will form the groups. We identify the median of each group. 

Instead of picking the median of these medians as the splitter key M ,  we choose a weighted 

median of these medians. Each group median is weighted with the number of remaining 

keys in that node. This simple algorithm (with some minor modifications) yields the stated 

results. 



4 Selection on the Mesh 

In this section we show that selection can be done in time 0($ log log p + fi log n)  on a 

fi x ~ mesh, the input size being n. To begin with, there are exactly keys at  each node. 

We need to find the i th smallest key. 

Algorithm I 
N := n 

Step 0. .if log(n/p) is < loglogp then 

sort the elements at  each node 

else 

partition the keys at each node into logp equal parts. 

repeat 

Step 1. In parallel find the median of keys at each node. Let My be the 

median and N, be the number of keys at node q, 1 5 q < p. 

Step 2. Find the weighted median of M I ,  M2 , .  . . , Mp where key Mq 
has a weight of N, ,  1 < q < p. Let M be the weighted median. 

Step 3. Count the rank r M  of M from out of all the remaining keys. 

Step 4. if i 5 I-M then 

eliminate all remaining keys that are > M 
else 

eliminate all keys that are < M. 
Step 5 .  Compute E, the number of keys eliminated. 

i f ' i  > r M  then i := i - E ;  N := N - E .  

until N 5 c ,  c being a constant. 

Output the i th smallest key from out of remaining keys. 

Analysis. Step 0 takes time min{log(n/p) , log logp}. Assume here that logp is an 

integral power of 2; if not take the nearest power of 2 larger than logp. At the end of Step 

0, the keys in any node have been partitioned into nearly log p nearly equal parts. Call each 

such part as a block. During the algorithm, a node will delete more and more blocks until 

it is left with just a single block. From then on median will be found at this node using a 

linear time sequential algorithm. 

In Step 1, we could find the median at any node in O(1) time up to at least the end of 

the first T = n~ in{ log (n /~ )  , log log p }  runs of the repeut loop, i.e., up to the time that the 



node has only one block left. From this time on, finding the median will take time O(%). 

Thus in the algorithm, after T runs, we'll allow O(&) time for Step 1, so that each node 

is guaranteed to find its median. 

In Step 2, we could sort the medians and thereby compute the weighted median. If 

Mi,  M;, . . . , M i  is the sorted order of the medians, then, we need to identify j such that 

C:=I N; 2 and N; < :. Such a j can be computed with an additional prefix 

computation. Thus M, the weighted median, can be identified in time O(& (c.f. Lemmas 

2.1 and 2.3). Step 3 takes O(&) time. Step 4 also takes O(&) time, since it only involves 

the broadcast of r ~ ;  the deletion takes 0 (1 )  time if the elements are stored in an array. Step 

5 takes O(1) time. 

Thus each run of the repeat loop takes O(& + &) time. 

How many keys will get eliminated in each run of the repeat loop? Assume that i 5 rM 

in a given run. (The other case can be argued similarly). The number of keys eliminated is 

at least 121 which is 2 T. Therefore, it follows that the repeat loop will be executed 

O(1og n )  times. Thus we get (assuming that log n is asymptotically the same as logp): 

Theorem 4.1 Selec t io~l  071 a p-node syuure m e s h  curl be performed in t i m e  0 ( "  log logp + fi log n). 
P 

Often times, the time needed for comlnunication far outweighs the time needed for local 

computations in a network based computer. Thus it may be reasonable to neglect local 

computatio~ls. I11 [ 5 ] ,  I<rizanc and Narayailan make this assumption t,o derive the run time 

of their algorithm. It is easy to compute the run time of our algorithm under this assumption 

and obtain the following: 

Theorem 4.2 I f local  computa t ions  are neglected, the  r u n  t i m e  of o u r  ulgori thm i s  O(JiS log n).  

5 Selection on the Hypercube 

Our selection algorithm when applied on the hypercube yields a run time of 0(9 log log p + T l  log n) ,  

where T," is the time needed to sort p keys on a p-node hypercube. With the currently best 

known value for T,", the run time of our algorith~n very nearly matches that of [11] . However, 

if a better sorting algorithm is discovered, the run time of our algorithm will improve. Our 

algorithm is also somewhat simpler than that of [Ill's. 

Here also, there are keys to begin with at each node and we have to identify the 'Lth 

smallest key. 



Algorithm I1 
N := n 

Step 0. if log(n/p) is 5 loglogp then 

sort the elements at each node 

else 

partition the keys at each node into logp equal parts. 

repeat 

Step 1. In parallel find the median of keys at each node. Let My be the 

median and N, be the number of keys at node q, 1 < q 5 p. 

Step 2. Find t,he weighted median of M I ,  M2,  . . . , Mp where key My 

has a weight of N,, 1 5 q 5 p. Let M be the weighted median. 

Step 3. Count the rank 7-M of M from out of all the remaining keys. 

Step 4. if i 5 r M  then 

eliminate all remaining keys that are > M 
else 

eliminate all keys that are 5 M. 
Step 5.  Compute E ,  the number of keys eliminated. 

if i > r~ then i := i - E ;  N := N - E.  
until N 5 c, c being a constant. 

Output the i th smallest key from out of remaining keys. 

Analysis. Step 0 takes time miri{log(n/y) , log logy}. At the end of Step 0, the keys 

in any node have been partitioned into nearly logp nearly equal parts. Call each such part 

as a block. During the algorithm, a node will delete more and more blocks until it is left 

with just a single block. From then on median will be found at this node using a linear time 

sequential algorithm. 

Step 1 takes time O(&) just as in the mesh algorithm. In Step 2 ,  we could employ 

a sorting followed by a prefix computation in order to identify the weighted median. Thus 

Step 2 will take time O(T," + logp) (c.f. Lemmas 2.2 and 2.4). Step 3 takes O(1ogp) time 

each in accordance with Lemma 2.4. Step 4 also takes O(1ogp) time, since it only involves 

the broadcast of r ~ ;  the deletion takes O(1) time if the elements are stored in an array. Step 

5 takes O(1) time. 

Therefore, each run of the repeat loop takes O( + Ti  +log p) time. At least a constant 

fraction of the keys get eliminated during each run of the repeat loop (for the same reason as 



in the mesh algorithm). Therefore, assuming that logn is asymptotically the same as logp, 

the run time of the algorithm is O(E log log p + T," log n) .  As a result, we get: 

Theorem 5.1 Selection on a p-node hypercube can be performed in t ime O ( t  log logp + Ti  log n), 

where T," is the time needed for sorting and n is the input size. 

The following theorem is also clear: 

Theorem 5.2 Selection on a p-node hypercube can be performed in time 0 ( $  log log p + T; log n), 

where T,W is the time needed for computing the weighted median of p numbers on a p-node 

hypercube. 

Our selection algorithm can be implemented on any network to obtain a very nearly 

optimal run time. The following theorem assumes that broadcast and prefix computations 

take time less than or equal to the time needed for sorting: 

Theorem 5.3 Selection can be perfor,med in time O(% log logp + T,S log n)  or1 any network 

with p processors, where T," is the time needed for sorting p numbers using p processors. 

6 Conclusions 

We have presented deterministic algorithms for selection on the hypercube as well as the 

mesh. Our mesh algorithm has a run time significantly better, when n is large, than the best 

existing algorithm. Also, our hypercube selection algorithm will have a better run time with 

the discovery of a better sorting algorithm. Our algorithms are very nearly optimal. It is 

still open to find optimal algorithms. We could implement the selection algorithm presented 

in this paper on any network to obtain near optimal run times. 
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