
University of Pennsylvania
ScholarlyCommons

Departmental Papers (MSE) Department of Materials Science & Engineering

November 2006

Applications of electron microscopy to the
characterization of semiconductor nanowires
Douglas Tham
University of Pennsylvania

Chang-Yong Nam
University of Pennsylvania

Kumhyo Byon
University of Pennsylvania

Jinyong Kim
University of Pennsylvania

John E. Fischer
University of Pennsylvania, fischer@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/mse_papers

Postprint version. Published in Applied Physics A: Materials Science & Processing, Volume 85, Issue 3, November 2006, pages 227-231.
Publisher URL: http://dx.doi.org/10.1007/s00339-006-3705-y

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/mse_papers/119
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Tham, D., Nam, C., Byon, K., Kim, J., & Fischer, J. E. (2006). Applications of electron microscopy to the characterization of
semiconductor nanowires. Retrieved from http://repository.upenn.edu/mse_papers/119

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fmse_papers%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mse_papers?utm_source=repository.upenn.edu%2Fmse_papers%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mse?utm_source=repository.upenn.edu%2Fmse_papers%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mse_papers?utm_source=repository.upenn.edu%2Fmse_papers%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mse_papers/119?utm_source=repository.upenn.edu%2Fmse_papers%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mse_papers/119
mailto:libraryrepository@pobox.upenn.edu


Applications of electron microscopy to the characterization of
semiconductor nanowires

Abstract
We review our current progress on semiconductor nanowires of β-Ga2O3, Si and GaN. These nanowires were
grown using both vapor–solid (VS) and vapor–liquid–solid (VLS) mechanisms. Using transmission electron
microscopy (TEM) we studied their morphological, compositional and structural characteristics. Here we
survey the general morphologies, growth directions and a variety of defect structures found in our samples.
We also outline a method to determine the nanowire growth direction using TEM, and present an overview of
device fabrication and assembly methods developed using these nanowires.
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Abstract 
 We review our current progress on semiconductor nanowires of β-Ga2O3, Si and 

GaN. These nanowires were grown using both vapor-solid (VS) and vapor-liquid-solid 

(VLS) mechanisms. Using transmission electron microscopy (TEM) we studied their 

morphological, compositional and structural characteristics.  Here we survey the general 

morphologies, growth directions and a variety of defect structures found in our samples. 

We also outline a method to determine the nanowire growth direction using TEM, and 

present an overview of  device fabrication and assembly methods developed using these 

nanowires. 



 3

1. Introduction 

In recent years semiconductor nanowires have emerged as promising functional 

materials readily amenable to integration into future solid state devices, and as such they 

have been intensely studied [1-5]. In particular, nanowires combine the high surface area 

typical of nanostructures with a rod-like geometry intuitively suitable for electronic and 

optoelectronic applications [6-11]. In sufficiently thin nanowires, two-dimensional 

quantum confinement effects can be observed, although weaker than in quantum dots due 

to the loss of a confinement dimension [12]. Nonetheless, the list of potential applications 

appears only to be limited by the imagination and by the quality of the material. 

Consequently, the synthesis, characterization and assembly of nanowires (and related 

nanostructures) has become a rich field of research. 

Transmission electron microscopy (TEM) is a well-established analytical 

technique used in many nanowire characterization studies [13-17]. There is arguably no 

other technique capable of imaging internal defect structures at near-atomic resolution. 

Furthermore, the TEM is extremely versatile, combining within a single instrument the 

complementary capabilities of imaging, diffraction and spectroscopy, all at exceptionally 

high spatial resolution. These can often be executed nearly simultaneously on the same 

region of interest, providing a wealth of morphological, structural and compositional 

information required to solve cutting-edge materials science problems.  

In this paper, we review our work on semiconductor nanowires and give a broad 

overview of the synthetic approaches and experimental techniques developed over 4 

years of intense work.  Key findings are summarized and the most important and 

representative results from TEM results are highlighted.  First we describe the synthetic 

techniques and the sometimes bewildering variety of morphological characteristics 

observed.  Then we present a general method for determining the crystallographic 

orientation of nanowire axes, along with some examples.  There follows an examination 

of  common types of defects resulting from our growth methods.  We conclude with a 

brief summary of  recent progress in device fabrication and assembly. 

 

2. Nanowire Synthesis  
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 We have explored two main approaches to the growth of semiconductor 

nanowires. The vapor-solid (VS) growth mechanism avoids the use of catalysts.  Using a 

horizontal tube furnace, a source pellet or powder is heated to 1100°C or greater to 

vaporize the source material, while a controlled mixture of inert and/or reactive gas flows 

through the furnace tube. A Si wafer chip is placed downstream of the source, and 

nanostructures grow directly on the chip surface which is maintained  ~100-500°C cooler 

than the source. With calibrated temperature gradient, several substrates located at 

different temperatures can be processed simultaneously.  Crystalline nanostructures 

generally grow along fast growth directions, such that when the growth rate of a 

particular crystal structure  are significantly higher along a particular crystal axis, then 

nanowires will result.  The details of VS type growth are still not well understood; 

however under certain conditions epitaxial growth may also occur [18, 19]. Using this 

method we have successfully grown nanowires of β-Ga2O3 (unpublished), Si [20] and 

GaN [21]. 

The alternative approach uses metal catalysts (typically Au, AuPd or Pt in this 

work) to direct the growth of nanowires via the well-studied vapor-liquid-solid (VLS) 

mechanism [15, 16, 22].  Above the melting point the metal catalyst droplets dissolve 

precursor atoms from the vapor, nucleating nanowires when the solution becomes 

supersaturated. A key aspect of VLS growth is that the catalyst particles constrain the 

radial growth of nanowires and direct the growth along fast crystal growth directions. 

Provided that the particles are sufficiently small and are atop a suitable crystalline 

substrate, nanowires may grow epitaxially on the substrate [23-26].  Metal particles can 

be obtained by pre-heating a very thin sputtered film which  breaks up into droplet 

islands upon heating, or by some form of patterned deposition [27].   We have employed 

the catalytic VLS to the growth of  Si and GaN nanowires [28-31]. 

 
3. Morphologies 

A broad range of nanostructure morphologies are accessible using the synthetic 

processes outlined above. Our β-Ga2O3 nanostructures grown via the VS mechanism 

exhibit a great variety of forms (see Fig. 1), as also reported by other researchers [32-34].  

These include one-dimensional nanowires, two-dimensional structures such as nanobelts 

and nanosheets (Fig. 1a),  and even dendritic structures we refer to as “nanotrees” (Fig. 
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1b).  Another example of morphology diversity is found in VS-grown GaN 

nanostructures, where we observe a broad variety of forms ranging from nanowires to 

nanobelts to polyhedral crystals, depending on the growth conditions [21]. 

 
Similarly, VS-grown Si nanostructures exhibit two common morphologies. The 

first is the familiar “core-shell” nanowire, with a cylindrical Si core surrounded by an 

amorphous SiOx sheath.  The second is the “nanochain” morphology, wherein beads of Si 

nanocrystals passivated by a thin surface oxide are connected by fine amorphous silica 

nanowires to other Si nanocrystals, much like a string-of-pearls. While VS growth 

models for nanowire formation have been proposed [35], the mechanism for nanochain 

formation remains poorly studied; one speculation is that impurity incorporation at the 

beads plays an important role [36]. Both types of Si nanostructures are seen in the TEM 

micrograph in Fig. 2. The morphological details of each nanostructure can be appreciated 

from the insets, chemical maps for crystalline Si and amorphous SiO2 obtained using 

energy-filtered TEM (EFTEM) [20].  These clearly reveal that the nanowire in the upper 

left corner is in fact a Si/SiOx core-sheath structure, in contrast to the nanochain (center 

left) is primarily SiOx .  Coiled structures are occasionally observed; these too are 

primarily SiOx with no clear evidence for a “pure” Si core.  

Clean nanowire morphology almost invariably results when VLS catalysts are 

used. At the end of a growth run, metal catalyst spheres are found segregated onto the 

free ends of the wires.  This always occurs in the case of GaN with AuPd catalyst, Fig. 

3a).  Energy-dispersive x-ray spectra (XEDS, Fig. 3b) and electron energy loss spectra 

(EELS, not shown) confirm that incorporation AuPd into the nanowire is below the 

detection limit of either method. 

 

 
4. Growth Directions 
 

Nanowire growth directions are generally determined using the TEM, either from  

lattice fringe spacings or selected area electron diffraction (SAED). After the required 

calibrations are performed, a micrograph and a diffraction pattern can be obtained from 

the same nanowire. The pair of images is compared to identify the row of diffraction 
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spots that run parallel to the nanowire axis and pass through the 000 spot. Assuming that 

the nanowire is orthogonal to the electron beam, these spots arise from lattice planes 

perpendicular to the nanowire axis. The problem then becomes a matter of working out 

the crystallographic growth direction. 

 
However, using TEM to determine the nanowire growth direction is not 

straightforward because the image is a projection of a three-dimensional specimen that is 

in general tilted with respect to the electron beam. This tilt cannot be easily determined 

except in special cases with a rigid specimen where its orientation is related specifically 

to its microstructure. Therefore, it is unsatisfactory to assume that nanowires are 

orthogonal to the electron beam, because differences in tilt can arise easily from bent or 

broken areas of the TEM support film, from non-rigid nanowires, and obviously from 

tilting of the sample stage initiated by the operator. 

Diffraction spots arise from those lattice planes that satisfy the Bragg diffraction 

condition. Conceivably, there can be a large set of lattice planes (generally oblique to the 

nanowire axis) that satisfy the Bragg condition as the nanowire is tilted. If the nanowire is 

not orthogonal to the electron beam, the diffraction spots used to determine the growth 

direction can arise from any of these oblique lattice planes. The result is that the growth 

direction is determined incorrectly. As it turns out, a single diffraction pattern provides 

insufficient information to determine the nanowire growth direction.  

To address this problem, we developed a two-tilt diffraction technique to 

unequivocally determine the growth directions of Ga2O3, Si and GaN nanowires [37]. 

The method is based on the fact that two different planes parallel to a cylinder must 

intersect along a line parallel to the cylinder axis. If the plane normals to these two planes 

are known, then the cross product of the plane normal vectors provides the desired axis 

direction.* In practice, a plane parallel to the nanowire axis is identified and indexed 

using electron diffraction (i.e., its diffraction spots are perpendicular to the nanowire 

                                                 
* Given two plane normals n1 and n2 in Miller indices {h1k1l1} and {h2k2l2}, plane normals in reciprocal 
lattice vectors a*, b*, c* can be written as n1 = h1a* + k1b* + l1c* and n2 = h2a* + k2b* + l2c*. If these two 
plane normals are crossed, the line of intersection r is r = n1 × n2  = (h1a* + k1b* + l1c*) × (h2a* + k2b* + l2c*) 
= ua + vb + wc, using the identities a = b* × c* etc. The index [uvw] of the line of intersection between the 
two planes is equal to the cross product of the two plane indices. 
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axis). Then the sample is tilted to a new zone axis and the process repeated. The growth 

direction is obtained from the cross product of the Miller indices of these two planes. 

This technique is particularly useful for low symmetry crystals such as β-Ga2O3. 

In fact this was the only way to obtain the correct growth direction for wires comprising 

the β-Ga2O3 “nanotrees”, because these wires were self-supported at oblique angles to the 

electron beam. Two of the fast crystal growth directions were <010> and <001>, and 

many nanowires grew along these directions. Figure 4 shows an example of a β-Ga2O3 

nanowire grown along <001>. These are also the growth directions commonly reported in 

the literature for β-Ga2O3 nanowires and nanobelts [37-39], so we are confident that our 

technique is robust. 

Our VS-grown Si nanowires [20] were mostly grown along the commonly 

reported <111> and <211> directions [25, 35, 36]. Figure 5a shows a typical VS-grown 

Si nanowire, with a ~15 nm diameter crystalline Si core sheathed with ~10 nm of 

amorphous oxide. Figure 5b is the associated convergent beam electron diffraction 

(CBED) pattern of this Si nanowire, showing that the growth direction is along <111>. 

The VLS-grown GaN nanowires were mostly grown along <120>, and exhibited 

isosceles triangular cross-sections commonly reported in the literature [24, 40]. Figure 6a 

shows a typical VLS-grown GaN nanowire, grown along <120> via the stacking of (010) 

planes at the catalyst-nanowire interface (Fig. 6b). Additionally, we were able to 

determine the faceting relationship of the nanowires using CBED on a nanowire cross-

section.[29] By matching experimental and simulated CBED patterns, we showed that 

these triangular nanowires were faceted to expose the (001), )212(  and )212(  surfaces. 

 

5. Defects 
 Defects are difficult to avoid in our growth system, and we observe planar defects 

in all our samples. In VS-grown β-Ga2O3 nanowires, these appear to run parallel and 

oblique to the nanowire axes (note the oblique contrast variations near the tip of the 

nanowire in Fig. 4). Planar defects in β-Ga2O3 nanowires have been reported by other 

workers as well, but detailed characterization of these defects remains scarce [38, 41-43]. 

Planar defects are also common in our Si nanowires [20], and these are {111} 

type twins that run obliquely across the nanowire (see arrowed feature in Fig. 5a) but 
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never along the nanowires. The phenomenon of {111} twinning in Si nanowires, 

prepared using a method similar to ours, has already been studied closely in the literature 

[44]. The high incidence of twinning in Si nanowires appears to be unique to the “oxide-

assisted” VS-growth system [35], since Si nanowires prepared using VLS catalyzed 

chemical vapor deposition (CVD) do not appear to contain these defects [11, 45]. Oxygen 

in the growth system may be responsible, since it is known that Czochralski-grown Si is 

vulnerable to oxygen-induced stacking faults [46]. 

In GaN nanowires, planar defects tend to run along the axis, and are usually (001) 

stacking faults or rotational twins about the growth axis [31]. The contrast variations 

across the nanowire in Figure 6 are due to (001) stacking faults, which can be seen to run 

along the entire length of the GaN nanowire right up to the catalyst-nanowire interface. 

To understand why these axial planar defects are so prevalent, we recently proposed a 

defect-mediated VLS growth model [31]. These defects expose higher-energy sites at the 

growth front that serve as nucleation centers, resulting in faster crystal growth rate. 

Therefore, with axial defects these nucleation sites persist throughout the nanowire 

growth stage, and result in a sustained increase in the growth rate. Similar effects may 

influence the kinetics of nanowire growth via the VS mechanism. 

 

6. Device Fabrication and Assembly 
 
 We have fabricated single nanowire devices using dielectrophoretic assembly, 

lithographic contact patterning, and direct writing. We have successfully demonstrated 

that dielectrophoretic assembly is a viable technique to assemble β-Ga2O3 nanowire 

arrays (unpublished data). We used lithographic contact patterning to fashion Si nanowire 

FETs and were able to modulate the electrical characteristics of the fabricated Si 

nanowire FETs from p- to n-type via post-growth doping [20].  

We have also been able to control the exact positions of nanowires grown on a 

substrate. Using the “direct writing” capability of a focused-ion-beam (FIB) instrument, 

we first deposited a pattern of nanometer-sized Pt catalyst islands on our growth 

substrates. After optimizing the Pt catalyst and growth parameters, well-isolated 

nanowires suitable for device fabrication were found growing from the Pt catalyst sites 
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[27].  No nanowires were found other than these, so under the growth conditions the Pt 

catalyst was a necessity (VLS growth). 

We also showed that ion beam assisted deposition of Pt contacts from an 

organometallic precursor is an efficient approach to fabricating GaN nanowire circuits. 

FIB-Pt gives low resistance ohmic contacts to our n-type GaN nanowires [28]. Pt contacts 

on bulk n-GaN are usually rectifying, due to the formation of a Schottky barrier at the 

contact interface, but using cross-sectional TEM we found that FIB-induced damage to 

the nanowires [30] produced sufficient disorder for Mott variable range hopping to 

dominate the contact conduction in sufficiently small nanowires [28]. 

We also fabricated and studied electromechanical oscillators from GaN nanowires 

[29]. These exhibit resonant oscillations with high quality factors, which we attribute to 

the excellent surface quality of the GaN nanowires.  In some cases we were able to detect 

two closely-spaced resonances consistent with the the low symmetry and highly perfect 

isosceles triangular cross-section. The Young’s modulus, derived from resonant 

frequencies and nanowire dimensions, is comparable to the bulk value for large 

“diameter” wires, but decreases by 35% as d approaches 35 nm. 

 

 

7. Conclusions 
 

Our group has synthesized β-Ga2O3, Si and GaN nanowires using both VS and 

VLS type growth, and we have observed several commonly observed morphologies in 

our samples. Growth directions of these nanowires are not always straightforward to 

obtain, and we have outlined a general technique for measuring nanowire growth 

directions in the TEM. Using our technique we identified the common growth directions 

in our nanowires, and have begun to relate nanowire morphological features with the 

underlying crystal structure. In our growth system, we have not been able to avoid the 

formation of defects in our nanowires, and in fact we have observed planar defects in all 

our samples. Finally, we have successfully fabricated nanowire devices using a variety of 

assembly techniques and explored their device behavior. 
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Figure captions 
 
Figure 1 – (a) Scanning electron micrograph of nanowires, nanobelts, and nanosheets of 

β-Ga2O3. (b) Scanning electron micrograph of β-Ga2O3 nanotrees. 

 

Figure 2 – (a) EFTEM image of VS-grown Si nanowires and nanochains. Chemical maps 

show the distribution of (b) crystalline Si and (c) amorphous SiO2 in these nanostructures. 

 

Figure 3 – (a) TEM image of VLS-grown GaN nanowire, tipped with a dark AuPd 

catalyst particle. (b) X-ray energy dispersive spectra (XEDS) of catalyst tip and nanowire, 

showing that the catalyst is AuPd and the nanowire is GaN. Cu system peaks have not 

been labeled for clarity. 

 

Figure 4 – TEM image of a VS-grown β-Ga2O3 nanowire grown along the <001> 

direction. (Inset) Selected area electron diffraction (SAED) pattern of the β-Ga2O3 

nanowire. 

 

Figure 5 – (a) TEM image of a VS-grown Si nanowire grown along the <111> direction. 

The large arrow indicates a stacking fault defect. (b) Convergent beam electron 

diffraction (CBED) pattern of the Si nanowire. 

 

Figure 6 – (a) TEM image of a VLS-grown GaN nanowire grown along the <120> 

direction, tipped with an AuPd catalyst particle. The axial contrast striations within the 

nanowire are due to [001] stacking faults in the wurtzite GaN, creating small thin regions 

of cubic GaN and resulting in a layered appearance. (b) Convergent beam electron 

diffraction (CBED) pattern of the GaN nanowire. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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