Inference Rules for Nested Functional Dependencies

Carmem S. Hara
University of Pennsylvania

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation

Carmem S. Hara and Susan B. Davidson, "Inference Rules for Nested Functional Dependencies", . March 1999.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-19.
This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/53
For more information, please contact repository@pobox.upenn.edu.

Inference Rules for Nested Functional Dependencies

Abstract

Functional dependencies add semantics to a database schema, and are useful for studying various problems, such as database design, query optimization and how dependencies are carried into a view. In the context of a nested relational model, these dependencies can be extended by using path expressions instead of attribute names, resulting in a class of dependencies that we call nested functional dependencies (NFDs). NFDs define a natural class of dependencies in complex data structures; in particular they allow the specification of many useful intra- and inter-set dependencies (i.e., dependencies that are local to a set and dependencies that require consistency between sets). Such constraints cannot be captured by existing notions of functional, multi-valued, or join dependencies.

This paper presents the definition of NFDs and gives their meaning by translation to logic. It then presents a sound and complete set of eight inference rules for NFDs, and discusses approaches to handling the existence of empty sets in instances. Empty sets add complexity in reasoning since formulas such as $\forall x \in R . P(x)$ are trivially true when R is empty. This axiomatization represents a first step in reasoning about constraints on data warehouse applications, where both the source and target databases support complex types.

\section*{Comments}

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-19.

Inference Rules for Nested Functional Dependencies

Carmem S. Hara and Susan B. Davidson
Dept. of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104-6389
Phone (215) 898-3490, Fax (215) 898-0587
Email: chara@saul.cis.upenn.edu, susan@central.cis.upenn.edu

March 15, 1999

Abstract

Functional dependencies add semantics to a database schema, and are useful for studying various problems, such as database design, query optimization and how dependencies are carried into a view. In the context of a nested relational model, these dependencies can be extended by using path expressions instead of attribute names, resulting in a class of dependencies that we call nested functional dependencies (NFDs). NFDs define a natural class of dependencies in complex data structures; in particular they allow the specification of many useful intra- and inter-set dependencies (i.e., dependencies that are local to a set and dependencies that require consistency between sets). Such constraints cannot be captured by existing notions of functional, multi-valued, or join dependencies.

This paper presents the definition of NFDs and gives their meaning by translation to logic. It then presents a sound and complete set of eight inference rules for NFDs, and discusses approaches to handling the existence of empty sets in instances. Empty sets add complexity in reasoning since formulas such as $\forall x \in R . P(x)$ are trivially true when R is empty. This axiomatization represents a first step in reasoning about constraints on data warehouse applications, where both the source and target databases support complex types.

1 Introduction

Dependencies add semantics to a database schema and are useful for studying various problems such as database design, query optimization and how dependencies are carried into a view. In the context of the relational model, a wide variety of dependencies have been studied, such as functional, multivalued, join and inclusion dependencies (see [13, 2] for excellent overviews of this work). However, apart from notions of key constraints and inclusion dependencies [5, 16], dependencies in richer models than the relational model have not been as thoroughly studied.

Complex data models are, however, heavily used within biomedical and other scientific database applications. Reasoning about dependencies within these applications is becoming increasingly important as schemas get larger, queries span multiple complex databases, and new databases are created as materialized views. For example, if a new database is created as a materialized view over multiple complex databases, knowing how dependencies are carried into this complex view could eliminate expensive checking as the new database is created and later updated.

We therefore start attacking this problem by defining a notion of functional dependency for the nested relational model together with inference rules for these dependencies. We are considering the nested relational model, where set and tuple constructors are required to alternate, mainly for simplicity, but relaxing this assumption does not significantly change the inference rules. Since in this model attributes of a relation may be sets rather than atomic types, dependencies may traverse into various levels of nesting through paths. We call this new form of functional dependencies nested functional dependencies (NFDs).

As an example of what we would like to be able to express, consider a type Course defined as a set of records with attributes cnum, time, students, and books, where students is a set of records with labels sid, age, and grade, and books is a set of records with labels isbn, and title:

```
Course: \{<cnum, time
    students: \(\{<\) sid, age, grade>\},
    books: \(\{<i s b n\), title> \(\}\rangle\}\).
```

Some nested functional dependencies that we would like to be able to express for Course are:

1. cnum is a key.
2. Every Course instance is consistent on their assignment of title to a given isbn.
3. In a given course, each student gets a single grade.
4. Every Course instance is consistent on their assignment of age to sid.
5. A student cannot be enrolled in courses that overlap on time.

Note that there are "local" dependencies, such as dependency 3 where a student can have only one grade for a given course but may have different grades for distinct courses. There are also "global" dependencies such as dependencies 2 and 4 , where the assignment of title to an isbn and age to sid must be consistent throughout the Course relation. Dependency 5 illustrates how an attribute from an outer level of nesting may be determined by attributes in a deeper level of nesting. Note that even if every level of nesting presents a "key" as suggested in [1], this type of dependency is not captured by the structure of the data.

Our definition of NFDs can also be used to express other interesting properties of sets. For example, they can be used to state that some fields in a set valued attribute are required to be disjoint, or that a set is expected to be a singleton. In AceDB [19], a database which is very popular among biologists, every attribute is defined as a set. This is useful in applications where the database is sparsely populated and evolves over time, since empty sets can model optional or undefined attributes. However, some attributes can be specified to be (maximally) singleton sets. In order to reason about constraints in this model, it is therefore important to be able to express the fact that a set must be a singleton. The importance of singleton sets is also evident in [7], which investigates when functional dependencies are maintained or destroyed when relations are nested and unnested. In most cases, this relies on knowing whether a set is a singleton or multivalued.

One of the most interesting questions involving dependencies is that of logical implication, i.e., deciding if a new dependency holds given a set of existing dependencies. For functional dependencies in the
relational model, this problem has been addressed from two different perspectives: a decision procedure called the tableau chase, and a sound and complete set of inference rules called Armstrong's axioms.

As an example of an inference we might want to make over the complex type Course, suppose we have a database DBCourse which is known to satisfy all the dependencies listed above. We wish to know if in DBCourse, given a student ID sid, and a time, there is a unique set of books used by the student at that time. Reasoning intuitively, the answer is affirmative since a student can be enrolled in only one course cnum in a given time, and cnum, which is a key, determines a set books. However, it would be useful to have a technique and inference rules to prove this.

The development of inference rules is important for many reasons [4]: First, it helps us gain insight into the dependencies. Second, it may help in discovering efficient decision procedures for the implication problem. Third, it provides tools to operate on dependencies. For example, in the relational model, it provides the basis for testing equivalence preserving transformations, such as lossless-join decomposition, and dependency preserving decomposition, which lead to the definition of normal forms of relations, a somewhat more mechanical way to produce a database design [20].

We therefore focus in this paper on the development of a sound and complete set of inference rules for NFDs. However, the presence of empty sets in instances causes serious problems in developing such rules since formulas such as $\forall x \in R . P(x)$ are trivially true when R is empty. We therefore initially restrict the inference problem to the case where empty sets cannot occur in any instance, and then suggest how this assumption can be relaxed by specifying where empty sets are known not to occur.

The remainder of the paper is organized as follows: Section 2 describes our nested relational model, the definition of nested functional dependencies in this model, and their translation into logic. We also contrast our approach to others taken in the literature. Section 3 presents the axiomatization of NFDs, illustrates their use on some examples, and discusses how empty sets in instances can cause problems. Section 4 concludes the paper and discusses some future work.

2 Functional Dependencies for the Nested Relation Model

The nested relational model has been well studied (see [2] for an overview). It extends the relational model by allowing the type of an attribute to be a set of records or a base type, rather than requiring it to be a base type (First Normal Form). For simplicity, we use the strict definition of the nested model and require that set and tuple constructors alternate, i.e. there are no sets of sets or tuples with a tuple component, although allowing nested records or sets does not substantially change the results established. For ease of presentation, we also assume that there are no repeated labels in a type, i.e., $<A:$ int, $B:\{<A:$ int $\rangle\}>$ is not allowed.

An example of a nested relation was given by Course in the previous section.
More formally, a nested relational database \mathcal{R} is a finite set of relation names, ranged over by R_{1}, R_{2}, \ldots. \mathcal{A} is a fixed countable set of labels, ranged over by A_{1}, A_{2}, \ldots, and \mathcal{B} is a fixed finite set of base types, ranged over by \underline{b}, \ldots

The data types Types are as follows:

$$
\tau::=\underline{\mathrm{b}}|\{\tau\}|<A_{1}: \tau_{1}, \ldots, A_{n}: \tau_{n}>
$$

Here, $\underline{\mathbf{b}}$ are base types, e.g. boolean, integer and string. The notation $\{\omega\}$ represents a set with elements
of type ω, where ω must be a record type. $<a_{1}: \tau_{1}, \ldots, a_{n}: \tau_{n}>$ represents a record type with fields A_{1}, \ldots, A_{n} of types $\tau_{1}, \ldots, \tau_{n}$, respectively. Each τ_{i} must either be a base or a set type.

A database schema is a pair $(\mathcal{R}, \mathcal{S})$, where \mathcal{R} is a finite set of relation names, and \mathcal{S} is a schema mapping $\mathcal{S}: \mathcal{R} \rightarrow$ Types, such that for any $R \in \mathcal{R}, R \stackrel{\mathcal{S}}{\mapsto} \tau^{R}$ where τ^{R} is a set of records in its outermost level.

Denotations of types. Let us denote by $\mathbf{D}^{\underline{b}}$ the domain of the base type \underline{b}, for any \underline{b}. The domain of our model \mathbf{D} is defined as the least set satisfying the equation:

$$
\mathbf{D} \equiv \bigcup_{\underline{b}} \mathbf{D}^{\underline{b}} \cup \mathcal{A} \xrightarrow{\sim} \mathbf{D} \cup P_{f i n}(\mathbf{D})
$$

where $A \xrightarrow{\sim} B$ denotes the set of partial functions from A to B.
Given a schema $(\mathcal{R}, \mathcal{S})$, the interpretation of each type τ in Types ${ }^{\mathcal{R}}, \llbracket \tau \rrbracket$, is defined by

$$
\begin{aligned}
\llbracket \underline{b} \rrbracket \equiv & \mathbf{D}^{\underline{b}} \\
\llbracket\{\tau\} \rrbracket \equiv & P_{\text {fin }}(\llbracket \tau \rrbracket) \\
\llbracket<A_{1}: \tau_{1}, \ldots, A_{n}: \tau_{n}>\rrbracket \equiv & \left\{f \in \mathcal{A} \xrightarrow{\sim} \mathbf{D} \mid \operatorname{dom}(f)=\left\{A_{1}, \ldots, A_{n}\right\}\right. \\
& \text { and } \left.f\left(A_{i}\right) \in \llbracket \tau_{i} \rrbracket, i=1, \ldots, n\right\}
\end{aligned}
$$

Database instance: A database instance of a database schema $(\mathcal{R}, \mathcal{S})$ is a record I with labels in \mathcal{R} such that $\pi_{R} I$ is in $\llbracket \mathcal{S}(R) \rrbracket$ for each $R \in \mathcal{R}$.

We denote by $\mathcal{I}_{S C}$ the set of all instances of schema $S C$.
As an example, if ($\{$ Course $\}, \mathcal{S}$) is a schema where

$$
\begin{aligned}
\mathcal{S}(\text { Course })=\{< & \text { cnum }: \text { string }, \\
& \text { time }: \text { int }, \\
& \text { students }:\{<\text { sid }: \text { int }, \\
& \text { grade }: \text { string }>\}>\} .
\end{aligned}
$$

Then the following is an example of an instance of this schema:

$$
\begin{gathered}
<\text { Course } \mapsto\{<\text { cnum } \mapsto " \text { cis } 550 ", \\
\text { time } \mapsto 10, \\
\text { students } \mapsto\{<\text { sid } \mapsto 1001, \\
\text { grade } \mapsto " A ">, \\
<\text { sid } \mapsto 2002, \\
\text { grade } \mapsto " B ">\}>, \\
<\text { cnum } \mapsto " \text { cis } 500 ", \\
\text { time } \mapsto 12, \\
\text { students } \mapsto\{<\text { sid } \mapsto 1001, \\
\text { grade } \mapsto " A ">\}>\}>
\end{gathered}
$$

2.1 Nested Functional Dependencies

The natural extension of a functional dependency $X \longrightarrow A$ for the nested relational model is to allow path expressions in X and A instead of attributes. That is, X is a set of paths and A is a single path. As an example, the requirement that a student's age in Course be consistent throughout the database could be written as Course : [students : sid \rightarrow students : age], where ":" indicates traversal inside a set. Note that we have enclosed the dependency in square brackets"[]" and appended the name of the nested relation, Course.

Path Expressions

We start by giving a very general definition of path expressions, and narrow them to be well-defined by a given type.

Definition 2.1 Let $\mathcal{A}=A_{1}, A_{2}, \ldots$ be a set of labels. A path expression is a string over the alphabet $\mathcal{A} \bigcup\{:\}$. ϵ denotes the empty path. A path expression p is well-typed with respect to type τ if

- $p=\epsilon$, or
- $p=A p^{\prime}$ and τ is a record type $\left\langle A: \tau^{\prime}, \ldots>\right.$ and p^{\prime} is well-typed with respect to τ^{\prime}, or
- $p=: p^{\prime}$ and τ is a set type $\left\{\tau^{\prime}\right\}$ and p^{\prime} is well-typed with respect to τ^{\prime}.

As an example, $A: B$ is well-typed with respect to $<A:\{<B: i n t, C: i n t>\}>$, but not with respect to <A : int>.

Given an object e, the semantics of path expressions is given by:

$$
\begin{aligned}
\llbracket \epsilon e \rrbracket & \equiv \llbracket e \rrbracket \\
\llbracket A e \rrbracket & \equiv \llbracket e \rrbracket(A) \\
\llbracket: e \rrbracket & \equiv \begin{cases}\text { undefined, } & \text { if } \llbracket e \rrbracket=\{ \} \\
\llbracket e_{1} \rrbracket, & \text { otherwise, where } \llbracket e_{1} \rrbracket\end{cases}
\end{aligned}
$$

Note that the value of a path expression that traverses into an empty set is undefined, i.e., it does not yield a value in the database domain. We say that a path expression p is well defined on v if it always yields a value in the database domain.

As an example, if

$$
\begin{aligned}
v=<A \mapsto\{ & <B \mapsto 10, C \mapsto 20> \\
& <B \mapsto 15, C
\end{aligned},
$$

then

$$
\text { - } \begin{aligned}
& A(v)=\{<B \mapsto 10, C \mapsto 20>, \\
&<B\mapsto 15, C \mapsto 21>\}
\end{aligned}
$$

- $A: B(v)=10$ or $A: B(v)=15$

To help define nested functional dependencies, we introduce the notions of path prefix and size of a path expression.

Definition 2.2 Path expression p_{1} is a prefix of p_{2} if $p_{2}=p_{1} p_{2}^{\prime}$. Path p_{1} is a proper prefix of p_{2} if p_{1} is a prefix of p_{2} and $p_{1} \neq p_{2}$.

Definition 2.3 The size of a path expression of the form $p=A_{1}: \ldots: A_{k}$, denoted as $|p|$, is k, the number of labels in p.

With these notions, we are now in a position to define nested functional dependencies (NFDs), and how an instance is said to satisfy an NFD.

Definition 2.4 Let $\mathcal{S C}=(\mathcal{R}, \mathcal{S})$ be a schema. A nested functional dependency (NFD) over $\mathcal{S C}$ is an expression of the form $x_{0}:\left[x_{1}, \ldots, x_{m-1} \rightarrow x_{m}\right], m \geq 1$, such that all $x_{i}, 0 \leq i \leq m$, are path expressions of the form $A_{1}^{i}: \ldots: A_{k_{i}}^{i}, k_{i} \geq 1$, where $x_{0}=R y, R \in \mathcal{R}$, and $y: x_{i}, 1 \leq i \leq m$, are well-typed path expressions with respect to τ^{R}.

In general, the base path x_{0} can be an arbitrary path rather than just a relation name. For the degenerate case where $m=1$, i.e. the NFD is of form $x_{0}:\left[\emptyset \rightarrow x_{m}\right]$, then in any value of $x_{0},: x_{m}$ must be a constant.

Definition 2.5 Let $f=x_{0}:\left[x_{1}, \ldots, x_{m-1} \rightarrow x_{m}\right]$ be an NFD over schema $S C, I$ an instance of $S C$, and v_{1}, v_{2} two values of $x_{0}:(I)$ in the database domain. I satisfies f, denoted $I \models f$, if for all v_{1}, v_{2}, whenever

1. $x_{i}\left(v_{1}\right)=x_{i}\left(v_{2}\right)$ for all $1 \leq i<m$, and
2. for every path x which is a common prefix of $x_{i}, x_{j}, 1 \leq i, j \leq m, x\left(v_{1}\right)$ coincide in $x_{i}\left(v_{1}\right)$ and $x_{j}\left(v_{1}\right)$ and $x\left(v_{2}\right)$ coincide in $x_{i}\left(v_{2}\right)$ and $x_{j}\left(v_{2}\right)$ (i.e. x_{i} and x_{j} follow the same path up to x in v_{1} and in v_{2})
then

$$
x_{m}\left(v_{1}\right)=x_{m}\left(v_{2}\right)
$$

If for some $x_{i}, 1 \leq i \leq m, x_{i}\left(v_{1}\right)$, or $x_{i}\left(v_{2}\right)$ is undefined, we say f is trivially true.

In the next section, we give a translation of NFD to logic to precisely define its semantics.
Our definition of NFDs is very broad, and captures many natural constraints. As an example, we can precisely state the constraints on Course described in the introduction.

Example 2.1 In Course, cnum is a key.
Course: [cnum \rightarrow time $]$
Course : [cnum \rightarrow students $]$
Course: $[$ cnum \rightarrow books $]$

Example 2.2 For any two instances in Course, if they agree on isbn for some element of books then they must also agree on title for that element of books.
Course: [books : isbn \rightarrow books : title]

Example 2.3 In a given course, each student gets a single grade.
Course : students : $[$ sid \rightarrow grade $]$

Note that in this example, sid is a "local" key to grade; this illustrates the use of a path rather than just a relation name outside the " $[$ ". Contrast this to the previous example, where the NFD requires that isbn and title be consistent throughout the database.

Example 2.4 Every Course instance is consistent on their assignment of age to sid.
Cour se : [students : sid \rightarrow students : age]

Example 2.5 A student cannot be enrolled in courses that overlap on time.
Course : [time, students : sid \rightarrow cnum $]$

Some interesting properties of sets can also be expressed by NFDs. For example, if an instance I satisfies an NFD of the form $x_{0}:\left[x_{1}: x_{2} \rightarrow x_{1}\right]$, then given two values v_{1}, v_{2} of $x_{0}: x_{1}(I)$, either $v_{1}=v_{2}$, or $v_{1} \bigcap v_{2}=\emptyset^{1}$.

As an example, suppose that a university's courses database is defined as Courses : \{<school, scour ses : $\{\langle$ cnum, time $\rangle\}\rangle\}$, and it satisfies the NFD Courses $:[$ scourses : cnum \rightarrow school $]$. We can conclude that schools in the university do not share course numbers, because the existence of the same cnum in different schools would violate the NFD.

NFDs can also express that if a set is not empty then it must be a singleton. I.e., if an instance I satisfies an NFD of the form $x_{0}:\left[x_{1}, \ldots, x_{m} \rightarrow x_{n}: A\right]$, where x_{n} is not a proper prefix of any x_{i}, $1 \leq i \leq m$, then for any value v of $x_{0}:(I)$ in which paths $x_{1} \ldots x_{m}$ are well-defined, all elements e of $x_{n}(v)$ have the same value for $A(e)$.

For example, let R be a relation with schema $\{\langle A:\{\langle B: i n t, C: i n t\rangle\}, D:$ int \rangle. If $R:[D \rightarrow A: B]$, and $R:[D \rightarrow A: C]$, then it must be the case that A is either empty, or a singleton set, since for every value of A all elements agree on the values of B and C. Since these are the only attributes in A, then A has a single element.

It should be noted that our definition also allows some unintuitive NFDs. For example, assume R : $\{\langle A, B:\{\langle C, D\rangle\}, E:\{\langle F, G\rangle\}\rangle\}$. Then the NFD $R:[B: C \rightarrow E: F]$ implies that:

- all tuples $\langle F, G\rangle$ in E have the same value for F when B is not empty, and
- if any tuple $\langle C, D>$ in B agrees on the value of C, then the elements $\langle F, G\rangle$ in E must have the same value for F.

Figure 1 shows an instance of R that does not satisfy $R:[B: C \rightarrow E: F]$. If we only consider the first line in the table, the NFD is satisfied since all values of attribute F coincide, i.e. $B: C=1$ determines

[^0]| A | B | | E | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | C | D | F | G |
| | 1 | 3 | 5 | 6 |
| | | | 5 | 7 |
| 2 | C | D | F | G |
| | 2 | 2 | 3 | 4 |
| | 1 | 3 | 4 | 4 |

Figure 1: An instance that violates $R:[B: C \rightarrow E: F]$.
$E: F=5$. The existence of more than one value for F automatically invalidates the constraint because a single value in C would be related to distinct values in F as in the second line. The second line also violates the dependency because it has a value in $B: C$ that also appears in the first line, but has a different value for $E: F$.

2.2 NFDs expressed in logic

In the relational model, a functional dependency Course : $[$ cnum \rightarrow time, students $]$ can be understood as the following formula:

```
\(\forall c_{1} \in\) Course \(\forall c_{2} \in\) Course
    \(\left(c_{1}\right.\). cnum \(=c_{2}\). cnum \() \rightarrow\)
    \(\left(c_{1}\right.\).time \(=c_{2}\). time \(\wedge c_{1}\).students \(=c_{2}\). students \()\)
```

There is also a precise translation of NFDs to logic. Intuitively, given an NFD $R:\left[x_{1} \ldots x_{m-1} \rightarrow x_{m}\right]$, we introduce two universally quantified variables for R and for each set-valued attribute in $x_{1} \ldots x_{m}{ }^{2}$. The body of the formula is an implication where the antecedent is the conjunction of equalities of the last attributes in $x_{1} \ldots x_{m-1}$ and the consequence is an equality of the last attribute in x_{m}.

As an example, Course $:[$ students $:$ sid \rightarrow students $:$ age $]$ can be translated to the following formula:

```
\(\forall c_{1} \in\) Course \(\forall c_{2} \in\) Course
\(\forall s_{1} \in c_{1}\).students \(\forall s_{2} \in c_{2}\).students.
    \(\left(s_{1} \cdot\right.\) sid \(=s_{2} \cdot\) sid \(\rightarrow s_{1} \cdot\) age \(=s_{2} \cdot\) age \()\)
```

To formalize this translation, we define functions var, and parent. Let $S C=(\mathcal{R}, \mathcal{S})$ be a schema, I an instance of $S C$, and $f=x_{0}:\left[x_{1} \ldots x_{m-1} \rightarrow x_{m}\right]$ be an NFD defined over $S C$, where $x_{i}=A_{1}^{i}: \ldots: A_{k_{i}}^{i}$, $0 \leq i \leq m$, and $A_{1}^{0}=R, R \in \mathcal{R}$.

Define var as a function that maps labels to variable names as follows:

- for each label A in τ^{R} that appears in some path $x_{i}, 0 \leq i \leq m, \operatorname{var}(A)=v_{A}$. Recall that we assume labels cannot be repeated.

[^1]The function parent maps a label to the variable defined for its parent as follows:

- for all $A_{1}^{i}, 1 \leq i \leq m, \operatorname{parent}\left(A_{1}^{i}\right)=\operatorname{var}\left(A_{k_{0}}^{0}\right)$, i.e., the parent of the first labels in paths $x_{1} \ldots x_{m}$ is the variable associated with the last label in path x_{0}.
- $\operatorname{parent}\left(A_{j+1}^{i}\right)=\operatorname{var}\left(A_{j}^{i}\right)$. Let $\left\{A_{1}^{*} \ldots A_{q}^{*}\right\}$ be the set of such A_{j} labels, i.e., the set of labels that have some descendent in a path expression.

Also, let parent $\left(A_{1}^{0}\right) \cdot A_{1}^{0}=R$. Then f is equivalent to the following logic formula:

```
\forallv}\mp@subsup{A}{1}{O}\in\operatorname{parent}(\mp@subsup{A}{1}{0}).\mp@subsup{A}{1}{0}
\forall\mp@subsup{v}{\mp@subsup{A}{\mp@subsup{k}{0}{\prime}-1}{0}}{0}\in\operatorname{parent}(\mp@subsup{A}{\mp@subsup{k}{0}{}-1}{0})\cdot\mp@subsup{A}{\mp@subsup{k}{0}{}-1}{0}
    \forall\mp@subsup{v}{\mp@subsup{A}{\mp@subsup{k}{0}{\prime}}{0}}{1}\in\operatorname{parent}(\mp@subsup{A}{\mp@subsup{k}{0}{}}{0}).\mp@subsup{A}{\mp@subsup{k}{0}{}}{0}\quad\forall\mp@subsup{v}{\mp@subsup{A}{\mp@subsup{k}{0}{\prime}}{0}}{2}\in\operatorname{parent}(\mp@subsup{A}{\mp@subsup{k}{0}{}}{0})\cdot\mp@subsup{A}{\mp@subsup{k}{0}{}}{0}
        \forallv}\mp@subsup{A}{1}{*}\in\operatorname{parent}(\mp@subsup{A}{1}{*}\mp@subsup{)}{}{1}.\mp@subsup{A}{1}{*}\forall\mp@subsup{v}{\mp@subsup{A}{1}{*}}{2}\in\operatorname{parent}(\mp@subsup{A}{1}{*}\mp@subsup{)}{}{2}.\mp@subsup{A}{1}{*}
        \forall\mp@subsup{v}{\mp@subsup{A}{q}{*}}{1}\in\operatorname{parent}(\mp@subsup{A}{q}{*}\mp@subsup{)}{}{1}.\mp@subsup{A}{q}{*}\forall\mp@subsup{v}{\mp@subsup{A}{q}{*}}{2}\in\operatorname{parent}(\mp@subsup{A}{q}{*}\mp@subsup{)}{}{2}.\mp@subsup{A}{q}{*}
            ((true ^
            parent ( }\mp@subsup{A}{\mp@subsup{k}{1}{}}{1}\mp@subsup{)}{}{1}.\mp@subsup{A}{\mp@subsup{k}{1}{}}{1}=\operatorname{parent}(\mp@subsup{A}{\mp@subsup{k}{1}{}}{1}\mp@subsup{)}{}{2}.\mp@subsup{A}{\mp@subsup{k}{1}{}}{1}\wedge\ldots
```



```
            ->
            (parent( (A\mp@subsup{k}{m}{m}}\mp@subsup{)}{}{1}\cdot\mp@subsup{A}{\mp@subsup{k}{m}{}}{m}=\operatorname{parent}(\mp@subsup{A}{\mp@subsup{k}{m}{}}{m}\mp@subsup{)}{}{2}.\mp@subsup{A}{\mp@subsup{k}{m}{}}{m})
```

Note that only one variable is mapped to each label in $A_{1}^{0}, \ldots, A_{k_{0}-1}^{0}$, whereas two variables are used elsewhere.

Using this translation, examples 2.2 and 2.3 can be expressed as:

- Course : [books : isbn \rightarrow books : title]
$\forall c_{1} \in$ Course $\forall c_{2} \in$ Course
$\forall b_{1} \in c_{1}$.books $\forall b_{2} \in c_{2}$.books.

$$
\left(b_{1} . i s b n=b_{2} . i s b n \rightarrow b_{1} . \text { title }=b_{2} . \text { title }\right)
$$

Note that books is referred to twice in the dependency, but that only two variables for books are introduced in the logical form.

- Course : students : [sid \rightarrow grade $]$
$\forall c \in$ Course
$\forall s_{1} \in$ c.students $\forall s_{2} \in$ c.students

$$
\left(s_{1} \cdot s i d=s_{2} . s i d \rightarrow s_{1} . g r a d e=s_{2} . \text { grade }\right)
$$

Note that only one variable is introduced for labels in x_{0} (except for the last label), and that two variables are introduced for all other labels.

2.3 Classification of NFDs

When we discuss an axiomatization for NFDs, it will be useful to refer to three different forms of NFDs: upwards, sideways, and downwards. Each of them behave differently in terms of inferences that can be made. In what follows, let $f=x_{0}:\left[x_{1}, \ldots, x_{m-1} \rightarrow x_{m}\right]$ be an NFD, A, A_{1}, \ldots be labels, and y, z be path expressions.

Definition 2.6 (upward) f is upward if $x_{m}=y A$ and there exists an $x_{i}, 1 \leq i<m$ such that $x_{i}=y z$, where $|z|>1$.

The following are examples of upward NFDs: $R:[A: B \rightarrow A], R: A:[C: D \rightarrow E], R:[F: G: H \rightarrow$ $F: I]$. Note that in the first two NFDs $y=\epsilon$.

Definition 2.7 (sideways) f is sideways if f is not upward, $x_{m}=y A_{m}$, and there exists an x_{i}, $1 \leq i<m$ such that $x_{i}=y A_{i}$.

The following are examples of sideways NFDs: $R:[A \rightarrow B], R: A:[B \rightarrow C]$

Definition 2.8 (downward) f is downward in all other cases, i.e., if $x_{m}=y A,|y| \geq 1$, and for all $x_{i}, 1 \leq i<m, y$ is not a proper prefix of x_{i}.
$R:[A \rightarrow B: C], R: A:[B: C \rightarrow D: E], R:[F: G: H \rightarrow F: I: J]$ are examples of downward NFDs.
Intuitively, f is upward if the value of x_{m} is determined by some attribute nested in the same set as $x_{m} . f$ is sideways if it is determined by attributes in the same level of nesting; and f is downward if it is determined by some paths that do not traverse the set that x_{m} is nested in.

Some observations follow from these definitions:

Observation 2.1 If an instance I satisfies an upward NFD $x_{0}:\left[x_{1}: x_{2} \rightarrow x_{1}\right]$, then given two values v_{1}, v_{2} of $x_{0}: x_{1}(I)$, either $v_{1}=v_{2}$, or $v_{1} \bigcap v_{2}=\emptyset^{3}$.

Observation 2.2 If an instance I satisfies a downward NFD $x_{0}:\left[x_{1}, \ldots, x_{m} \rightarrow x_{n}: A\right]$, then for any value v of $x_{0}(I)$ in which paths $x_{1} \ldots x_{m}$ are well-defined, all elements e of $x_{n}(v)$ have the same value for $A(e)$.

2.4 Discussion

In the definition of NFDs, the base path can be an arbitrary path rather than just a relation name. The motivation for allowing this is to syntactically differentiate between local and global functional dependencies: $R: A:[B \rightarrow C]$ is a local functional dependency in A, while $R:[A: B \rightarrow A: C]$ defines a global dependency between B and C. However, the local dependency is provably equivalent ${ }^{4}$ to the dependency $R:[A, A: B \rightarrow A: C]$. Intuitively, by requiring equality on A (as a set), the dependency between B and C becomes local to the set. Therefore, the expressive power of NFDs with arbitrary paths and relation names as base paths are the same. However, we believe that the first form is more intuitive.

Most of the early work on functional dependencies for the nested relational model either used the definition of functional dependencies given for the relational model [15], or proposed a simple extension to allow equality on sets [11]. Our definition clearly subsumes these definitions.

[^2]The idea of extending functional dependencies to allow path expressions instead of simple attribute names has been investigated by Weddell [22] and also by Tari et al. [18] in the context of an objectoriented data model. While Weddell's work supports a data model of classes, where each class is associated with a simple type (a flat record type), our model supports a nested relational model with arbitrary levels of nesting. In [22], following a path entails an implicit "dereference" operation, while in NFDs following a path means traversal into an element of a nested set. They present a set of inference rules and prove they are complete. We believe this work and ours are complementary and that it would be interesting to investigate how the two approaches could be combined into a single framework.

In [18], more general forms of functional dependencies for the object-oriented model are proposed. Their model supports nested sets, and classes of objects, and the dependencies allow inter- and intra-set dependencies, and also dependencies between objects without specifying an specific path. For example, it is possible to express that any path between two objects should lead to the same value. But, as opposed to our model, they assume that every level of nesting presents a key or an object ID. Inference rules for the proposed forms of functional dependencies are presented, but they do not claim or prove their completeness.

3 Inference Rules for NFDs Without Empty Sets

One of the most interesting questions involving NFDs is that of logical implication, i.e., deciding if a new dependency holds given a set of existing dependencies. This problem can be addressed from two perspectives: One is to develop algorithms to decide logical implication, for example, tableau chase techniques (see [12] for the relational model, and more recently $[16,17]$ for a complex object model). The other is to develop inference rules that allow us to derive new dependencies from the given ones.

In the relational model, a simple set of three rules - called Armstrong's Axioms - are sound and complete for functional dependencies (FDs). Presented using our notation, where "paths" are single attributes, they are:

- reflexivity:

if $A \in X$ then $R:[X \rightarrow A]$.

- augmentation:

if $R:[X \rightarrow Z]$ then $R:[X Y \rightarrow Z]$.

- transitivity:
if $R:[X \rightarrow Y], R:[Y \rightarrow Z]$ then $R:[X \rightarrow Z]$.

The logical implication problem for these rules is formally defined as:

Definition 3.1 Let $S C$ be a schema, Σ be a set of FDs over SC, and σ an FD over SC. Σ logically implies σ under $S C$, denoted $\Sigma \models_{S C} \sigma$ if for all instances I of $S C, I \models \Sigma$ implies $I \models \sigma$.

The implication problem for NFDs that we will consider is slightly changed from that for FDs: no instances are allowed to contain empty sets. Empty sets cause tremendous difficulties in reasoning since formulas such as

$$
\forall x \in R . P(x)
$$

are trivially true when R is empty. These problems are discussed in detail in Section 3.3. For completeness, we state below the implication problem that we are considering for NFDs.

The implication problem for NFDs that we are considering is therefore defined as:

Definition 3.2 Let $S C$ be a schema, Σ be a set of NFDs over $S C$, and σ an NFD over SC. Σ logically implies σ under $S C$, denoted $\Sigma \models_{S C} \sigma$ if for all instances I of $S C$ with no empty sets, $I \models \Sigma$ implies $I \models \sigma$.

In this section, we present a sound and complete set of inference rules for NFDs in the restricted case in which no empty sets are present in any instance. The extension to allow empty sets in instances is discussed in detail in Section 3.3.

3.1 NFD Rules

Conceptually, the NFD rules can be broken up into three categories: The first three mirror Armstrong's axioms - reflexivity, augmentation and transitivity. The next two - push-in and pull-out - transform between the alternate forms of NFDs discussed at the end of the last section. ${ }^{5}$ The last three rules allow inferences based solely on the nested form of the data - locality, singleton, and prefix.

In the following, $x, y, z, x_{0}, x_{1}, \ldots$ are path expressions, and $A_{1}, A_{2}, \ldots, B_{1}, B_{2}, \ldots$ are attribute labels. $X Y$ denotes $X \bigcup Y$, where X, Y are sets of path expressions, and $x: X$ denotes the set $\left\{x: x_{1}, \ldots x: x_{k}\right\}$, where $X=\left\{x_{1}, \ldots, x_{k}\right\}$.

The NFD-rules are:

- reflexivity:
if $x \in X$ then $x_{0}:[X \rightarrow x]$.
- augmentation:
if $x_{0}:[X \rightarrow z]$ then $x_{0}:[X Y \rightarrow z]$.
- transitivity:
if $x_{0}:\left[X \rightarrow x_{1}\right], \ldots, x_{0}:\left[X \rightarrow x_{n}\right]$,
$x_{0}:\left[x_{1}, \ldots, x_{n} \rightarrow y\right]$
then $x_{0}:[X \rightarrow y]$.
- push-in:
if $x_{0}: y:[X \rightarrow z]$ then $x_{0}:[y, y: X \rightarrow y: z]$
- pull-out:
if $x_{0}:[y, y: X \rightarrow y: z]$ then $x_{0}: y:[X \rightarrow z]$
- locality:
if $x_{0}:\left[A: X, B_{1}, \ldots, B_{k} \rightarrow A: z\right]$
then $x_{0}: A:[X \rightarrow z]$.
- singleton: if

[^3]1. $x_{0}:\left[x \rightarrow x: A_{1}\right], \ldots, x_{0}:\left[x \rightarrow x: A_{n}\right]$
2. type of x is $\left.\left\{<A_{1}, \ldots A_{n}\right\rangle\right\}$
then $x_{0}:\left[x: A_{1}, \ldots, x: A_{n} \rightarrow x\right]$

- prefix: if

1. $x_{0}:\left[x_{1}: A, x_{2}, \ldots, x_{k} \rightarrow y\right]$
2. x_{1} has one or more labels
3. x_{1} is not prefix of y
then $x_{0}:\left[x_{1}, x_{2}, \ldots, x_{k} \rightarrow y\right]$

As an example of the use of the NFD-rules, let R be a relation with schema $\{<A:\{<B:\{<C>\}, E:$ $\{\langle F, G\rangle\}\rangle\}, D\rangle\}$, on which the following NFDs are defined:
$(\operatorname{nfd} 1) R:[A: B: C, D \rightarrow A: E: F]$
$(\mathrm{nfd} 2) R: A:[B \rightarrow E: G]$
We claim that $R: A:[B \rightarrow E]$. The proof is as follows:

1. $R: A:[B: C \rightarrow E: F]$ by locality of nfd1.

The locality rule allows us to derive a local NFD from a global one by dismissing the attributes outside the level of nesting of the local NFD. In the example above, note that for any element in R, given a value of A there exists a unique value of D, since they are labels in a record type. Therefore, locally for any value of $A, B: C \rightarrow E: F$.
2. $R: A:[B \rightarrow E: F]$ by prefix rule on (1).
(1) states that whenever two tuples in R have a common value for C in the set B, then the value of $E: F$ must also agree. In particular, if two tuples agree on the value of B then they present a common element, since we assumed that there are no empty sets in instances of R.
3. $R: A: E:[\emptyset \rightarrow F]$ by locality of (2).

If in any tuple in $R: A$ the value of B determines the value of $E: F$, then all elements in E must agree on the value of F, otherwise (2) would be violated. Therefore, locally in any $A: E$ the value of F is constant.
4. $R: A:[E \rightarrow E: F]$ by push-in.

If the value of F is constant inside any value of $A: E$, then for any given value of $A: E$ there exists a unique value of F. Therefore, the whole set determines the value of F.
5. R:A:E:[$\emptyset \rightarrow G]$ by locality of $\operatorname{nfd} 2$.
6. $R: A:[E \rightarrow E: G]$ by push-in.
7. $R: A:[E: F, E: G \rightarrow E]$ by singleton with (4) and (6).

Since the value of the set E determines the value of each of its attributes, then E must be a singleton. Therefore, the values of its unique element determines the value of the set.
8. $R: A:[B \rightarrow E]$ by transitivity with (7), (2), and nfd2.

Lemma 3.1 (Soundness of NFD-rules) Let SC be a schema. The NFD-rules are sound for logical implication of NFDs under SC for the case when no empty sets are present in a instance.

Proof.

1. reflexivity: Suppose $f \equiv x_{0}:[X \rightarrow x]$ is not satisfied for some $x \in X$. Let v_{1}, v_{2} be two arbitrary values of $x_{0}:(I)$. If for some $y \in X, y\left(v_{1}\right) \neq y\left(v_{2}\right)$, then v_{1}, v_{2} can not violate f. If for all $y \in X$ $y\left(v_{1}\right)=y\left(v_{2}\right)$, and $x\left(v_{1}\right) \neq x\left(v_{2}\right), v_{1}, v_{2}$ violates f. But $x \in X$, therefore $x\left(v_{1}\right)=x\left(v_{2}\right)$.
2. augmentation: Suppose I satisfies $f_{1} \equiv x_{0}:[X \rightarrow z]$, but not $f_{2} \equiv x_{0}:[X Y \rightarrow z]$. Let v_{1}, v_{2} be two arbitrary values of $x_{0}:(I)$. Suppose for all $y \in Y, y\left(v_{1}\right)=y\left(v_{2}\right)$, and for all $x \in X$, $x\left(v_{1}\right)=x\left(v_{2}\right)$, yet $z\left(v_{1}\right) \neq z\left(v_{2}\right)$. But since f_{1} is satisfied and for all $x \in X, x\left(v_{1}\right)=x\left(v_{2}\right)$, $z\left(v_{1}\right)=z\left(v_{2}\right)$, a contradiction.
3. transitivity: Suppose I satisfies $f_{1} \equiv x_{0}:\left[X \rightarrow x_{1}\right], \ldots, f_{n} \equiv x_{0}:\left[X \rightarrow x_{n}\right], f_{y} \equiv x_{0}:$ $\left[x_{1}, \ldots, x_{n} \rightarrow y\right]$. Yet, I does not satisfy $f \equiv x_{0}:[X \rightarrow y]$. Let v_{1}, v_{2} be two arbitrary values of $x_{0}:(I)$. Suppose $p\left(v_{1}\right)=p\left(v_{2}\right)$ for all $p \in X$. Since I satisfies $f_{i} x_{i}\left(v_{1}\right)=x_{i}\left(v_{2}\right)$ for all x_{i}, $1 \leq i \leq n$. But I also satisfies f_{y}, therefore $y\left(v_{1}\right)=y\left(v_{2}\right)$, and I satisfies f.
4. push-in: Suppose I satisfies $f_{1} \equiv x_{0}: y:[X \rightarrow z]$, but not $f_{2} \equiv x_{0}:[y, y: X \rightarrow y: z]$. Let v_{1}, v_{2} be two arbitrary values of $x_{0}:(I)$, such that $y\left(v_{1}\right)=y\left(v_{2}\right)$, and e_{1} an element in $y\left(v_{1}\right)$, and e_{2} an element in $y\left(v_{2}\right)$ such that for all $x \in X, x\left(e_{1}\right)=x\left(e_{2}\right)$, and $z\left(e_{1}\right) \neq z\left(e_{2}\right)$. But $\left\{e_{1}, e_{2}\right\} \subseteq y\left(v_{1}\right)$, and since I satisfies $f_{1}, z\left(e_{1}\right)=z\left(e_{2}\right)$.
5. pull-out: Suppose I satisfies $f_{1} \equiv x_{0}:[y, y: X \rightarrow y: z]$, but not $f_{2} \equiv x_{0}: y:[X \rightarrow z]$. Let v_{1} be an arbitrary value of $x_{0}:(I)$, and e_{1}, e_{2} two elements in $y\left(v_{1}\right)$ such that for all $x \in X$, $x\left(e_{1}\right)=x\left(e_{2}\right)$, and $z\left(e_{1}\right) \neq z\left(e_{2}\right)$. But from f_{1} if $y\left(v_{1}\right)=y\left(v_{1}\right)$ and $x\left(e_{1}\right)=x\left(e_{2}\right)$ for all $x \in X$ then $z\left(e_{1}\right)=z\left(e_{2}\right)$, a contradiction.
6. locality: Suppose I satisfies $f_{1} \equiv x_{0}:\left[A: x_{1}, \ldots, A: x_{m}, B_{1}, \ldots, B_{k} \rightarrow A: x_{n}\right]$, but not $f_{2} \equiv x_{0}: A:\left[x_{1}, \ldots, x_{m} \rightarrow x_{n}\right]$. Let r be an arbitrary value of $x_{0}:(I)$, and v_{1}, v_{2} arbitrary values of $A:(r)$. Suppose $x_{i}\left(v_{1}\right)=x_{i}\left(v_{2}\right)$ for all $x_{i}, 1 \leq i \leq m$, yet $x_{n}\left(v_{1}\right) \neq x_{n}\left(v_{2}\right)$. But $x_{i}\left(v_{1}\right), x_{i}\left(v_{2}\right)$ are values of $A: x_{i}(r)$, and since r is a record with labels A, B_{1}, \ldots, B_{k} there is only one value for all $B_{i}, 1 \leq i \leq k$. Since I satisfies $f_{1}, x_{n}\left(v_{1}\right)=x_{n}\left(v_{2}\right)$.
7. singleton: Note first that if the value of a set x is proven to be a singleton, then the unique element of the set determines the value of the set. In particular, if the element of the set is a record then the set of attributes of the record, $\left\{A_{1}, \ldots, A_{n}\right\}$, determines the value of the set, i.e., $x_{0}:\left[x: A_{1}, \ldots, x: A_{n} \rightarrow x\right]$. Suppose I satisfies $f_{1} \equiv x_{0}:\left[x \rightarrow x: A_{1}\right], \ldots, f_{n} \equiv x_{0}:\left[x \rightarrow x: A_{n}\right]$. Yet, I does not satisfy $f \equiv x_{0}:\left[x: A_{1}, \ldots, x: A_{n} \rightarrow x\right]$. We'll show that under the assumptions x is a singleton. Suppose not. Let v_{1} be arbitrary value of $x_{0}:(I)$, and let e_{1}, e_{2} be two elements in v_{1}. There must exist some A_{i} such that $A_{i}\left(e_{1}\right) \neq A_{i}\left(e_{2}\right)$. But I satisfies $x_{0}:\left[x \rightarrow x: A_{i}\right]$, and therefore for all $A_{i}, A_{i}\left(e_{1}\right)=A_{i}\left(e_{2}\right)$, and as a consequence x is a singleton.
8. prefix: Suppose I satisfies $f_{1} \equiv x_{0}:\left[x_{1}: A, x_{2}, \ldots, x_{k} \rightarrow y\right],\left|x_{1}\right| \geq 1$, but I does not satisfy $f_{2} \equiv x_{0}:\left[x_{1}, x_{2}, \ldots, x_{k} \rightarrow y\right]$. Let v_{1}, v_{2} be two arbitrary value of $x_{0}:(I)$. Suppose for all $x_{i}, x_{i}\left(v_{1}\right)=x_{i}\left(v_{2}\right)$, but $y\left(v_{1}\right) \neq y\left(v_{2}\right) . x_{1}\left(v_{1}\right)=x_{1}\left(v_{2}\right)$ by assumption. Then for every element $e_{1} \in x_{1}\left(v_{1}\right)$ there exists an element $e_{2} \in x_{1}\left(v_{2}\right)$ such that $x_{1}: A\left(v_{1}\right)=x_{1}: A\left(v_{2}\right)$. The value of $y\left(v_{1}\right), y\left(v_{2}\right)$ does not depend on the elements e_{1}, e_{2} chosen because x_{1} is not prefix of y by assumption. Therefore, $y\left(v_{1}\right)=y\left(v_{2}\right)$, which contradicts our initial assumption. Hence, $x_{0}:\left[x_{1} \ldots x_{k} \rightarrow y\right]$.

There are several rules that are consequences of the rules defined above. Here we give just one that will be useful in later discussions.

- full-locality:

if

1. $x_{0}:[x: X, Y \rightarrow x: z]$
2. x is not a proper prefix of any $y \in Y$
then $x_{0}:[x, x: X \rightarrow x: z]$.

Proof: Let $x=A_{1}: \ldots: A_{k}$, i.e., we can rewrite the NFD as $x_{0}:\left[Y, A_{1}: \ldots: A_{k}: X \rightarrow A_{1}: \ldots: A_{k}:\right.$ $z]$. Apply the prefix rule multiple times on paths in Y. We get $x_{0}:\left[B_{1}, \ldots, B_{m}, A_{1}: Y_{1}, \ldots, A_{1}\right.$: $\left.\ldots: A_{k-1}: Y_{k-1}, A_{1}: \ldots: A_{k}: X \rightarrow A_{1}: \ldots: A_{k}: z\right]$, where for all $y \in Y_{i}, 1 \leq i<k,|y|=1$, and for all $p \in\left\{B_{1}, \ldots B_{m}\right\} \bigcup A_{1}: Y_{1} \bigcup \ldots \bigcup A_{1}: \ldots: A_{k-1}: Y_{k-1}$ there exists a $q \in Y$ such that $q=p q^{\prime}$. We can then apply the locality rule and get $x_{0}: A_{1}:\left[Y_{1}, \ldots, A_{2}: \ldots: A_{k-1}: Y_{k-1}, A_{2}: \ldots: A_{k}: X \rightarrow\right.$ $\left.A_{2}: \ldots: A_{k}: z\right]$. Applying locality rule $k-1$ more times we get $x_{0}: A_{1}: \ldots: A_{k}:[X \rightarrow z]$. Then by push-in $x_{0}:[x, x: X \rightarrow x: z]$

3.2 Completeness of the NFD-rules

In order to prove completeness, we need to define the set of paths in a schema, and the closure of a set of paths.

Definition 3.3 Let $S C=(\mathcal{R}, \mathcal{S})$ be a schema. Then the paths of $S C$, denoted as Paths $(S C)$, is the set of all path expressions $p \equiv R p^{\prime}$, such that $R \in \mathcal{R}$, and p^{\prime} is well-typed with respect to τ^{R}. Similarly, the paths of $R, R \in \mathcal{R}$, denoted as Paths $s_{S C}(R)$, is the set of paths p such that $p \in \operatorname{Paths}(S C)$, and $p \equiv R p^{\prime}$.

Definition 3.4 Let SC be a schema, Σ a set of NFDs over SC, x_{0} a path expression, and $X=$ $\left\{x_{1}, \ldots, x_{n}\right\}$, such that $\left\{x_{0}, x_{0}: x_{1}, \ldots, x_{0}: x_{n}\right\} \subseteq \operatorname{Paths}(S C)$. The closure of X under x_{0}, and Σ, denoted $\left(x_{0}, X, \Sigma\right)^{*, S C}$ (or $\left(x_{0}, X\right)^{*}$ when $\Sigma, S C$ are understood) is the set of paths $x_{0}: q$ such that $x_{0}: q \in \operatorname{Paths}(S C)$, and $x_{0}:[X \rightarrow q]$ can be derived from the NFD-rules.

Let $S C=(\mathcal{R}, \mathcal{S})$ be a schema, Σ a set of NFDs over $S C, X$ a set of paths such that $X \subseteq \operatorname{Paths}(R)$, $R \in \mathcal{R}$, and x_{0} a path in $\operatorname{Paths}(R)$. The completeness proof is based on the construction of an instance I of R such that $I \models \Sigma$, but $I \not \models x_{0}:[X \rightarrow x]$ if $x \notin\left(x_{0}, X, \Sigma\right)^{*, S C}$. In the following we describe the construction of I.

We assume that the domain of all base types are infinite, and to make the exposition simpler, we consider a unique base type b in our data model.

Construction of I : Let closure be $\left(x_{0}, X, \Sigma\right)^{*, S C}$, where $x_{0} \equiv R x_{0}^{\prime}$. value (p) are global variables. If p is a set of records and in its construction $\operatorname{value}\left(p^{\prime}\right)$ is used (this happens when p is prefix of p^{\prime}) then value $\left(p^{\prime}\right)$ should be thought as a placeholder until its value is evaluated.
val $:=$ newValue();
for all $p \in$ closure

$$
\operatorname{value}(p):=\operatorname{assignVal}(v a l, p)
$$

$I:=\operatorname{assign} X_{0}(R) ;$

The auxiliary functions are defined as:
newValue(): returns a fresh new value in the domain of b.
$\operatorname{assign} \mathbf{X}_{0}(\mathbf{p})$: it is a function that starts the construction of instance I by assigning new fresh values to every path that is not a prefix of $x_{0} . r$ is a local variable of type $\left\langle A_{1}, \ldots A_{n}\right\rangle$, where type of p is $\left\{\left\langle A_{1}, \ldots A_{n}\right\rangle\right\}$.
if $p=x_{0}$ then return $\operatorname{assignVal}\left(0, x_{0}\right)$;
for each $A_{i}, 1 \leq i \leq n$
if $p: A_{i}$ is prefix of x_{0} then

$$
r . A_{i}:=\operatorname{assign} X_{0}\left(p: A_{i}\right)
$$

else

$$
r . A_{i}:=\operatorname{assignNew}\left(p: A_{i}\right)
$$

return $\{r\}$;
assignVal (val, \mathbf{p}): it is a function that gives a value val for a path p depending on the type of p in a schema $S C . r_{1}$, and r_{2} are local variables of type t, where the type of p is $\{t\}$.

```
if \(\operatorname{type}_{S C}(p)=b\) then return val;
if type \({ }_{S C}(p)=\{b\}\) then return \(\{\) val \(\}\);
if \(\left.\operatorname{type}_{S C}(p)=\left\{<A_{1}, \ldots, A_{n}\right\rangle\right\}\) then
    for all \(A_{i}, 1 \leq i \leq n\)
        if \(p: A_{i} \in\) closure then
            \(r_{1} . A_{i}:=\operatorname{value}\left(p: A_{i}\right) ;\)
            \(r_{2} . A_{i}:=\operatorname{value}\left(p: A_{i}\right) ;\)
            else
            \(r_{1} . A_{i}:=\operatorname{assignNew}\left(p: A_{i}\right) ;\)
            \(r_{2} . A_{i}:=\operatorname{assignNew}\left(p: A_{i}\right) ;\)
    return \(\left\{r_{1}, r_{2}\right\}\);
```

assignNew (\mathbf{p}): it is a function that gives a new fresh value for a path $p, p \notin$ closure, depending on the type of p in a schema $S C$. If type of p is $\{t\}$, then r is a local variable of type t.

```
if type SC
if type SC
if type SC
        for all }\mp@subsup{A}{i}{},1\leqi\leq
            if p:A}\mp@subsup{A}{i}{}\in\overline{closure then
            r.A}\mp@subsup{A}{i}{}:=\operatorname{value}(p:\mp@subsup{A}{i}{}
            else r.A.A}:=\operatorname{assignNew}(p:\mp@subsup{A}{i}{}
        if {p:A}\mp@subsup{A}{1}{},\ldots,p:\mp@subsup{A}{n}{}}\subseteq\mathrm{ closure then
            return {r,newRow (p,(p,\emptyset\mp@subsup{)}{}{*})}
    else
            return {r}
```

newRow(p, sameVal): The type of p is $\left\{<A_{1}, \ldots A_{n}>\right\}$, where $p \notin$ closure, and for all $A_{i}, 1 \leq i \leq n$, $p: A_{i} \in$ closure. This function returns a record, where the value of $A_{i}, 1 \leq i \leq n$ is set to value $\left(p: A_{i}\right)$ if $p: A_{i} \in$ sameVal, otherwise A_{i} is given a new fresh value. r is a local variable of type $<A_{1}, \ldots A_{n}>$
for all label $A_{i}, 1 \leq i \leq n$
if $p: A_{i} \in$ sameVal then

$$
r . A_{i}:=\operatorname{value}\left(p: A_{i}\right) ;
$$

else

$$
\begin{aligned}
& \text { if type } e_{S C}\left(p: A_{i}\right)=b \text { then } \\
& r \cdot A_{i}:=\text { newValue }() ; \\
& \text { if } \text { type }_{S C}\left(p: A_{i}\right)=\{b\} \text { then } \\
& r \cdot A_{i}:=\{\text { newValue }()\} ; \\
& \text { if type }{ }_{S C}\left(p: A_{i}\right)=\left\{<B_{1}, \ldots, B_{k}>\right\} \text { then } \\
& r \cdot A_{i}:=\left\{\text { newRow }\left(p: A_{i}, \text { sameVal }\right)\right\} ;
\end{aligned}
$$

return r;

To illustrate the algorithm described consider the following examples.

Example 3.1 Let R be a relation with schema $\{<A, B:\{<C>\}, D, E:\{\langle F, G\rangle\}, H:\{\langle J, L\rangle\}, I, M$: $\{\langle N, O\rangle\}\rangle$. The set Σ of NFDs defined for R are:

$$
\begin{aligned}
& R:[A \rightarrow B: C] \\
& R:[B: C \rightarrow D] \\
& R:[D \rightarrow E: F] \\
& R:[A \rightarrow E: G] \\
& R:[B: C \rightarrow H] \\
& R:[I \rightarrow H: J]
\end{aligned}
$$

Then, $(R,\{B\}, \Sigma)^{*}=\{R: B, R: B: C, R: D, R: E: F, R: H, R: H: J\}$. The following instance is constructed using the algorithm presented.

A	B	D	E		H		I	M	
	C		F	G	J	L		N	O
3	0	0	0	5	0 0	1 2	\{7\}	9	10
	C		F	G	J	L		N	O
4	0	0	0	6	0 0	1 2	\{8\}	11	12

Example 3.2 Let R be a relation with schema $\{\langle A:\{\langle B:\{\langle C, D, E:\{\langle F, G\rangle\}\rangle\}\rangle\}, H\rangle\}$. The set Σ of NFDs defined for R are:

$$
\begin{aligned}
& R:[A: B: C \rightarrow A: B] \\
& R:[A: B: C \rightarrow A: B: E: F] \\
& R:[H \rightarrow A: B: D]
\end{aligned}
$$

Then, $(R,\{A: B: C\}, \Sigma)^{*}=\{R: A: B: C, R: A: B, R: A: B: D, R: A: B: E: F\}$. The following instance is constructed using the algorithm presented.

A				H
B				11
C	D		E	
	0	F	G	
0		0	1	
0		F	G	
	0	${ }^{0}$		
C	D		E	
3	0	F	G	
		5	6	
B				
C	D		E	
0	0	F	G	
		0		12
	0	F	G	
0		0	2	
		B		
C	D		E	
		F	G	
7	0	9	10	

In order to simplify the completeness proof, we first make a number of observations about the instance constructed as a result of the algorithm described above, as well as consequences of the NFD-rules.

Observation 3.1 Let $p, p: q$ be paths such that $p \notin$ closure, type of p is $\left.\left\{<A_{1}, \ldots, A_{k}\right\rangle\right\}$, and for all $A_{i}, 1 \leq i \leq k, p: A_{i} \in$ closure. If $p: q \in(p, \emptyset)^{*}$ then $p: q \in$ closure.

Proof: Let $p \equiv x_{0}: p^{\prime}$. If $|q|=1$ then it is direct because by assumption for all $A_{i}, x_{0}:\left[X \rightarrow p^{\prime}: A_{i}\right]$. Suppose $|q|>1$, i.e., $q=A_{1}^{i}: q^{\prime}$, where, $\left|q^{\prime}\right| \geq 1$. By assumption, $x_{0}: p^{\prime}[\emptyset \rightarrow q]$. Then by push-in $x_{0}\left[p^{\prime} \rightarrow p^{\prime}: A_{1}^{i}: q^{\prime}\right]$. By full-locality, $x_{0}\left[p^{\prime}: A_{1}^{i} \rightarrow p^{\prime}: A_{1}^{i}: q^{\prime}\right]$, and then by transitivity, $x_{0}\left[X \rightarrow p^{\prime}: A_{1}^{i}:\right.$ $\left.q^{\prime}\right]$. Therefore, $p: q \in$ closure.

Observation 3.2 Let $x_{0}: p$ be a path. If $x_{0}: p \in$ closure then any $x_{0}: p(I)$ is constructed either by assignVal or newRow. If $x_{0}: p \notin$ closure then any $x_{0}: p(I)$ is constructed either by assignNew or newRow.

Proof: By construction.

Observation 3.3 Let p be a set-valued path, and v a value of $p(I)$. If v was built by newRow $\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$ then v is a singleton.

Proof: By construction.

Observation 3.4 Let p be a path of type $\left\{<A_{1}, \ldots A_{k}>\right\}$, and v a value of $p(I)$. If v has more than one element then either

1. $p=x_{0}$ or $p \in$ closure and there exists an $A_{i}, 1 \leq i \leq k$, such that $p: A_{i} \notin$ closure, or
2. $p \notin$ closure and for all $A_{i}, 1 \leq i \leq k, p: A_{i} \in$ closure, and there exists an $A_{j}, 1 \leq i \leq k$, such that $p: A_{j} \notin(p, \emptyset)^{*}$.

Proof: The function newRow always builds singletons. Therefore, if v has more than one element, v was built by assignVal or assignNew. assignVal builds the value of x_{0}, and every path $q \in$ closure. Suppose for all $A_{i}, 1 \leq i \leq k, p: A_{i} \in$ closure. Then, by construction, rows r_{1}, r_{2} are identical, and the value resulting from the function is a singleton. Therefore, there exists an A_{i}, such that $p: A_{i} \notin$ closure. assignNew builds the value of path $q \notin$ closure, and it only results in a set with more than one element if $\left\{p: A_{1} \ldots p: A_{k}\right\} \subseteq$ closure. Let $p \equiv x_{0}: p^{\prime}$. Suppose for all $A_{i}, 1 \leq i \leq k, A_{i} \in(p, \emptyset)^{*}$. Then for all A_{i}, by push-in rule $x_{0}:\left[p \rightarrow p: A_{i}\right]$, and then by singleton rule $x_{0}\left[p: A_{1}, \ldots, p: A_{k} \rightarrow p\right]$, and $p \in$ closure by transitivity. This contradicts our assumption that $p \notin$ closure, and therefore, there exists at least an A_{i}, such that $p: A_{i} \notin(p, \emptyset)^{*}$.

Observation 3.5 Let $f \equiv x_{0}:[X \rightarrow y]$ be an NFD and w the largest common prefix between y, and any path $x \in X$, i.e., $y \equiv w y^{\prime}$, and $x \equiv w x^{\prime}$. If f is an upwards or sideways NFD, given a value v of $x_{0}: w(I)$, there exists a unique value of $y^{\prime}(v)$.

Proof: If $y^{\prime} \equiv \epsilon$, it is trivial. By definition of upwards and sideways NFDs, $y \equiv A_{1}: \ldots: A_{k-1}: A_{k}$, where $w \equiv A_{1}: \ldots: A_{k-1}:, k>1$. Therefore the type of w is a record, and given a value of a record, there is only one value for a given attribute A_{k}.

Observation 3.6 Let $p, p: q$ be paths such that type of $p: q$ is $\left\{\left\langle B_{1}, \ldots, B_{n}\right\rangle\right\}$. If $\left\{p: q: B_{1}, \ldots, p\right.$: $\left.q: B_{n}\right\} \subseteq(p, \emptyset)^{*}$ then $p: q \in(p, \emptyset)^{*}$.

Proof: Let $p \equiv x_{0}: p^{\prime}$. By assumption, for all $B_{i}, 1 \leq i \leq n, x_{0}:\left[p^{\prime} \rightarrow p^{\prime}: q: B_{i}\right]$ then by full-locality $x_{0}:\left[p^{\prime}: q \rightarrow p^{\prime}: q: B_{i}\right]$. Then by singleton, $x_{0}:\left[p^{\prime}: q: B_{1}, \ldots, p^{\prime}: q: B_{n} \rightarrow p^{\prime}: q\right]$. By transitivity, $x_{0}:\left[p^{\prime} \rightarrow p^{\prime}: q\right]$, and by pull-out $x_{0}: p^{\prime}[\emptyset \rightarrow q]$.

Observation 3.7 Let p, p^{\prime} be paths. If there exists a value v of $p(I)$ built by newRow $\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$ then p^{\prime} is a prefix of $p\left(p \equiv p^{\prime}: q\right)$, for all q^{\prime} prefix of $q, p^{\prime}: q^{\prime} \notin\left(p^{\prime}, \emptyset\right)^{*}$, v is part of an element resulting from assign $N e w\left(p^{\prime}\right), p^{\prime} \notin$ closure, type of p^{\prime} is $\left\{\left\langle A_{1}, \ldots, A_{k}\right\rangle\right\}$, and for all $A_{i}, 1 \leq i \leq k, p^{\prime}: A_{i} \in$ closure.

Proof: By construction, if v was built by $\operatorname{new} \operatorname{Row}\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$, this value is inside a value built by newRow $\left(p^{\prime},\left(p^{\prime}, \emptyset\right)^{*}\right)$, which is an element of a value built by $\operatorname{assign} N e w\left(p^{\prime}\right)$, where $p^{\prime} \notin \operatorname{closure}$, type of p^{\prime} is $\left\{\left\langle A_{1}, \ldots, A_{k}\right\rangle\right\}$, and for all $A_{i}, p^{\prime}: A_{i} \in$ closure. If in the construction of newRow $\left(p^{\prime},\left(p^{\prime}, \emptyset\right)^{*}\right)$, there exists a prefix q^{\prime} of q such that $p^{\prime}: q^{\prime} \in\left(p^{\prime}, \emptyset\right)^{*}$, then the value of $p^{\prime}: q^{\prime}$ is set to value $\left(p^{\prime}: q^{\prime}\right)$, and therefore the value of p in v could not be constructed by newRow $\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$.

Observation 3.8 Let $p, p q$ be paths. If v is a value of $p q(I)$ built by newRow $\left(p q,(p, \emptyset)^{*}\right)$ then v is distinct from any other value in I.

Proof: By Observation 3.7 if v was built by $\operatorname{newRow}\left(p q,(p, \emptyset)^{*}\right.$ then for all prefix q^{\prime} of $q, p q^{\prime} \notin(p, \emptyset)^{*}$. We'll show that v is distinct by induction on the structure of $p q$.

Base Case: If type of $p q$ is a base type or a set of base types and $p q \notin(p, \emptyset)^{*}$, then the value returned by newRow is given by newValue(), which is a value distinct from any other in I.
Inductive Step: Let type of $p: q$ be $\left\{<B_{1}, \ldots, B_{n}>\right\}$. By Observation 3.6, if $p: q \notin(p, \emptyset)^{*}$ then there exists at least one $B_{i}, 1 \leq i \leq n$, such that $p: q: B_{i} \notin(p, \emptyset)^{*}$. By inductive hypothesis the values of $p: q: B_{i}$ are distinct and therefore the value of $p: q$ is distinct.

Observation 3.9 Let p, pq be paths, and v a value returned by newRow $\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$. If $q(v)$ is not a value distinct from any other value in I then there exists a prefix q^{\prime} of q such that $p: q^{\prime} \in\left(p^{\prime}, \emptyset\right)^{*}$.

Proof: It is a direct consequence of Observations 3.8 and 3.7.

Observation 3.10 Let $p, p q$ be paths, and v a value resulting from function new $\operatorname{Row}\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$), where p^{\prime} is a prefix of p, and $q \equiv B_{1}: \ldots: B_{k}$. If for all $\left.B_{i}, 1 \leq i \leq k, p: B_{1}: \ldots: B_{i} \notin(p, \emptyset)^{*}\right)$ then there exists a single value of $q(v)$.

Proof: By construction.

Observation 3.11 Let $p, p q$ be paths, and v a value resulting from function assignNew(p), where $q \equiv B_{1}: \ldots: B_{k}$. If for all $B_{i}, 1 \leq i \leq k, p: B_{1}: \ldots: B_{i} \notin$ closure then there exists a single value of $q(v)$.

Proof: By construction.
Observation 3.12 Let p be a path of type $\left\{<A_{1}, \ldots, A_{k}>\right\}$, pq a path not in closure, and v a value of $p:(I)$. If for all prefix q^{\prime} of $q, p: q^{\prime} \notin$ closure then for all q^{\prime} there exists a unique value of $q^{\prime}(v)$.

Proof: By Observation 3.2, the value of any path not in closure is given either by function assignNew, or newRow. Suppose $q \equiv A_{i}: z$. If $A_{i}(v)$ was built by $\operatorname{assign} N e w(p)$, then by Observation 3.11, for every prefix q^{\prime} of q there exists a single value of $q^{\prime}(v)$. If $A_{i}(v)$ was built by $\operatorname{new} \operatorname{Row}\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$, then by Observation 3.7, $p^{\prime} \notin$ closure, type of p^{\prime} is $\left\{<A_{1}, \ldots, A_{k}>\right\}$, and for all $A_{i}, 1 \leq i \leq k, p^{\prime}: A_{i} \in$ closure. If for all prefix q^{\prime} of $q p: q^{\prime} \notin$ closure, then by Observation 3.1, $p: q^{\prime} \notin\left(p^{\prime}, \emptyset\right)^{*}$. Then, by Observation 3.10 there exists a single value of $q^{\prime}(v)$.

Observation 3.13 Let p,pq be paths, and v a value resulting from function assignVal (l, p)), for some value l, where $q \equiv B_{1}: \ldots: B_{k}$. If for all $B_{i}, 1 \leq i \leq k, p: B_{1}: \ldots: B_{i} \in$ closure then there exists a single value of $q(v)$ which is value $(p q)$.

Proof: By construction.

Observation 3.14 If p is a path and x_{0} is not a proper prefix of p then there is a unique value of $p(I)$.
Proof: If $p=x_{0}$ there is a single value of $p(I)$ given by $\operatorname{assignVal}(0, p)$ (note that there is a single value of $x_{0}(I)$, but $x_{0}:(I)$ can have one or two different values). If $p \neq x_{0}$ then p is either a prefix of x_{0}, or $p \equiv x_{0}^{\prime} A_{1}: \ldots: A_{k}$, where x_{0}^{\prime} is a proper prefix of x_{0}. The value of any prefix of x_{0} is given by assign X_{0} which always returns a singleton, and therefore have a unique value. The value of $p^{\prime} A_{1}$ is given by assignNew. Since for all $p^{\prime} A_{1}: \ldots: A_{i}, 1 \leq i \leq k, p^{\prime} A_{1}: \ldots: A_{i} \notin$ closure, since x_{0} is not a prefix, they have a unique value by Observation 3.11.

Observation 3.15 Let p be a path in closure, and v a value of $p(I)$. If $v \neq$ value (p) then its value is given by function newRow $\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$, where $p \equiv p^{\prime}: q$ and for all prefix q^{\prime} of $q, p^{\prime}: q^{\prime} \notin\left(p^{\prime}, \emptyset\right)^{*}$.

Proof: By construction. Both functions assignVal, and assignNew assign value(p) when $p \in$ closure. Therefore, if $v \neq \operatorname{value}(p)$ it had to be assigned by newRow. The other consequences follow from Observation 3.7.

Observation 3.16 Let $p, p q$ be paths, and v a value constructed by assignNew (p), such that $p \notin$ closure, type of p is $\left\{\left\langle A_{1}, \ldots, A_{k}\right\rangle\right\}$, and for all $A_{i}, 1 \leq i \leq k, p: A_{i} \in$ closure. If for all prefix q^{\prime} of $q, p q^{\prime} \notin(p, \emptyset)^{*}$, then there exists at least two values of $q(v)$.

Proof: By construction. If for all $A_{i}, p: A_{i} \in$ closure, $v=\left\{e_{1}, e_{2}\right\}$, where for all $A_{i}, A_{i}\left(e_{1}\right)=v a l u e(p$: $\left.A_{i}\right)$, and e_{2} is constructed by $\operatorname{newRow}\left(p,(p, \emptyset)^{*}\right)$. Since for all prefix q^{\prime} of $q, p q^{\prime} \notin(p, \emptyset)^{*}$, the value of $p q$ is given by newRow $\left(p q,(p, \emptyset)^{*}\right)$, and by Observation 3.8 this is a value distinct from any other value in I. Therefore, $q(v)$ has at least two values, one inside $\operatorname{value}\left(p: A_{i}\right)$, and the other built by newRow.

Observation 3.17 Let $p, p q$ be paths, such that $p q \in$ closure, and v a value of $p(I)$. There exists at least two distinct values of $q(v)$ if and only if there exists a prefix q^{\prime} of q such that a value of $q(v)$ is built by newRow $\left(p q,\left(p q^{\prime}, \emptyset\right)^{*}\right)$.

Proof:

(\leftarrow) Let $q \equiv q^{\prime} q^{\prime \prime}$. If there exists a value built by newRow $\left(p q,\left(p q^{\prime}, \emptyset\right)^{*}\right)$, then by Observation 3.7, $p q^{\prime}(v)$ was built by assign $N e w\left(p q^{\prime}\right), p q^{\prime} \notin$ closure, type of $p q^{\prime}$ is $\left\{\left\langle A_{1}, \ldots, A_{k}\right\rangle\right\}$, for all $A_{i}, q^{\prime}: A_{i} \in$ closure, and for all prefix r of $q^{\prime \prime} p q^{\prime} \notin\left(p q^{\prime}, \emptyset\right)^{*}$. Then by Observation 3.16 there exists at least two values of $q^{\prime \prime}$ in $q^{\prime}(v)$, and therefore, in $q(v)$.
(\rightarrow) By Observation 3.15, if there exists two different values of $p q(I)$, and $p q \in$ closure, then at least one of them was built by function newRow. Suppose $p q \equiv p^{\prime} w$, where p^{\prime} is the largest prefix of $p q$ such that $q(v)$ was built by newRow $\left(p q,\left(p^{\prime}, \emptyset\right)^{*}\right)$. By Observation 3.7 , the value v^{\prime} of $p^{\prime}(I)$ was built by assign New $\left(p^{\prime}\right)$. Then, by 3.16 there exists at least two values of $w\left(v^{\prime}\right)$. So, we only have to show that $\left|p^{\prime}\right| \geq|p|$. Suppose not. By construction, $v^{\prime}=\left\{e_{1}, e_{2}\right\}$, where for all $A_{i}, A_{i}\left(e_{1}\right)=\operatorname{value}\left(p^{\prime}: A_{i}\right)$, and e_{2} is the value returned by newRow $\left(p^{\prime},\left(p^{\prime}, \emptyset\right)^{*}\right)$. If $\left|p^{\prime}\right|<|p|$, then the value of v is either part of value $\left(p^{\prime}: A_{i}\right)$, or a value built by newRow $\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$. Suppose v is in value $\left(p^{\prime}: A_{i}\right)$. By construction, value $\left(p^{\prime}: A_{i}\right)$ cannot contain a value built by newRow $\left(p q,\left(t^{\prime}, \emptyset\right)^{*}\right)$, where $\left|t^{\prime}\right|<\left|p^{\prime}: A_{i}\right|$, which contradicts our assumption that p^{\prime} was the largest prefix of $p q$, such that $q(v)$ was built by newRow $\left(p q,\left(p^{\prime}, \emptyset\right)^{*}\right)$. Now suppose that v was built by newRow $\left(p,\left(p^{\prime}, \emptyset\right)^{*}\right)$. If $q(v)$ was built by newRow $\left(p q,\left(p^{\prime}, \emptyset\right)^{*}\right)$ then by Observation 3.7 for all prefix w^{\prime} of $w, p^{\prime} w \notin\left(p^{\prime}, \emptyset\right)^{*}$. By Observation 3.10 there exists a unique value of $q(v)$, which contradicts our assumption that there exists at least two distinct values of $q(v)$. Therefore, $\left|p^{\prime}\right| \geq|p|$.

Observation 3.18 Let p be a path such that $p \notin$ closure. Then function assignNew (p) never returns the same value for p in the construction of I.

Proof: By induction on the structure of p.
Base Case: If p is a base type of a set of base types then the value is given by newValue(), which always
returns a fresh new value. Since by assumption the domain of the base types is infinite, we're done. Inductive Step: Let type of p be $\left.\left\{<A_{1}, \ldots, A_{k}\right\rangle\right\}$. If there exists an $A_{i}, 1 \leq i \leq k$, such that $p: A_{i} \notin$ closure, then the value returned by assign $N e w$ is a singleton in which at least one attribute is built by assignNew. By inductive hypothesis, these are all distinct values. Therefore, the value of p is also distinct as a set. If $\left\{p: A_{1}, \ldots p: A_{k}\right\} \subseteq$ closure then assignNew returns a set of two elements, where one of the them is built by $\operatorname{newRow}\left(p,(p, \emptyset)^{*}\right)$. By Observation 3.8 these values are always distinct, and therefore the value of p is also distinct as a set.

Observation 3.19 Let $p, p: q$ be paths, v a value of $p(I)$, and v_{1}, v_{2} two elements in v such that $v_{1} \neq v_{2}$. If $q\left(v_{1}\right)=q\left(v_{2}\right)$ then there exists a prefix q^{\prime} of q such that $p: q^{\prime} \in$ closure.

Proof: Suppose, on the contrary, that for all prefix $q^{\prime \prime}$ of $q, p: q^{\prime \prime} \notin$ closure. By Observation 3.4, if v has at least two distinct elements and for all prefix $q^{\prime \prime}$ of $q, q^{\prime \prime} \notin$ closure, either $p \equiv x_{0}$, or $p \in$ closure. x_{0} is always built by assignVal by construction, and by Observation $3.2 v$ was built either by newRow, or assignVal. If v was built by newRow, then by Observation 3.10 for all prefix q^{\prime} of q there exists a unique value of $q^{\prime}(v)$, a contradiction. Therefore, p was built by assignVal, and by construction for all prefix $q^{\prime \prime}$ of $q, q^{\prime \prime}(v)$ was built by assignNew. But by Observation 3.18 the values returned by these functions are always distinct, which contradicts our assumption that $q\left(v_{1}\right)=q\left(v_{2}\right)$. Therefore, there exists a prefix q^{\prime} of q such that $p: q^{\prime} \in$ closure.

Observation 3.20 Let p be a path, and v be a value of $p(I)$. If v was built by assignVal, then there exists no path pq such that pq was built by newRow $\left(p q,(z, \emptyset)^{*}\right)$, where $|z|<|p|$.

Proof: Supposer there exists a path $p q$ built by $\operatorname{newRow}\left(p q,(z, \emptyset)^{*}\right)$, where $|z|<|p|$. By Observation 3.7, $z \notin$ closure, z is a prefix of $p q\left(p q \equiv z z^{\prime}\right)$, and for all prefix $z^{\prime \prime}$ of $z^{\prime}, z z^{\prime \prime} \notin(z, \emptyset)^{*}$. But since $|z|<|p|, p \equiv z p^{\prime}$ where p^{\prime} is a prefix of z^{\prime}. If v was built by assignVal then by construction $p \in(z, \emptyset)^{*}$, a contradiction.

Observation 3.21 Let $p, p q$ be paths. If v is a value of $p(I)$ built by assignVal and $p q \in$ closure then for every element $e \in v$ there exists a value of $q(e)=\operatorname{value}(p q)$.

Proof: We will show that if v is a value of $p(I)$ given by assignVal and there exists a value of a path $p p^{\prime} \in$ closure given by newRow then there exists also a value of $p^{\prime}(v)$ given by assignVal $=$ value $\left(p p^{\prime}\right)$. Let v^{\prime} be the result of function newRow $\left(p p^{\prime},(z, \emptyset)^{*}\right)$. By Observation 3.7, v^{\prime} is part of an element resulting from assignNew (z), type of z is $\left\{\left\langle A_{1}, \ldots, A_{k}\right\rangle\right\}$, and for all $A_{i}, 1 \leq i \leq k, z: A_{i} \in$ closure. By construction, in the other element resulting from $\operatorname{assignNew}(z)$, the value of $z: A_{i}$ is value $\left(z: A_{i}\right)$, for all A_{i}, which are built by assignVal. By Observation $3.20,|z|>|p|\left(z \equiv p z^{\prime}\right)$. So, there exists a value of z^{p} rime : $A_{i}(v)=\operatorname{value}\left(z^{\prime}: A_{i}\right)$. Since for some $A_{i}, z^{\prime}: A_{i}$ is a prefix of $p p^{\prime}$, and functions assignVal, and assignNew always assigns value $(p q)$ when $p q \in$ closure, there exists also a value of $p^{\prime}(v)$ given by assignVal $=$ value $\left(p p^{\prime}\right)$. By construction, both elements in $p(I)$ are built in the same way by assignVal, and therefore this is true for every element in v.

Observation 3.22 Let $p, p q$ be paths and v a value of $p(I)$. If p is the largest prefix of $p q$ built by assignVal and $p q \notin$ closure then for every prefix q^{\prime} of $q, p q^{\prime} \notin$ closure, and there exists a value of $q^{\prime}(v)$ built by assignNew.

Proof: First, we will show that for all prefix q^{\prime} of $q, p q^{\prime} \notin$ closure. Suppose there exists a prefix q^{\prime} of q in closure. By Observation 3.2, if $p q^{\prime} \in$ closure, $p q^{\prime}(v)$ was built by either assignVal or newRow. $p q^{\prime}$ cannot be built by assignVal because this contradicts our assumption that p is the largest prefix of $p q$ built by this function. Therefore, it was built by new $\operatorname{Row}\left(p q^{\prime},(z, \emptyset)^{*}\right)$. By Observation 3.20, $|z|>|p|$, and by Observation $3.7 z \notin$ closure, z is the result of assignNew, type of z is $\left\{<A_{1}, \ldots, A_{k}>\right\}$, and for all $A_{i}, 1 \leq i \leq k, z: A_{i} \in$ closure. If the value of z is the result of assignNew, then by construction there exists a value of $z: A_{i}$ prefix of $p q$ built by assignVal, which also contradicts that p is the largest prefix of $p q$ built by assignVal. Therefore, for all q^{\prime} prefix of $q, p q^{\prime} \in$ closure.

Now, we will show that for all q^{\prime} prefix of q, there exists a value of $p q^{\prime}(v)$ built by assignNew. Since for all $q^{\prime}, p q^{\prime} \notin$ closure, by Observation 3.2, pqq^{\prime} was built either by assignNew or newRow. So we have to show that there exists no $p q^{\prime}$ built by newRow $\left(p q^{\prime},(z, \emptyset)^{*}\right)$. Suppose there exists one. By Observation 3.20 , since v was built by assignVal, $|z|>|p|$. By Observation 3.7, z is the result of assignNew, type of z is $\left\{<A_{1}, \ldots, A_{k}>\right\}$, and for all $A_{i}, 1 \leq i \leq k, z: A_{i} \in$ closure. By construction of assignNew, there exists a value of $z: A_{i}$ built by assignVal. Since for some $A_{i}, z: A_{i} \equiv p z^{\prime}$ and $p z^{\prime}$ is a prefix of $p q^{\prime}$, it contradicts our assumption that p is the largest prefix of $p q$ built by assignVal. Therefore, for all q^{\prime}, $p q^{\prime}$ was built by assignNew.

Now, we're ready to prove the completeness of the inference rules.
Lemma 3.2 (Completeness of the NFD-rules) The NFD-rules are complete for all instances that contain no empty sets.

Proof: From the definition of closure, $x_{0}:[X \rightarrow y]$ follows from a given set of NFDs Σ using the NFD-rules if and only if $x_{0}: y \in\left(x_{0}, X, \Sigma\right)^{(*, S C)}$.

We have to show that considering the instance I constructed as described:

1. $I=\Sigma$
2. $I \not \vDash x_{0}:[X \rightarrow y]$ if $x_{0}: y \notin\left(x_{0}, X, \Sigma\right)^{*, S C}$.
1) $I \models \Sigma$

We will show that for any $f \equiv u_{0}:[U \rightarrow z] \in \Sigma, I \models f$. Suppose on the contrary, that $I \not \vDash f$.
If x_{0} is not prefix of $u_{0}: z$ then by Observation 3.14, there exists a single value for $u_{0}: z(I)$ and therefore I cannot violate f. Therefore, x_{0} is a prefix of $u_{0}: z$.

Suppose $\left|u_{0}\right|<\left|x_{0}\right|$, i.e., $x_{0}=u_{0}: u_{0}^{\prime}$. Let $B_{1} u_{1}, \ldots, B_{l} u_{l}$ be the paths in U that do not have u_{0}^{\prime} as prefix, and u_{l+1}, \ldots, u_{k} be the paths in U that have u_{0}^{\prime} as prefix, i.e., for all $u_{i}, l<i \leq k, u_{i}=u_{0}^{\prime}: u_{i}^{\prime}$. Applying the prefix rule multiple times we have $u_{0}:\left[u_{0}^{\prime}: u_{l+1}^{\prime}, \ldots, u_{0}^{\prime}: u_{k}^{\prime} B_{1} \ldots B_{l} \rightarrow u_{0}^{\prime}: z^{\prime}\right]$. Applying locality, and pull-out, we get $f^{\prime} \equiv u_{0}: u_{0}^{\prime}:\left[u_{l+1}^{\prime}, \ldots, u_{k}^{\prime} \rightarrow z^{\prime}\right]$.

For every $B_{j} u_{j}, 1 \leq j \leq l$, there exists a unique value in I by Observation 3.14. Therefore, if $I \models f^{\prime}$, then $I \models f$.

So, we can assume that $\left|u_{0}\right| \geq\left|x_{0}\right|$, i.e. $u_{0} \equiv x_{0}: u_{0}^{\prime}$. Let w be the largest common prefix between z and any $u \in U$. We will use induction on $|w|$.

Base Case: $|w|=0$
Case 1: $|z|=1$

By definition, f is either an upward or sideways NFD. Let $U \equiv\left\{u_{1}, \ldots u_{n}\right\}, v$ and arbitrary value of $u_{0}(I)$, and v_{1}, v_{2} two arbitrary elements in v such that for all $u \in U, u\left(v_{1}\right)=u\left(v_{2}\right)$. By Observation 3.5 , if v_{1}, and v_{2} traverse exactly the same path, there exists a unique value of $z\left(v_{1}\right)=z\left(v_{2}\right)$ if f is a upwards or sideways NFD. Therefore, I cannot violate f.

So, there exists a prefix p of $u \in U$ such that $p\left(v_{1}\right) \neq p\left(v_{2}\right)$, i.e., v_{1} and v_{2} do not follow identical paths. By Observation 3.19, for all $u_{i} \in U$ there exists a prefix u_{i}^{\prime} of u_{i} such that $u_{i}^{\prime} \in$ closure. Since there is no common prefix between any U and z, we can apply the prefix rule multiple times and get $u_{0}:\left[u_{1}^{\prime}, \ldots, u_{n}^{\prime} \rightarrow z\right]$.

If $z\left(v_{1}\right) \neq z\left(v_{2}\right)$ (and $|z|=1$), then u_{0} must have at least two elements. By Observation 3.2 and 3.4, either u_{0} was built by assignVal, and $u_{0} \in$ closure or $u_{0} \equiv x_{0}$, or it was built by assignNew, and $u_{0} \notin$ closure. Consider the first case, and let $u_{0} \equiv x_{0}: u_{0}^{\prime}$. Then by push-in rule $x_{0}:\left[u_{0}^{\prime}, u_{0}^{\prime}: u_{1}^{\prime}, \ldots, u_{0}^{\prime}\right.$: $\left.u_{n}^{\prime} \rightarrow u_{0}^{\prime}: z\right]$, and by transitivity $x_{0}: z \in$ closure. But if $x_{0}: z \in$ closure, by the construction of v by assignVal, $z\left(v_{1}\right)=z\left(v_{2}\right)=\operatorname{value}\left(x_{0}: z\right)$.

Now suppose v was built by assignNew, type of u_{0} is $\left\{\left\langle A_{1}, \ldots, A_{k}\right\rangle\right\}$, for all $A_{i}, 1 \leq i \leq k, u_{0}$: $A_{i} \in$ closure, and $v=\left\{e_{1}, e_{2}\right\}$, where $A_{i}\left(e_{1}\right)=\operatorname{value}\left(u_{0}: A i\right)$, and the value of e_{2} is given by newRow $\left(p,(p, \emptyset)^{*}\right)$. If $z\left(e_{1}\right) \neq z\left(e_{2}\right)$, and $|z|=1$, then $z \notin\left(u_{0}, \emptyset\right)^{*}$. By Observation 3.8, if for all u_{i}, $1 \leq i \leq n, u_{i}\left(e_{1}\right)=u_{i}\left(e_{2}\right)$ then $u_{i}\left(e_{2}\right)$ cannot have been built by newRow $\left(u_{0}: u_{i},\left(u_{0}, \emptyset\right)^{*}\right)$. Therefore, for all u_{i} there exists a prefix u_{i}^{\prime} of u_{i}, such that $u_{0}: u_{i}^{\prime} \in\left(u_{0}, \emptyset\right)^{*}$. By transitivity, $u_{0}: z \in\left(u_{0}, \emptyset\right)^{*}$, a contradiction.

Case 2: $|z|>1$.
By definition, f is a downward NFD. We will consider two cases:

1. $u_{0}: z \in$ closure:

Let v be an arbitrary value of $u_{0}(I)$. We will show that there exists a single value of $v(z)$. From Observations 3.7 and 3.17 , if there exists two distinct values of $u_{0}: q(v)$ then there must exist a prefix z^{\prime} of z such that $u_{0}: z^{\prime} \notin$ closure, and $u_{0}: z \notin\left(u_{0}: z^{\prime}, \emptyset\right)^{*}$. But since $|w|=0$ by full-locality rule, for all prefix z^{\prime} of $z u_{0}:\left[z^{\prime} \rightarrow z\right]$. Let $z \equiv z^{\prime} z^{\prime \prime}$. By pull-out rule, $u_{0}: z^{\prime}\left[\emptyset \rightarrow z^{\prime \prime}\right.$ for all prefix z^{\prime} of z. Therefore, there is no prefix z that satisfies the conditions above, and there exists a single value of $z(v)$.
2. $u_{0}: z \notin$ closure:

Let v be an arbitrary value of $u_{0}(I)$. We will first show that if $u_{0}: z \notin$ closure then for any element $e \in v$ there exists a single value of $z(e)$. Suppose the contrary. By Observation 3.12, if for all prefix p of $z u_{0}: p \notin$ closure then there exists a unique value of $z(e)$. There fore, if there exists two different values of $z(e)$ then there exists a prefix z^{\prime} of z such that $u_{0}: z^{\prime} \in$ closure. Let $z \equiv z^{\prime}: z^{\prime \prime}$, and $u_{0} \equiv x_{0}: u_{0}^{\prime}$. Since there is no common prefix between z and any $u_{i} \in U$, by the full-locality rule $x_{0}: u_{0}^{\prime}\left[z^{\prime} \rightarrow z^{\prime}: z^{\prime \prime}\right]$, by pull-out, $x_{0}: u_{0}^{\prime}: z^{\prime}\left[\emptyset \rightarrow z^{\prime \prime}\right]$, and by pushin $x_{0}:\left[u_{0}^{\prime}: z^{\prime} \rightarrow u_{0}^{\prime}: z^{\prime}: z^{\prime \prime}\right]$. Then, by transitivity, $u_{0}: z \in$ closure, which contradicts our assumption. Therefore, if $u_{0}: z \notin$ closure then there exists no prefix z^{\prime} of z such that $u_{0}: z^{\prime} \in$ closure and for any element $e \in u_{0}(I)$ there exists a single value of $z(e)$.
Now we have to show that if $u_{0}: z \notin$ closure there are no two distinct elements v_{1}, v_{2} in $u_{0}(I)$ such that for all $u_{i} \in U u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$, and $z\left(v_{1}\right) \neq z\left(v_{2}\right)$. Suppose there exists such elements v_{1}, v_{2}. By Observation 3.19, if for all $u_{i} \in U, u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$ then for all u_{i} there exists a prefix u_{i}^{\prime} such that $u_{i}^{\prime} \in$ closure. Since there is no common prefix between any $u_{i} \in U$ and z, applying the prefix rule we get $x_{0}: u_{0}^{\prime}:\left[u_{1}^{\prime}, \ldots, u_{n}^{\prime} \rightarrow z\right]$, and by push-in rule $x_{0}:\left[u_{0}^{\prime}, u_{0}^{\prime}: u_{1}^{\prime}, \ldots, u_{0}^{\prime}: u_{n}^{\prime} \rightarrow u_{0}^{\prime}: z\right]$. We've shown that for all prefix z^{\prime} of $z u_{0}: z^{\prime} \notin$ closure. Then by Observation 3.4 since $u_{0}(I)$ has
two elements then either $u_{0} \in$ closure or $u_{0} \equiv x_{0}$. But then, by transitivity, $u_{0}: z \in$ closure, a contradiction.

Inductive Step: $|w|>0$.
Let $w \equiv A: w^{\prime}$, and $f \equiv u_{0}:\left[A: u_{1}, \ldots, A: u_{k}, u_{k+1}, \ldots, u_{m} \rightarrow A: z\right]$, where A is not prefix of any $u_{i}, k<i \leq m$. By locality, $u_{0}: A\left[u_{1} \ldots u_{k} \rightarrow z\right]$. By inductive hypothesis, this NFD is satisfied. Therefore, if for every value v of $u_{0}(I)$ all elements agree on the value of A, then I cannot violate f. So, there exists a value v of $u_{0}(I)$ such that v has at least two elements, v_{1}, v_{2}, and $A\left(v_{1}\right) \neq A\left(v_{2}\right)$. By Observation 3.4, either $u_{0} \in$ closure and $u_{0}: A \notin$ closure, or $u_{0} \notin$ closure and $u_{0}: A \in$ closure.

We will first show that if there exists two elements $v_{1}, v_{2} \in u_{0}(I)$ such that $A\left(v_{1}\right) \neq A\left(v_{2}\right)$ and for all $u_{i}, 1 \leq i \leq m, u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$ then $u_{0}: z \in$ closure. Let $w \equiv A: w^{\prime}, u_{0} \equiv x_{0}: u_{0}^{\prime}$, and $f \equiv u_{0}\left[u_{1}, \ldots, u_{m} \rightarrow w: z\right]$. By Observation 3.19, for all $u_{i}, 1 \leq i \leq m$, there exists a prefix u_{i}^{\prime} of u_{i}, such that $u_{0}: u_{i}^{\prime} \in$ closure. Let u_{i}^{\prime} be the longest prefix of u_{i} such that $u_{0}: u_{i}^{\prime} \in$ closure, for all i, $1 \leq i \leq m$. We will consider two cases:

Case 1: For all u_{i}, u_{i}^{\prime} is not a prefix of $w: z$.
In this case, we can apply the prefix rule multiple times and get $u_{0}:\left[u_{1}^{\prime}, \ldots, u_{m}^{\prime} \rightarrow w: z\right]$. By push-in $x_{0}:\left[u_{0}^{\prime}, u_{0}^{\prime}: u_{1}^{\prime}, \ldots, u_{0}^{\prime}: u_{m}^{\prime} \rightarrow u_{0}^{\prime}: z\right]$.

If $x_{0}: u_{0}^{\prime} \in$ closure or $u_{0} \equiv x_{0}$, then by transitivity, $u_{0}: z \in$ closure. If $x_{0}: u_{0} \notin$ closure, then $u_{0}: A \in$ closure by Observation 3.4. By Observations 3.2 and $3.3 v$ was built by $\operatorname{assignNew}\left(u_{0}\right)$, and $u_{0}: A \notin\left(u_{0}, \emptyset\right)^{*}$. By construction, either v_{1} or v_{2} was built by newRow $\left(u_{0},\left(u_{0}, \emptyset\right)^{*}\right)$. Since for all $u_{i}, 1 \leq i \leq m, u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$, by Observation 3.9 for all u_{i} there exists a prefix u_{i}^{\prime}, such that $u_{0}: u_{i}^{\prime} \in\left(u_{0}, \emptyset\right)^{*}$. Then by transitivity, $u_{0}: z \in\left(u_{0}, \emptyset\right)^{*}$. I.e., $x_{0}: u_{0}^{\prime}[\emptyset \rightarrow z]$. By push-in rule $x_{0}:\left[u_{0}^{\prime} \rightarrow u_{0}^{\prime}: z\right]$. Let $z \equiv A: z^{\prime}$, then by full-locality rule $x_{0}:\left[u_{0}^{\prime}: A \rightarrow u_{0}^{\prime}: A: z^{\prime}\right]$. Since $u_{0}: A \in$ closure, by transitivity, $u_{0}: z \in$ closure.

Case 2: There exists a u_{i} such that u_{i}^{\prime} is a prefix of $w: z$.
Let P be the set of paths p such that p is the largest prefix in closure of some $u_{i} \in U$, and p is also a prefix of $w: z$. If for any $p \in P, p \equiv w: z$, then by the reflexivity rule $u_{0}: w: z \in$ closure. Let p_{i} be the element in P that corresponds to some $u_{i} \in U$. Consider each p_{i}, where $\left|p_{i}\right|<|w: z|$. By Observation 3.2, $p_{i}\left(v_{1}\right), p_{i}\left(v_{2}\right)$ were built either by assignVal, or newRow.

First, consider the case when $p_{i}\left(v_{1}\right)$ was built by $\operatorname{new} \operatorname{Row}\left(p_{i},\left(p_{i}^{\prime}, \emptyset\right)^{*}\right)$, where p_{i}^{\prime} is a prefix of p_{i}. Let $u_{i} \equiv p_{i}: u_{i}^{\prime}$, and $v p$ the value of $p_{i}\left(v_{1}\right)$. If $u\left(v_{2}\right)=v p$, then by Observation 3.9 there exists a prefix $u_{i}^{\prime \prime}$ of u_{i}^{\prime} such that $p_{i}: u_{i}^{\prime \prime} \in\left(p_{i}^{\prime}, \emptyset\right)^{*}$, and by Observation $3.1 p_{i}: u_{i}^{\prime \prime} \in$ closure.

If for all $u_{i} \in U, p_{i}$ was built by function newRow, then by Observation 3.9 and 3.1 there exists a prefix $u_{i}^{\prime \prime}$ of u_{i}^{\prime} such that $p_{i}: u_{i}^{\prime \prime} \in$ closure. Using the prefix rule we get $u_{0}:\left[p_{1}: u_{1}^{\prime \prime}, \ldots, p_{m}: u_{m}^{\prime \prime} \rightarrow w: z\right]$. Let p_{k} be the largest prefix common to some $p_{i}, 1 \leq i \leq m$, and $w, w: z \equiv p_{k}: z^{\prime}, u_{0} \equiv x_{0}: u_{0}^{\prime}$. By pull-out $x_{0}: u_{0}^{\prime}: p_{k}:\left[u_{k}^{\prime \prime} \rightarrow z^{\prime}\right]$. By push-in $x_{0}:\left[u_{0}^{\prime}: p_{k}, u_{0}^{\prime}: p_{k}: u_{k}^{\prime \prime} \rightarrow u_{0}^{\prime}: p_{k}: z^{\prime}\right]$. Therefore, $x_{0}: u_{0}^{\prime}: p_{k}: z^{\prime} \equiv u_{0}: w: z \in$ closure.

Now suppose there exists a $p_{i}\left(v_{1}\right)$ built by function assignVal. If for all prefix $u_{i}^{\prime \prime}$ of $u_{i}^{\prime} p_{i}: u_{i}^{\prime \prime} \notin$ closure then by Observation 3.19 it can not be the case that $u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$. Therefore, for every u_{i}^{\prime} there exists a prefix $u_{i}^{\prime \prime}$ such that $u_{i}^{\prime \prime} \in$ closure. Therefore, we can use the same argument as used in the previous case to show that $u_{0}: w: z \in$ closure.

Now, we'll show that if $u_{0}: z \in$ closure then $z\left(v_{1}\right)=z\left(v_{2}\right)$. Suppose not. Let $w \equiv A: w^{\prime}$, where $|w| \geq 1, v$ be a value of $u_{0}(I)$, and v_{1}, v_{2} two elements in v such that $v_{1}(A) \neq v_{2}(A)$, and for all u_{i},
$1 \leq i \leq m, u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$, but $z\left(v_{1}\right) \neq z\left(v_{2}\right)$. By Observation 3.15, either $z\left(v_{1}\right)$, or $z\left(v_{2}\right)$, or both were built by newRow $\left(u_{0}: z,(p, \emptyset)^{*}\right)$, where $u_{0}: z \equiv p: z^{\prime}$, and $u_{0}: z \notin(p, \emptyset)^{*}$. By Observation 3.17, since there exists two distinct values of : $z(v),|p| \geq\left|u_{0}\right|$. If $|p|>|w|$ then by full-locality and pull-out rules, $u_{0}: p\left[\emptyset \rightarrow z^{\prime}\right]$, and $u_{0}: z \in(p, \emptyset)^{*}$, and therefore $z\left(v_{1}\right)=z\left(v_{2}\right)=$ value (z). Therefore, $\left|u_{0}\right| \leq|p| \leq|w|$. Let $p \equiv u_{0}: p^{\prime}$, and $f \equiv u_{0}:\left[p^{\prime}: u_{1}, \ldots, p^{\prime}: u_{k}, u_{k+1}, \ldots, u_{m} \rightarrow p^{\prime}: z\right]$. By full-locality and pull-out rules, $p:\left[u_{1}, \ldots, u_{k} \rightarrow z\right]$.

Let $w \equiv p: w^{\prime}$. For all $u_{i}, 1 \leq i \leq k$, if $p: u_{i}\left(v_{1}\right)=p: u_{i}\left(v_{2}\right)$, then by Observation 3.9, there exists a prefix u^{\prime} of u_{i} such that $p: u_{i}^{\prime} \in(p, \emptyset)^{*}$. By Observation 3.7, if $p: z^{\prime}\left(v_{1}\right)$ was built by new $\operatorname{Row}(p$: $\left.z^{\prime},(p, \emptyset)^{*}\right)$ then for all prefix $z^{\prime \prime}$ of $z^{\prime}, p: z^{\prime \prime} \notin(p, \emptyset)^{*}$. Therefore, for all u_{i}^{\prime}, if $p: u_{i}^{\prime} \in(p, \emptyset)^{*}$, then $p: u_{i}^{\prime}$ is not a prefix of $p: z^{\prime}$, and we can apply the prefix rule multiple times to get $p:\left[u_{1}^{\prime}, \ldots, u_{k}^{\prime} \rightarrow z^{\prime}\right]$. But then $p: z^{\prime} \in(p, \emptyset)^{*}$, a contradiction. Therefore, $z\left(v_{1}\right)$ (and $z\left(v_{2}\right)$) could not be built by newRow and $z\left(v_{1}\right)=z\left(v_{2}\right)=\operatorname{value}\left(u_{0}: z\right)$.
2) $I \not \models x_{0}:[X \rightarrow y]$ if $x_{0}: y \notin\left(x_{0}, X, \Sigma\right)^{*, S C}$

We will first show that either $x_{0}(I)$ has two elements or there exists a prefix y^{\prime} of y such that $x_{0}: y^{\prime}(I)$ was built by assignVal and $x_{0}: y^{\prime}(I)$ has two elements. Suppose on the contrary, that there exists no path $p,|p| \geq\left|x_{0}\right|$ such that p is a prefix of $x_{0}: y, p(I)$ has two elements, and $p(I)$ was built by assignVal. By construction, $x_{0}(I)$ is built by assignVal, and by Observation 3.4 if it has only one element, for all labels A in $x_{0}, x_{0}: A \in$ closure. By construction, in this case, the value of all $x_{0}: A \mathrm{~s}$ are given by $\operatorname{assignVal}\left(x_{0}: A\right)$. But by Observation 3.4 if $\operatorname{assignVal}\left(x_{0}: A\right)$ has only one element then all labels in $x_{0}: A$ must also be in closure. But, by assumption, $x_{0}: y \notin$ closure. Therefore, either there exists a prefix y^{\prime} of y such that $x_{0}: y^{\prime}(I)$ was built by assignVal and it has two elements, or $x_{0}(I)$ has two elements.

Let p be the largest prefix of $x_{0}: y$ built by assignVal with two elements. We've shown $|p| \geq\left|x_{0}\right|$. Let $f=x_{0}:\left[p: u_{1}, \ldots p: u_{k}, u_{k+1}, \ldots u_{m} \rightarrow p: y^{\prime}\right]$. We claim that if $I \not \vDash x_{0}: p:\left[u_{1}, \ldots, u_{k} \rightarrow y^{\prime}\right]$, then $I \not \vDash f$. If $I \not \vDash x_{0}: p:\left[u_{1}, \ldots, u_{k} \rightarrow y^{\prime}\right]$ then there exists two elements v_{1}, v_{2} in $p(I)$ such that $u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$ for all $i, 1 \leq i \leq k$, and $y^{\prime}\left(v_{1}\right) \neq y^{\prime}\left(v_{2}\right)$. Let v_{0} be the value of $x_{0}:(I)$ where $p\left(v_{0}\right)=\left\{v_{1}, v_{2}\right\}$. Take one value of $u_{i}\left(v_{0}\right)$, for all $i, k<i \leq m$, and the values of $u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$ for all $i, 1 \leq i \leq k$. Then by assumption $y^{\prime}\left(v_{1}\right) \neq y^{\prime}\left(v_{2}\right)$ and therefore $I \not \vDash f$.

Therefore, we have to show that if p is the largest prefix of $x_{0}: y$ built by assignVal, and $p(I)=\left\{v_{1}, v_{2}\right\}$, $v_{1} \neq v_{2}$, then for all $u_{i}, 1 \leq i \leq k$, there exists a value of $u_{i}\left(v_{1}\right), u_{i}\left(v_{2}\right)$ such that $u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)$, and $y^{\prime}\left(v_{1}\right) \neq y^{\prime}\left(v_{2}\right)$. By assumption, $v_{1} \neq v_{2}$. Since for all $u_{i}, 1 \leq i \leq k, x_{0}: p: u_{i} \in$ closure, by Observation 3.21 for all u_{i} there exists values of $u_{i}\left(v_{1}\right), u_{i}\left(v_{2}\right)$, such that $u_{i}\left(v_{1}\right)=u_{i}\left(v_{2}\right)=\operatorname{value}\left(x_{0}: p: u_{i}\right)$.

Let $y^{\prime} \equiv A_{1}: \ldots: A_{n}$. Since p is the largest prefix of $x_{0}: y$ built by assignVal, by Observation 3.22 , for all $A_{i}, 1 \leq i \leq n, A_{1}: \ldots: A_{i} \notin$ closure, and $A_{1}: \ldots: A_{i}\left(v_{1}\right), A_{1}: \ldots: A_{i}\left(v_{2}\right)$ were built by assignNew. By Observation 3.12 there exists a single value of $y^{\prime}\left(v_{1}\right)$, and $y^{\prime}\left(v_{2}\right)$, and by Observation 3.18 they are distinct.

3.3 Discussion

Simple NFDs. Note that push-in and pull-out simply change between equivalent forms of NFDs. I.e., an NFD of form $R: y:\left[x_{1}, \ldots, x_{k} \rightarrow z\right]$ is equivalent to $R:\left[y, y: x_{1}, \ldots, y: x_{k} \rightarrow y: z\right]$. Therefore, we could change the definition of an NFD to allow only relation names as the base path (x_{0}) of an NFD, without changing its expressive power.

In this simpler form of NFDs, it can be shown that there are only six inference rules: push-in and pull-out are unnecessary. Of the remaining rules, only locality must be modified to what we call full-locality: if

1. $x_{0}:[x: X, Y \rightarrow x: z]$
2. x is not a proper prefix of any $y \in Y$
then $x_{0}:[x, x: X \rightarrow x: z]$.
Note that full-locality combines the pull-out and locality rules. As an example of the need to use fulllocality rather than locality, consider the following:

Example 3.3 Let f_{1} be the NFD $R:[A: B: C, A: D \rightarrow A: B: E]$. Applying the locality rule, we can get $R:[A, A: B: C, A: D \rightarrow A: B: E]$, but not $R:[A: B, A: B: C \rightarrow A: B: E]$. The latter is derivable using full-locality.

Although the simpler form of NFDs yields a smaller set of axioms, we believe that the first form, which allows an arbitrary base path, is more intuitive since it makes a syntactic distinction between inter- and intra-set dependencies.

Comparison with inference rules for the relational model. Since the simple form of NFDs appears to closely resemble the definition of functional dependencies for the relational model, the natural question that arises is: Can we infer all the simple NFDs using the derivation rules for functional dependencies (FDs) and multivalued dependencies (MVDs) for the relational model?

The answer to this question is no. The "extra" rules that are not part of Armstrong axioms, locality, singleton, and prefix, are the rules that allow us to infer NFDs based solely on the nested form of the data.

We will first informally define multivalued dependencies and present their inference rules. Then, using an example, show that some NFDs cannot be inferred using only Armstrong axioms and the MVD-rules.

Let R be a relation, U the set of attributes in R, and X, and Y subsets of U. We say that "X multidetermines Y " (written $X \rightarrow Y$), or "there is a multivalued dependecy of Y on X ", if given values for the attributes of X there is a set of zero or more associated values for the attributes of Y, and this set of Y-values is not connected in any way to values of the attributes in $U-X-Y$ [20]. In the following, we will consider the following inference rules for MVDs [20]:

- complementation: if $X \rightarrow Y$, then $X \rightarrow(U-X-Y)$.
- MVD-reflexivity: if $Y \subseteq X$, then $X \rightarrow Y$.
- MVD-augmentation: if $X \rightarrow Y$, and $V \subseteq W$, then $X W \rightarrow Y V$.
- MVD-transitivity: if $X \rightarrow Y$, and $Y \rightarrow Z$, then $X \rightarrow(Z-Y)$.

Also, we will consider the following rules that relate FDs and MVDs:

- conversion: if $X \rightarrow Y$, then $X \rightarrow Y$.
- interaction: if $X \rightarrow Y, Z \subseteq Y$, and for some W disjoint from $Y, W \rightarrow Z$, then $X \rightarrow Z$.

It's been shown that for the relational model, Armstrong's axioms plus the rules above are sound and complete for logical implication of FDs and MVDs considered together. So, the question we posed above can be rephrased as: are these rules complete for logical implication of NFDs? We will show that this is not the case. In the following example, we present a possible flatten representation of an instance from our model and how NFDs could be translated as a set of FDs and MVDs in this model.

Example 3.4 Let R be a relation with schema $\{\langle A:\{\langle B, C\rangle\}, D:\{\langle E, F\rangle\}\rangle$ with the following constraints:
$R:[D: E \rightarrow A: B]$
$R:[A: B \rightarrow A: C]$
$R: D:[E \rightarrow F]$.
Let I be an instance of R :

A		D	
B	C	E	F
1	2	3	5
B	C	E	F
1	2	3	6
		5	7
B	C	E	F
3	4	4	5

Now suppose we build I^{\prime}, a "flatten" representation of I with the relational schema $R^{\prime}=\{<A, A: B, A$: $C, D, D: E, D: F>\}$ as:

A	$A: B$	$A: C$	D	$D: E$	$D: F$
$\{<B: 1, C: 2>\}$	1	2	$\{\langle E: 3, F: 5>\}$	3	5
$\{<B: 1, C: 2>\}$	1	2	$\{<E: 3, F: 6>,\langle E: 5, F: 7\rangle\}$	3	6
$\{<B: 1, C: 2>\}$	1	2	$\{<E: 3, F: 6>,\langle E: 5, F: 7\rangle\}$	5	7
$\{<B: 3, C: 4>\}$	3	4	$\{\langle E: 4, F: 5\rangle\}$	4	5

The NFDs defined on R could be expressed on R^{\prime} as:
$R^{\prime}[D: E \rightarrow A: B]$
$R^{\prime}[A: B \rightarrow A: C]$
$R^{\prime}[D, D: E \rightarrow D: F]$.
Notice that the last constraint needs to enforce equality on attribute D, since it is a local dependency in D. For example, in I^{\prime}, it is not the case that $R^{\prime}[D: E \rightarrow D: F]$.

Also there are two multivalued dependencies resulting from the unnesting of R :
$R^{\prime}[A \rightarrow A: B, A: C]$
$R^{\prime}[D \rightarrow D: E, D: F]$.
Using only Armstrong axioms on R^{\prime} we are able to derive dependencies as:

- $R^{\prime}:[D: E \rightarrow A: C]$, by transitivity, and
- $R^{\prime}:[D: E, D: F \rightarrow A: C]$ by augmentation.

Other dependencies can be derived using the MVD-rules. For example:

- $R^{\prime}:[D \rightarrow A: B]$ can be derived using the complementation and interaction rules. Similarly, using the NFD-rules $R:[D \rightarrow A: B]$ can be directly derived from the prefix rule.
- $R^{\prime}:[A \rightarrow A: B]$ can be derived using the interaction rule. Also, using the NFD-rules $R:[A \rightarrow$ $A: B]$ can be derived from locality, and push-in rules.

But, the dependency $R^{\prime}:[D \rightarrow A]$ cannot be derived from the rules for the relational model, although $R:[D \rightarrow A]$ can be derived using the NFD rules singleton, transitivity, locality, and push-in. The reason is that although in R^{\prime} we express the relation between a set-valued attribute and its elements by a multi-valued dependency, as in $R^{\prime}:[A \rightarrow A: B, A: C]$, we don't actually express that B, and C are the (only) attributes in A. Therefore, using the relational rules, we can derive $R^{\prime}:[D \rightarrow A: B]$, $R^{\prime}:[D \rightarrow A: C], R^{\prime}:[A \rightarrow A: B], R^{\prime}:[A \rightarrow A: C]$, but we cannot derive $R^{\prime}:[A: B, A: C \rightarrow A]$, which by transitive would result $R^{\prime}:[D \rightarrow A]$. The derivation step missing in this case is expressed by the singleton rule.

Some previous work on normal forms for the nested relational model, as of Ozsoyoglu and Yuan [15], and Mok, Ng, and Embley [14], use only the inference rules for FDs and MVDs of the relational model. But their data model is different because there are no labels for set-valued attributes, and therefore they cannot be referenced by any dependency. For example, the relation R in the example above would be defined in this model as $\left.\langle<B, C\rangle^{*},\langle E, F\rangle^{*}\right\rangle$, where $\langle B, C\rangle^{*}$ represents a set of records with attributes B, and C. The first two dependencies defined on R would be defined as:
$R:[D: E \rightarrow A: B]$
$R:[A: B \rightarrow A: C]$
But the third dependency cannot be expressed in this model, since the absence of labels for set-valued attributes prevents equality on sets. In this simpler nested relational model, the derivation rules for FDs and MVDs are sound and complete [14]. One interesting point, though, is that in [14] one of the concerns in the normalization process is to avoid singleton sets. In this work, schemas are represented as scheme trees. Since the existence of singleton sets cannot be expressed or derived from the inference rules for the relational model, they define a condition on scheme trees in order to identify potential singleton sets. Our definition of NFDs and the NFD-rules allow singleton sets to be expressed and identified and it would be, therefore, a more general basis for the development of a normal form for the nested relational model.

The Problem of Empty Sets. As mentioned earlier, the presence of empty sets causes difficulties in reasoning since formulas such as $\forall x \in R . P(x)$ are trivially true when R is empty. In particular, the transitivity rule is no longer sound in the presence of empty sets, as illustrated below.

Example 3.5 The instance of R below satisfies $R:[A \rightarrow B: C], R:[B: C \rightarrow D]$, but not $R:[A \rightarrow D]$.

A	B	D	E
1	\emptyset	2	3
1	\emptyset	3	4
2	$\{\langle C: 3\rangle\}$	4	5

One reasonable solution to this problem is to disallow empty sets only in certain portions of the schema; this is analogous to specifying NON-NULL for certain attributes in a relational schema. The transitivity rule can then be modified to reason about where empty sets are known not to occur. We do this by introducing a new relation follow between paths.

Definition 3.5 Path expression p_{1} follows p_{2} if $p_{1}=p_{1}^{\prime} A$, and p_{1}^{\prime} is a proper prefix of p_{2}.

Intuitively, p_{1} follows p_{2} if it only traverses the set-valued attributes traversed by p_{2}. For example, a path A follows any path $p,|p| \geq 1$, since $A \equiv \epsilon A$, and ϵ is a proper prefix of any path. A path $A: B$ follows $A: B, A: C: D$, but not A, E, and $F: G$.

The new transitivity rule is then defined as: if

1. $x_{0}:\left[X \rightarrow x_{1}\right], \ldots, x_{0}:\left[X \rightarrow x_{n}\right]$,
$x_{0}:\left[x_{1}, \ldots, x_{n} \rightarrow y\right]$
2. for all p in $\left\{x_{1}, \ldots, x_{n}\right\}-X$, if p does not follow y, then p is known not to be an empty set
then $x_{0}:[X \rightarrow y]$.
The fact that transitivity does not generally hold in the presence of empty sets has also influenced our definition of NFDs to allow only single paths on the right-hand side of functional dependencies rather than sets of paths.

Recall that in the relational model, a functional dependency (FD) $X \rightarrow Y$, where X, Y are sets of attributes, can be decomposed into a set of FDs with single attributes on the right-hand side of the implication. Unfortunately, the decomposition rule follows from reflexivity and transitivity and cannot therefore be uniformly applied with NFDs in the presence of empty sets.

The presence of empty sets also affects the prefix rule. Consider the instance I presented in Example 3.5. Notice that I satisfies $R:[B: C \rightarrow E]$, but not $R:[B \rightarrow E]$. A modified prefix rule to take this into account is: if

1. $x_{0}:\left[x_{1}: A, x_{2}, \ldots, x_{k} \rightarrow y\right]$
2. x_{1} has one or more labels, and x_{1} is not prefix of y
3. x_{1} is not an empty set
then $x_{0}:\left[x_{1}, x_{2}, \ldots, x_{k} \rightarrow y\right]$

4 Conclusion

We have presented a definition of functional dependencies (NFD) for the nested relation model. NFDs naturally extend the definition of functional dependencies for the relational model by using path expressions instead of attribute names. The meaning of NFDs was given by defining their translation to logic.

NFDs provide a framework for expressing a natural class of dependencies in complex data structures. Moreover, they can be used to reason about constraints on data integration applications, where both sources and target databases support complex types.

We presented a set of inference rules for NFDs that are sound and complete for the case when no empty sets are present. Although for simplicity we have adopted the nested relational model, and the syntax of NFDs is closely related to this model, allowing nested records or sets would not change the inference rules presented significantly. However, new rules would have to be added to consider path expressions of record types as the current syntax only allows path expressions of set and base types. As an example, we would need a rule that states that if in $R x$ is a path of type $\left.<A_{1}, \ldots, A_{n}\right\rangle$, then $R:\left[x . A_{1} \ldots x . A_{n} \rightarrow x\right]$, where "." indicates record projection.

In [7], Fischer, Saxton, Thomas and Van Gucht investigate how nesting defined on a normalized relation destroys or preserves functional and multivalued dependencies; they also present results on the interaction of inter- and intra-set dependencies. Their results are based on case studies of the cardinality of relations, and of the containment relation between the set of attributes over which the nesting is defined and the set of attributes involved in the dependency. Many results depend on the fact that a nested relation is a singleton set. In our definition of NFDs, both inter- and intra-set dependencies can be expressed. NFDs can also express that a given set is expected to be a singleton. As a result, our work generalizes their results by providing a general framework to reason about interactions between nesting and functional dependencies.

In future work, we intend to investigate a relaxation of the assumption that no empty sets are present in any instance, by requiring the user to define which set-valued paths are known to have at least one element. We believe this is a natural requirement to make, since definition of cardinality has long been recognized as integral part of schema design [6] and is part of the DDL syntax for SQL (NON-NULL). Generalizing the inference rules to this case would allow us to reason about constraints for a larger family of instances.

References

[1] S. Abiteboul, N. Bidoit. "Non first normal form relations: An algebra allowing restructuring". Journal of Computer and System Sciences, 33(3): 361-390, 1986.
[2] S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases. Addison-Wesley Publishing Company, 1995.
[3] A.V. Aho, Y. Sagiv, J.D. Ullman. "Equivalences among relational expressions". SIAM Journal of Computing, 8(2):218-246, May 1979.
[4] C. Beeri, M.V. Vardi. "Formal systems for tuple and equality generating dependencies". SIAM Journal of Computing, 13(1):76-98, February 1984.
[5] P. Buneman, W. Fan, S. Weinstein. "Path Constraints on Semistructured and Structured Data". In Proceedings of the Seventeenth Symposium on Principles of Database Systems, 1998.
[6] P.P. Chen. "The entity-relationship model - Toward a unified view of data". ACM Transactions on Database Systems, 1:9-36, 1976.
[7] P.C. Fischer, P.C., L.V. Saxton, S.J. Thomas, D. Van Gucht. "Interactions between Dependencies and Nested Relational Structures". Journal of Computer and System Sciences, 31: 343-354, 1985.
[8] A. Klug. "Calculating Constraints on Relational Expressions". ACM Transactions on Database Systems, 5(3):260-290, September 1980.
[9] A. Klug, R. Price. "Determining View Dependencies Using Tableaux". ACM Transactions on Database Systems, 7(3):361-380, September 1982.
[10] A. Kosky. Transforming Databases with Recursive Data Structures. Ph.D. Thesis, University of Pennsylvania, 1996.
[11] A. Makinouchi. "A consideration on normal form of not-necessarily-normalized relation in the relational data model". In Proceedings of the International Conference on Very Large Databases, pp. 447-453, 1977.
[12] D. Maier, A. Mendelzon, Y. Sagiv. "Testing Implications of Data Dependencies". ACM Transactions on Database Systems, 4(4): 455-469, December 1979.
[13] D. Maier. The Theory of Relational Databases. Computer Science Press, Inc., 1983
[14] W.Y. Mok, Y. Ng, D.W. Embley. "A Normal Form for Precisely Characterizing Redundancy in Nested Relations". ACM Transactions on Database Systems, 21(1):77-106, March 1996.
[15] Z.M. Ozsoyoglu, L.-Y. Yuan. "A new normal form for nested relations". ACM Transactions on Database Systems, 12(1):111-136, March 1987.
[16] L. Popa. "A Language for Nested Tableaux". draft. University of Pennsylvania, 1998.
[17] L. Popa, V. Tannen. "An Equational Chase for Path-Conjunctive Queries, Constraints, and Views". In Proceedings of the 7th International Conference on Database Theory (ICDT'99) - LNCS 1540, pp. 39-57, 1999.
[18] Z. Tari, J. Stokes, S. Spaccapietra. "Object Normal Forms and Dependency Constraints for Object-Oriented Schemata". ACM Transactions on Database Systems, 22(4):513-569, December 1997.
[19] J. Thierry-Mieg, R. Durbin. "Syntactic Definitions for the ACEDB Data Base Manager". Technical report, MRC Laboratory for Molecular Biology, Cambridge. 1992.
[20] J.D. Ullman. Principles of Database Systems, Second Edition. Computer Science Press, 1983.
[21] G. Weddell. "A theory of functional dependencies for object-oriented data models". In Deductive an ObjectOriented Databases, Eds. W. Kim, J.-M. Nicolas, S. Nishio, Elsevier Science Publishers B.V. (North-Holland), 1990, pp. 165-184.
[22] G. Weddell. "Reasoning about Functional Dependencies Generalized for Semantic Data Models". ACM Transactions on Database Systems, 17(1): 32-64, March 1992.
[23] L. Wong. Querying Nested Collections. Ph.D. Thesis, University of Pennsylvania, 1994.
[24] M. Zloof. "Query-by-Example: the invocation and definition of tables and forms". In Proceedings of ACM International Conference on Very Large Databases, pp. 1-24, September 1975.

[^0]: ${ }^{1}$ Note that values of $x_{0}: x_{1}(I)$ must be of set type.

[^1]: ${ }^{2}$ It is a little more complicated for the general case where the base path can be an arbitrary path rather than R.

[^2]: ${ }^{3}$ Note that values of $x_{0}: x_{1}(I)$ must be of set type.
 ${ }^{4}$ The equivalence of these two forms is proved in the next section.

[^3]: ${ }^{5}$ A discussion of why we don't adopt a simpler form of NFDs which would eliminate these two rules is deferred to Section 3.3.

