
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1999

Inference Rules for Nested Functional Dependencies Inference Rules for Nested Functional Dependencies

Carmem S. Hara
University of Pennsylvania

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Carmem S. Hara and Susan B. Davidson, "Inference Rules for Nested Functional Dependencies", . March
1999.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-19.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/53
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76365215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/53
mailto:repository@pobox.upenn.edu

Inference Rules for Nested Functional Dependencies Inference Rules for Nested Functional Dependencies

Abstract Abstract
Functional dependencies add semantics to a database schema, and are useful for studying various
problems, such as database design, query optimization and how dependencies are carried into a view. In
the context of a nested relational model, these dependencies can be extended by using path expressions
instead of attribute names, resulting in a class of dependencies that we call nested functional
dependencies (NFDs). NFDs define a natural class of dependencies in complex data structures; in
particular they allow the specification of many useful intra- and inter-set dependencies (i.e., dependencies
that are local to a set and dependencies that require consistency between sets). Such constraints cannot
be captured by existing notions of functional, multi-valued, or join dependencies.

This paper presents the definition of NFDs and gives their meaning by translation to logic. It then presents
a sound and complete set of eight inference rules for NFDs, and discusses approaches to handling the
existence of empty sets in instances. Empty sets add complexity in reasoning since formulas such as
∀x ∈ R.P (x) are trivially true when R is empty. This axiomatization represents a first step in reasoning
about constraints on data warehouse applications, where both the source and target databases support
complex types.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-98-19.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/53

https://repository.upenn.edu/cis_reports/53

Inference Rules for Nested Functional Dependencies

Carmem S. Hara and Susan B. Davidson

Dept. of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104-6389

Phone (215) 898-3490, Fax (215) 898-0587

Email: chara@saul.cis.upenn.edu, susan@central.cis.upenn.edu

March 15, 1999

Abstract

Functional dependencies add semantics to a database schema, and are useful for studying vari-
ous problems, such as database design, query optimization and how dependencies are carried into
a view. In the context of a nested relational model, these dependencies can be extended by using
path expressions instead of attribute names, resulting in a class of dependencies that we call nested
functional dependencies (NFDs). NFDs de�ne a natural class of dependencies in complex data struc-
tures; in particular they allow the speci�cation of many useful intra- and inter-set dependencies (i.e.,
dependencies that are local to a set and dependencies that require consistency between sets). Such
constraints cannot be captured by existing notions of functional, multi-valued, or join dependencies.

This paper presents the de�nition of NFDs and gives their meaning by translation to logic. It
then presents a sound and complete set of eight inference rules for NFDs, and discusses approaches
to handling the existence of empty sets in instances. Empty sets add complexity in reasoning since
formulas such as 8x 2 R:P (x) are trivially true when R is empty. This axiomatization represents a
�rst step in reasoning about constraints on data warehouse applications, where both the source and
target databases support complex types.

1 Introduction

Dependencies add semantics to a database schema and are useful for studying various problems such as
database design, query optimization and how dependencies are carried into a view. In the context of
the relational model, a wide variety of dependencies have been studied, such as functional, multivalued,
join and inclusion dependencies (see [13, 2] for excellent overviews of this work). However, apart from
notions of key constraints and inclusion dependencies [5, 16], dependencies in richer models than the
relational model have not been as thoroughly studied.

Complex data models are, however, heavily used within biomedical and other scienti�c database appli-
cations. Reasoning about dependencies within these applications is becoming increasingly important as
schemas get larger, queries span multiple complex databases, and new databases are created as mate-
rialized views. For example, if a new database is created as a materialized view over multiple complex
databases, knowing how dependencies are carried into this complex view could eliminate expensive
checking as the new database is created and later updated.

1

We therefore start attacking this problem by de�ning a notion of functional dependency for the nested
relational model together with inference rules for these dependencies. We are considering the nested
relational model, where set and tuple constructors are required to alternate, mainly for simplicity, but
relaxing this assumption does not signi�cantly change the inference rules. Since in this model attributes
of a relation may be sets rather than atomic types, dependencies may traverse into various levels of
nesting through paths. We call this new form of functional dependencies nested functional dependencies

(NFDs).

As an example of what we would like to be able to express, consider a type Course de�ned as a set of
records with attributes cnum, time, students, and books, where students is a set of records with labels
sid, age, and grade, and books is a set of records with labels isbn, and title:

Course : f<cnum; time
students : f<sid; age; grade>g;
books : f<isbn; title>g>g.

Some nested functional dependencies that we would like to be able to express for Course are:

1. cnum is a key.

2. Every Course instance is consistent on their assignment of title to a given isbn.

3. In a given course, each student gets a single grade.

4. Every Course instance is consistent on their assignment of age to sid.

5. A student cannot be enrolled in courses that overlap on time.

Note that there are \local" dependencies, such as dependency 3 where a student can have only one
grade for a given course but may have di�erent grades for distinct courses. There are also \global"
dependencies such as dependencies 2 and 4, where the assignment of title to an isbn and age to sid

must be consistent throughout the Course relation. Dependency 5 illustrates how an attribute from an
outer level of nesting may be determined by attributes in a deeper level of nesting. Note that even if
every level of nesting presents a \key" as suggested in [1], this type of dependency is not captured by
the structure of the data.

Our de�nition of NFDs can also be used to express other interesting properties of sets. For example, they
can be used to state that some �elds in a set valued attribute are required to be disjoint, or that a set
is expected to be a singleton. In AceDB [19], a database which is very popular among biologists, every
attribute is de�ned as a set. This is useful in applications where the database is sparsely populated
and evolves over time, since empty sets can model optional or unde�ned attributes. However, some
attributes can be speci�ed to be (maximally) singleton sets. In order to reason about constraints in
this model, it is therefore important to be able to express the fact that a set must be a singleton. The
importance of singleton sets is also evident in [7], which investigates when functional dependencies are
maintained or destroyed when relations are nested and unnested. In most cases, this relies on knowing
whether a set is a singleton or multivalued.

One of the most interesting questions involving dependencies is that of logical implication, i.e., deciding
if a new dependency holds given a set of existing dependencies. For functional dependencies in the

2

relational model, this problem has been addressed from two di�erent perspectives: a decision procedure
called the tableau chase, and a sound and complete set of inference rules called Armstrong's axioms.

As an example of an inference we might want to make over the complex type Course, suppose we have
a database DBCourse which is known to satisfy all the dependencies listed above. We wish to know if
in DBCourse, given a student ID sid, and a time, there is a unique set of books used by the student at
that time. Reasoning intuitively, the answer is a�rmative since a student can be enrolled in only one
course cnum in a given time, and cnum, which is a key, determines a set books. However, it would be
useful to have a technique and inference rules to prove this.

The development of inference rules is important for many reasons [4]: First, it helps us gain insight into
the dependencies. Second, it may help in discovering e�cient decision procedures for the implication
problem. Third, it provides tools to operate on dependencies. For example, in the relational model, it
provides the basis for testing equivalence preserving transformations, such as lossless-join decomposition,
and dependency preserving decomposition, which lead to the de�nition of normal forms of relations, a
somewhat more mechanical way to produce a database design [20].

We therefore focus in this paper on the development of a sound and complete set of inference rules for
NFDs. However, the presence of empty sets in instances causes serious problems in developing such
rules since formulas such as 8x 2 R:P (x) are trivially true when R is empty. We therefore initially
restrict the inference problem to the case where empty sets cannot occur in any instance, and then
suggest how this assumption can be relaxed by specifying where empty sets are known not to occur.

The remainder of the paper is organized as follows: Section 2 describes our nested relational model,
the de�nition of nested functional dependencies in this model, and their translation into logic. We also
contrast our approach to others taken in the literature. Section 3 presents the axiomatization of NFDs,
illustrates their use on some examples, and discusses how empty sets in instances can cause problems.
Section 4 concludes the paper and discusses some future work.

2 Functional Dependencies for the Nested Relation Model

The nested relational model has been well studied (see [2] for an overview). It extends the relational
model by allowing the type of an attribute to be a set of records or a base type, rather than requiring
it to be a base type (First Normal Form). For simplicity, we use the strict de�nition of the nested
model and require that set and tuple constructors alternate, i.e. there are no sets of sets or tuples with
a tuple component, although allowing nested records or sets does not substantially change the results
established. For ease of presentation, we also assume that there are no repeated labels in a type, i.e.,
<A : int;B : f<A : int>g> is not allowed.

An example of a nested relation was given by Course in the previous section.

More formally, a nested relational database R is a �nite set of relation names, ranged over by R1; R2; : : :.
A is a �xed countable set of labels, ranged over by A1; A2; : : :, and B is a �xed �nite set of base types,
ranged over by b, . . .

The data types Types are as follows:

� ::= b j f�g j <A1 : �1; : : : ; An : �n>

Here, b are base types, e.g. boolean, integer and string. The notation f!g represents a set with elements

3

of type !, where ! must be a record type. <a1 : �1; : : : ; an : �n> represents a record type with �elds
A1; : : : ; An of types �1; : : : ; �n, respectively. Each �i must either be a base or a set type.

A database schema is a pair (R;S), where R is a �nite set of relation names, and S is a schema

mapping S : R ! Types, such that for any R 2 R, R
S
7! �R where �R is a set of records in its outermost

level.

Denotations of types. Let us denote by Db the domain of the base type b, for any b. The domain of
our model D is de�ned as the least set satisfying the equation:

D �
[
b

Db [A
�
! D [Pfin(D)

where A
�
! B denotes the set of partial functions from A to B.

Given a schema (R;S), the interpretation of each type � in TypesR, [[�]], is de�ned by

[[b]] � Db

[[f�g]] � Pfin([[�]])

[[<A1 : �1; : : : ; An : �n>]] � ff 2 A
�
! D j dom(f) = fA1; : : : ; Ang

and f(Ai) 2 [[�i]]; i = 1; : : : ; ng

Database instance: A database instance of a database schema (R;S) is a record I with labels in
R such that �RI is in [[S(R)]] for each R 2 R.

We denote by ISC the set of all instances of schema SC.

As an example, if (fCourseg;S) is a schema where

S(Course) = f<cnum : string;
time : int;
students : f<sid : int;

grade : string>g>g.

Then the following is an example of an instance of this schema:

<Course 7!f<cnum 7! "cis550";
time 7! 10;
students 7! f<sid 7! 1001;

grade 7! "A">;
<sid 7! 2002;
grade 7! "B">g>;

<cnum 7! "cis500";
time 7! 12;
students 7! f<sid 7! 1001;

grade 7! "A">g>g>

4

2.1 Nested Functional Dependencies

The natural extension of a functional dependency X �! A for the nested relational model is to allow
path expressions in X and A instead of attributes. That is, X is a set of paths and A is a single path.
As an example, the requirement that a student's age in Course be consistent throughout the database
could be written as Course : [students : sid ! students : age], where \:" indicates traversal inside a
set. Note that we have enclosed the dependency in square brackets\[]" and appended the name of the
nested relation, Course.

Path Expressions

We start by giving a very general de�nition of path expressions, and narrow them to be well-de�ned by
a given type.

De�nition 2.1 Let A = A1; A2; : : : be a set of labels. A path expression is a string over the alphabet

A
S
f : g. � denotes the empty path. A path expression p is well-typed with respect to type � if

� p = �, or

� p = Ap0 and � is a record type <A : � 0; : : : > and p0 is well-typed with respect to � 0, or

� p = : p0 and � is a set type f� 0g and p0 is well-typed with respect to � 0.

As an example, A : B is well-typed with respect to <A : f<B : int; C : int>g>, but not with respect to
<A : int>.

Given an object e, the semantics of path expressions is given by:

[[� e]] � [[e]]

[[A e]] � [[e]](A)

[[: e]] �

8<
:

unde�ned, if [[e]] = fg
[[e1]]; otherwise, where [[e1]]

is an element of [[e]]

Note that the value of a path expression that traverses into an empty set is unde�ned, i.e., it does not
yield a value in the database domain. We say that a path expression p is well de�ned on v if it always
yields a value in the database domain.

As an example, if

v = <A 7! f <B 7! 10; C 7! 20>;
<B 7! 15; C 7! 21>g>

then

� A(v) = f<B 7! 10; C 7! 20>;
<B 7! 15; C 7! 21>g

5

� A : B(v) = 10 or A : B(v) = 15

To help de�ne nested functional dependencies, we introduce the notions of path pre�x and size of a
path expression.

De�nition 2.2 Path expression p1 is a pre�x of p2 if p2 = p1p
0
2. Path p1 is a proper pre�x of p2 if

p1 is a pre�x of p2 and p1 6= p2.

De�nition 2.3 The size of a path expression of the form p = A1 : : : : : Ak, denoted as jpj, is k, the

number of labels in p.

With these notions, we are now in a position to de�ne nested functional dependencies (NFDs), and how
an instance is said to satisfy an NFD.

De�nition 2.4 Let SC = (R;S) be a schema. A nested functional dependency (NFD) over SC
is an expression of the form x0 : [x1; : : : ; xm�1 ! xm], m � 1, such that all xi, 0 � i � m, are path

expressions of the form Ai
1 : : : : : Ai

ki
, ki � 1, where x0 = Ry, R 2 R, and y : xi; 1 � i � m, are

well-typed path expressions with respect to �R.

In general, the base path x0 can be an arbitrary path rather than just a relation name. For the degenerate
case where m = 1, i.e. the NFD is of form x0 : [; ! xm], then in any value of x0, : xm must be a
constant.

De�nition 2.5 Let f = x0 : [x1; : : : ; xm�1 ! xm] be an NFD over schema SC, I an instance of SC,

and v1; v2 two values of x0 : (I) in the database domain. I satis�es f , denoted I j= f , if for all v1; v2,

whenever

1. xi(v1) = xi(v2) for all 1 � i < m, and

2. for every path x which is a common pre�x of xi; xj, 1 � i; j � m, x(v1) coincide in xi(v1) and
xj(v1) and x(v2) coincide in xi(v2) and xj(v2) (i.e. xi and xj follow the same path up to x in v1
and in v2)

then

xm(v1) = xm(v2)

If for some xi, 1 � i � m, xi(v1), or xi(v2) is unde�ned, we say f is trivially true.

In the next section, we give a translation of NFD to logic to precisely de�ne its semantics.

Our de�nition of NFDs is very broad, and captures many natural constraints. As an example, we can
precisely state the constraints on Course described in the introduction.

Example 2.1 In Course, cnum is a key.

Course : [cnum! time]
Course : [cnum! students]
Course : [cnum! books]

6

Example 2.2 For any two instances in Course, if they agree on isbn for some element of books then
they must also agree on title for that element of books.

Course : [books : isbn! books : title]

Example 2.3 In a given course, each student gets a single grade.

Course : students : [sid! grade]

Note that in this example, sid is a \local" key to grade; this illustrates the use of a path rather than
just a relation name outside the \[]". Contrast this to the previous example, where the NFD requires
that isbn and title be consistent throughout the database.

Example 2.4 Every Course instance is consistent on their assignment of age to sid.

Course : [students : sid! students : age]

Example 2.5 A student cannot be enrolled in courses that overlap on time.
Course : [time; students : sid! cnum]

Some interesting properties of sets can also be expressed by NFDs. For example, if an instance I satis�es
an NFD of the form x0 : [x1 : x2 ! x1], then given two values v1; v2 of x0 : x1(I), either v1 = v2, or
v1
T
v2 = ;

1.

As an example, suppose that a university's courses database is de�ned as Courses : f<school; scourses :
f<cnum; time>g>g, and it satis�es the NFD Courses : [scourses : cnum ! school]. We can conclude
that schools in the university do not share course numbers, because the existence of the same cnum in
di�erent schools would violate the NFD.

NFDs can also express that if a set is not empty then it must be a singleton. I.e., if an instance I
satis�es an NFD of the form x0 : [x1; : : : ; xm ! xn : A], where xn is not a proper pre�x of any xi,
1 � i � m, then for any value v of x0 : (I) in which paths x1 : : : xm are well-de�ned, all elements e of
xn(v) have the same value for A(e).

For example, let R be a relation with schema f<A : f<B : int; C : int>g; D : int>g. If R : [D ! A : B],
and R : [D ! A : C], then it must be the case that A is either empty, or a singleton set, since for every
value of A all elements agree on the values of B and C. Since these are the only attributes in A, then
A has a single element.

It should be noted that our de�nition also allows some unintuitive NFDs. For example, assume R :
f<A;B : f<C;D>g; E : f<F;G>g>g. Then the NFD R : [B : C ! E : F] implies that:

� all tuples <F;G> in E have the same value for F when B is not empty, and

� if any tuple <C;D> in B agrees on the value of C, then the elements <F;G> in E must have the
same value for F .

Figure 1 shows an instance of R that does not satisfy R : [B : C ! E : F]. If we only consider the �rst
line in the table, the NFD is satis�ed since all values of attribute F coincide, i.e. B : C = 1 determines

1Note that values of x0 : x1(I) must be of set type.

7

A B E

C D F G

1 1 3 5 6
5 7

C D F G

2 2 2 3 4
1 3 4 4

Figure 1: An instance that violates R : [B : C ! E : F].

E : F = 5. The existence of more than one value for F automatically invalidates the constraint because
a single value in C would be related to distinct values in F as in the second line. The second line also
violates the dependency because it has a value in B : C that also appears in the �rst line, but has a
di�erent value for E : F .

2.2 NFDs expressed in logic

In the relational model, a functional dependency Course : [cnum! time; students] can be understood
as the following formula:

8c1 2 Course 8c2 2 Course
(c1:cnum = c2:cnum)!
(c1:time = c2:time ^ c1:students = c2:students)

There is also a precise translation of NFDs to logic. Intuitively, given an NFD R : [x1 : : : xm�1 ! xm],
we introduce two universally quanti�ed variables for R and for each set-valued attribute in x1 : : : xm

2.
The body of the formula is an implication where the antecedent is the conjunction of equalities of the
last attributes in x1 : : : xm�1 and the consequence is an equality of the last attribute in xm.

As an example, Course : [students : sid! students : age] can be translated to the following formula:

8c12 Course 8c2 2 Course
8s1 2 c1:students 8s2 2 c2:students:

(s1:sid = s2:sid! s1:age = s2:age)

To formalize this translation, we de�ne functions var, and parent. Let SC = (R;S) be a schema, I an
instance of SC, and f = x0 : [x1 : : : xm�1 ! xm] be an NFD de�ned over SC, where xi = Ai

1 : : : : : A
i
ki
,

0 � i � m, and A0
1 = R, R 2 R.

De�ne var as a function that maps labels to variable names as follows:

� for each label A in �R that appears in some path xi, 0 � i � m, var(A) = vA. Recall that we
assume labels cannot be repeated.

2It is a little more complicated for the general case where the base path can be an arbitrary path rather than R.

8

The function parent maps a label to the variable de�ned for its parent as follows:

� for all Ai
1, 1 � i � m, parent(Ai

1) = var(A0
k0
), i.e., the parent of the �rst labels in paths x1 : : : xm

is the variable associated with the last label in path x0.

� parent(Ai
j+1) = var(Ai

j). Let fA
�
1 : : : A

�
qg be the set of such Aj labels, i.e., the set of labels that

have some descendent in a path expression.

Also, let parent(A0
1):A

0
1 = R. Then f is equivalent to the following logic formula:

8vAO
1

2 parent(A0

1
):A0

1
: : :

8vA0

k0�1

2 parent(A0

k0�1
):A0

k0�1

8v1
A0

k0

2 parent(A0

k0
):A0

k0
8v2

A0

k0

2 parent(A0

k0
):A0

k0

8v1A�
1

2 parent(A�
1
)1:A�

1
8v2A�

1

2 parent(A�
1
)2:A�

1
: : :

8v1A�q 2 parent(A�q)
1:A�q 8v

2

A�q
2 parent(A�q)

2:A�q

((true ^
parent(A1

k1
)1:A1

k1
= parent(A1

k1
)2:A1

k1
^ : : :^

parent(Am�1km�1
)1:Am�1km�1

= parent(Am�1km�1
)2:Am�1km�1

)

!
(parent(Amkm)

1:Amkm = parent(Amkm)
2:Amkm))

Note that only one variable is mapped to each label in A0
1; : : : ; A

0
k0�1

, whereas two variables are used
elsewhere.

Using this translation, examples 2.2 and 2.3 can be expressed as:

� Course : [books : isbn! books : title]
8c1 2 Course 8c2 2 Course
8b1 2 c1:books 8b2 2 c2:books:

(b1:isbn = b2:isbn! b1:title = b2:title)

Note that books is referred to twice in the dependency, but that only two variables for books are
introduced in the logical form.

� Course : students : [sid! grade]
8c 2 Course
8s1 2 c:students 8s2 2 c:students

(s1:sid = s2:sid! s1:grade = s2:grade)

Note that only one variable is introduced for labels in x0 (except for the last label), and that two
variables are introduced for all other labels.

2.3 Classi�cation of NFDs

When we discuss an axiomatization for NFDs, it will be useful to refer to three di�erent forms of NFDs:
upwards, sideways, and downwards. Each of them behave di�erently in terms of inferences that can be
made. In what follows, let f = x0 : [x1; : : : ; xm�1 ! xm] be an NFD, A;A1; : : : be labels, and y; z be
path expressions.

9

De�nition 2.6 (upward) f is upward if xm = yA and there exists an xi, 1 � i < m such that xi = yz,
where jzj > 1.

The following are examples of upward NFDs: R : [A : B ! A], R : A : [C : D ! E], R : [F : G : H !
F : I]. Note that in the �rst two NFDs y = �.

De�nition 2.7 (sideways) f is sideways if f is not upward, xm = yAm, and there exists an xi,

1 � i < m such that xi = yAi.

The following are examples of sideways NFDs: R : [A! B], R : A : [B ! C]

De�nition 2.8 (downward) f is downward in all other cases, i.e., if xm = yA, jyj � 1, and for all

xi, 1 � i < m, y is not a proper pre�x of xi.

R : [A! B : C], R : A : [B : C ! D : E], R : [F : G : H ! F : I : J] are examples of downward NFDs.

Intuitively, f is upward if the value of xm is determined by some attribute nested in the same set as
xm. f is sideways if it is determined by attributes in the same level of nesting; and f is downward if it
is determined by some paths that do not traverse the set that xm is nested in.

Some observations follow from these de�nitions:

Observation 2.1 If an instance I satis�es an upward NFD x0 : [x1 : x2 ! x1], then given two values

v1; v2 of x0 : x1(I), either v1 = v2, or v1
T
v2 = ;

3.

Observation 2.2 If an instance I satis�es a downward NFD x0 : [x1; : : : ; xm ! xn : A], then for any

value v of x0(I) in which paths x1 : : : xm are well-de�ned, all elements e of xn(v) have the same value

for A(e).

2.4 Discussion

In the de�nition of NFDs, the base path can be an arbitrary path rather than just a relation name.
The motivation for allowing this is to syntactically di�erentiate between local and global functional
dependencies: R : A : [B ! C] is a local functional dependency in A, while R : [A : B ! A : C] de�nes
a global dependency between B and C. However, the local dependency is provably equivalent4 to the
dependency R : [A; A : B ! A : C]. Intuitively, by requiring equality on A (as a set), the dependency
between B and C becomes local to the set. Therefore, the expressive power of NFDs with arbitrary
paths and relation names as base paths are the same. However, we believe that the �rst form is more
intuitive.

Most of the early work on functional dependencies for the nested relational model either used the
de�nition of functional dependencies given for the relational model [15], or proposed a simple extension
to allow equality on sets [11]. Our de�nition clearly subsumes these de�nitions.

3Note that values of x0 : x1(I) must be of set type.
4The equivalence of these two forms is proved in the next section.

10

The idea of extending functional dependencies to allow path expressions instead of simple attribute
names has been investigated by Weddell [22] and also by Tari et al. [18] in the context of an object-
oriented data model. While Weddell's work supports a data model of classes, where each class is
associated with a simple type (a at record type), our model supports a nested relational model with
arbitrary levels of nesting. In [22], following a path entails an implicit \dereference" operation, while in
NFDs following a path means traversal into an element of a nested set. They present a set of inference
rules and prove they are complete. We believe this work and ours are complementary and that it would
be interesting to investigate how the two approaches could be combined into a single framework.

In [18], more general forms of functional dependencies for the object-oriented model are proposed.
Their model supports nested sets, and classes of objects, and the dependencies allow inter- and intra-set
dependencies, and also dependencies between objects without specifying an speci�c path. For example,
it is possible to express that any path between two objects should lead to the same value. But, as
opposed to our model, they assume that every level of nesting presents a key or an object ID. Inference
rules for the proposed forms of functional dependencies are presented, but they do not claim or prove
their completeness.

3 Inference Rules for NFDs Without Empty Sets

One of the most interesting questions involving NFDs is that of logical implication, i.e., deciding if a
new dependency holds given a set of existing dependencies. This problem can be addressed from two
perspectives: One is to develop algorithms to decide logical implication, for example, tableau chase
techniques (see [12] for the relational model, and more recently [16, 17] for a complex object model).
The other is to develop inference rules that allow us to derive new dependencies from the given ones.

In the relational model, a simple set of three rules { called Armstrong's Axioms { are sound and complete
for functional dependencies (FDs). Presented using our notation, where \paths" are single attributes,
they are:

� reexivity:
if A 2 X then R : [X ! A].

� augmentation:
if R : [X ! Z] then R : [XY ! Z].

� transitivity:
if R : [X ! Y]; R : [Y ! Z] then R : [X ! Z].

The logical implication problem for these rules is formally de�ned as:

De�nition 3.1 Let SC be a schema, � be a set of FDs over SC, and � an FD over SC. � logically

implies � under SC, denoted � j=SC � if for all instances I of SC, I j= � implies I j= �.

The implication problem for NFDs that we will consider is slightly changed from that for FDs: no
instances are allowed to contain empty sets. Empty sets cause tremendous di�culties in reasoning since
formulas such as

8x 2 R:P (x)

11

are trivially true when R is empty. These problems are discussed in detail in Section 3.3. For com-
pleteness, we state below the implication problem that we are considering for NFDs.

The implication problem for NFDs that we are considering is therefore de�ned as:

De�nition 3.2 Let SC be a schema, � be a set of NFDs over SC, and � an NFD over SC. � logically

implies � under SC, denoted � j=SC � if for all instances I of SC with no empty sets, I j= � implies
I j= �.

In this section, we present a sound and complete set of inference rules for NFDs in the restricted case
in which no empty sets are present in any instance. The extension to allow empty sets in instances is
discussed in detail in Section 3.3.

3.1 NFD Rules

Conceptually, the NFD rules can be broken up into three categories: The �rst three mirror Armstrong's
axioms { reexivity, augmentation and transitivity. The next two { push-in and pull-out { transform
between the alternate forms of NFDs discussed at the end of the last section.5 The last three rules allow
inferences based solely on the nested form of the data { locality, singleton, and pre�x.

In the following, x; y; z; x0; x1; : : : are path expressions, and A1; A2; : : : ; B1; B2; : : : are attribute labels.
XY denotesX

S
Y , whereX;Y are sets of path expressions, and x : X denotes the set fx : x1; : : : x : xkg,

where X = fx1; : : : ; xkg.

The NFD-rules are:

� reexivity:
if x 2 X then x0 : [X ! x].

� augmentation:
if x0 : [X ! z] then x0 : [XY ! z].

� transitivity:
if x0 : [X ! x1]; : : : ; x0 : [X ! xn];
x0 : [x1; : : : ; xn ! y]

then x0 : [X ! y].

� push-in:
if x0 : y : [X ! z] then x0 : [y; y : X ! y : z]

� pull-out:
if x0 : [y; y : X ! y : z] then x0 : y : [X ! z]

� locality:
if x0 : [A : X; B1; : : : ; Bk ! A : z]
then x0 : A : [X ! z].

� singleton: if

5A discussion of why we don't adopt a simpler form of NFDs which would eliminate these two rules is deferred to
Section 3.3.

12

1. x0 : [x! x : A1]; : : : ; x0 : [x! x : An]

2. type of x is f<A1; : : : An>g

then x0 : [x : A1; : : : ; x : An ! x]

� pre�x: if

1. x0 : [x1 : A; x2; : : : ; xk ! y]

2. x1 has one or more labels

3. x1 is not pre�x of y

then x0 : [x1; x2; : : : ; xk ! y]

As an example of the use of the NFD-rules, let R be a relation with schema f<A : f<B : f<C>g; E :
f<F;G>g>g;D>g, on which the following NFDs are de�ned:

(nfd1) R : [A : B : C; D ! A : E : F]
(nfd2) R : A : [B ! E : G]

We claim that R : A : [B ! E]. The proof is as follows:

1. R : A : [B : C ! E : F] by locality of nfd1.

The locality rule allows us to derive a local NFD from a global one by dismissing the attributes
outside the level of nesting of the local NFD. In the example above, note that for any element
in R, given a value of A there exists a unique value of D, since they are labels in a record type.
Therefore, locally for any value of A, B : C ! E : F .

2. R : A : [B ! E : F] by pre�x rule on (1).

(1) states that whenever two tuples in R have a common value for C in the set B, then the value
of E : F must also agree. In particular, if two tuples agree on the value of B then they present a
common element, since we assumed that there are no empty sets in instances of R.

3. R : A : E : [; ! F] by locality of (2).

If in any tuple in R : A the value of B determines the value of E : F , then all elements in E must
agree on the value of F , otherwise (2) would be violated. Therefore, locally in any A : E the value
of F is constant.

4. R : A : [E ! E : F] by push-in.

If the value of F is constant inside any value of A : E, then for any given value of A : E there
exists a unique value of F . Therefore, the whole set determines the value of F .

5. R : A : E : [; ! G] by locality of nfd2.

6. R : A : [E ! E : G] by push-in.

7. R : A : [E : F; E : G! E] by singleton with (4) and (6).

Since the value of the set E determines the value of each of its attributes, then E must be a
singleton. Therefore, the values of its unique element determines the value of the set.

8. R : A : [B ! E] by transitivity with (7), (2), and nfd2.

13

Lemma 3.1 (Soundness of NFD-rules) Let SC be a schema. The NFD-rules are sound for logical
implication of NFDs under SC for the case when no empty sets are present in a instance.

Proof.

1. reexivity: Suppose f � x0 : [X ! x] is not satis�ed for some x 2 X. Let v1; v2 be two arbitrary
values of x0 : (I). If for some y 2 X, y(v1) 6= y(v2), then v1; v2 can not violate f . If for all y 2 X
y(v1) = y(v2), and x(v1) 6= x(v2), v1; v2 violates f . But x 2 X, therefore x(v1) = x(v2).

2. augmentation: Suppose I satis�es f1 � x0 : [X ! z], but not f2 � x0 : [XY ! z]. Let v1; v2
be two arbitrary values of x0 : (I). Suppose for all y 2 Y , y(v1) = y(v2), and for all x 2 X,
x(v1) = x(v2), yet z(v1) 6= z(v2). But since f1 is satis�ed and for all x 2 X, x(v1) = x(v2),
z(v1) = z(v2), a contradiction.

3. transitivity: Suppose I satis�es f1 � x0 : [X ! x1]; : : : ; fn � x0 : [X ! xn]; fy � x0 :
[x1; : : : ; xn ! y]. Yet, I does not satisfy f � x0 : [X ! y]. Let v1; v2 be two arbitrary values
of x0 : (I). Suppose p(v1) = p(v2) for all p 2 X. Since I satis�es fi xi(v1) = xi(v2) for all xi,
1 � i � n. But I also satis�es fy, therefore y(v1) = y(v2), and I satis�es f .

4. push-in: Suppose I satis�es f1 � x0 : y : [X ! z], but not f2 � x0 : [y; y : X ! y : z]. Let v1; v2
be two arbitrary values of x0 : (I), such that y(v1) = y(v2), and e1 an element in y(v1), and e2 an
element in y(v2) such that for all x 2 X, x(e1) = x(e2), and z(e1) 6= z(e2). But fe1; e2g � y(v1),
and since I satis�es f1, z(e1) = z(e2).

5. pull-out: Suppose I satis�es f1 � x0 : [y; y : X ! y : z], but not f2 � x0 : y : [X ! z]. Let
v1 be an arbitrary value of x0 : (I), and e1; e2 two elements in y(v1) such that for all x 2 X,
x(e1) = x(e2), and z(e1) 6= z(e2). But from f1 if y(v1) = y(v1) and x(e1) = x(e2) for all x 2 X

then z(e1) = z(e2), a contradiction.

6. locality: Suppose I satis�es f1 � x0 : [A : x1; : : : ; A : xm; B1; : : : ; Bk ! A : xn], but not
f2 � x0 : A : [x1; : : : ; xm ! xn]. Let r be an arbitrary value of x0 : (I), and v1; v2 arbitrary values
of A : (r). Suppose xi(v1) = xi(v2) for all xi, 1 � i � m, yet xn(v1) 6= xn(v2). But xi(v1); xi(v2)
are values of A : xi(r), and since r is a record with labels A;B1; : : : ; Bk there is only one value for
all Bi, 1 � i � k. Since I satis�es f1, xn(v1) = xn(v2).

7. singleton: Note �rst that if the value of a set x is proven to be a singleton, then the unique
element of the set determines the value of the set. In particular, if the element of the set is a
record then the set of attributes of the record, fA1; : : : ; Ang, determines the value of the set, i.e.,
x0 : [x : A1; : : : ; x : An ! x]. Suppose I satis�es f1 � x0 : [x! x : A1]; : : : ; fn � x0 : [x! x : An].
Yet, I does not satisfy f � x0 : [x : A1; : : : ; x : An ! x]. We'll show that under the assumptions
x is a singleton. Suppose not. Let v1 be arbitrary value of x0 : (I), and let e1; e2 be two elements
in v1. There must exist some Ai such that Ai(e1) 6= Ai(e2). But I satis�es x0 : [x! x : Ai], and
therefore for all Ai, Ai(e1) = Ai(e2), and as a consequence x is a singleton.

8. pre�x: Suppose I satis�es f1 � x0 : [x1 : A; x2; : : : ; xk ! y], jx1j � 1, but I does not
satisfy f2 � x0 : [x1; x2; : : : ; xk ! y]. Let v1; v2 be two arbitrary value of x0 : (I). Suppose
for all xi, xi(v1) = xi(v2), but y(v1) 6= y(v2). x1(v1) = x1(v2) by assumption. Then for every
element e1 2 x1(v1) there exists an element e2 2 x1(v2) such that x1 : A(v1) = x1 : A(v2). The
value of y(v1); y(v2) does not depend on the elements e1; e2 chosen because x1 is not pre�x of
y by assumption. Therefore, y(v1) = y(v2), which contradicts our initial assumption. Hence,
x0 : [x1 : : : xk ! y].

14

2

There are several rules that are consequences of the rules de�ned above. Here we give just one that will
be useful in later discussions.

� full-locality:
if

1. x0 : [x : X; Y ! x : z]

2. x is not a proper pre�x of any y 2 Y

then x0 : [x; x : X ! x : z].

Proof: Let x = A1 : : : : : Ak, i.e., we can rewrite the NFD as x0 : [Y; A1 : : : : : Ak : X ! A1 : : : : : Ak :
z]. Apply the pre�x rule multiple times on paths in Y . We get x0 : [B1; : : : ; Bm; A1 : Y1; : : : ; A1 :
: : : : Ak�1 : Yk�1; A1 : : : : : Ak : X ! A1 : : : : : Ak : z], where for all y 2 Yi, 1 � i < k, jyj = 1, and for
all p 2 fB1; : : : Bmg

S
A1 : Y1

S
: : :
S
A1 : : : : : Ak�1 : Yk�1 there exists a q 2 Y such that q = pq0. We

can then apply the locality rule and get x0 : A1 : [Y1; : : : ; A2 : : : : : Ak�1 : Yk�1; A2 : : : : : Ak : X !
A2 : : : : : Ak : z]. Applying locality rule k � 1 more times we get x0 : A1 : : : : : Ak : [X ! z]. Then by
push-in x0 : [x; x : X ! x : z] 2

3.2 Completeness of the NFD-rules

In order to prove completeness, we need to de�ne the set of paths in a schema, and the closure of a set
of paths.

De�nition 3.3 Let SC = (R;S) be a schema. Then the paths of SC, denoted as Paths(SC), is the

set of all path expressions p � Rp0, such that R 2 R, and p0 is well-typed with respect to �R. Similarly,

the paths of R, R 2 R, denoted as PathsSC(R), is the set of paths p such that p 2 Paths(SC), and
p � Rp0.

De�nition 3.4 Let SC be a schema, � a set of NFDs over SC, x0 a path expression, and X =
fx1; : : : ; xng, such that fx0; x0 : x1; : : : ; x0 : xng � Paths(SC). The closure of X under x0, and �,
denoted (x0;X;�)

�;SC (or (x0;X)� when �; SC are understood) is the set of paths x0 : q such that

x0 : q 2 Paths(SC), and x0 : [X ! q] can be derived from the NFD-rules.

Let SC = (R;S) be a schema, � a set of NFDs over SC, X a set of paths such that X � Paths(R),
R 2 R, and x0 a path in Paths(R). The completeness proof is based on the construction of an instance
I of R such that I j= �, but I 6j= x0 : [X ! x] if x 62 (x0;X;�)

�;SC . In the following we describe the
construction of I.

We assume that the domain of all base types are in�nite, and to make the exposition simpler, we
consider a unique base type b in our data model.

Construction of I: Let closure be (x0;X;�)
�;SC , where x0 � Rx00. value(p) are global variables. If

p is a set of records and in its construction value(p0) is used (this happens when p is pre�x of p0) then
value(p0) should be thought as a placeholder until its value is evaluated.

15

val := newV alue();
for all p 2 closure

value(p) := assignV al(val; p);
I := assignX0(R);

The auxiliary functions are de�ned as:

newValue(): returns a fresh new value in the domain of b.

assignX0(p): it is a function that starts the construction of instance I by assigning new fresh values
to every path that is not a pre�x of x0. r is a local variable of type <A1; : : : An>, where type of p is
f<A1; : : : An>g.

if p = x0 then return assignV al(0; x0);
for each Ai, 1 � i � n

if p : Ai is pre�x of x0 then
r:Ai := assignX0(p : Ai);

else
r:Ai := assignNew(p : Ai);

return frg;

assignVal (val, p): it is a function that gives a value val for a path p depending on the type of p in a
schema SC. r1, and r2 are local variables of type t, where the type of p is ftg.

if typeSC(p) = b then return val;
if typeSC(p) = fbg then return fvalg;
if typeSC(p) = f<A1; : : : ; An>g then

for all Ai, 1 � i � n

if p : Ai 2 closure then
r1:Ai := value(p : Ai);
r2:Ai := value(p : Ai);

else
r1:Ai := assignNew(p : Ai);
r2:Ai := assignNew(p : Ai);

return fr1; r2g;

assignNew (p): it is a function that gives a new fresh value for a path p, p 62 closure, depending on
the type of p in a schema SC. If type of p is ftg, then r is a local variable of type t.

if typeSC(p) = b then return newV alue();
if typeSC(p) = fbg then return fnewV alue()g;
if typeSC(p) = f<A1; : : : ; An>g then

for all Ai, 1 � i � n

if p : Ai 2 closure then
r:Ai := value(p : Ai)

else r:Ai := assignNew(p : Ai)
if fp : A1; : : : ; p : Ang � closure then

return fr; newRow(p; (p; ;)�)g
else

return frg

16

newRow(p, sameVal): The type of p is f<A1; : : : An>g, where p 62 closure, and for all Ai, 1 � i � n,
p : Ai 2 closure. This function returns a record, where the value of Ai, 1 � i � n is set to value(p : Ai)
if p : Ai 2 sameV al, otherwise Ai is given a new fresh value. r is a local variable of type <A1; : : : An>

for all label Ai, 1 � i � n

if p : Ai 2 sameV al then
r:Ai := value(p : Ai);

else
if typeSC(p : Ai) = b then

r:Ai := newV alue();
if typeSC(p : Ai) = fbg then

r:Ai := fnewV alue()g;
if typeSC(p : Ai) = f<B1; : : : ; Bk>g then

r:Ai := fnewRow(p : Ai; sameV al)g;
return r;

To illustrate the algorithm described consider the following examples.

Example 3.1 Let R be a relation with schema f<A;B : f<C>g;D;E : f<F;G>g;H : f<J; L>g; I;M :
f<N;O>g>g. The set � of NFDs de�ned for R are:

R : [A! B : C]
R : [B : C ! D]
R : [D ! E : F]
R : [A! E : G]
R : [B : C ! H]
R : [I ! H : J]

Then, (R; fBg;�)� = fR : B;R : B : C;R : D;R : E : F;R : H;R : H : Jg. The following instance is
constructed using the algorithm presented.

A B D E H I M

C F G J L N O

3 0 0 0 5 0 1 f7g 9 10
0 2

C F G J L N O

4 0 0 0 6 0 1 f8g 11 12
0 2

Example 3.2 Let R be a relation with schema f<A : f<B : f<C;D;E : f<F;G>g>g>g;H>g. The set �
of NFDs de�ned for R are:

R : [A : B : C ! A : B]
R : [A : B : C ! A : B : E : F]
R : [H ! A : B : D]

Then, (R; fA : B : Cg;�)� = fR : A : B : C;R : A : B;R : A : B : D;R : A : B : E : Fg. The following
instance is constructed using the algorithm presented.

17

A H

B

C D E

F G

0 0 0 1 11
F G

0 0 0 2
B

C D E

F G

3 0 5 6

B

C D E

F G

0 0 0 1 12
F G

0 0 0 2
B

C D E

F G

7 0 9 10

In order to simplify the completeness proof, we �rst make a number of observations about the instance
constructed as a result of the algorithm described above, as well as consequences of the NFD-rules.

Observation 3.1 Let p; p : q be paths such that p 62 closure, type of p is f<A1; : : : ; Ak>g, and for all

Ai, 1 � i � k, p : Ai 2 closure. If p : q 2 (p; ;)� then p : q 2 closure.

Proof: Let p � x0 : p
0. If jqj = 1 then it is direct because by assumption for all Ai, x0 : [X ! p0 : Ai].

Suppose jqj > 1, i.e., q = Ai
1 : q0, where, jq0j � 1. By assumption, x0 : p0[; ! q]. Then by push-in

x0[p
0 ! p0 : Ai

1 : q
0]. By full-locality, x0[p

0 : Ai
1 ! p0 : Ai

1 : q
0], and then by transitivity, x0[X ! p0 : Ai

1 :
q0]. Therefore, p : q 2 closure. 2

Observation 3.2 Let x0 : p be a path. If x0 : p 2 closure then any x0 : p(I) is constructed either by

assignV al or newRow. If x0 : p 62 closure then any x0 : p(I) is constructed either by assignNew or

newRow.

Proof: By construction. 2

Observation 3.3 Let p be a set-valued path, and v a value of p(I). If v was built by newRow(p; (p0; ;)�)
then v is a singleton.

Proof: By construction. 2

Observation 3.4 Let p be a path of type f<A1; : : : Ak>g, and v a value of p(I). If v has more than one

element then either

18

1. p = x0 or p 2 closure and there exists an Ai, 1 � i � k, such that p : Ai 62 closure, or

2. p 62 closure and for all Ai, 1 � i � k, p : Ai 2 closure, and there exists an Aj, 1 � i � k, such

that p : Aj 62 (p; ;)�.

Proof: The function newRow always builds singletons. Therefore, if v has more than one element, v
was built by assignV al or assignNew. assignV al builds the value of x0, and every path q 2 closure.
Suppose for all Ai, 1 � i � k, p : Ai 2 closure. Then, by construction, rows r1; r2 are identical, and the
value resulting from the function is a singleton. Therefore, there exists an Ai, such that p : Ai 62 closure.
assignNew builds the value of path q 62 closure, and it only results in a set with more than one element
if fp : A1 : : : p : Akg � closure. Let p � x0 : p0. Suppose for all Ai, 1 � i � k, Ai 2 (p; ;)�. Then
for all Ai, by push-in rule x0 : [p ! p : Ai], and then by singleton rule x0[p : A1; : : : ; p : Ak ! p],
and p 2 closure by transitivity. This contradicts our assumption that p 62 closure, and therefore, there
exists at least an Ai, such that p : Ai 62 (p; ;)�. 2

Observation 3.5 Let f � x0 : [X ! y] be an NFD and w the largest common pre�x between y, and

any path x 2 X, i.e., y � wy0, and x � wx0. If f is an upwards or sideways NFD, given a value v of

x0 : w(I), there exists a unique value of y0(v).

Proof: If y0 � �, it is trivial. By de�nition of upwards and sideways NFDs, y � A1 : : : : : Ak�1 : Ak,
where w � A1 : : : : : Ak�1 :, k > 1. Therefore the type of w is a record, and given a value of a record,
there is only one value for a given attribute Ak. 2

Observation 3.6 Let p; p : q be paths such that type of p : q is f<B1; : : : ; Bn>g. If fp : q : B1; : : : ; p :
q : Bng � (p; ;)� then p : q 2 (p; ;)�.

Proof: Let p � x0 : p
0. By assumption, for all Bi, 1 � i � n, x0 : [p

0 ! p0 : q : Bi] then by full-locality
x0 : [p

0 : q ! p0 : q : Bi]. Then by singleton, x0 : [p
0 : q : B1; : : : ; p

0 : q : Bn ! p0 : q]. By transitivity,
x0 : [p

0 ! p0 : q], and by pull-out x0 : p
0[; ! q]. 2

Observation 3.7 Let p; p0 be paths. If there exists a value v of p(I) built by newRow(p; (p0; ;)�) then
p0 is a pre�x of p (p � p0 : q), for all q0 pre�x of q, p0 : q0 62 (p0; ;)�, v is part of an element resulting from

assignNew(p0), p0 62 closure, type of p0 is f<A1; : : : ; Ak>g, and for all Ai, 1 � i � k, p0 : Ai 2 closure.

Proof: By construction, if v was built by newRow(p; (p0; ;)�), this value is inside a value built by
newRow(p0; (p0; ;)�), which is an element of a value built by assignNew(p0), where p0 62 closure, type
of p0 is f<A1; : : : ; Ak>g, and for all Ai, p

0 : Ai 2 closure. If in the construction of newRow(p0; (p0; ;)�),
there exists a pre�x q0 of q such that p0 : q0 2 (p0; ;)�, then the value of p0 : q0 is set to value(p0 : q0), and
therefore the value of p in v could not be constructed by newRow(p; (p0; ;)�). 2

Observation 3.8 Let p; pq be paths. If v is a value of pq(I) built by newRow(pq; (p; ;)�) then v is

distinct from any other value in I.

Proof: By Observation 3.7 if v was built by newRow(pq; (p; ;)� then for all pre�x q0 of q, pq0 62 (p; ;)�.
We'll show that v is distinct by induction on the structure of pq.

19

Base Case: If type of pq is a base type or a set of base types and pq 62 (p; ;)�, then the value returned
by newRow is given by newV alue(), which is a value distinct from any other in I.
Inductive Step: Let type of p : q be f<B1; : : : ; Bn>g. By Observation 3.6, if p : q 62 (p; ;)� then there
exists at least one Bi, 1 � i � n, such that p : q : Bi 62 (p; ;)�. By inductive hypothesis the values of
p : q : Bi are distinct and therefore the value of p : q is distinct. 2

Observation 3.9 Let p, pq be paths, and v a value returned by newRow(p; (p0; ;)�). If q(v) is not a
value distinct from any other value in I then there exists a pre�x q0 of q such that p : q0 2 (p0; ;)�.

Proof: It is a direct consequence of Observations 3.8 and 3.7. 2

Observation 3.10 Let p; pq be paths, and v a value resulting from function newRow(p; (p0; ;)�)), where
p0 is a pre�x of p, and q � B1 : : : : : Bk. If for all Bi, 1 � i � k, p : B1 : : : : : Bi 62 (p; ;)�) then there

exists a single value of q(v).

Proof: By construction. 2

Observation 3.11 Let p; pq be paths, and v a value resulting from function assignNew(p), where

q � B1 : : : : : Bk. If for all Bi, 1 � i � k, p : B1 : : : : : Bi 62 closure then there exists a single value of

q(v).

Proof: By construction. 2

Observation 3.12 Let p be a path of type f<A1; : : : ; Ak>g, pq a path not in closure, and v a value of

p : (I). If for all pre�x q0 of q, p : q0 62 closure then for all q0 there exists a unique value of q0(v).

Proof: By Observation 3.2, the value of any path not in closure is given either by function assignNew,
or newRow. Suppose q � Ai : z. If Ai(v) was built by assignNew(p), then by Observation 3.11, for
every pre�x q0 of q there exists a single value of q0(v). If Ai(v) was built by newRow(p; (p

0; ;)�), then by
Observation 3.7, p0 62 closure, type of p0 is f<A1; : : : ; Ak>g, and for all Ai, 1 � i � k, p0 : Ai 2 closure.
If for all pre�x q0 of q p : q0 62 closure, then by Observation 3.1, p : q0 62 (p0; ;)�. Then, by Observation
3.10 there exists a single value of q0(v). 2

Observation 3.13 Let p; pq be paths, and v a value resulting from function assignV al(l; p)), for some

value l, where q � B1 : : : : : Bk. If for all Bi, 1 � i � k, p : B1 : : : : : Bi 2 closure then there exists a
single value of q(v) which is value(pq).

Proof: By construction. 2

Observation 3.14 If p is a path and x0 is not a proper pre�x of p then there is a unique value of p(I).

Proof: If p = x0 there is a single value of p(I) given by assignV al(0; p) (note that there is a single
value of x0(I), but x0 : (I) can have one or two di�erent values). If p 6= x0 then p is either a pre�x
of x0, or p � x00A1 : : : : : Ak, where x

0
0 is a proper pre�x of x0. The value of any pre�x of x0 is given

by assignX0 which always returns a singleton, and therefore have a unique value. The value of p0A1 is
given by assignNew. Since for all p0A1 : : : : : Ai, 1 � i � k, p0A1 : : : : : Ai 62 closure, since x0 is not a
pre�x, they have a unique value by Observation 3.11. 2

20

Observation 3.15 Let p be a path in closure, and v a value of p(I). If v 6= value(p) then its value is
given by function newRow(p; (p0; ;)�), where p � p0 : q and for all pre�x q0 of q, p0 : q0 62 (p0; ;)�.

Proof: By construction. Both functions assignV al, and assignNew assign value(p) when p 2 closure.
Therefore, if v 6= value(p) it had to be assigned by newRow. The other consequences follow from
Observation 3.7. 2

Observation 3.16 Let p; pq be paths, and v a value constructed by assignNew(p), such that p 62
closure, type of p is f<A1; : : : ; Ak>g, and for all Ai, 1 � i � k, p : Ai 2 closure. If for all pre�x q0 of

q, pq0 62 (p; ;)�, then there exists at least two values of q(v).

Proof: By construction. If for all Ai, p : Ai 2 closure, v = fe1; e2g, where for all Ai, Ai(e1) = value(p :
Ai), and e2 is constructed by newRow(p; (p; ;)�). Since for all pre�x q0 of q, pq0 62 (p; ;)�, the value of
pq is given by newRow(pq; (p; ;)�), and by Observation 3.8 this is a value distinct from any other value
in I. Therefore, q(v) has at least two values, one inside value(p : Ai), and the other built by newRow.
2

Observation 3.17 Let p; pq be paths, such that pq 2 closure, and v a value of p(I). There exists at

least two distinct values of q(v) if and only if there exists a pre�x q0 of q such that a value of q(v) is

built by newRow(pq; (pq0; ;)�).

Proof:

() Let q � q0q00. If there exists a value built by newRow(pq; (pq0; ;)�), then by Observation 3.7, pq0(v)
was built by assignNew(pq0), pq0 62 closure, type of pq0 is f<A1; : : : ; Ak>g, for all Ai, q

0 : Ai 2 closure,
and for all pre�x r of q00 pq0 62 (pq0; ;)�. Then by Observation 3.16 there exists at least two values of q00

in q0(v), and therefore, in q(v).

(!) By Observation 3.15, if there exists two di�erent values of pq(I), and pq 2 closure, then at least
one of them was built by function newRow. Suppose pq � p0w, where p0 is the largest pre�x of pq such
that q(v) was built by newRow(pq; (p0; ;)�). By Observation 3.7, the value v0 of p0(I) was built by
assignNew(p0). Then, by 3.16 there exists at least two values of w(v0). So, we only have to show that
jp0j � jpj. Suppose not. By construction, v0 = fe1; e2g, where for all Ai, Ai(e1) = value(p0 : Ai), and e2 is
the value returned by newRow(p0; (p0; ;)�). If jp0j < jpj, then the value of v is either part of value(p0 : Ai),
or a value built by newRow(p; (p0; ;)�). Suppose v is in value(p0 : Ai). By construction, value(p0 : Ai)
cannot contain a value built by newRow(pq; (t0; ;)�), where jt0j < jp0 : Aij, which contradicts our
assumption that p0 was the largest pre�x of pq, such that q(v) was built by newRow(pq; (p0; ;)�). Now
suppose that v was built by newRow(p; (p0; ;)�). If q(v) was built by newRow(pq; (p0; ;)�) then by
Observation 3.7 for all pre�x w0 of w, p0w 62 (p0; ;)�. By Observation 3.10 there exists a unique value of
q(v), which contradicts our assumption that there exists at least two distinct values of q(v). Therefore,
jp0j � jpj. 2

Observation 3.18 Let p be a path such that p 62 closure. Then function assignNew(p) never returns

the same value for p in the construction of I.

Proof: By induction on the structure of p.
Base Case: If p is a base type of a set of base types then the value is given by newV alue(), which always

21

returns a fresh new value. Since by assumption the domain of the base types is in�nite, we're done.
Inductive Step: Let type of p be f<A1; : : : ; Ak>g. If there exists an Ai, 1 � i � k, such that
p : Ai 62 closure, then the value returned by assignNew is a singleton in which at least one attribute
is built by assignNew. By inductive hypothesis, these are all distinct values. Therefore, the value of p
is also distinct as a set. If fp : A1; : : : p : Akg � closure then assignNew returns a set of two elements,
where one of the them is built by newRow(p; (p; ;)�). By Observation 3.8 these values are always
distinct, and therefore the value of p is also distinct as a set. 2

Observation 3.19 Let p; p : q be paths, v a value of p(I), and v1; v2 two elements in v such that

v1 6= v2. If q(v1) = q(v2) then there exists a pre�x q0 of q such that p : q0 2 closure.

Proof: Suppose, on the contrary, that for all pre�x q00 of q, p : q00 62 closure. By Observation 3.4, if v
has at least two distinct elements and for all pre�x q00 of q, q00 62 closure, either p � x0, or p 2 closure.
x0 is always built by assignV al by construction, and by Observation 3.2 v was built either by newRow,
or assignV al. If v was built by newRow, then by Observation 3.10 for all pre�x q0 of q there exists a
unique value of q0(v), a contradiction. Therefore, p was built by assignV al, and by construction for all
pre�x q00 of q, q00(v) was built by assignNew. But by Observation 3.18 the values returned by these
functions are always distinct, which contradicts our assumption that q(v1) = q(v2). Therefore, there
exists a pre�x q0 of q such that p : q0 2 closure. 2

Observation 3.20 Let p be a path, and v be a value of p(I). If v was built by assignV al, then there

exists no path pq such that pq was built by newRow(pq; (z; ;)�), where jzj < jpj.

Proof: Supposer there exists a path pq built by newRow(pq; (z; ;)�), where jzj < jpj. By Observation
3.7, z 62 closure, z is a pre�x of pq (pq � zz0), and for all pre�x z00 of z0, zz00 62 (z; ;)�. But since
jzj < jpj, p � zp0 where p0 is a pre�x of z0. If v was built by assignV al then by construction p 2 (z; ;)�,
a contradiction. 2

Observation 3.21 Let p; pq be paths. If v is a value of p(I) built by assignV al and pq 2 closure then

for every element e 2 v there exists a value of q(e) = value(pq).

Proof: We will show that if v is a value of p(I) given by assignV al and there exists a value of a path
pp0 2 closure given by newRow then there exists also a value of p0(v) given by assignV al = value(pp0).
Let v0 be the result of function newRow(pp0; (z; ;)�). By Observation 3.7, v0 is part of an element
resulting from assignNew(z), type of z is f<A1; : : : ; Ak>g, and for all Ai, 1 � i � k, z : Ai 2 closure.
By construction, in the other element resulting from assignNew(z), the value of z : Ai is value(z : Ai),
for all Ai, which are built by assignV al. By Observation 3.20, jzj > jpj (z � pz0). So, there exists
a value of zprime : Ai(v) = value(z0 : Ai). Since for some Ai, z

0 : Ai is a pre�x of pp0, and functions
assignV al, and assignNew always assigns value(pq) when pq 2 closure, there exists also a value of
p0(v) given by assignV al = value(pp0). By construction, both elements in p(I) are built in the same
way by assignV al, and therefore this is true for every element in v. 2

Observation 3.22 Let p; pq be paths and v a value of p(I). If p is the largest pre�x of pq built by

assignV al and pq 62 closure then for every pre�x q0 of q, pq0 62 closure, and there exists a value of q0(v)
built by assignNew.

22

Proof: First, we will show that for all pre�x q0 of q, pq0 62 closure. Suppose there exists a pre�x q0 of q
in closure. By Observation 3.2, if pq0 2 closure, pq0(v) was built by either assignV al or newRow. pq0

cannot be built by assignV al because this contradicts our assumption that p is the largest pre�x of pq
built by this function. Therefore, it was built by newRow(pq0; (z; ;)�). By Observation 3.20, jzj > jpj,
and by Observation 3.7 z 62 closure, z is the result of assignNew, type of z is f<A1; : : : ; Ak>g, and for
all Ai, 1 � i � k, z : Ai 2 closure. If the value of z is the result of assignNew, then by construction
there exists a value of z : Ai pre�x of pq built by assignV al, which also contradicts that p is the largest
pre�x of pq built by assignV al. Therefore, for all q0 pre�x of q, pq0 2 closure.

Now, we will show that for all q0 pre�x of q, there exists a value of pq0(v) built by assignNew. Since for
all q0, pq0 62 closure, by Observation 3.2, pq0 was built either by assignNew or newRow. So we have to
show that there exists no pq0 built by newRow(pq0; (z; ;)�). Suppose there exists one. By Observation
3.20, since v was built by assignV al, jzj > jpj. By Observation 3.7, z is the result of assignNew, type
of z is f<A1; : : : ; Ak>g, and for all Ai, 1 � i � k, z : Ai 2 closure. By construction of assignNew, there
exists a value of z : Ai built by assignV al. Since for some Ai, z : Ai � pz0 and pz0 is a pre�x of pq0, it
contradicts our assumption that p is the largest pre�x of pq built by assignV al. Therefore, for all q0,
pq0 was built by assignNew. 2

Now, we're ready to prove the completeness of the inference rules.

Lemma 3.2 (Completeness of the NFD-rules) The NFD-rules are complete for all instances that

contain no empty sets.

Proof: From the de�nition of closure, x0 : [X ! y] follows from a given set of NFDs � using the
NFD-rules if and only if x0 : y 2 (x0;X;�)

(�;SC).

We have to show that considering the instance I constructed as described:

1. I j= �

2. I 6j= x0 : [X ! y] if x0 : y 62 (x0;X;�)
�;SC .

1) I j= �

We will show that for any f � u0 : [U ! z] 2 �, I j= f . Suppose on the contrary, that I 6j= f .

If x0 is not pre�x of u0 : z then by Observation 3.14, there exists a single value for u0 : z(I) and
therefore I cannot violate f . Therefore, x0 is a pre�x of u0 : z.

Suppose ju0j < jx0j, i.e., x0 = u0 : u00. Let B1u1; : : : ; Blul be the paths in U that do not have u00 as
pre�x, and ul+1; : : : ; uk be the paths in U that have u00 as pre�x, i.e., for all ui, l < i � k, ui = u00 : u

0

i.
Applying the pre�x rule multiple times we have u0 : [u

0
0 : u

0

l+1; : : : ; u
0
0 : u

0

kB1 : : : Bl ! u00 : z
0]. Applying

locality, and pull-out, we get f 0 � u0 : u
0
0 : [u

0

l+1; : : : ; u
0

k ! z0].

For every Bjuj, 1 � j � l, there exists a unique value in I by Observation 3.14. Therefore, if I j= f 0,
then I j= f .

So, we can assume that ju0j � jx0j, i.e. u0 � x0 : u
0
0. Let w be the largest common pre�x between z

and any u 2 U . We will use induction on jwj.

Base Case: jwj = 0
Case 1: jzj = 1

23

By de�nition, f is either an upward or sideways NFD. Let U � fu1; : : : ung, v and arbitrary value of
u0(I), and v1; v2 two arbitrary elements in v such that for all u 2 U , u(v1) = u(v2). By Observation
3.5, if v1, and v2 traverse exactly the same path, there exists a unique value of z(v1) = z(v2) if f is a
upwards or sideways NFD. Therefore, I cannot violate f .

So, there exists a pre�x p of u 2 U such that p(v1) 6= p(v2), i.e., v1 and v2 do not follow identical
paths. By Observation 3.19, for all ui 2 U there exists a pre�x u0i of ui such that u0i 2 closure. Since
there is no common pre�x between any U and z, we can apply the pre�x rule multiple times and get
u0 : [u

0
1; : : : ; u

0
n ! z].

If z(v1) 6= z(v2) (and jzj = 1), then u0 must have at least two elements. By Observation 3.2 and 3.4,
either u0 was built by assignV al, and u0 2 closure or u0 � x0, or it was built by assignNew, and
u0 62 closure. Consider the �rst case, and let u0 � x0 : u

0
0. Then by push-in rule x0 : [u

0
0; u

0
0 : u

0
1; : : : ; u

0
0 :

u0n ! u00 : z], and by transitivity x0 : z 2 closure. But if x0 : z 2 closure, by the construction of v by
assignV al, z(v1) = z(v2) = value(x0 : z).

Now suppose v was built by assignNew, type of u0 is f<A1; : : : ; Ak>g, for all Ai, 1 � i � k, u0 :
Ai 2 closure, and v = fe1; e2g, where Ai(e1) = value(u0 : Ai), and the value of e2 is given by
newRow(p; (p; ;)�). If z(e1) 6= z(e2), and jzj = 1, then z 62 (u0; ;)

�. By Observation 3.8, if for all ui,
1 � i � n, ui(e1) = ui(e2) then ui(e2) cannot have been built by newRow(u0 : ui; (u0; ;)

�). Therefore,
for all ui there exists a pre�x u0i of ui, such that u0 : u

0
i 2 (u0; ;)

�. By transitivity, u0 : z 2 (u0; ;)
�, a

contradiction.

Case 2: jzj > 1.
By de�nition, f is a downward NFD. We will consider two cases:

1. u0 : z 2 closure:
Let v be an arbitrary value of u0(I). We will show that there exists a single value of v(z). From
Observations 3.7 and 3.17, if there exists two distinct values of u0 : q(v) then there must exist
a pre�x z0 of z such that u0 : z0 62 closure, and u0 : z 62 (u0 : z0; ;)�. But since jwj = 0 by
full-locality rule, for all pre�x z0 of z u0 : [z

0 ! z]. Let z � z0z00. By pull-out rule, u0 : z
0[; ! z00

for all pre�x z0 of z. Therefore, there is no pre�x z that satis�es the conditions above, and there
exists a single value of z(v).

2. u0 : z 62 closure:
Let v be an arbitrary value of u0(I). We will �rst show that if u0 : z 62 closure then for any
element e 2 v there exists a single value of z(e). Suppose the contrary. By Observation 3.12, if
for all pre�x p of z u0 : p 62 closure then there exists a unique value of z(e). There fore, if there
exists two di�erent values of z(e) then there exists a pre�x z0 of z such that u0 : z0 2 closure.
Let z � z0 : z00, and u0 � x0 : u00. Since there is no common pre�x between z and any ui 2 U ,
by the full-locality rule x0 : u00[z

0 ! z0 : z00], by pull-out, x0 : u00 : z0[; ! z00], and by push-
in x0 : [u00 : z0 ! u00 : z0 : z00]. Then, by transitivity, u0 : z 2 closure, which contradicts
our assumption. Therefore, if u0 : z 62 closure then there exists no pre�x z0 of z such that
u0 : z

0 2 closure and for any element e 2 u0(I) there exists a single value of z(e).

Now we have to show that if u0 : z 62 closure there are no two distinct elements v1; v2 in u0(I) such
that for all ui 2 U ui(v1) = ui(v2), and z(v1) 6= z(v2). Suppose there exists such elements v1; v2.
By Observation 3.19, if for all ui 2 U , ui(v1) = ui(v2) then for all ui there exists a pre�x u0i such
that u0i 2 closure. Since there is no common pre�x between any ui 2 U and z, applying the pre�x
rule we get x0 : u

0
0 : [u

0
1; : : : ; u

0
n ! z], and by push-in rule x0 : [u

0
0; u

0
0 : u

0
1; : : : ; u

0
0 : u

0
n ! u00 : z].

We've shown that for all pre�x z0 of z u0 : z
0 62 closure. Then by Observation 3.4 since u0(I) has

24

two elements then either u0 2 closure or u0 � x0. But then, by transitivity, u0 : z 2 closure, a
contradiction.

Inductive Step: jwj > 0.
Let w � A : w0, and f � u0 : [A : u1; : : : ; A : uk; uk+1; : : : ; um ! A : z], where A is not pre�x of
any ui, k < i � m. By locality, u0 : A[u1 : : : uk ! z]. By inductive hypothesis, this NFD is satis�ed.
Therefore, if for every value v of u0(I) all elements agree on the value of A, then I cannot violate f .
So, there exists a value v of u0(I) such that v has at least two elements, v1; v2, and A(v1) 6= A(v2). By
Observation 3.4, either u0 2 closure and u0 : A 62 closure, or u0 62 closure and u0 : A 2 closure.

We will �rst show that if there exists two elements v1; v2 2 u0(I) such that A(v1) 6= A(v2) and for
all ui, 1 � i � m, ui(v1) = ui(v2) then u0 : z 2 closure. Let w � A : w0, u0 � x0 : u00, and
f � u0[u1; : : : ; um ! w : z]. By Observation 3.19, for all ui, 1 � i � m, there exists a pre�x u0i of
ui, such that u0 : u

0
i 2 closure. Let u

0
i be the longest pre�x of ui such that u0 : u

0
i 2 closure, for all i,

1 � i � m. We will consider two cases:

Case 1: For all ui, u
0
i is not a pre�x of w : z.

In this case, we can apply the pre�x rule multiple times and get u0 : [u
0
1; : : : ; u

0
m ! w : z]. By push-in

x0 : [u
0
0; u

0
0 : u

0
1; : : : ; u

0
0 : u

0
m ! u00 : z].

If x0 : u00 2 closure or u0 � x0, then by transitivity, u0 : z 2 closure. If x0 : u0 62 closure, then
u0 : A 2 closure by Observation 3.4. By Observations 3.2 and 3.3 v was built by assignNew(u0),
and u0 : A 62 (u0; ;)

�. By construction, either v1 or v2 was built by newRow(u0; (u0; ;)
�). Since for

all ui, 1 � i � m, ui(v1) = ui(v2), by Observation 3.9 for all ui there exists a pre�x u0i, such that
u0 : u0i 2 (u0; ;)

�. Then by transitivity, u0 : z 2 (u0; ;)
�. I.e., x0 : u00[; ! z]. By push-in rule

x0 : [u00 ! u00 : z]. Let z � A : z0, then by full-locality rule x0 : [u00 : A ! u00 : A : z0]. Since
u0 : A 2 closure, by transitivity, u0 : z 2 closure.

Case 2: There exists a ui such that u0i is a pre�x of w : z.

Let P be the set of paths p such that p is the largest pre�x in closure of some ui 2 U , and p is also
a pre�x of w : z. If for any p 2 P , p � w : z, then by the reexivity rule u0 : w : z 2 closure. Let
pi be the element in P that corresponds to some ui 2 U . Consider each pi, where jpij < jw : zj. By
Observation 3.2, pi(v1), pi(v2) were built either by assignV al, or newRow.

First, consider the case when pi(v1) was built by newRow(pi; (p
0
i; ;)

�), where p0i is a pre�x of pi. Let
ui � pi : u

0
i, and vp the value of pi(v1). If u(v2) = vp, then by Observation 3.9 there exists a pre�x u00i

of u0i such that pi : u
00
i 2 (p0i; ;)

�, and by Observation 3.1 pi : u
00
i 2 closure.

If for all ui 2 U , pi was built by function newRow, then by Observation 3.9 and 3.1 there exists a pre�x
u00i of u0i such that pi : u

00

i 2 closure. Using the pre�x rule we get u0 : [p1 : u
00
1 ; : : : ; pm : u00m ! w : z].

Let pk be the largest pre�x common to some pi, 1 � i � m, and w, w : z � pk : z0, u0 � x0 : u00.
By pull-out x0 : u00 : pk : [u00k ! z0]. By push-in x0 : [u00 : pk; u

0
0 : pk : u00k ! u00 : pk : z0]. Therefore,

x0 : u
0
0 : pk : z

0 � u0 : w : z 2 closure.

Now suppose there exists a pi(v1) built by function assignV al. If for all pre�x u00i of u
0
i pi : u

00
i 62 closure

then by Observation 3.19 it can not be the case that ui(v1) = ui(v2). Therefore, for every u0i there
exists a pre�x u00i such that u00i 2 closure. Therefore, we can use the same argument as used in the
previous case to show that u0 : w : z 2 closure.

Now, we'll show that if u0 : z 2 closure then z(v1) = z(v2). Suppose not. Let w � A : w0, where
jwj � 1, v be a value of u0(I), and v1; v2 two elements in v such that v1(A) 6= v2(A), and for all ui,

25

1 � i � m, ui(v1) = ui(v2), but z(v1) 6= z(v2). By Observation 3.15, either z(v1), or z(v2), or both were
built by newRow(u0 : z; (p; ;)

�), where u0 : z � p : z0, and u0 : z 62 (p; ;)�. By Observation 3.17, since
there exists two distinct values of : z(v), jpj � ju0j. If jpj > jwj then by full-locality and pull-out rules,
u0 : p[; ! z0], and u0 : z 2 (p; ;)�, and therefore z(v1) = z(v2) = value(z). Therefore, ju0j � jpj � jwj.
Let p � u0 : p0, and f � u0 : [p0 : u1; : : : ; p

0 : uk; uk+1; : : : ; um ! p0 : z]. By full-locality and pull-out
rules, p : [u1; : : : ; uk ! z].

Let w � p : w0. For all ui, 1 � i � k, if p : ui(v1) = p : ui(v2), then by Observation 3.9, there exists
a pre�x u0 of ui such that p : u0i 2 (p; ;)�. By Observation 3.7, if p : z0(v1) was built by newRow(p :
z0; (p; ;)�) then for all pre�x z00 of z0, p : z00 62 (p; ;)�. Therefore, for all u0i, if p : u

0
i 2 (p; ;)�, then p : u0i

is not a pre�x of p : z0, and we can apply the pre�x rule multiple times to get p : [u01; : : : ; u
0

k ! z0]. But
then p : z0 2 (p; ;)�, a contradiction. Therefore, z(v1) (and z(v2)) could not be built by newRow and
z(v1) = z(v2) = value(u0 : z).

2) I 6j= x0 : [X ! y] if x0 : y 62 (x0;X;�)
�;SC

We will �rst show that either x0(I) has two elements or there exists a pre�x y0 of y such that x0 : y
0(I)

was built by assignVal and x0 : y
0(I) has two elements. Suppose on the contrary, that there exists no

path p, jpj � jx0j such that p is a pre�x of x0 : y, p(I) has two elements, and p(I) was built by assignVal.
By construction, x0(I) is built by assignV al, and by Observation 3.4 if it has only one element, for
all labels A in x0, x0 : A 2 closure. By construction, in this case, the value of all x0 : As are given by
assignV al(x0 : A). But by Observation 3.4 if assignV al(x0 : A) has only one element then all labels
in x0 : A must also be in closure. But, by assumption, x0 : y 62 closure. Therefore, either there exists
a pre�x y0 of y such that x0 : y

0(I) was built by assignV al and it has two elements, or x0(I) has two
elements.

Let p be the largest pre�x of x0 : y built by assignV al with two elements. We've shown jpj � jx0j.
Let f = x0 : [p : u1; : : : p : uk; uk+1; : : : um ! p : y0]. We claim that if I 6j= x0 : p : [u1; : : : ; uk ! y0],
then I 6j= f . If I 6j= x0 : p : [u1; : : : ; uk ! y0] then there exists two elements v1; v2 in p(I) such
that ui(v1) = ui(v2) for all i, 1 � i � k, and y0(v1) 6= y0(v2). Let v0 be the value of x0 : (I) where
p(v0) = fv1; v2g. Take one value of ui(v0), for all i, k < i � m, and the values of ui(v1) = ui(v2) for all
i, 1 � i � k. Then by assumption y0(v1) 6= y0(v2) and therefore I 6j= f .

Therefore, we have to show that if p is the largest pre�x of x0 : y built by assignV al, and p(I) = fv1; v2g,
v1 6= v2, then for all ui, 1 � i � k, there exists a value of ui(v1); ui(v2) such that ui(v1) = ui(v2), and
y0(v1) 6= y0(v2). By assumption, v1 6= v2. Since for all ui, 1 � i � k, x0 : p : ui 2 closure, by Observation
3.21 for all ui there exists values of ui(v1); ui(v2), such that ui(v1) = ui(v2) = value(x0 : p : ui).

Let y0 � A1 : : : : : An. Since p is the largest pre�x of x0 : y built by assignV al, by Observation 3.22,
for all Ai, 1 � i � n, A1 : : : : : Ai 62 closure, and A1 : : : : : Ai(v1), A1 : : : : : Ai(v2) were built by
assignNew. By Observation 3.12 there exists a single value of y0(v1), and y0(v2), and by Observation
3.18 they are distinct. 2

3.3 Discussion

Simple NFDs. Note that push-in and pull-out simply change between equivalent forms of NFDs. I.e.,
an NFD of form R : y : [x1; : : : ; xk ! z] is equivalent to R : [y; y : x1; : : : ; y : xk ! y : z]. Therefore, we
could change the de�nition of an NFD to allow only relation names as the base path (x0) of an NFD,
without changing its expressive power.

26

In this simpler form of NFDs, it can be shown that there are only six inference rules: push-in and pull-out
are unnecessary. Of the remaining rules, only locality must be modi�ed to what we call full-locality:
if

1. x0 : [x : X; Y ! x : z]

2. x is not a proper pre�x of any y 2 Y

then x0 : [x; x : X ! x : z].

Note that full-locality combines the pull-out and locality rules. As an example of the need to use full-
locality rather than locality, consider the following:

Example 3.3 Let f1 be the NFD R : [A : B : C; A : D ! A : B : E]. Applying the locality rule, we

can get R : [A; A : B : C; A : D ! A : B : E], but not R : [A : B; A : B : C ! A : B : E]. The latter
is derivable using full-locality.

Although the simpler form of NFDs yields a smaller set of axioms, we believe that the �rst form, which
allows an arbitrary base path, is more intuitive since it makes a syntactic distinction between inter- and
intra-set dependencies.

Comparison with inference rules for the relational model. Since the simple form of NFDs
appears to closely resemble the de�nition of functional dependencies for the relational model, the natural
question that arises is: Can we infer all the simple NFDs using the derivation rules for functional
dependencies (FDs) and multivalued dependencies (MVDs) for the relational model?

The answer to this question is no. The \extra" rules that are not part of Armstrong axioms, locality,
singleton, and pre�x, are the rules that allow us to infer NFDs based solely on the nested form of the
data.

We will �rst informally de�ne multivalued dependencies and present their inference rules. Then, using
an example, show that some NFDs cannot be inferred using only Armstrong axioms and the MVD-rules.

Let R be a relation, U the set of attributes in R, and X, and Y subsets of U . We say that \X
multidetermines Y" (written X � Y), or \there is a multivalued dependecy of Y on X", if given values
for the attributes of X there is a set of zero or more associated values for the attributes of Y , and this
set of Y -values is not connected in any way to values of the attributes in U � X � Y [20]. In the
following, we will consider the following inference rules for MVDs [20]:

� complementation: if X � Y , then X � (U �X � Y).

� MVD-reexivity: if Y � X, then X � Y .

� MVD-augmentation: if X � Y , and V �W , then XW � Y V .

� MVD-transitivity: if X � Y , and Y � Z, then X � (Z � Y).

Also, we will consider the following rules that relate FDs and MVDs:

27

� conversion: if X ! Y , then X � Y .

� interaction: if X � Y , Z � Y , and for some W disjoint from Y , W ! Z, then X ! Z.

It's been shown that for the relational model, Armstrong's axioms plus the rules above are sound and
complete for logical implication of FDs and MVDs considered together. So, the question we posed above
can be rephrased as: are these rules complete for logical implication of NFDs ? We will show that this
is not the case. In the following example, we present a possible atten representation of an instance
from our model and how NFDs could be translated as a set of FDs and MVDs in this model.

Example 3.4 Let R be a relation with schema f<A : f<B;C>g;D : f<E;F>g>g with the following

constraints:

R : [D : E ! A : B]
R : [A : B ! A : C]
R : D : [E ! F].

Let I be an instance of R:

A D

B C E F

1 2 3 5
B C E F

1 2 3 6
5 7

B C E F

3 4 4 5

Now suppose we build I 0, a \atten" representation of I with the relational schema R0 = f<A;A : B;A :
C;D;D : E;D : F>g as:

A A : B A : C D D : E D : F
f<B : 1; C : 2>g 1 2 f<E : 3; F : 5>g 3 5
f<B : 1; C : 2>g 1 2 f<E : 3; F : 6>; <E : 5; F : 7>g 3 6
f<B : 1; C : 2>g 1 2 f<E : 3; F : 6>; <E : 5; F : 7>g 5 7
f<B : 3; C : 4>g 3 4 f<E : 4; F : 5>g 4 5

The NFDs de�ned on R could be expressed on R0 as:

R0[D : E ! A : B]
R0[A : B ! A : C]
R0[D;D : E ! D : F].

Notice that the last constraint needs to enforce equality on attribute D, since it is a local dependency
in D. For example, in I 0, it is not the case that R0[D : E ! D : F].

Also there are two multivalued dependencies resulting from the unnesting of R:

R0[A� A : B;A : C]
R0[D � D : E;D : F].

Using only Armstrong axioms on R0 we are able to derive dependencies as:

28

� R0 : [D : E ! A : C], by transitivity, and

� R0 : [D : E; D : F ! A : C] by augmentation.

Other dependencies can be derived using the MVD-rules. For example:

� R0 : [D ! A : B] can be derived using the complementation and interaction rules. Similarly, using
the NFD-rules R : [D ! A : B] can be directly derived from the pre�x rule.

� R0 : [A ! A : B] can be derived using the interaction rule. Also, using the NFD-rules R : [A !
A : B] can be derived from locality, and push-in rules.

But, the dependency R0 : [D ! A] cannot be derived from the rules for the relational model, although
R : [D ! A] can be derived using the NFD rules singleton, transitivity, locality, and push-in. The
reason is that although in R0 we express the relation between a set-valued attribute and its elements
by a multi-valued dependency, as in R0 : [A � A : B;A : C], we don't actually express that B, and C

are the (only) attributes in A. Therefore, using the relational rules, we can derive R0 : [D ! A : B],
R0 : [D ! A : C], R0 : [A ! A : B], R0 : [A ! A : C], but we cannot derive R0 : [A : B;A : C ! A],
which by transitive would result R0 : [D ! A]. The derivation step missing in this case is expressed by
the singleton rule.

Some previous work on normal forms for the nested relational model, as of Ozsoyoglu and Yuan [15],
and Mok, Ng, and Embley [14], use only the inference rules for FDs and MVDs of the relational model.
But their data model is di�erent because there are no labels for set-valued attributes, and therefore they
cannot be referenced by any dependency. For example, the relation R in the example above would be
de�ned in this model as <<B;C>�; <E;F>�>, where <B;C>� represents a set of records with attributes
B, and C. The �rst two dependencies de�ned on R would be de�ned as:

R : [D : E ! A : B]
R : [A : B ! A : C]

But the third dependency cannot be expressed in this model, since the absence of labels for set-valued
attributes prevents equality on sets. In this simpler nested relational model, the derivation rules for
FDs and MVDs are sound and complete [14]. One interesting point, though, is that in [14] one of the
concerns in the normalization process is to avoid singleton sets. In this work, schemas are represented
as scheme trees. Since the existence of singleton sets cannot be expressed or derived from the inference
rules for the relational model, they de�ne a condition on scheme trees in order to identify potential
singleton sets. Our de�nition of NFDs and the NFD-rules allow singleton sets to be expressed and
identi�ed and it would be, therefore, a more general basis for the development of a normal form for the
nested relational model.

The Problem of Empty Sets. As mentioned earlier, the presence of empty sets causes di�culties
in reasoning since formulas such as 8x 2 R:P (x) are trivially true when R is empty. In particular, the
transitivity rule is no longer sound in the presence of empty sets, as illustrated below.

Example 3.5 The instance of R below satis�es R : [A! B : C], R : [B : C ! D], but not R : [A! D].

29

A B D E

1 ; 2 3

1 ; 3 4

2 f<C : 3>g 4 5

One reasonable solution to this problem is to disallow empty sets only in certain portions of the schema;
this is analogous to specifying NON-NULL for certain attributes in a relational schema. The transitivity
rule can then be modi�ed to reason about where empty sets are known not to occur. We do this by
introducing a new relation follow between paths.

De�nition 3.5 Path expression p1 follows p2 if p1 = p01A, and p01 is a proper pre�x of p2.

Intuitively, p1 follows p2 if it only traverses the set-valued attributes traversed by p2. For example, a
path A follows any path p, jpj � 1, since A � �A, and � is a proper pre�x of any path. A path A : B
follows A : B, A : C : D, but not A, E, and F : G.

The new transitivity rule is then de�ned as: if

1. x0 : [X ! x1]; : : : ; x0 : [X ! xn];
x0 : [x1; : : : ; xn ! y]

2. for all p in fx1; : : : ; xng �X, if p does not follow y, then p is known not to be an empty set

then x0 : [X ! y].

The fact that transitivity does not generally hold in the presence of empty sets has also inuenced our
de�nition of NFDs to allow only single paths on the right-hand side of functional dependencies rather
than sets of paths.

Recall that in the relational model, a functional dependency (FD) X ! Y , where X;Y are sets of
attributes, can be decomposed into a set of FDs with single attributes on the right-hand side of the
implication. Unfortunately, the decomposition rule follows from reexivity and transitivity and cannot
therefore be uniformly applied with NFDs in the presence of empty sets.

The presence of empty sets also a�ects the pre�x rule. Consider the instance I presented in Example
3.5. Notice that I satis�es R : [B : C ! E], but not R : [B ! E]. A modi�ed pre�x rule to take this
into account is: if

1. x0 : [x1 : A; x2; : : : ; xk ! y]

2. x1 has one or more labels, and x1 is not pre�x of y

3. x1 is not an empty set

then x0 : [x1; x2; : : : ; xk ! y]

30

4 Conclusion

We have presented a de�nition of functional dependencies (NFD) for the nested relation model. NFDs
naturally extend the de�nition of functional dependencies for the relational model by using path ex-
pressions instead of attribute names. The meaning of NFDs was given by de�ning their translation to
logic.

NFDs provide a framework for expressing a natural class of dependencies in complex data structures.
Moreover, they can be used to reason about constraints on data integration applications, where both
sources and target databases support complex types.

We presented a set of inference rules for NFDs that are sound and complete for the case when no empty
sets are present. Although for simplicity we have adopted the nested relational model, and the syntax
of NFDs is closely related to this model, allowing nested records or sets would not change the inference
rules presented signi�cantly. However, new rules would have to be added to consider path expressions of
record types as the current syntax only allows path expressions of set and base types. As an example, we
would need a rule that states that if in R x is a path of type <A1; : : : ; An>, then R : [x:A1 : : : x:An ! x],
where \." indicates record projection.

In [7], Fischer, Saxton, Thomas and Van Gucht investigate how nesting de�ned on a normalized
relation destroys or preserves functional and multivalued dependencies; they also present results on
the interaction of inter- and intra-set dependencies. Their results are based on case studies of the
cardinality of relations, and of the containment relation between the set of attributes over which the
nesting is de�ned and the set of attributes involved in the dependency. Many results depend on the fact
that a nested relation is a singleton set. In our de�nition of NFDs, both inter- and intra-set dependencies
can be expressed. NFDs can also express that a given set is expected to be a singleton. As a result, our
work generalizes their results by providing a general framework to reason about interactions between
nesting and functional dependencies.

In future work, we intend to investigate a relaxation of the assumption that no empty sets are present
in any instance, by requiring the user to de�ne which set-valued paths are known to have at least one
element. We believe this is a natural requirement to make, since de�nition of cardinality has long been
recognized as integral part of schema design [6] and is part of the DDL syntax for SQL (NON-NULL).
Generalizing the inference rules to this case would allow us to reason about constraints for a larger
family of instances.

References

[1] S. Abiteboul, N. Bidoit. \Non �rst normal form relations: An algebra allowing restructuring". Journal of
Computer and System Sciences, 33(3): 361-390, 1986.

[2] S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases. Addison-Wesley Publishing Company, 1995.

[3] A.V. Aho, Y. Sagiv, J.D. Ullman. \Equivalences among relational expressions". SIAM Journal of Computing,
8(2):218-246, May 1979.

[4] C. Beeri, M.V. Vardi. \Formal systems for tuple and equality generating dependencies". SIAM Journal of
Computing, 13(1):76-98, February 1984.

[5] P. Buneman, W. Fan, S. Weinstein. \Path Constraints on Semistructured and Structured Data". In Proceed-
ings of the Seventeenth Symposium on Principles of Database Systems, 1998.

31

[6] P.P. Chen. \The entity-relationship model - Toward a uni�ed view of data". ACM Transactions on Database
Systems, 1:9-36, 1976.

[7] P.C. Fischer, P.C., L.V. Saxton, S.J. Thomas, D. Van Gucht. \Interactions between Dependencies and Nested
Relational Structures". Journal of Computer and System Sciences, 31: 343-354, 1985.

[8] A. Klug. \Calculating Constraints on Relational Expressions". ACM Transactions on Database Systems,
5(3):260-290, September 1980.

[9] A. Klug, R. Price. \Determining View Dependencies Using Tableaux". ACM Transactions on Database
Systems, 7(3):361-380, September 1982.

[10] A. Kosky. Transforming Databases with Recursive Data Structures. Ph.D. Thesis, University of Pennsylvania,
1996.

[11] A. Makinouchi. \A consideration on normal form of not-necessarily-normalized relation in the relational data
model". In Proceedings of the International Conference on Very Large Databases, pp. 447-453, 1977.

[12] D. Maier, A. Mendelzon, Y. Sagiv. \Testing Implications of Data Dependencies". ACM Transactions on
Database Systems, 4(4): 455-469, December 1979.

[13] D. Maier. The Theory of Relational Databases. Computer Science Press, Inc., 1983

[14] W.Y. Mok, Y. Ng, D.W. Embley. \A Normal Form for Precisely Characterizing Redundancy in Nested
Relations". ACM Transactions on Database Systems, 21(1):77-106, March 1996.

[15] Z.M. Ozsoyoglu, L.-Y. Yuan. \A new normal form for nested relations". ACM Transactions on Database
Systems, 12(1):111-136, March 1987.

[16] L. Popa. \A Language for Nested Tableaux". draft. University of Pennsylvania, 1998.

[17] L. Popa, V. Tannen. \An Equational Chase for Path-Conjunctive Queries, Constraints, and Views". In
Proceedings of the 7th International Conference on Database Theory (ICDT'99) - LNCS 1540, pp. 39-57,
1999.

[18] Z. Tari, J. Stokes, S. Spaccapietra. \Object Normal Forms and Dependency Constraints for Object-Oriented
Schemata". ACM Transactions on Database Systems, 22(4):513-569, December 1997.

[19] J. Thierry-Mieg, R. Durbin. \Syntactic De�nitions for the ACEDB Data Base Manager". Technical report,
MRC Laboratory for Molecular Biology, Cambridge. 1992.

[20] J.D. Ullman. Principles of Database Systems, Second Edition. Computer Science Press, 1983.

[21] G. Weddell. \A theory of functional dependencies for object-oriented data models". In Deductive an Object-
Oriented Databases, Eds. W. Kim, J.-M. Nicolas, S. Nishio, Elsevier Science Publishers B.V. (North-Holland),
1990, pp. 165-184.

[22] G. Weddell. \Reasoning about Functional Dependencies Generalized for Semantic Data Models". ACM
Transactions on Database Systems, 17(1): 32-64 , March 1992.

[23] L. Wong. Querying Nested Collections. Ph.D. Thesis, University of Pennsylvania, 1994.

[24] M. Zloof. \Query-by-Example: the invocation and de�nition of tables and forms". In Proceedings of ACM
International Conference on Very Large Databases, pp. 1-24, September 1975.

32

	Inference Rules for Nested Functional Dependencies
	Recommended Citation

	Inference Rules for Nested Functional Dependencies
	Abstract
	Comments

	tmp.1161807666.pdf.RdZ5Q

