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Representing Scope in Intuitionistic Deductions

Abstract

Intuitionistic proofs can be segmented into scopes which describe when assumptions can be used. In standard
descriptions of intuitionistic logic, these scopes occupy contiguous regions of proofs. This leads to an
explosion in the search space for automated deduction, because of the difficulty of planning to apply a rule
inside a particular scoped region of the proof. This paper investigates an alternative representation which
assigns scope explicitly to formulas, and which is inspired in part by semantics-based translation methods for
modal deduction. This calculus is simple and is justified by direct proof-theoretic arguments that transform
proofs in the calculus so that scopes match standard descriptions. A Herbrand theorem, established
straightforwardly, lifts this calculus to incorporate unification. The resulting system has no impermutabilities
whatsoever—rules of inference may be used equivalently anywhere in the proof. Nevertheless, a natural
specification describes how A-terms are to be extracted from its deductions.
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Abstract

I ntuitionistic proofs can be segmented i nto scopes which describe when
assumptionscanbeused. Instandard descriptionsof intuitionisticlogic,
these scopes occupy contiguous regions of proofs. Thisleadsto an ex-
plosion in the search space for automated deduction, because of the
difficulty of planning to apply aruleinside aparticular scoped region of
the proof. This paper investigates an alternative representation which
assigns scope explicitly to formulas, and which is inspired in part by
semantics-based trand ation methods for modal deduction. This calcu-
lus is simple and is justified by direct proof-theoretic arguments that
transform proofsin the calculus so that scopes match standard descrip-
tions. A Herbrand theorem, established straightforwardly, lifts this
calculus to incorporate unification. The resulting system has no imper-
mutabilities whatsoever—rules of inference may be used equivalently
anywhere in the proof. Nevertheless, a natural specification describes
how A-terms are to be extracted from its deductions.
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2 MATTHEW STONE

1 Background

This paper is an exploration of the relationship between scope, proof structure and
proof search inintuitionistic logic. The links between these notions can be framed
in an intuitive way.

1.1 Scopeand structure

In intuitionistic proofs, information that is assumed as part of proving some state-
ment can only be used in proving that statement. Intuitionistic proofs derive their
discipline of scope from this constraint. The scope of an assumed formulaidentifies
the statements to whose proof the assumption may contribute. The scope of an
assumed value identifies the statements which may be instantiated to refer to this
value. Conversely, the scope of aformulato be proved identifiesthe assumed values
at which it may be instantiated and the assumed formulas that may contributeto its
proof. Both the initial steps that link assumptions and conclusions and the logical
rules that combine proofs must be formulated to enforce this discipline of scope.

The intuitionistic discipline of scope underliesthe Curry-Howard isomorphism,
which allows functional programs to be extracted from intuitionistic logic deduc-
tions (Howard, 1980). Assumptionsin intuitionistic proofs correspond to variables
in functional programs. The fact that an assumption in a proof has a scope that
determineswhereit may be used corresponds to the fact that avariablein aprogram
has a syntactic scope in which it is bound.

The same constraint can be applied inlogic programming to implement modules
using intuitionistic implication and to create local variables using intuitionistic
quantifiers (Miller, 1989). The discipline of scope restrictsthe use of these assumed
facts and values to the appropriate locality.

To exploit these features for practical program synthesis (as in (Martin-Lof,
1982; Constable et al., 1986)) or logic programming (as in (Nadathur, 1993)), it
is not enough merely to be able to infer automatically if a given formulais an
intuitionistic theorem. These tasks call for the automatic derivation of intuitionistic
proofs and the analysis of automatic intuitionistic proof search.

In intuitionistic proof-theory, we are used to inference rules that enforce this
discipline of scope by adiscipline of structure. Thisiswhat happens for example
in the usual sequent calculi for intuitionistic logic, such as that in Figure 1. Each
sequent contains on the right a single statement C to be proved and on the left a
multiset of assumptions I" that may be used to proveit. Transitions between scope
arise when there is a difference in assumptions between the premise sequents of a
rule and its result sequent. For example, the (— D) rule describes the derivation of
A D B from assumptions I" in terms of a derivation with different assumptions:

A—B
r—A>OB "~

Above, we have anew scope inwhich the assumption A may be used, as encoded by
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rLA— A r,L—A
I AABAB— C r—A r—B
ILAAB—C "~ I — AAB - A
r—A .. r—B8 .,
I — AVB I — AVB
IAVB,A— C ILAVB,B— C
ILAVB — C V=
ILADB— A ILADB,B— C IA— B
ILAODB—C °~ T—A>B °
YA Alt)X] — C,, r — Ala/x]_ v
T, VxA — C I — VXA
T, 3xA, Ala/x] — C3g _1 r— AtX .
T, IxA — C I — XA

Figure 1: A cut free sequent calculus for intuitionistic logic, LJ. 1 For (— V) and
(3 —), amust not appear in the conclusion.

the addition of A on the left; but this new combination of assumptionsis available
only to prove B, as encoded by the lone B on the right. Other rules smply describe
inferences that may be performed within particular scopes; the assumptions made
available in the premise sequents are the same as those available for the result
sequent. (— A) isan example:

r—A r—B
I —AAB

— A

In this method of assigning scope, the position of a rule-application in a proof
determines the scope of any new assumptions or new goals for proof that the rule-
application introduces. Viewing the proof as a tree, the path from the root to the
site of the rule-application contains blocks of inferences performed in a common
scope punctuated by inferences that change scope. The sequence of rules that
change scope on this path establishes the scope in force when the rule applies. We
can therefore refer to systems like that of Figure 1 as structurally-scoped sequent
calculi.

Sometimes, a rule-application must take narrow scope in a proof, to respect
the scope of assumptions in which it depends. When the proof is presented in a
structurally-scoped calculus, the rule-application must appear above the rules that
introduce that scope. For example, consider aproof of (C D BVA) O (C D> AV B);
the digunction B VV A depends on the assumption of C. The proof is shown in
(2); elipsis (...) in sequents indicates that certain assumed formulas have been
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suppressed for compactness and clarity.

. A—A . ...B—B

..,A— AVB ....B— AVB
..,C—C ..BVA— AVB V=
COBVAC— AVB o=
COBVA—COAVB =2
— (COBVA)D (COAVB) -

(D

We identify three scopes in this proof, corresponding to a sequent in which no
assumptions are available (theroot), asequent in which theassumptionof C > BVA
is available (inside the outer brace), and a sequent in which assumptions of C and
C D BV A are available (inside the inner brace). (In not regarding (V —) asa
change of scope, we anticipate the results of section 3.2.) In the innermost scope,
the proof proceeds by case analysis, by applying (O—) and (V —) rulesto the
assumption C D BV A. We could attempt to apply these two rules in either of
the scopes that make that assumption available, but no proof could be built if the
rules were applied in the outer scope. In the outer scope, C is not available, so the
leftmost subproof wouldinvolve theimpossible goal of showingC > BVA — C.

In other cases, a rule-application must take wide scope, because the indefinite
information it encodes must be resolved before nested assumptions can be made.
Again, in the structurally-scoped calculus, this constrains the position in the proof
tree at which the rule-application occurs. For example, in provingBVv A D (C D
A)V (C D B), thedternativesfor the digunction B V A determinewhich implication
should be proved, C D A or C D B. The proof appearsin (2).

{BVAB,C—B {BVAALC— A
BVAB—COB ° v BVAA— COA °
BVAB— (CDA)V(CDB) BVALA— (CDA)V(CDB)
BVA— (CDA)V(CDOB)
—BVAD(COAV(CDOB) —
2

We identify four scopes in this proof. There is the root where no assumptions
are available, an inner scope in which B v A is available, and two further scopes,
where C isavailable, once in conjunction with the B case, and once with the A case.
Consider the left C scope. Once C is assumed, the structural discipline of scope
forcesall subsequent reasoning to contributeto the proof of B. Now, we might have
attempted to apply the (V —) rule here, instead of lower, since the assumption of
B v Aremains available here. Since the digunction B V A must contribute not only
to that proof but to the proof of C O A (and A), the proof could not be completed in
this case.

— V1
vV
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1.2 Search and structure
Sequent calculus can be seen as a method for formalizing the process of proof
search in natural deduction. Natural deduction systems express the Curry-Howard
isomorphism most concisely: natural deduction proofs correspond to A-terms both
in syntax and in normalization (Prawitz, 1971). However, natural deduction raises
difficulties for describing proof search strategies. Natural deduction involves two
kinds of rules, introduction and elimination rules, that should be used in different
circumstances in proof search. Elimination rules should be used to decompose
assumptions, introduction rules to assemble conclusions. To use them otherwise
reguiresthe interpreter to guess aneeded formulafrom among all possible formulas
of the logic. This distinction is made explicit in sequent systems, which separate
assumptionsand conclusionson different sides of the sequent —, and use different
rules to decompose the logical connectives on either side.

Sequent systemstherefore provide astraightforward framework for proof search.
In this framework, the structure of a proof corresponds to the order in which rules
should be applied during proof search. The algorithm to search for proofsissimply
to build sequent proofs from the root up, repeatedly extending an unfinished branch
of the proof by applying a sequent rulethat extends the branch. The choice of which
rule to apply is nondeterministic; we might apply some finite lookahead to help
identify rules that make progress toward completing the proof, but in general we
must backtrack among alternative choices for extending the proof. This algorithm
for sequent search serves as ajumping off point for further optimizations, including
tableau (Smullyan, 1968) and matrix proof methods (Andrews, 1981; Bibel, 1982).

1.3 Scope, search and structure: a conflict

Following these two intuitions, position in a sequent cal culus proof identifies both
the scope of a rule-application and the time at which the rule-application must be
considered in proof search. The dual roles of position are in conflict. From the
perspective of proof search, we would like to apply arule only when we recognize
that itisneeded. However, as examples (1) and (2) show, we must consider applying
arulein each of the scopes possible for it. In the structurally-scoped calculus, such
scopes correspond to positions in the proof—positions that may represent earlier
stages in proof search than the stage when the need for the rule is recognized.

For example, consider avariant of the theorem of (2):

BVABACDODFAACDE— (CDOE)V(CDF)

Again, to prove this it is necessary to apply (Vv —) at wide scope, before any
assumption of C, because B and A contribute to the proofs of different implications.
But now these contributions are indirect and can beidentified only on the basis of a
chain of inferences performed in the nested scope. For example, B combines with
C to establish the conclusion F by (D—). Recognizing such indirect connections
can be as hard as constructing the proof itself. In first-order intuitionistic logic
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in particular, there is no bound on the length of inference chain in a nested scope
that may be required to link the result of rule applied in a wide scope to a needed
conclusion. In general then, automated methods must be prepared to apply a rule
before they know whether the application will even be needed! The regime for
imposing scope on proofs means that proofs can no longer be constructed in agoal-
directed manner. Thisis a severe problem in practice, where policies for avoiding
or guessing rule-orderings in particular situations are typically required (Tennant,
1992).

The difficulty is exacerbated because it is impossible in general to apply al
possible rulesin an outer scope before moving in to a nested scope. The decision to
apply the ruleto change scope must be undertaken when other possibleinferencesin
the outer scoperemain. Should proof search fail subsequent to thisdecision, wemust
reconsider applying some of these possible inferences. This means backtracking
to a stage when the proof contained an open branch in this scope—so it means
discarding (then perhaps repeating) all search attempted since changing scope.

2 Overview

Considerations of search invite us to decouple scope in intuitionistic proofs from
position. We shall seein this paper how we can accomplish this by making the dis-
cipline of scope explicit, so that the scopes of terms, formulas, and rule-applications
are represented overtly by terms in the proof. We can refer to proof systems so
obtained as explicitly-scoped sequent calculi for intuitionistic logic.

By alowing arule to be applied in a given scope at any point in proof search,
explicitly-scoped calculi eliminate the difficulties observed above. Explicit scoping
allows rules at wide-scope to be selected locally on the basis of an immediate con-
tribution to the proof (possibly at nested scope) and to be added to the proof without
revising deductions at nested scope that have been performed aready. However,
despite the potentially unorthodox order in which they are built, explicitly-scoped
proofs correspond directly to ordinary natural deduction proofs. Explicitly-scoped
sequent calculi therefore offer aframework for automatically deriving A-terms and
for regulating the combination of modular information in logic programming proof
search.

The central results of this paper substantiate these observations. First, in sec-
tion 3, we present simpleand direct arguments based on permutabilitiesof inferences
that establish a constructive correspondence between proofsin an explicitly-scoped
system and proofsin the structurally-scoped one. We obtain a lifted version of this
calculus in section 5.1 using a standard construction (Lincoln and Shankar, 1994);
unification in the lifted calculus constrains the scope of rule-applications dynami-
cally in the course of proof search. Then, we outline in section 5.2, how A-terms
can be extracted from the lifted, explicitly-scoped sequent deductions by adapting
the techniques proposed by (Felty, 1991).

These results strengthen existing semantic techniques by giving them a con-
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structive, proof-theoretic foundation. In this overview, we motivate the distinction
in two ways. by contrasting the intuitions underlying semantic and proof-theoretic
derivations of explicitly-scoped calculi, and by reviewing a parallel distinction in
first-order classical logic between Herbrand's theorem and the Skolem-Herbrand-
Godel theorem.

We havefound thisalternative syntacti c representation of scope extremely useful
in practice, in part because of the further resultsit enables and for its applicationsto
logic programming and program synthesis. For example, invariants of the sequent
calculus can be used to devise efficient algorithms for constraining scopes (Stone,
1997a). Moreover, new logical fragments can be shown to have uniform proofsin
this system, giving a logical and syntactic characterization of logic programming
languages with modules and indefinite information; see section 5.1 (Further work
along these lines is currently in progress).

2.1 Semantic vs. proof-theoretic intuitions

Any semanticsfor intuitionistic logic allows usto reason classically about intuition-
istic provability, as follows. The semantics specifies a class of models, where each
model contains some set of points at which objects exist and at which relations hold.
The semantics also describes how formulas are evaluated for truth and falsehood
with respect to these points according to compositional rules that can be expressed
using classical formulas. (For a survey of intuitionistic semantics see (Troelstraand
van Dalen, 1988a), chapter 2 and (Troelstra and van Dalen, 1988Db), chapter 13.)

Given the semantics, a demonstration that a formula is valid can proceed by
tranglation: each formulaislabeled with atermthat representsits point of evaluation
and is decomposed in keeping with the rules for its semantic evaluation according
to the inference rules of classical logic. In classical logic, propositiona rules can
be applied in any order with the same effect. Thus by labeling formulas and using
classical inferences, we can eliminate the interdependence of scope and structure
that complicates proof search for structurally-scoped systems like LJ.

In particular, inaKripkemodel for intuitionistic logic (Kripke, 1965), the points
of evaluation are called possible worlds. Conjunction, digunction and existential
guantification are interpreted classically at the world of evaluation. Implication
and universal quantification must hold not only at the world of evaluation but for
all worlds accessible from the world of evaluation under a transitive, reflexive
accessibility relation.

In Kripke semantics, each world can be identified by a sequence of transitions
of accessibility required to reach that world. This suggests using terms representing
such sequences aslabelsin translation theorem-proving. Inthe earliest such system,
Fitting represents transitions of accessibility as integers and paths of accessibility
as integer strings (Fitting, 1969; Fitting, 1983). Smullyan uses variables instead
of integers to represent transitions and thus obtains a closer correspondence with
classical deduction (Smullyan, 1973). Wallen shows how theorem-proving tech-
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niques for classical logic, such as matrix proof methods (Andrews, 1981; Bibel,
1982) and structure-sharing (Boyer and Moore, 1972), can be applied to Smullyan’s
system (Wallen, 1990). After further study, these systems can now be regarded
as instances of more general techniques of semantics-based trandlation (Ohlbach,
1991) and labeled deductive systems (D’ Agostino and Gabbay, 1994).

These works provide new inference systems and semantic demonstrations that
these systems allow the same theorems to be proved as a structurally-scoped intu-
itionistic sequent calculus. But they leave open the question of how to extract a
proof in the structurally-scoped system from a theorem derived in the new system.
Indeed, the standard interpretation of L, asaformulatruein noworld of any Kripke
model, could make this extraction genuinely problematic (see section 3.3.1).

Our resultsprovide constructive correspondences between path-based explicitly-
scoped proofs and structurally-scoped proofs. In addressing this question, the
present result provides a proof-theoretic strengthening of existing work. Infact, to-
gether with the soundness and compl eteness theoremsfor classical logic, the present
result constitutes an alternative demonstration of the soundness and compl eteness
of LJ proofs under a variant of Kripke semantics. the fallible semantics, where |
may be true at selective worlds in a model, provided all other atomic formulas are
true there (Veldman, 1976).

The strengthening of results corresponds to a strengthening in the interpretation
of the labels of formulas. In path-based trandation, the elements of a term
correspond to transitions between possible worlds, and the association between a
term . and a statement p means that p is to be evaluated in the semantics at aworld
represented by . Invirtue of our new constructive correspondence, the elements
of aterm p correspond directly to rule-applications that effect a change of scope
in structurally-scoped proof. As a sequence,  describes the sequence of scope-
changing rule-applications that apply along some path in the proof tree. Labeling
p with ¢ indicates that the rule that introduces p should appear in the structurally-
scoped proof at the scoped location identified by . By rearranging a labeled proof
so that the position of inferences in the tree matches the positions named by their
labels, we can transform an explicitly-scoped proof into astructurally-scoped proof.
Thus, instead of appealing to semantic intuitions, we can see that the labeling terms
are a purely syntactic notation that allows intuitionistic deductions to be built in an
incremental way.

2.2 Herbrand’'s Theoremas a parallel
A paralel with these results can be found in Herbrand's theorem for classical
logic, which offers a device for reasoning about the right scope for applications of
quantifier rules independent of the order in which those rules appear in the proof.
(Lincoln and Shankar, 1994) offers a demonstration of the generality of thisway of
looking at Herbrand’s theorem.

The problemissimilar to the one just described: The quantifier rulesin Figure1
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involve a link between structure and scope in deductions. The (— V) and (3 —)
impose arequirement that the eigenvariable substituted for the bound variable must
not occur elsewhere in the sequent to which the rule applies:

T, 3xA, Ala/x] — C3 _1
T, 3xA — C

Because of thiscondition, we may regard the subproof abovetherule asrepresenting
the scope of the eigenvariable. Abovethisrule, the other quantifier rules(V —) and
(— 3) may perform substitutions into formulas so as to include the new variable a.
Such rules then cannot be permuted below the introduction of a, without violating
the eigenvariable condition.

As extended in (Shankar, 1992; Lincoln and Shankar, 1994), Herbrand's theo-
rem describes alternative sequent rules for quantifiers that substitute complex terms
for bound variables instead of eigenvariables. These terms, called Skolem or Her-
brand terms, are representations of eigenvariables; they have the form f(ty, .. ., tn)
where f is a symbol associated with an occurrence of a quantifier and ty, ..., t, is
a sequence of terms specified by the logic. This sequence is designed to include
as subterms representations of all the eigenvariables that would have to appear in
the sequent when the quantifier rule applied—no matter what rearrangementsto the
proof were performed. In classical logic, the only obstacle to such rearrangement
is the impossibility of applying a rule to a subformula lower than any inference
involving the formula that contains it. The sequence t, .. ., t, therefore lists the
instantiations made as part of deriving the quantified formula to which the rule
applies. In structurally-scoped calculi for intuitionistic and linear logic, additional
terms are required to reflect the different scopes of quantifiersat different positions
in the proof.

The structure of Herbrand termsinduces apartial orderingonrules. If avariable
is instantiated to t at rule L and a variable is instantiated to a term that properly
contains t at rule H, then L should occur lower than H. And among rules that
instantiate a variable with a term t, the rule that constructs t as a representation
of an eigenvariable should occur lowest. The proof of the theorem shows how to
rearrange the proof so that the position of quantifier rules respects this ordering. At
this point, the Herbrand terms can be replaced by variablesthat satisfy eigenvariable
conditions when necessary.

This result links instantiations of variables and the possibility of reordering in-
ferences: it chooses instantiationsin away that eliminatesthe need for backtracking
among orderings of quantifier inferences. It therefore offers a greater potential for
cutting down proof search than aresult describing correct instantiations to skeletons
of proofsin which the order of rulesis fixed, as in (Voronkov, 1996). Herbrand's
theorem can also be contrasted with a weaker result, the Skolem-Herbrand-Godel
theorem. The latter theorem shows how a problem of first-order provability can be
related to a set of problems of propositional provability by using instantiations with
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functional terms. Thistheorem has been extended beyond classical logicin (Fitting,
1996), using an extension to the logical syntax. Again, while this result offers a
way to derive theorems, it does not directly offer away to obtain proofs.

3 Scoping by Position: A Sequent Presentation

This section describes and verifies a first explicitly-scoped sequent calculus for
intuitionistic logic. The calculus is based on two intuitions: first, that the scope
transitions of structurally-scoped intuitionistic proofs are associated precisely with
the rules for implication and universal quantification; and second, that the scope of
a rule-application is given by the sequence of scope-changing rules that occur on
the path from the root of the proof to the site of the rule-application. Our strategy
is simply to name each rule-application that creates a scope, using afresh variable
(following to thefirst intuition), and to label each formulain the proof with astring
of names recording the scope of the rule that introduced it (following the second).

For example, suppose the (— D) rule appliesto aformulaA O B labeled by (.
In the structurally-scoped proof, this rule makes a transition from the scope where
A D B isintroduced, namely y, the scope where to a new, nested scope, which
we name p«. So the rule makes available an assumption of A labeled i« and a
conclusion of B, aso labeled ;. Because scope in this ruleis made explicit, there
isno need for afurther structural mechanism to enforce the intuitionistic connection
of Aand B.

Dually, suppose the (D—) rule appliesto aformulaA O B labeled by ;. The
assumption of A O B is made at a scope named by 4, but this assumption once
made can persist into nested scopes. So if we derive A with alabel v that has i asa
prefix—corresponding in any scope nested within y—uwe can conclude B in scope
v. For similar reasons, at leaves of the proof, where we match an assumption with
an identical conclusion, the label of the assumption must be a prefix of the label of
the conclusion.

The structure of the section is as follows. In 3.1, we make some observations
about the sequent calculi we will be studying. We adopt a treatment of structurein
sequents that makes permutation of inference particularly easy to describe. Then,
in 3.2, we substantiate the claim that the scopes of intuitionistic logic proofs are
associated with exactly the rules for implication and universal quantifiers. The
section introduces a sequent calculus in which the right of a sequent is a multiset
of formulas and the sequent rules for disjunction and existential quantifiers match
those for classical logic. The new calculus offers a simple opportunity to introduce
the technique of using permutations of inference to establish the correspondence
between proofsin different systems.

Section 3.3 formally describes this explicitly-scoped sequent calculi for intu-
itionistic logic. Section 3.4 gives transformations between proofs in this system
and proofs in the structurally-scoped system. These transformations exploit the
intuitions behind the annotations in a straightforward way. In particular, to trans-
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form a structurally-scoped proof to an explicitly-scoped proof, we simply label the
occurrences of formulas in it according to the scoped positions specified by the
structure of the proof. Meanwhile, to transform an explicitly-scoped proof into a
structurally-scoped proof, we rearrange theinferencesin the explicitly-scoped proof
so that the positions of rule-applications match the labels of their formulas.

3.1 Preiminaries

In the system of Figure 1, asequent iswritten " —> A, where " is afinite multiset
of formulas and A is a single formula. A derivation is a tree of sequents derived
from initial (or axiom) sequents according to the rules of Figure 1. We will also
call derivations proofs, provided no confusion with meta-level argumentation about
derivations (another kind of proof) might result. The root of a derivation is called
its end-sequent. If arule applies to a formula A occurrence in the end-sequent of
derivation D, we call A the principal formula of the rule-application, and we call
the designated occurrences of the immediate subformulas of A in the immediate
subderivations of D the side formulas of the rule-application. For quantifier rules,
the variable a introduced is the eigenvariable of the rule.

The sequent calculus of Figure 1 is given as G3a in (Kleene, 1952) and as
G2V in (Gallier, 1993). It reflects a particular approach to the treatment
of structure in sequents, which we will adopt throughout this paper. The calculus
dispenses with the rule of contraction:

TAA— A
ILA— A
in favor of the preservation of principal formulas of rules in subderivations. This
automatic duplication of formulas streamlines and localizes the representation of
reuse of premises (without this, in converting sequent proofs to natural deductions,
intermediate results will first be weakened, then contracted); and in fact, duplication
fallsout of anatural logical specification of the sequent system (asin (Felty, 1991)).
The calculus also dispenses with weakening:

r—A
TA—a"
because the axiom rule allows any finite multiset of formulas on the left in addition
to the formula that agrees. Instead of repeatedly weakening the end-sequent of
a derivation D by formulas A using a structura rule, we can define a derivation
A + D obtained from D by replacing the left multiset I of every sequent in D by
the multiset union of A and I'. Aslong as no eigenvariable of D occursfreein A,
A + D isaso acorrect derivation.

Because the sequent calculus avoids structural rules, it is simple to describe
interchangesof logical rulesinthiscalculus. Adjacent logical inferencesare applied
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LA — AA
ILAAB,AB— A I — AAAB,A I — B,AAB,A
LAAB— A "7 I — AAB.A - A
I — AB,AVB,A ILAVB,A— A ILAVB,B— A
r— AvB,A Y LAVB — A V=
IA— B IADB— AA ILADB,B— A
r—A>BA ° LAODB— A o
LA ALY —= A I — Ala/x| _ v
T, VXA — A I — VXA A
T, 3xA, Ala/x] — A3 _i L — A, 3AA .
T, XA — A I — XA A

Figure 2: A cut free sequent calculus for minimal logic, LMM. { For (— V) and
(3 —), amust not appear in the conclusion.

in succession, so that a higher inference H is applied at the root of the immediate
subderivation of a lower inference L. (No structura rules intervene.) If a side
formula of L is not the principal formula of H, we may attempt to replace the
derivation of the end-sequent of L by anew derivation of the same end-sequent with
H at the root, followed immediately by L, capped by subderivations copied from
the original derivation (but possibly weakened). Performing such a replacement
constitutes an interchange of rules L and H and demonstrates the permutability of
L and H; see (Kleene, 1951). Such replacement is not always possible because of
structural conditions L and H impose; in that case the inferences are impermutable.

Since structure is treated implicitly, it is also possible to think of the left of a
sequent as a set rather than a multiset of formulas. While ssimpler now, a set-based
formulation complicates the translation from sequent proofs to natural deduction
proofs, because the translation calls for several occurrences of the same formulato
appear, labeled with distinct proof-terms.

3.2 Refining the structural discipline of scope

In justifying explicitly-scoped calculi, we will use not LJ but a somewhat less

familiar sequent system, LMM, givenin Figure2. Theuse of LMM instead of LJis

a convenience which makes transparent the way that scoped regions are created in

intuitionistic sequent proofs, exactly at (— D) and (— V) rules. This transparency

makes the correctness of the system presented below easier to see and to show.
LMM is a sequent calculus presentation of minimal logic—the fragment of
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intuitionistic logic without negation or an absurdity rule.? Following (Fitting, 1969),
this formalization localizes the specifically intuitionistic character of the systemin
the (— D) and (— V) rules. (The particular presentation above restricts the system
GKT? VY31 of (Gallier, 1993) to minimal logic.) In LMM, unlike in LJ, the
right of a sequent is a multiset of formulas, and the same structural conventions
apply ontheright and theleft. In particular, as before, weakening isbuilt into initial
sequents, while contraction is built into inference figures.

LMM exploits these multiple conclusions to give the same sequent rules for
most connectivesthat the connectives havein classical logic. (The sequent calculus
for classical logic, LK, aso has multiple formulas on the right in sequents.) For
example, instead of LJ's two right rules for digunction, LMM hasasingle (— V)

rule;
I — ABAVBA

I — AVB.A

—V

This rule leaves both diguncts available and thereby alows the choice of which
disiunct is to be proved to be delayed.

Thedifferencewith classical sequent calculusliesinthe (—2) and (— V) rules,
which apply to deductions where only their side formula appears on theright in the
end-sequent, for example:

ILA— B
r—A>OBA °

These are the rules where assumptions are made; discarding the right formulas
isolates the subderivation in which the assumption is used, and thereby ensures
that the use of any assumption respects its scope. Alternatively, this restriction
introducesimpermutabilitiesinto thelogic by eliminating the possibility of delaying
the resolution of digunctive possibilities until above these rules. Note that since
formulas are discarded, to construct a derivation from D that weakens by A on the
right (written D + A), we must add A to theright of just those sequentsin D that do
not lie above an application of (—2) or (— V).

The correctness of LMM is typically shown by a ssmple argument that shows
how LMM proofs can be recursively translated to proofsin LJ in which cuts may
appear. Then, the cut-elimination theorem can be used to reduce these proofs to
cut-free proofs (cf. (Gallier, 1993)). We can aso show the correctness of LMM by
permuting inferences.

2Minimal logic shares with intuitionisticlogic the properties of scope relevant for logic program-
ming and program synthesis. Intuitionistic negation can be simulated in minimal logic by translating
al goa subformulas A into Av L. In fact, as discussed in more detail in section 3.3.1, other
treatments of intuitionistic negation are problematic for the representation of scope in proofs—in
trang ation methods, these treatments may open up the possibility of reasoning about intuitionistic
semantics in an essentially classical way.
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Lemmal Every LMM proof D with end-sequent ' — A (for a single right
formula A) can be transformed into an LJ proof by permuting inferences and then
“cleaning up” theright sequents.

Proof. First we describe the cleaning up. Let 7 be an LMM proof, and suppose
that every subproof with end-sequent ' — A that ends in a left rule involves a
singleton A. Then 7 can be transformed to LJ by the following translation.

At the axiom, we trandate I’ A — A A by I’A — A. Now, consider
inferences (— A), (— V), (— 3) and (OD—). Each immediate subderivation ends
in" — A, and trandation gives an LJ proof with end-sequent ' — A for
some A € A. If Ais not a side formula of R—in any subderivation for right
rules, or intheleft subderivation for (O— ), which establishes the antecedent—omit
R from the trandation: The translation of the subderivation is the needed result.
Otherwise construct the trandlation of the derivation by applying R to the translated
subderivations, replacing occurrences of (— V) with either (— V1) or (— V2) as
appropriate.

Proofs ending in any of the remaining rules are composed of immediate sub-
derivationsI" — A—where the subderivations derive a single formula on the | eft
(common to both subderivations, if applicable). Thus, we can obtain an overall
trandation by translating these subderivations and applying the corresponding LJ
rule to the results.

Now, suppose inferences are ordered in 7 in the following way. If aleft rule
occurs immediately above aright rule, it iseither (—2) or (— V); and if aleft rule
L occursimmediately above a (D—) inference R, L isin the right subderivation of
R. Given thisordering, if the end-sequent of 7’ has asingleton on the right (or ends
inaright rule), then every subderivation of 7’ that ends by derivingI” — A by a
left rule, has a singleton A.

We permute the inferences in D so that they are ordered this way in two steps.
First, we reorder left rules that occur above problematic right inferences; then we
reorder left rulesthat occur on the wrong side above (D —) inferences.

In the first step, we observe that inferences other than (—2) and (— V) fall
into connected blocks in D in which (—2) and (— V) do not occur. Whenever
a left inference L occurs above a right inference R within a common block, there
are no obstacles to interchanging the inferences, cf. (Kleene, 1951). Observe that
the principa formula of L cannot be a side formula of R: otherwise R is (—D)
and L and R are not in a common block. Moreover, R does not impose a novelty
condition on an eigenvariable substituted at L. Otherwise Ris (— V) and L and R
are not in acommon block. The interchanged derivations are constructed in one of
four patterns, depending on the number of premises of Rand L. We exemplify each
pattern.

Asan examplewhereRand L each have one premise, we havethe transformation



INTUITIONISTIC SCOPE 15

below.
ILAAB,A B— C,D,CVD,A ILAAB,AB— C.D,CVD,A
ILAAB— C,D,CVD,A "= = I[LAAB,AB— CVD.A
LAAB— CvD,A Y LAAB—CvD,A "7
A case where L has two premisesand R oneis this:
ILAVB,A— C,D,CVD,A T,AVB,B— C,D,CVD,A
ILAVB— C,D,CVD,A V= =
ILAVB— CVD,A -V
ILAVB,A— C,D,CVD,A ILAVB,B— C,D,CVD,A
ILAVBA—CvD,A VY "T,AvBB—CvD,A '
ILAVB— CVD.A V=
The other cases require weakening of derivations. If L has one premise and R two,
we have for example:
ILAAB,AB— C,CAD,A D
ILAAB— C,CAD,A "~ T,AAB—=D,CAD,A =
[LAAB— CAD,A = A
AB+D
ILAAB,AB— C.CAD,A ILAAB,AB— D,CAD,A
[LAAB,AB— CAD.A = A
ILAAB— CAD.A A=
Finally, if L and R both have two premises, we have for example:
IAVB,A— C,CAD,A I'AVB,B— C,CAD,A D
ILAVB— C,CAD,A V= TI,AVB— D,CAD,A
ILAVB — CAD,A —A
©)
We transformiit to:
Dy D,
LAVB— CAD,A '
where
A+ D
D1={T,AVB,A— C,CAD,A ILAVB,A— D,CAD,A
I[LAVB,A— CAD,A - A
B+D
D=<{T,AVB,B— C,CAD,A ILAVB,B— D,CAD,A
ILAVB,B— CAD,A = A
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These permutations can be repeated so that in each block all applications of
left rules appear closer to the root than any application of a right rule. Because
of the possible duplication of subderivations at interchanges, we must perform the
permutationsin theright order to provetermination. Asin(Kleene, 1951), weinduct
on degree, the number of right rules with aleft rule above them in the same block.
We can always decrease the degree by one asfollows: wefind the highest such right
rule R and permute it above all higher left rules. This sequence of permutations
proceeds by induction on grade, the number of left rules above R in the same block.
Find thelowest such left rule (it must be adjacent to R). Permuteit down, decreasing
the grade by one in each subderivation.

In the second step, we apply further permutationsto this proof, so that whenever
(D—) applies, it is never the case that a left rule is applied at the conclusion of
the left subderivation. The structure of this argument is analogous to the previous
one. Again, we can reduce by one the number of (O—) inferences in the proof
with left rules concluding their left subderivation (bad (O—) inferences) by fixing
any bad (D—) inference R which has no other bad (O —) inferences aboveit. The
fix replaces the subderivation ending with the bad inference by another in which no
inferencesare bad. Itis constructed by induction on the number of left rules applied
consecutively above R. We reduce this by one at each step by permuting the lowest
rule L down. L cannot apply to the side formulaof R, whichis on theright, nor will
it introduce an eigenvariable violation, since R does not introduce one. So the only
potentially problematic case is when L isalso (D—): permuting L down cannot
make L bad. But we know that L itself isnot abad inference, because R was chosen
highest. That means the |eft subderivation of L endsin an axiom or aright rule, and
all higher left rules are good. We can therefore observe that the subderivation of L
isequivalent to an LJ derivation £ ending

r—=¢C

we can adapt £ to construct a new proof

E+A D — AA r.D.B—A,
I — CA LD — A

F— & L

in which R appears only above the right subderivation of L.

In constructing thisfinal derivation, we only interchange left rules (within com-
mon blocks), so we keep al the rules in good order. We thus obtain a permuted
proof D’ corresponding to an LJ proof. O

LMM eliminates impermutabilities associated with the requirement that (— V)
select one of the two diguncts to be proven once and for al. For example, the LJ
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proof (4) requiresthe (V —) ruleto apply lower than the (— V) rule.

BVAB— B BVAA— A
BVAB— AVB Y BVAA—AVB
BVA— AVB v (4)

—V

These rulesmay be applied in any order in LMM, asthe derivationin (5) witnesses.

BVAB— AB BVAA— AB
BVA— AB V=
BVA— AVB -V (5)

However, not all impermutabilities of LJ are gone. Recasting the proof (2) in
LMM vyields the proof (6):

{BVAB,C— B {BVALAC— A
BVAB—COAC-OB ° BVAA—COACOB
BVA— (COA),(CD B) Vi
BVA— (COA)V(COB) -V
— BVAD(CDOA)V(CDBJ 2 (e

Exploiting the new permutability, we can delay (V —) until after (— V). Nev-
ertheless, because the (— D) rules discard the aternative formulas on the right, it
remains impossible to permute the application of (V —) abovethe (—D) rulesin
LMM.

Theseremaining LMM impermutabilitiesestablish the scopesin the proof which
isolate the consequences of assumptions. Since these scopes are an essential feature
of intuitionistic logic, a different tack is required to devise a proof system without
these impermutabilities. It isto this problem that we now turn.

3.3 Path Annotations
Having isolated the intuitionistic discipline of scope in the structure of (—>) and
(— V) rule, we will now make that discipline of scope explicit.

To represent scopes, we use strings built from a distinguished infinite alpha-
bet of annotations to label terms and formulas. By convention, letters from the
beginning of the Greek alphabet («, /3, etc.) represent eigenvariables that may ap-
pear in annotations; letters from the middle (u, v, etc.) represent strings of such
eigenvariables.

We adapt sequents to describe the scope of first-order terms and formulas as
follows. Each sequent has the form

e[ — A

Each formulaoccurrencein I and A islabeled with an annotation term that specifies
the scope of the formula. (These terms are written with superscripts.) The scope
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of first-order termsis specified by the indexing context X. X isalist of pairsx : p
assigning an annotation to each first-order variable that appears free in the sequent.
The scope of acompound term is determined by this assignment to free variables:

Definition 1 t is a Z-term of index p if and only if for every free variable x that
occursint, X assignsx : v and v isa prefix of .

By imposing appropriate manipulations to these annotations, we obtain a proof
system that creates and matches scopes without discarding formulas from sequents.
For example, (— D) creates a new scope by introducing a new annotation variable
« that cannot appear in the end-sequent; the antecedent is made and the consequent
derived in the new scope.

o T, A —= B A DB A
>>T — ADB.A  °

In contrast to LMM, the rule preserves all the right formulas from the end-sequent
in the subderivation. Likewise, (— V) introduces a new scope by a transition «,
assumes a new first-order eigenvariable a restricted to the new scope, and puts its
side-formulathere:

Y a:pavT —= Ala/X] > VXA A

TeT — VA" A -V

The corresponding left rules offer the possibility of achangein scope. At(D—),
given the scope 1 of the principal formula, we may consider deriving the antecedent
and introducing the consequent at any longer string pv:

TeT,AD B — A A >oT,A DB, BY — A
S>T,ADB — A o

Recall that this is in keeping with the structural discipline on the left in LJ and
LMM, which preserve formulas on the left across transitions into nested scopes.
For (V —), the transition is to a nested scope may makes available the first-order
term which instantiates the bound variable.

=5 T, VXA®, At/ — A

ST VA — A

The rule has aproviso that the term t substituted for the variable x must be aX-term
of index pv, to ensure that variables are only instantiated to appropriately defined
terms. (The (— 3) ruleimposes an analogous constraint.)

Therulefor initial sequentsis now:

To T, A —= A% A
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ToT,AY —= A A
>oT,AAB AL B — A

SeTLAAB:. — A 7
T — AL, AABY A > T — B*,AAB,A
o1 — AABA - A
o T,AV B, A" — A >>T,AV B, B — A

> AVB — A
o' — A B, AVB* A
> — AVB* A
X>T,AD B — A A >>T,AD B, B — A
>>TADB* — A
oA —= B ADB' A_ i
> — ADB‘A
o T VXA AL/XY — Ay i
o VXA —= A
Ya:pasT —= Ala/X , VXA*, A _ yi
Yo — VXA A
Yoa:pe, IxA Ala/x]* —= Ag 7
YT, IxAY — A
YT — Alt/x]*, IxA*, A_ 3%
YT — XA A

—V

O—

Figure 3: Explicitly-scoped, cut-free sequent calculusfor minimal logic, LMP. { For
(— V), (3 —)and (—D), aand a must not appear in the conclusion. i For (V —),
there is a proviso that t be a X-term of index uv; for (— 3) that t be a X-term of
index .

The remaining rules mirror their classical and LMM counterparts. The full system
isgivenin Figure 3 as a cal culus named L MP because the annotations denote paths

to positionsin the proof.
Consider the proofsof (1) and (2) in LMP. Making the scopes of the LMM proof

(6) explicit with annotations gives the proof (7):
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{»BV A", B, C" — B, .. {pBV A" A", CF —= A,
>BVA" B —~COA",CHB"... ° »BVA,A~ —=CHA*,COB,... ~
>BVA® — (CH>A)”,(COB), ... v
>BVA® — (COA)V(CDOB), ... *VD

>—>BVAD(CDOA)V(CDOB
(7)

This proof has the same structure as (6), and the same scopes are created. Now
these scopes are also named: « names the scope introduced by the lower (—D)
rule, o3 and a6 name the scopes introduced by the different assumptions of C.

As indicated by the ellipses, there is no dereliction of formulas on the right in
(7). This alows rules to be permuted above (— D) and (— V). (8) illustrates this
by moving the (— D) rules down below the application of (— V).

bBVAY, B, G0 G0 —= B bBV AT, A, CF CoF — AP
>BV AY,CF,C —= AP BT, V=
>BV A, C*F — A7 (C D B)® -
>BVA” — (CD A, (COB),... -
>BVA®™ — (COA)V(CDOB),... *DV

>—>=BVAD(CDOA)V(CDB)
)

Because of these permutations, we can no longer isolate subproofsof (8) asrecording

all and only the inferences performed in a particular scope.
Meanwhile, an LMP proof corresponding to the LJ proof (1) appearsin (9).

b..., A — AP >...,BY — B*f
> AT —AVBP VY L BF — AvBP VY
b...,CF — Cof >...,BVAYP — Ay B V=
>COBVA®,C? — AV B o
>COBVA” — COHAVB _g

>—= (COBVA)D(CDAVB)
(9)

Note that the (O—) rule application involves a change of scope. The antecedent C
of the conditional can only be established at scope extending «/3, because the axiom
that establishesit uses the assumption of C at a3. Thus, the conclusion BV A of the
conditional is established only at scope «/3. Because the (O—) rule refers to the
annotation 3, the (O—) rule cannot be permuted below the preceding (— D) rule.
When the (— D) rule applies, 5 cannot appear on the sequent.

There is thus an asymmetry in LMP. It is possible to permute rules higher in
the proof, even though the rules do not make use of the assumptions introduced
there. But it isimpossible to permute rules lower in the proof than the introduction
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of assumptions that they do use. This asymmetry will be eliminated by adapting
Herbrand's theorem to LMP, in section 5.1.

Thisasymmetry isthebasis of the syntactic proof of soundnessfor LMP. Among
the rules that occur above an (O—) or (V —) rulein an LMP proof, there will be
all the rules that do depend on the assumption being made—those that should be
there according to the structural regime of scope—aswell as some that don’t belong
because they don't depend on the assumption being made. All those that don’'t
belong can simply be permuted down to the scope where they do belong. The proof
resulting from these permutations essentially matches LMM figures.

3.3.1 Labels, semantics, and negation

The annotations of LMP reflect dual intuitions. We have emphasized how anno-
tations represent of the introduction of formulas and terms at different syntactic
scopesin an LMM proof. The other intuition derives from the semantic interpreta-
tion of minimal logic formulas in Kripke models for modal logics (Kripke, 1965).
For minimal logic these intuitions coincide, but for negation there is a possible
discrepancy.

According to the semantic intuition, the labels corresponds to the points in
the model at which formulas are true or false and at which individuals exist. In
Kripke models, these points are worlds related by a transitive and reflexive binary
relation R of accessibility. Each annotation represents a path of accessibility from
the real world, reached by the empty path, to some other possible world. Paths
of accessibility are a natural alternative to accessibility relations. Given R, we
can construct a set of transitions such that whenever wRw, there is a transition o
such that wa = w/, and vice versa; see (Ohlbach, 1991). Here, the paths are strings
because accessibility istransitiveand reflexive: thereisasingle step of accessibility
corresponding to each pair of steps, or to no step at all.

A further constraint on intuitionistic Kripke modelsis that atomic formulastrue
at aworld w remain true at all worlds accessible from w. Similarly, an individual
that exists at world w continues to exist at all worlds accessible from w. These
constraints account for why the left annotation on initial sequents is to be a prefix
of the right annotation, and for why the index of a substituted term is to be a prefix
of the annotation of the formulainto which it is substituted.

The remaining sequent rules implement classical reasoning over the recursive
clauses defining truth of formulas. Implicationis agood example. A O Bistrueat
aworld i exactly when for all transitions x to aworld accessible from g, if Aistrue
at px thenBistrue at ux. Regarding C” as an abbreviation of Cistrue at world o,
the classical inferences governing this definitionis:

LA — B A D BE WX(A™ D B, A
I — A" 5 B™, V(A" D B™),A :@
I — VXA 5 B™),A

The (—D) inference rule of LMP imitates this exactly, replacing Vx(A”* O B*)
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by its equivalent A O B* and harmlessly omitting the intermediate step and the
intermediate side formula.

The use of semantics for intuitionistic and modal deduction has been explored
extensively, but has rarely been investigated from a purely proof-theoretic point
of view. Inference rules for intuitionistic logic inspired by classical inferences are
first givenin (Smullyan, 1973); except for negation the rules are anal ogous to those
here—apart from Smullyan’s use of the condensed format of tableaux with uniform
notation. (Smullyan’'s system is, in turn, a refinement of Fitting's use of integer
prefixes in tableau deduction (Fitting, 1969; Fitting, 1983).) Wallen studies trans-
lation deduction in (Wallen, 1990); although the underlying mechanism mirrors
Smullyan’s, Wallen's presentation of it incorporates not only uniform notation and
trangd ation, but also matrix method search, unification, and structure-sharing. This
complicatesthe task of applying Wallen’s methodsto other strategiesfor representa-
tion and proof search (for example the uniform proof search needed in abstract logic
programming languages (Miller et a., 1991)). Both authors relate their systems
directly to Kripke models, leaving open how similar systems might be used for
proof construction and program synthesis. Subsequent research (Ohlbach, 1991;
Ohlbach, 1993; Auffray and Enjalbert, 1992; Debart et al., 1992; Jackson and Re-
ichgelt, 1987; Aitken et a., 1994) has explored the general use of similar techniques
across a variety of modal systems, but has continued to present semantic proofs of
correctness and to emphasize the use of particular theorem-proving techniques for
first-order classical logic, particularly resolution.

Negation offers a venue in which to distinguish proof theoretic intuitions from
these semantic ones. In LMM, sequent rules for intuitionistic negation can be given
directly, as below:

r— AA A—~
I,-A— A"~ r— AA "

Alternatively, —A can be rendered A O L, where L is a distinguished proposition
with the following behavior:
Il —A"

Wallen (Wallen, 1990) uses thefirst formulation. Histranslation correspondsto
the use of the two sequent rules below.

Yo T —= A% A o T, A —= A
ST, A — A" SoT — -ALAT

These rules correspond to the usual truth conditions for L in Kripke models: at no
worldis L true.
In the presence of these rules, the only proof of some sequent

e, — A
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may come from proving A and —A from formulas in T™*. The same problem arises
if the L ruleisrealized with the formulation:

ST, 17 — A~

These possibilities disrupt the proof-theoreticinvariants which we will use to estab-
lish the correspondence between LMP and LMM.

One way to describe what goes wrong is this. These two presentations of
negation are constructed so as to avoid making the decision of which formulain a
sequent is being derived by contradiction. Such lack of commitment is generally
advantageous in search—this paper in fact is concerned with delaying the similar
choice of the scope in which rules are used. For reasoning about scope, however,
this treatment of negation is problematic because a complete proof need never
resolve this ambiguity. Such proofs lack a crucia piece of information necessary
to reconstruct an intuitionistic natural deduction. For example, consider the proof
below:

A —= AP C> B

A" -AF — C* B T

A~ — C*,-ADB" °
A — (CV(-A> By Y

— ADCV(-ADB) °

From root up, we first decompose formulas on the right, and then obtain an initial
sequent by applying (— —); theinference extendsthe annotation o/ of the principal
formulaby the empty string (but any other extension would also give aproof). This
can only correspond to a natural deduction in which the contradiction of A and —=A
is used to infer B. But nothing about the sequent proof indicates this: for al this
proof says, the contradiction could be used to show C.

From a proof-theoretic perspective, the rule below is more appropriate:

1

SoT, 1F — A7 A

It maintains scope in negation. It corresponds not to ordinary Kripke semantics
but to fallible Kripke semantics (Veldman, 1976). This semantics allows L to be
true at some worlds, provided that every other atomic formulais also true at those
worlds. Fallible semantics was developed to enable constructive completeness
proofs for intuitionistic logic; so it is not surprising that it comes up again here
where constructive reasoning about proofsis also required.

This proof theory and its falible semantics is quite close to minimal logic,
which treats | as an ordinary proposition. For example, the rule can be smulated
straightforwardly by recursively translating each goal formula A (ie. any positive
subformula of a formula on the right of the sequent, or any negative subformula
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on the left) into the digunction L v A, and thereafter treating L as an ordinary
proposition. In view of this tranglation, the analysis in the remainder of this paper
will be concerned with minimal logic only.

3.4 Proof-theoretic results

Thissection providesadirect, proof-theoreticjustification of LMP: Weestablish that
the annotati ons are nothing more than aproof-theoretic devicefor indicating scopein
an intuitionistic deduction. Labels on formulas ensure syntactically that a classical
proof system—uwith arbitrary permutabilities of rules, subject only to eigenvariable
conditions—respects intuitionistic information-flow: that facts assumed as part of
proving some formulaonly contribute to establishing that formula.

3.4.1 Some basicresults

We begin with some invariants on the form and function of annotations in LMP
proofs. Themain point isto validate the basic properties of the design of LM P—that
annotation variables may be regarded as naming individual inferences that change
scope (Lemma 3) and that all the scopes of inferencesin the proof liein atree whose
nodes are uniquely labeled by these names (Lemma 4).

Asapreliminary, we obtainafirst result that suggestsintuitively how annotations
restrict information-flow in proofs. Recall that a left formula can only be used in
the axiom rule of LMP when it is annotated with a prefix of some right formula. In
fact, induction shows that aleft formulacannot be used anywhere in an LMP proof
unlessit is annotated with a prefix of some right formulain the end-sequent. Thus,
when nested scopes are represented by longer annotations, annotations will ensure
that assumptions introduced inside a nested scope can not be used outside.

Lemma 2 (irrelevance) Let D be an LMP proof of height h of
o, — A

where for every formula A" in '™, thereis no formula B” in A such that 1 is a prefix
of v. Then D can be transformed into a proof with height no more than h of

> — A

Proof. By induction on the structure of proofs. At axiom links, the labels on IT'*
will not match those of the key right formula A* of the axiom, so the left formula
A* must befromT.

Supposing the claim truefor proofs of height n or less, consider proofs of height
n+ 1. Therules(V —), (A —), (3 =), (= V), (— A), and (— 3) do not alter
annotations, so extending the induction hypothesisis straightforward. For example,
suppose D endsin

o, T, AAB A, B — A
>oT,[",AAB" — A

N —
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Applying the induction hypothesis gives a proof with one of the following two
conclusions, depending on whether 1 is a prefix of the annotation of any formulain
A:

oI — A or ToT,AAB A B — A.

In the first case this derivation suffices; in the second, the needed derivation is
constructed by finally applying (A —) again.

Even though they may extend annotations, (V¥ —), (— V) and (—D) are not
much harder. Thus, suppose D endsin

Yoa:papr T —= Ala/x] >, VXA A
SoT.T — WAL A

—V

Observe that if no formulainI™ is annotated with a prefix of x, no formulainI™ is
annotated with a prefix of pa: by the eigenvariable condition, « does not occur in
I™. Accordingly, the induction hypothesis applies to the immediate subderivation
to give a derivation of

S,a: pavT —= Ala/X", VXA, A,

Apply (— V) to this.
Finally, suppose D endsin

ST, T, AD B —= A% A >oT,*,ADB",BY — A
ST, 5, ADB — A o

If uv isnot aprefix of any A annotation, then the induction hypothesis applies to
the right subderivation to give a proof of

>V — A

where I includes I" and, if appropriate, A D B*. This suffices. Otherwise, uv isa
prefix of some annotation of A, so if no formulain I'™ is annotated with a prefix of
any A annotation, then the same is true of A*”, A. Thus, induction gives proofs:

ST, AD B B* — Aand=>T,AD B — A A

Combinethese by (D—). O
Asin other sequent systems, we can rename eigenvariablesin a proof so that no
two rulesin a proof introduce the same one.

Definition 2 (purevariable proof) A proof tree in LMP is a pure-variable proof
treeif and only for every symbol a occurring as the eigenvariablein an application
of therules (— V), (—D) or (3 —), adoes not occur both free and bound in any
formula in the proof tree, and a only occurs in the subtree rooted at the sequent
constituting the premise of the rule. (Note: Here a ranges over eigenvariables
introduced in terms or on annotations.)
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Lemma 3 (purevariable proofs) Any LMP deductionwith end-sequent X>T1" —>
A can be converted to a pure-variable proof of the same sequent, simply by replacing
occurrences of variables with new variables (cf. (Gallier, 1986), 312).

Proof. (sketch) The proof can be adapted from that for other sequent systems (see
for example (Gallier, 1986), 274-276 and 312-313). One first shows that given
an LMP derivation D with end-sequent X > I' — A in which the variable b does
not occur bound and the variable a does not occur at all, the derivation D]a/b]
obtained by substituting a for every occurrence of b in D isan LMP derivation of
Y[a/b] > T'[a/b] — A[a/b]. Thisis a straightforward induction on the height of
proofs, inwhich theindexing contexts and annotationsadd no additional complexity.
Themain result is established by induction on the number of applications of (— V),
(—D), and (3 —) inthederivation. One applies theinduction hypothesis to obtain
pure variable proofs corresponding to subderivations above the applications of these
rules closest to the root, then exploits the substitution property to ensure that the
eigenvariablesin different subderivations are distinct. O

According to renaming, any eigenvariable is introduced exactly once onto a
right formula, and according to irrelevance, annotations on left formulas can match
the annotations of right formulas without loss of generality. Together, this means
that each annotation eigenvariable aways appears after the same sequence of other
eigenvariables: it isaways used the same way, to represent the same scope.

Definition 3 (unique prefix property) A set of annotations has the unique prefix
property if and only if for any pair par and /o’ intheset, p = 4.

Lemma 4 (tree annotations) For any LMP derivation D of height h with end-

sequent
e[ — A

where the annotations in the end-sequent have the unique prefix property, thereisa
derivation 7’ of height no larger than h with end-sequent

oIV — A

where the formulas in I" are a subset of those that occur in I" and the annotations
appearing throughout 7’ have the unique prefix property.

Proof. By Lemma 3, we may assume D is a pure variable proof. By Lemma 2,
we can obtain a shorter derivation 7’ from D in which the annotation of left
formulas are always prefixes of the annotations of right formulas. By induction,
we can show that any derivation 7’ so constructed, whose end-sequent has the
unique prefix property, has the unique prefix property. For initial sequents, thisis
immediate. So suppose some rule application results in a sequent with the unique
prefix property. If it is aleft rule, the unique prefix property must extend to the



INTUITIONISTIC SCOPE 27

immediate subderivations: left rules will not result in new prefixes because they
would be irrelevant. Likewise, although immediate subderivations for right rules
may incorporate additional prefixes, these prefixes must involve fresh symbols.
Thus, the unique prefix property also extends to immediate subderivations of right
rules. Hence, the induction hypothesis applies to show that subderivations have the
unique prefix property intheir entirety. Then the fact that the proof isapure variable
proof means eigenvariables are introduced once only, so that no different prefixes
are introduced for the same eigenvariable in the separate subderivations. Thus the
whole proof has the unique prefix property. O

Thefact that eigenvariables on annotationsin deductions have unique prefixesis
significant both for demonstrating that the annotation mechanism is correct and for
constructing algorithmsto work on annotations. Aswe shall see presently, it allows
the annotations in LMP proofsto be put in correspondence with positionsin LMM
proofs. In(Auffray and Enjalbert, 1992; Debart et al., 1992; Otten and Kreitz, 1996),
the unique prefix property is used to construct specialized equational unification
algorithms for equations in trand ation theorem-proving; in (Stone, 1997a) it plays
arolein deriving constraint algorithms for translation theorem-proving.

3.4.2 LMP iscomplete

We first consider how any LMM proof can be converted into an LMP proof, by
adding appropriate annotations throughout. The crux of the argument is how an-
notations are extended by instantiation with appropriate terms in applications of
(D—)and(V —). Hereistheidea. InLMM, thelogical scope of arule application
Ris given by its position in the proof. This position is identified by the sequence
of (—D) and (— V) rulesthat occur on the path from the root to R. In particular,
all rule applications above an application of (—2) or (— V) in LMM fall into its
scope. In LMP, scope is given by the annotation that labels a formula—but the
eigenvariables in this annotation correspond one-to-one with the rule-applications
in the LMM proof. Thus, in translating applications of (O—) and (V¥ —) from
the LMM proof, the annotations will be extended to the full LMP annotation that
corresponds to their scoped location in the LMM deduction.

Some notation describing the addition of annotations to sequents will facilitate
the presentation of this result. For any annotation string ¢ and any multiset of
formulas A, A* will denote the sequent consisting of a formula occurrence A* for
each formula occurrence A of A. If A isthe right hand of a sequent in the LMM
proof, in the scopein the proof associated with the LM P annotation p, A* will bethe
right hand of the corresponding sequent inthe LMP proof. Meanwhile, for any map
n associating a (possibly different) annotation string with each formula occurrence
in asequent T, I will denote the sequent containing a formula occurrence A7
for each formula occurrence A of T'. A left side of a sequent I" in an LMM proof
may correspond to any I'” in the corresponding LMP proof. The alternatives reflect
ways of adding formulas on the left in the different scopes in which the i scopeis
nested in the LMM proof.
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Completeness is now stated as follows:

Theorem 1 (completeness) Givenany LMM deductionwithend-sequentI” — A.
Then for any annotation string 1, any function » assigning prefixes of x to formulas
in I, and any indexing context X assigning prefixes of ;. to the free variables of T
and A, there isan LMP deduction of

oI — AF.

Proof. By induction on the structure of derivationsin LMM. For LMM axioms, an
LMP axiom can be constructed using the fact that 5 assigns to A on the left some
prefix o of the annotation of A on theright, 1.

The cases for v, A and (3 —) are straightforward. Given an LMM derivation
ending in the application of one of these rules, apply the induction hypothesisto the
immediate subderivations: this gives LMP deductions to which the corresponding
LMP rule applies. For example, for (— V) the LMM derivation ends:

I — AB,AVB,A
I — AVB.A

—

The corresponding LMP proof ends:

o7 — A BE AV B A
So17 — AV B, A

—V

The subderivation is obtained by the induction hypothesis from the subderivation
of the LMM derivation.

For the rules (O—) and (V —), we ensure that the annotation of right formu-
las 1« appears as the annotation of side formulas in applications of these rulesin
constructing the LMP proof. Thus, suppose D endsin (O— ), asfollows:

ILADB— AA ILADBB— A
LAODB— A o

Apply the induction hypothesis to the first subderivation with x and », and to the
second derivation with x and a function »" exactly like n except that '(B) = p.
This gives derivations of

o T7,AD BB — A A" and ZoT7,A D BB B —» A

Since n(A D B) is a prefix of y, these two derivations can be combined by LMP
(D—) toyield the needed overall derivation.
Similarly, suppose D endsin (¥ — ), asfollows:

T, VXA, Alt/x] — A

TYA—2A '
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Apply the induction hypothesis to the subderivation, with ¢ and the function »’
exactly liken except that n'(At/x]) = x. This gives aderivation of:

> T, XA Alt/x] — AX

Because every free variable in X is decorated with a prefix of 1, any term t must be
a X-term of index p.. So the side condition on substitutions for (V —) in LMP is
satisfied; applying the rule gives the needed derivation.

Likewise, for the case of an LMM derivation D ending in (— 3), freevariables
are all associated with prefixes of ¢ by X, so any termt isaX-term of index p. But
as right formulas, both 3xA and Ajt/x| are to be annotated with x. Thus the LMP
(— 3) rule appliesto the derivation obtained by the induction hypothesis from the
immediate subderivation of D. The resulting derivation ends:

To 7 —= At XA A
o 17 — IXAL, AP

Finally, for the rules (— D) and (— V), observe that A is eliminated when the
annotation of the principa formulais extended. (Thisiswhy it suffices to consider
trandations in which all right formulas receive the same annotation.) Specifically,
suppose the LMM deduction endsin

IA— B
r—A>OBA °

Apply the induction hypothesis to the immediate subderivation, with i/ = p« for
some new «, and 1" like n except n'(A) = 4. This givesaderivation D ending in:

To 7 A — B,
This can be weakened by the formulasin A*, so as then to derive the needed:

D+ A*
XN T AR — BEYAH
Y17 — A DB, A" -2

Likewise, if the LMM deduction endsin

I — Ala/x

F—VAA "

apply the induction hypothesis to the immediate subderivation, with 1/ = pa for
some new «, and X' extending X by the assignment a : n«. Thisgives aderivation
D. Construct in LMP the needed derivation:

D+ A
.4 pas 7 —= Alt/x e, A

e [T —= VXA, AF -V
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3.4.3 LMP issound
Inversely, every LMP proof can be transformed into an LMM proof. Because of
the different ways scopes are represented in the two systems, the transformation in-
volvesreorganizing the proof so that right formulaswith compatible annotationsend
up together in the same scoped region of the proof. In particular, the transformation
gives a way of reordering applications of proof rules so that only what must ap-
pear above any application of (— D) and (— V) actually does appear there. When
applications appear in this order, an invariant of annotations can be exploited to
demonstrate that the subproof above each (— D) and (— V) rule constitutes a proof
of itsright side-formula. Thus the transformed proof instantiates only LMM infer-
ence figures. Overall, the method recalls Schellinx’s proof-theoretic justification of
the embedding of intuitionistic logic into linear logic (Schellinx, 1991).

In considering just a single application P of (—D2) or (— V), thereisasimple
characterization of which other rule applications permute below P.

Lemma 5 (permutability) Let D be an LMP derivation containing an application
P of (—D) or (— V), which introduces the eigenvariable « in the annotation. Let
R denote any other rule application in D above P, and let 1 be the annotation of
the side formula of R. Then R permutes with P if and only if x« does not contain «.

Proof. If ;1 contains «, then permuting R below P will violate the eigenvariable
condition for . Thistakes care of the only if case.

For the if case, consider first which pairs of rules might fail to permute. There
are only five possibilities: (D—)/(—D), (D—=)/(—= V), (V =)/(—= V), (V —
)/(3 —)and (— 3)/(3 —). They arise only when eigenvariable conditionswill be
violated by the permuting of rules. (The proof transformations needed to achieve
the permutation in all other cases are just the transformations from (Kleene, 1951)
illustrated in the proof of Lemma 1.) For each of these non-permuting examples,
it can be shown that the annotation introduced by the lower rule is a prefix of the
annotation introduced by the higher rule. For impermutabilities (>—)/(—>) and
(D—)/(— V), the appearance in the annotation of the symbol « introduced lower
isthe source of the impermutability. For quantifier impermutabilities, the source of
the impermutability might be the appearance of the lower eigenvariable, a, in the
substitutionterm, t. Nevertheless, in these cases, the side conditionthat thetermt be
a X-term of appropriateindex applies. This ensures that the annotation of the lower
rule appears on the annotation of the higher rule, in virtue of its association with
the eigenvariable in the indexing context. Incidentally, also as a result of this side
condition, the configuration that would giverisetoa(— 3)/(— V) impermutability
(which would otherwise be expected) cannot be given alegal annotation.

Given these observations, the claim can be established by an induction on the
structure of LMP derivations. The measure for the induction is the number of
applications of rules above P and below R. The base case we have just shown.
Assume that when an application is no more than n steps above P, it permutes
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below P just in case the annotations of its side formulas do not contain «. Consider
the case of arule application, R, n + 1 steps above P. Let Q be the rule application
immediately below R. If R permutes below Q do so: this reduces by one the
distance between R and P, and permits the application of the induction hypothesis.
If R does not permute below Q, consider whether Q permutes below P. If not, by
the induction hypothesis the side formulas of Q must contain «. But then, by the
observations of the preceding paragraph show that R, which does not permute bel ow
Q, must contain o as well. Otherwise, the induction hypothesis appliesto Q and P,
to give a deduction in which R is only n rule applications above P (because Q has
been permuted below P). Apply the induction hypothesis to this derivation. O

The following consequence of the permutability lemma is at the heart of the
soundness of LMP.

Lemma 6 Let D be adeductionin LMP of
oI — CA

such that: Cisof theformVxA or A O B; Cisthe principal formula of the lowest
rule application P in D where the eigenvariable « is introduced on annotations,
and no higher rule application in D permutes below P. Then either

> — A
isan axiomor we can construct a deduction 7 from D which shows:
> — C.

Proof. Right rules change annotations only by adding eigenvariables. Because
eigenvariables may be considered distinct (by obtaining a pure variable proof asin
lemma 3), and because addition of another eigenvariable to an annotation indicates
incompatibility with « (by the unique prefix property, as in lemma 4), we may
assume that no descendants of A are labeled with annotations that contain « in D.
Now, consider an axiom link in D

YT, A —= A A

where v does not contain . Then neither A nor A* is aside formulaof any rule
inD. Such arule by lemma5 on permutability could permute below P. Therefore,
A" must beaready inT" and A*” in A: we start from an axiom.

Otherwise, every application of anaxiomin D involvesaright formulaannotated
with a string containing «. So each right formulais a descendant of C, not of any
formulain A. Meanwhile, each left formulain an axiom is either annotated with a
string that contains a—in which case it too is a descendant of C—or with one that
does not—in which case it isin fact aformulain I". Accordingly, we can obtain a
proof of C by erasing all descendants of A everywhereinD. O
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In order to turn this result into a method of converting LMP proofsinto LMM
proofs, we need to show that we can permute the rules in the proof so that all
implications and universalsin the proof lie simultaneously under only the necessary
rules. Thiswill ensure that each such rule involves a proof of its side formula, and
hence that the proof can be described by LMM rules.

Theorem 2 (soundness) From any LMP deduction D a deduction 7 can be con-
structed with the following property. For any subderivation D’ of D’ ending in
(—D)or (— V), norule applied above in D" can be permuted below. By applying
lemma 6 recursively to 7, we obtain an LMM proof.

Proof. The proof is by induction on the number of times rule applications of
(—D)and (— V) occur on any path from aleaf of the derivation to the conclusion.
The base case, when the derivation contains no such formulas, is immediate.

Suppose the claim holds for proofs where V or O formulas occur at most n
timesfrom aleaf to the root. In any derivation where formulas occur at most n + 1
times, it suffices to replace the subderivations ending in (—2) and (— V) with
appropriately reordered variants. Accordingly, we consider a derivation D ending
inarule application Rwith principal formulaC at

oI — CA

with C a universal or an implication with depth n + 1. Let « be the annotation
eigenvariable introduced.

Let D; denote the derivation obtained by first applying the induction hypothesis
to the immediate subderivation, and then permuting below R all rules that permute
below every application of (—>) and (— V) in the proof. The possibility of
such permutations can be established as in lemma 1 by a double induction first on
the degree—the number of inferences which refer to an annotation eigenvariable
introduced at a (— D) or (— V) rulein the proof but with a rule above them that
does not—and then considering the highest inference with something above it that
should be below it, on the number of such inferences above it (the grade).

In D1, Rmay be applied to C several times with modified end-sequents, because
of these permutations:

2y — C, A1

We can eliminate each asfollows. Suppose there is some subproof of D; above
it, withV and O depth n, that looks like this:
Yo" —= D" A

with D a universal or implication, where ¢ does not contain o. Applying lemma
6 and lemma 2 of irrelevance gives a proof where I'"' is restricted only to formulas
containing i only—not «v. Permutability dictatesthat all theseformulasaretherefore
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elements of I';. Likewise, D* is an element of A;. Accordingly, we can use (a
weakened version of) this shorter proof instead of the proof involving C in D;.

Otherwise, in every such formula D* above R, p contains . This entails that
the rule applications above R are precisely those that cannot be permuted below R.
The preceding result now applies to show that either

iy —= Ay or 20Ty — C.

Substituting whichever proof exists into D; gives the needed derivation. O

4 A Broader View of Deduction and Explicit Scope

This section puts LMP in context with alternative theorem-proving work. As
discussed in section 4.4, the use of LMP seems generally compatible with avariety
of complementary techniques for improving proof search based on observations
about size and branching of proofs (Dyckhoff, 1992; D’ Agostino and Mondadori,
1994; Herbelin, 1994); some effort is required to state these observations in a
common language.

The bulk of this section (4.1-4.3) is devoted to contrasting LMP with other
labeled systems from a proof-theoretic point of view. LMP offers an explicit
representation of scope in intuitionistic proofs based on the position of rulesin the
proof. Another strategy is to adopt an explicit representation of scope based on the
content of sequents. With scoping based on content, labels represent the packets of
assumptions from which aformulain the proof must be derived. The idea has been
explored semantically in (D’ Agostino and Gabbay, 1994) and proof-theoretically in
(Bittel, 1992; Bittel, 1993).

For example, the labeling of (— D) by content goes as follows. According to
the labeling scheme, assume that the principal formula (A O B) already depends
on some packet of assumptions o. The rule introduces a new assumption A, which
therefore gets a new atomic label, say «. A new conclusion B must then be derived
using the combination of o and «, written o o «. This labeling is implemented by
the using the following sequent rule (with an eigenvariable condition for «):

o T, A" —= B AD B, A
SsT —~AOB.A °

Systems based on position and systems based on content have very different
intuitions behind them. It might therefore be suspected that the systems have very
different behavior—and that labeling by content might be easier to prove correct
because of its closer correspondence with the ordinary sequent rules. The reality
is more subtle. In fact, some compromise of intuitionsis required to turn scoping
by content into an efficient theorem-proving method. These compromises leave
the method in a surprisingly close formal correspondence to scoping by position.
Scoping by position may even be regarded as the basic method on which others are
variants.
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To back thisup, we observefirst in section 4.1 that our encoding of positions as
strings with LMP was not the only possibility. The same inference rules and proof
techniques techniques apply if we encode positions using sets. We then show in
section 4.2 how the labels of (D’ Agostino and Gabbay, 1994) can be justified by
interpreting them as abbreviations of these sets. The labels of (Bittel, 1992; Bittel,
1993) offer adifferent kind of abbreviation for these sets, as outlined in section 4.3.

4.1 Set structure for annotations
In this section, we adapt the rules of LM P by treating annotations as sets or multisets
rather than strings. Like the string labels in LMP, these labels name the rules
applied on a path to a particular scoped position in a structurally-scoped proof.
Unlike string labels, however, these labels provide only partial descriptions of
positions in structurally-scoped proofs. They do not specify the order in which
rules are to apply. These new labelings are possible because this order can be
reconstructed from the labeling of rules. Rules that change labels represent points
of transition in the structurally-scoped proof, between the position represented by
one set and the position represented by an augmentation of it. We shall see that
labels obtained by sequences of such augmentations in an explicitly-scoped proof
continue to correspond uniquely to atree of (structurally-scoped) rule-applications.
To describe the modification to use sets or multisets is straightforward. To
foreshadow the connection with (D’ Agostino and Gabbay, 1994), we introduce the
notation 1 o v to represent the combination of scopes 1 and ». To define string
labels, we take o to be an associative concatenation with identity e:

poe=copu=yp po(vop)=(pov)op
To obtain multisets, we add commutativity to these equations:
LoV =vopu
Sets are also governed by the equation of idempotence:
povorv =pov

Once we have written out the system using this o notation, as in Figure 4, we can
use the same rules to describe labeled deduction for different equational theories.
(V —) illustrates this. Theruleis:

5 T, VXA, Alt/x]" —= A

ST VA — A

Depending on the equational theory in force, the extended scope i o v represents
either concatenation of ¢ and v, with string labels; or the multiset union of  and v,
with multiset l1abels; or the set union of 1 and v, with set labels. The side condition
that t respect the scope i o v isaso rephrased in neutral language:
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Definition 4 t is a Z-term of index p if and only if for every free variable x that
occursint, X assignsx : ¢/ and for some p, u' o p = p.

We will refer to the system in Figure 4 with set or multiset labelsasLMS.

Like string annotations, set and multiset annotations can be motivated both from
the syntax of intuitionistic proofs and as an encoding of intuitionistic semantics.
In particular, set annotations implement the topological semantics of intuitionistic
logic, where formulas are evaluated with respect to the open sets of a topological
space; see (Troelstra and van Dalen, 1988b), chapter 13. To account for set an-
notations, we interpret annotations as representing open sets in these models and
interpret o as set intersection.

Thelabeling of initial sequents matches the truth conditions of atomic formulas
in topological models, as follows. Each atomic formula A is assigned an open set
[A] asits semantic value. A istruein atopological model at an open set g exactly
when g C [A]. An assumption that A is true at g thus allows the conclusion that A
istrueat any qN r, asgivenin the rulefor initial sequents.

A D B istruein atopological model at q exactly when B is true at all open
subsets of g where A istrue. This condition is equivalent to the condition that for
any open setr, if Aistrueat g r then sois B. This corresponds to the proof rule
for implication.

Topological semantics gives classical semantics to conjunction, as reflected in
the LMS proof rule. The genera definition for the semantics of digunction in
topological models is complicated, and involves decomposing a set of evaluation
into aunion of other sets. Rather than encoding this definition explicitly, LMS uses
the classical proof rulefor digunction to simulate it.

A direct proof of correctnessfor LM S can be constructed exactly along the lines
of sections 3.4.1-3.4.3. An outline of this argument follows. The key difference
is the statement and proof of the tree annotation lemma, since the unique prefix
property cannot be defined in LM S (and a* unique subset property” would befalse).

As before, we get an irrelevance result for LMS; it is shown by the same
induction given in section 3.4.1, with subset substituted for prefix. We also get a
theorem that supplies pure variable proofsfor LMS.

The tree annotation result must now go as follows.

Lemma 7 (tree annotations) Let D be an LMS derivation of height h with end-

sequent
e[ — A

and suppose there is a pair of symbols « and  such that no annotation in the
end-sequent contains both « and 5. Then there is a derivation 7' of height no
larger than h with end-sequent

oIV — A
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o T, AL —= A A

ToT,AAB AL B — A
SeT,AAB — A

N —

X T — AL, AABY A T — B*,AAB,A
>oT — AABLA - A
o T,AV B, A" — A L-TAVB.B' —A

SeT,AVE — A

YT — A, B AVB'.A
>>T — AVB,A

—V

ToT,A DB — AV A >oT,A DB B — A
SeT,ADB — A

O—

S5 T, A —= B" AD B A_ ot
SoT — ADBA

o T VXA Alt/X# —= Ay i
o T (VXA —= A

Ya:poarl —= Ala/x]" VXA A _ yi
o — VXAY A

Yoa:pe, IxA Ala/x]* —= Ag T
T, XA — A

o T — Alt/x*, IxA, A 5t
SoT — XA, A

Figure 4: A more genera explicitly-scoped cut-free sequent calculus for minimal
logic, LMS. 1 For (— V), (3 —) and (—D), a and o must not appear in the
conclusion.

i For (V¥ —), thereisaproviso that t be aX-term of index y o v; for (— 3) that t be
a X-term of index .
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where the formulas in I are a subset of those that occur in I" and no annotation in
D’ contains both o and /5.

Proof. We assume D is a pure variable proof. By irrelevance, we can obtain a
shorter derivation 2’ from D in which the annotation of left formulas are aways
subsets of the annotations of right formulas. By induction, we can show that, in any
D’ with this property, no annotation contains both o and  unless the annotation
of some formulain the end-sequent does. Thisis immediate at axioms. Suppose
the claim is true of derivations of height n, and consider a derivation of height n+1
in whose end-sequent no annotation contains both « and 5. If the derivation ends
in a left rule, no annotation will contain both o and 5 in the end-sequent of its
immediate subderivations: these combinations could not occur on the right, so a
left rule introducing such combinations would be irrelevant. Likewise, athough
immediate subderivations for right rules may include larger sets of annotations,
these sets will extend existing sets by fresh symbols different from « and 3 by
the pure variable property. Thus, the absence of annotations combining « and 3
extends to the end-sequents of immediate subderivations of right rules. Hence, the
induction hypothesis applies to show that « and 5 never occur as elements of the
same annotation throughout the whole proof. O

The proof of completeness given in section 3.4.2 now carries over directly to
LMS: here, too, the scoped geometry of LMM proofs determines what scope is
needed in rule applications that extend annotations. In LMS, right formulas can be
annotated with any set 1, and left formulas with arbitrary subsets of x:

Theorem 3 (completeness) Let D be an LMM deduction with end-sequent I' —>
A. Then for any set annotation x, any function » assigning subsets of 1 to formulas
inT", and any indexing context X assigning subsets of 1 to the free termvariables of
I and A, there is an LMS deduction of

oI — AF.

Likewise, a proof of soundness for LMS can be formulated in terms of two
lemmas as in 3.4.3. As with LMP, we use the X-term condition which relates
substituted terms and formula annotations—formulated in terms of subsets not
prefixes—to give a permutability lemmafor LMS:

Lemma 8 (permutability) Let D be an LMSderivation containing an application
P of (—D) or (— V), which introduces the eigenvariable « in the annotation. Let
R denote any other rule application in D above P, and let 1 be the annotation of
the side formula of R. Then R permutes with P if and only if x« does not contain «.

This result extends to an intermediate lemma:
Lemma9 Let D be adeductionin LMS of
oI — CA
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such that: Cisof theformVxA or A O B; Cisthe principal formula of the lowest
rule application P in D where the eigenvariable « is introduced on annotations,
and no higher rule application in D permutes below P. Then either

oI — Aisanaxiom
or we can construct an LMS deduction 7 from D which shows:
>oI" — C.

This is because LMS shares the three critical properties used before to constrain
axiom links in the deduction D. First, the right sequent rules are formulated to
change annotations by only adding eigenvariables. Second, separate variables must
be distinct (by the pure variable proof lemma). Third, no formulas derived from A
formulas in D are labeled with annotations that contain «. This third property is
now an indirect consegquence of the new lemma7 on tree annotations. Consider any
rule application R whose principal formulais a descendant of a A formulawith its
original annotation, and which causes the addition of another eigenvariable 3 to this
annotation on its side formulas (with A on theright, thisisthe only way annotations
of descendants of A might change). Because of the eigenvariable condition, no
annotation in the end-sequent of the immediate subderivations of R contains both «
and 5: lemma 7 applies to show that no formulain the entire deduction is labeled
with both o and .

Applying this result recursively, as earlier, demonstrates the completeness of
LMS.

4.2 Abbreviating set annotations
Consider a labeled system with set annotations, just as in the previous subsection,
except with the following revised rules for D and V:

Lo, A" — B AD B, A
SsT —~AOB.A °
ST, AD B — A", A SeT,AD B, B — A
SsTLADB — A o
Ya:av — Ala/x]“*, VXA", A
TeT — VA% A
T T, VXA, Alt/X]" —= A
oI, VxAY — A

— ¥V, a, a hew

YV —, t X-term of index v

Thiscal culus also describesintuitionistic proofs. Becausethenew (—>)and (— V)
rules encode atransition from scope o to scope o o o ontheir right side formulas, the
rules continue to describe the scoped location at which « isintroduced. Thisallows
the representation of this scope to be abbreviated to « on the left side formula of
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the (—D) rule, and in the indexing of the new term a of the (— V) rule. Because
of this abbreviation, we call this system LMA.

The arguments presented previously can be easily adapted to establish that LM A
isacorrect calculusfor the syntactic representation of scope in intuitionistic proofs.
We can show LMA complete by the argument of theorems 1 and 3. For, LMA
retainsthe (O—) and (V —) rulesthat allow formulasto be labeled with the current
scope as structural scope is made explicit; as the argument requires, the labels of
left formulas remain subsets of the labels of right formulas, even with the new right
rules.

We can show LMA sound by transforming its labels to match the labels of
LMS. This transformation simply folds out the abbreviation undertaken at (— D)
and (— V) rules.

Theorem 4 Every LMA derivation can be transformed into an LMS derivation, by
achangein labeling.

Proof. Thetransformationinvolvesapartial mapping ¢ taking atomic annotation
symbols « to sets of annotation symbols 6(«). The trandation ¢(x) of an LMA
annotation term z will be (the o-concatenation of) the union of 6(«) for all a in g.
We ensurethat 6(«) = 6(6(ar)) and v € 6(a).

We translate an LMA sequent using such amap 6 to relabel left formulas and
indexing contexts; I’ abbreviates the multiset of formulas with an occurrence of
A’ for each occurrence of A* inT, and similarly =°. We use afunction to relabel
right formulas: For each occurrence A* on the right n(A*) is a formula A” with
6(p) € v; A7 denotes the action of  on the formulasin A. Given any such ¢ and 7,
and an LMA derivation with end-sequent X > I' — A, we can construct an LMS
derivation of X% > I — A”. The proof is by induction on the structure of LMA
derivations.

The conditions on 1 and 6 preserve the correctness of axiom and substitution
rules because if ¢ C v then () € n(v) and if also §(A’) = A" thenn(y) C v/
The remainder of the construction is to derive alabeling of the side formulas of the
inference rules so as to satisfy LMS figures and allow the induction hypothesis to
be applied.

For (—D) and (— V), this goes as follows. The inference introduces an
annotation eigenvariable « on a principa formula whose revised annotation is .
Werelabel the subderivation by »” wheren’(«) = o o and otherwisen” agreeswith
n (assuming without loss of generality because « is new that n(«) is undefined).
For the new right side formula A”°* we set 6(A”°*) = A*°®. Theresult instantiates
LMSfigures.

For (O—) and (V —), the inference involves annotations 4, » and x o v. In
both cases, we extend 6 to relabel the side formulaB**” as B"(*°), To completethe
relabeling, for (O—) we can extend ¢ to ¢’ in the left subderivation so that the side
formulaA” gets §'(A) = A7»**) in place of ». Meanwhile, for (V —), we simply
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observe that a X-term of index » must be a Z-term of index n(») and hence index
n(pov).

The correspondence for remaining inferencerulesisimmediate. O

LMA represents another take on topological semantics. The LMA implication
rule corresponds to the model-theoretic conditionthat A D Bistrueat an openset q
exactly when B istrueat qNr for any open set r where Aistrue. Thisisyet another
equivalent to the conditions on implication presented earlier.

(D’ Agostino and Gabbay, 1994) describe alabeled deductive system for propo-
sitional intuitionistic logic without disunction whose labeling matchesLMA. They
motivate this system neither as an abbreviated representations of paths through
proofs nor as a transation method for topological models, but rather as a direct
encoding of intuitionistic sequent rules. For example, in (— D), o represents the
sequent from which A O B isto be proved, and then i o « represents the sequent
from which B isto be proved. The assumption of A at « indicates that « represents
the formula A. In fact, d’ Agostino and Gabbay observe that this intuition allows
the eigenvariable condition on (—>) to be simplified. All assumptions of A are
identical, so it sufficesto have asingle A-characteristic atomic label « used exactly
when A is assumed.

We have just seen one way to extend the labeling of (D’ Agostino and Gabbay,
1994) to capture full intuitionistic logic and to obtain a proof system with the
advantages for proof search of classical logic. Such an extension does not seem
compatible with the intuition d’ Agostino and Gabbay propose, however. Consider
applying d’ Agostino and Gabbay’s intuition to disjunction. Encoding the basic LJ
(V —) sequent rule directly might give something like this:

T>T,AV B, A* — C°° CH, A ToT,AV B, B — C*F C* A
T>T,AVB — C* A

V —

Its application would be subject to conditions that » be a subset of y, that « be
A-characteristic, and that /3 be B-characteristic. Because the rule affects multiple
formulas in the end-sequent simultaneously, it is obviously a significant departure
from ordinary sequent-cal culus with an uncertain impact on proof search.

On the other hand, we might attempt to exploit classical reasoning for digunc-
tion, asin LMM (and LMA):

ST, AV B, A — A >eT,AVB. B — A
SeT,AVE — A

—

Thisactually yieldsincorrect resultsif we only require atomic |abel s of assumptions
to be characteristic of those assumptions. For example, A © B Vv C does not entail
(A D B) V(A D C)intuitionistically. Yet we have the following labeled proof in
which « is A-characteristic:
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...,B® — B, C,... ...,CY—= B, CY,...

LAY — A _...BVC® — B, C,... V=
A" A" ADBVC — B",C°,... o
A“.ADBVC —B",ADC,... -2
ADBVC—AODB,ADC,... -2
ADBVC— (ADB)V(ADC) -V

(10)

Thus, itiscrucia for extending the proposal of (D’ Agostino and Gabbay, 1994)
that assumptions have fresh labels regardless of the content of those assumptions.
This underscores that the proof-theoretic meaning of labelsisto record the identity
of the inferences at which assumptions are made. This proof-theoretic meaning
underlies the ssmple syntactic proof of correctness for LMA building on those for
LMS and LMP. This contrasts with the infinitary and nonconstructive proof of
correctness in (D’ Agostino and Gabbay, 1994), which is ultimately semantic in
nature.

4.3 )-terms as set annotations

Bittel (Bittel, 1992; Bittel, 1993) defines a proof-theoretic method for eliminating
impermutabilitiesin intuitionistic logic which uses labels inspired by A-terms. Bit-
tel’s proposal encodes assumptions from which a conclusion is derived by the free
variables in the A-term that |abels the conclusion. Thus, for example, Bittel’s rule
for (—D) can be written as the following sequent rule:

I'x:A— M:BA
I — WXM:ADBA

The rule has a side condition that x not appear free in the end-sequent.

We can distill the mechanism behind Bittel’s system by representing only the
free variables and discarding the remainder of the A-term. Thisrevealsquiteaclose
connection with LMA.. If the set of free variables of Ax.M is y, and the set of free
variables of X is «, then the set of free variables of M is 1 o a—provided x occurs
in M. More precisealy, if the set of free variables of M is some set v, then the set of
freevariablesof Ax.M isv — «. So Bittel’s (— D) rule can be reconstructed:

ILA> — B, A
r—A>B A "W

The difference between Bittel’s system and LMA lies in the fact that Bittel’s
system is designed to represent exactly the assumptions from which aconclusionis
derived. LMA allowsaformulato belabeled with the names of assumptionsthat do
not directly contribute to its proof. This differenceis visible already in the (—D)
rule; it recursin Bittel’s axiom rule and in the other right rules of Bittel’s system.
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Bittel’s axiom identifies the label s of assumption and conclusion:
oA —= AL A

Other right rules are modified to label their principal formulawith the union of the
annotations of their side formulas. For example, for (— A), we need:

Yo T — AYAA B A Yo T —= B, AAB“ A
SoT — AAB™, A - A

For technical reasons, an explicit rule of contraction on the right is also required.

e T —= A AV A

ST — A7 A C

(In the A-calculus, this rule corresponds to a new term constructor for implicit case
analysis) Let LMT denote the system with the left rules of LMA plus right and
axiom rules modified in thisway; the T records the original status of annotations as
terms.

To show LMT sound, we can give an inductive construction. We start with an
LMM proof with end-sequent I" — A, afunction 5 labeling formula occurrences
inT", and an indexing context . The construction produces alabeling 5’ of formula
occurrences in A and a proof in LMT of > T —= A7, At axioms, 7’ sends the
right linked formula A to the 5 image of its left match, and sends the remaining
formulasto the empty set. The case of (— A) isrepresentative of inductive stepsin
this construction: we apply the induction hypothesis to obtain proofs of

o7 — A AABY A’ and ZoT7 — A", AAB”, A

By weakening these derivations and applying the contraction rule as necessary, we
can obtain derivations of

T — ACAAB A" and ToT7 —= AV, AAB“ A"

wheren’(C) = 6(C) o ¢'(C) except for the principal and side formulasof the (— A)
inference. These derivations can be composed using the LMT (— A) inference.
To show this complete, we can transform its labeling into the labeling of LMA.
We need only change the labels of right formulas; we inductively associate each
right formula A* with the appropriate new annotation » with i C v, in the obvious

way.

4.4 Intuitionistic proof search: some comparisons

In section 1.3, we motivated one difficulty in intuitionistic proof search, caused
by the need to order rule applications to reflect scope. We have now seen severad
syntactic methods that recast proof rules so as to reduce the impact of order using
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explicit labeling of scope. Insection5.1 weshall seehow to extend explicitly-scoped
systems using Herbrand terms and unification so as to eliminate the impact of order
altogether. This represents a solution to a major problem in automatic derivation
of intuitionistic proofs. It is far from the only problematic feature of intuitionistic
proof search, however. Related work that addresses these other problems must still
be adapted to the present framework. We sketch the issues involved in this section.
Thefirst problem concerns bounding the size of proofs. Propositional intuition-
istic logic can be shown decidable, and decision algorithms for it devised, using
such bounds. In(Dyckhoff, 1992), Dyckhoff presents asequent calculusfromwhich
these bounds follow naturally; this system limits the number of times aformulais
decomposed along each path in a structurally-scoped proof to one, by eliminating
contraction and avoiding preservation of principal formulas of inferences. As the
following argument suggests, what underlies Dyckhoff’sresults is the fact that

A intuitionistically entails BOC=(A>B)>C (11)

In any one intuitionistic scope, as in classical propositional logic, there is nothing
to be gained from decomposing a formula more than once. This in itself does
not guarantee that intuitionistic propositional proofs have bounded size, however,
because premises of the form (A O B) D C can be instantiated in any scope
to create a new scope p«. Fact 11 says that this is necessary only once in each
scoped path: since A holds at scope p«, then for every scope pav, A O B is
true there exactly if B is true there. Dyckhoff’s calculus encodes this directly
using a structural discipline of scope. Articulated explicitly as here, it should
also be possible to incorporate this constraint into an explicitly-scoped system, and
thereby obtain an explicitly-scoped decision procedure for intuitionistic logic. The
explicitly-scoped system would retain a possibility of goal-oriented proof search
and hence a possibility of faster failure than proof search in Dyckhoff’s calculus.

A second problem is to ensure that the calculus gives proofs a compact form.
Sequent cal culus proofswithout cut are often required to include redundant subtrees.
This point isemphasized in (D’ Agostino, 1992) whereit is shown that cut-freeclas-
sical propositional sequent proofs cannot polynomially simulate truth-tables. These
redundancies are addressed by matrix methods of proof (Andrews, 1981; Bibel,
1982) and tableaux with analytic cuts (D’ Agostino and Mondadori, 1994). Labeled
methods have been extended to these frameworks in (Wallen, 1990; D’ Agostino
and Gabbay, 1994)—but on a semantic rather than a proof-theoretic basis. Because
cut-elimination can be proved purely syntactically, we can now anticipate finding
a proof-theoretic basis for these techniques, in light of the present work, and then
adapting these techniques where appropriate to synthesize proofs in intuitionistic
natural deduction and analyze intuitionistic proof search.

A third problem, given that inferences can now be appliedinany order, isto select
aperspicuous or efficient order for applying them. Algorithmsfor proof search with
particular orders of inference can be given as refinements of the full sequent calculi.
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For example, in (Herbelin, 1994), a restriction on uses of (O—) is exploited to
obtain a bijection between normal simply-typed A-terms and sequent proofs. Logic
programming, meanwhile, can be presented in terms of sequent calculi in which
right rules must be applied before left rules whenever possible (Miller et al., 1991).
This order of rule application is embodied in restricted focusing sequent calculi
in (Andreoli, 1992; Miller, 1994); the proofs obtained are called uniform. These
disciplines for restricting proof search have so far been formulated in structurally-
scoped sequent calculi; thus while they can reduce branching in proof search, they
cannot by themselves enable proof search for full intuitionistic logic to proceed in a
goal-directed manner asinan explicitly-scoped calculus. Theintuitionsbehind these
refinements remain applicablein explicitly-scoped systems, however. For example,
we return to the question of the application of these techniquesto explicitly-scoped
calculi for intuitionistic logic in section 5.1.

There remainsthe problem of selecting the right discipline of explicit scope for
aparticular application, from the four we have seen: LMP, LMS, LMA, LMT. One
ground for comparison is the complexity of reasoning with the appropriate equa-
tional theory of terms. Bittel’sLMT might seem best on these grounds: Bittel shows
that LMT can be implemented using annotations with free structure and ordinary
unification. This implementation is problematic, however, in that it prevents the
system from lifting compactly to use unification as do the others. Infact, Bittel uses
a lifting procedure that does not eliminate quantifier impermutabilities but allows
substitutions to be made appropriate to the particular order in which quantifier rules
are used—a strategy analogous to (Voronkov, 1996). Meanwhile, for the strings of
LMP, the situation isin fact much better than it might appear. (Stone, 1997a) shows
that the string equations resulting from an LMP proof can be solved in polynomial
time using a constraint algorithm that avoids the need to backtrack among alterna-
tive equational unifiers. Thereis thus some reason to think that LMPis not only the
most basic system, but also the most efficient one.

5 Proof-theoretic Extensionsand Applications

In sections 3 and 4, we considered a variety of systems that allow intuitionistic
proofs to be constructed in amore liberal order than atypical, structurally-scoped
calculus. We motivated the need for such systemsin section 1 with two applications
that depend on the scope discipline of intuitionistic proofs. the analysis of automatic
proof search for logic programming and the automatic synthesis of functional pro-
grams. This section returns to these applications and establishes their connection
to the results of sections 3 and 4, using some additional proof-theoretic results. We
beginin 5.1 by presenting a Herbrand theorem for LM P and sketching its relevance
for logic programming. We continue in 5.2 with an algorithm to extract A-terms
from lifted LMP deductions, and sketch itsrole in program synthesis.
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5.1 LiftingLMP

Recall from 3.3 that LMP represents only a halfway point in the development of
a calculus in which rules may appear in any order. LMP alows propositional
rules that could occur low in a structurally-scoped proof to be delayed to a higher
point; but it does not always allow propositional rules that could occur high in a
structurally-scoped proof to be advanced to a lower point—this was illustrated in
proofs (8) and (9). This difference is a result of the eigenvariable condition on
annotations and first-order termsimposed by (— D), (— V) and (3 —) figures.

But in 2.2, we have already observed that there is a general syntactic device
for eliminating these eigenvariable conditions: the use of Herbrand termsin place
of eigenvariables (Lincoln and Shankar, 1994). Herbrand terms are representa-
tions of eigenvariables whose constituency, not position in the proof, specifies an
appropriate order in which eigenvariables are to be introduced. At the same time
as it eliminates the quantifier impermutabilities in a calculus, the use of Herbrand
terms allows instantiations of quantifiersto be delayed until sufficient information
becomes available. A variableis used in place of a substituted first-order term and
its value is determined using unification.

This section develops and applies a sequent calculus refinement of LMP that
uses Herbrand terms and unification. We call this new calculus LMU. The calculus
implements dynamic Skolemization in the style of (Lincoln and Shankar, 1994).
Dynamic Skolemization annotates formulas in proofs with the information needed
to construct any Herbrand termswhen quantifier-likerules apply, instead of rewriting
formulasto aspecia functional form containing Herbrand termsbefore proof search
begins. Dynamic Skolemization is appropriate because any functiona form for
intuitionistic logic would have to go beyond the ordinary syntax of formulas—for
example to encode the intuitionistic difference between A O IxB(x) and Ix(A D
B(x)). (But see (Fitting, 1996) for one way to do this.)

In our notation for dynamic Skolemization, each formulais subscripted by alist
of terms H that must occur in the sequent before any inference could decompose
that formula. The list of terms is maintained so as to include the instantiations
made in deriving the formula(since it would be impossible to arrive at the formula
without making those instantiations). This suffices for LMP because it has only
eigenvariable impermutabilities. However, in general, the list must also be updated
toinclude additional terms based on the propositional impermutabilitiesof thelogic.
For example, (Lincoln and Shankar, 1994) describe the additional bookkeeping
required to maintain these terms for first-order linear logic (Girard, 1987) with its
panoply of impermutabilities (Andreoli, 1992; Galmicheand Perrier, 1994; Tammet,
1994).

To maintain the list H, rules that formerly involved a free choice of terms are
revised. Logic variables are substituted for bound variables, and a record of the
use of the logic variable is made by appending it to the label H on the formula.
The values of logic variables are later constrained at axioms by unification. For
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example, we have for (D—):
.o TLAD B — A% A .o TADBY, B, — A

X2 X2

>LADB: — A o

(The éllipses anticipate further revisions required under dynamic Skolemization.)

Having maintained the list H, dynamic Skolemization reformulates the remain-
ing quantifier-likerulesso asto build an appropriateterm. Thisisdoneby combining
this list H with a name for the principal connective of the inference. The name,
which we indicate by a subscript, is viewed as a function symbol and H as its
argument. Thus, the action of (—2>) in LMU can be schematized thus:

Lo T A — B Ao B A
oL — AD,B}A -

The function symbol associated with the implication is g, the list of instantiations
H, and the new Herbrand term representing an arbitrary transition of accessibility
isgH. The use of a name associated with the symbol is a slight departure from
(Lincoln and Shankar, 1994); they use a unique name for each rule-application.
The difference involves adding to their proof a simple step to eliminate redundant
eigenvariable introductions by exploiting the preservation of principal and side
formulas on sequentsin LMP.

Again following (Lincoln and Shankar, 1994), we make the role of unification
in assigning values to logic variables an explicit part of the sequent calculus. Now,
given the use of Herbrand terms to eliminate scope, the lifetime of a variable can
extend beyond the subproof whereit areintroduced. Each sequent thereforeincludes
an input substitution U, which encodes the constraints in force and the unifications
performed up to the point in proof search where the sequent arises; and an output
substitution V, which encodes the constraintsin force and the unifications performed
up to the point in proof search where the proof of that sequent has been completed.
Effectively, V specializes U so as to respect the constraints imposed by axiomsin
the proof of the sequent.

A distinction between input and output i ndexing contexts on sequentsisrequired
for the same reason. Each sequent includes a input specification X of the scopes
of terms already introduced when the sequent is first encountered in proof search,
and an output indexing © that specifies not only these scopes but al so the scopes of
terms introduced as part of proving the sequent. Overall, sequents are written

U;/V;0eT — A

to reflect their dependence on inputs U and X and production of outputs V and ©.
As an illustration of how these new labels of sequents combine with dynamic
Skolemization, we can give the example of (3 —) and (— 3) infull. First (3 —):

U; 2 gH : p/V; 00 T, JxAL AlgH/X] — A
U;Z/V;05 T, 3xA;, — A

i-—
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(3 —) introducesanew Herbrand term gH determined from thelist of instantiations
H and the name g of the quantifier occurrence. This new Herbrand term is confined
to the scope 1 with which the principal formulais labeled; the input indexing to the
subderivation therefore includes the specification gH : .

Second, (— 3):

UiZy:p/ViOcT —= Aly/X]y. IXAG, A

US/V.05 T — AL A .

Here, yisafreshlogic variable. Note that because unification determines the value
of y, it is the unification step and not the (— 3) rule that must determine whether
the value assigned to y respects the scope . of the formulawherey is introduced.
Accordingly, theruleadds anindexingy : x to X.

Thisleaves only therevision of initial sequents left to be explained. We have:

U;3/V;ZoT,BY —= AY A

where V is any most general unifier more specific than U and having the following
properties:

1. V(A) and V(B) areidentical asterms;
2. V(v) isidentical asastring to V(x) for some fresh logic variable x; and

3. for any termvariabley—where X assigns ¢ to y, and some Herbrand function-
application hY is a subterm of V(y)—the following holds: for any term hZz—
associated by X with some annotation p—such that V(hZ) = V(hY), V(p) isa
prefix of V(o).

Computation of V callsfor string unification; neverthel ess annotation equations are
sufficiently simple that the existence of a solution to a set of annotation equations
in polynomial time for many search strategies (Stone, 1997a).

LMU issummarizedin Figure5. The construction of LMU instantiates the gen-
eral procedurefor theconstruction of optimized sequent calculi describedin(Lincoln
and Shankar, 1994). The proof of correctness given in (Lincoln and Shankar, 1994)
applies immediately to LMU, once we establish the correctness of implementing
the indexing check by enforcing condition (3) on substitutions. To establish this,
we first observe that Lincoln and Shankar’s correspondence between proofsin the
optimized calculus and proofsin theground calculusisquite close. In particular, the
introductions of Herbrand function applications equal to hY under the output sub-
stitution VV of an LMU proof correspond to some single rule application introducing
the eigenvariable a in an LMP proof. Meanwhile, the assignment of t toy by V in
the optimized proof indicates that the term corresponding to t should be substituted
at the rule application in the ground proof corresponding to the introduction of .
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U;S/MGU(MGU(U, A B), ux, v); =& T, B, — AV, A*

U;Z/V:05T,AABS AL B — A

U;X/V,0-T,AAB], — A -

U;S/WdeT — AL AABE A W;®/V;06T — BLAABLE A
UZ/V;0sT — AABL,A - A

U;Z/W,@sT, AV BL AL — A W;®/V; 0T, AV B, BY —= A
U S/V,0rT,AVB, — A V=

U;Z/V:0sT —= AL BL AVBL A
U;x/V;erT — AvBLA Y
U;/W; DT, AD B — A A W;®/V; 06T, A D B, B, — A

UX/V.OrT,AD B, — A o=

U;s/V; 05 T AL — B Ao B A
U;Z/V;05T — A Dg B, A -

Uiz y: /LZ/V;@DF,VXA{Q,A[)//XMZ),Z —_ AV _

U;T/V;05 VAL — A

U; S, gH @ p(hH)/V; 00 T —= AlgH/XH™ YgrxAl A

U;S/V;05 T — VgxAL, A v

U; 2 gH : p/V; 00 T, JxAL AlgH/X] — A
U;Z/V;05 T, 3xA, — A

=N

ULy pu/V;00T —= Aly/Xiy IXAG,A

U;S/V.05 T — AL A .

Figure 5: LMU, a unification-based presentation of LMP. The only proviso is (*)
that MGU must supply aunifier (with occurs check) at axiomsthat assigns labelsto
guantifiers and terms in accordance with X.
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Because of this regularity, condition (3) ensures that the term substituted in the
ground proof at the site corresponding to y is in fact a term of appropriate index.
Thisis just because Herbrand function applications appear in V(y) at the positions
corresponding to any eigenvariablesthat appear in the ground term. Now, Herbrand
function applications may appear in V(y) without corresponding to eigenvariables:
they may appear nested inside arguments to other Herbrand function applications.
However, these additional checkswill not rule out any unifiers of appropriateindex.
For suppose X contains hY : p and gZ : ¢ where V(gZ) is a subterm of V(hY).
V(u) must contain V(gZ) for some variable u free on the formula from which his
introduced. By condition (3), the annotation V(<) isa prefix of the annotation V()
associated with u. But the logical rules ensure that 1 is a prefix of p. Hence, V(<)
must be a prefix of V(p).

Theorem 5 (correctness) Let I' and A be any multisets of labeled formulas which
do not contain Herbrand functions or variables. Then there is a deductionin LMP
of

> — A

if and only if there isa deduction in LMU of
U;Z/V;0sT — A
for some U, V, and ©.

Proof. As outlined in (Lincoln and Shankar, 1994), pages 284-287. The only if
direction is established by an induction on proofsin the ground system (in this case,
LMP) which shows that the rule ordering of the ground proof and the substitutions
made in the ground proof describe an analogous proof in the lifted system (in
this case, LMU). The if direction is established by showing that the bindings of
values to variables, any propositional impermutabilities inherited from the ground
system (LMU has none), a condition that formulas precede their subformulas, and
transitivity will induce a strict partial order on the rule-applications in any proof
in the lifted system. An induction on the structure of lifted proofs establishes that
permutations of inferences convert any lifted proof to another proof in which the
ordering of rule-applications matches this induced partia order.

Substituting eigenvariables for Herbrand terms and appropriate values for logic
variables gives a new proof where eigenvariable conditions are satisfied—with one
exception due to the use of names for symbols rather than inferences in LMU.
We may have cases where one (—D), (— V) or (3 —) rule introduces the same
variable as alower one (such occurrences are unordered by Lincoln and Shankar’s
conditions). Such cases are dispatched as follows. The principal and side formulas
of the two rule applications must be identical. Because of the preservation of
formulas in sequents in LMU and LMP, the side formulas of the lower application
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are available in the sequent when the higher rule applies. Therefore, we can exploit
the admissibility of contraction and simply eliminate the higher inference. O

LMU has completely free permutabilities; reasoning about the order of introduc-
tion of quantifiersand implicationsisfactored into the occur-check in unification. To
illustratethis, wereturntothe LMP proof of (C O BVA) D (C D AvB) givenin(9).
The corresponding proof in LMU is obtained ssimply by using variables in place of
ground instantiationsat (O — )—assumingalabeling (C D BVA) D, (C D AVB);
it appearsin (12).

95 )0 .. A —= AP 9; /9> ..., B —= B>
0, 0. AX—= AVBP VY 9 /9s... BX— AvBPF VY
/0> ..., CP — CoX 9; /0> ..., BV AX —= Ay B V=
/U;>CD BV A", C? — AV B°” o
/U;s>COBVA” — COAVB® -
. /U;> —= (COBVA)D (CDOAVB) -
(12)
Here ¢ is a substitution of 3 for x. Proof (12) has much the same form as (9), but
proof (12) represents the fact that (O—) outscopes (— D) in the binding of x to 3,
not in the structure of the proof. Thus, a permuted proof in which the (D—) rule
applies lower, asin (13), is also possible.
9; /0> .. . BX —= B2F 95 )00 . A —— AP
0, /0> . BX — AVBT .. Y T [ AX—=AVB7P. .
0. .CoP — X 9, /0;>..BX —=>=COAVB®... 2 9 /d>.. A —>=COHAVE ... ~
[0>...— C*COAVB,. .. 0,05 BYVAX — COAVB®... Vi
Jl,;>COBVA* — COAVB~... 3;

/9;>—= (CDOBVA)D (CDAVB)
(13)

Because the inferences of LMU proofs may appear in any order, we can choose
arbitrary regimes for ordering inferences in LMU proofs without sacrificing com-
pleteness. One possible regime, suggested in (Miller et al., 1991) and extended in
(Andreoli, 1992; Miller, 1994), is to apply left rules only when we are committed
that no right formula will be the principal formula of a higher rule in the proof,
and until then to apply right rules. This search strategy provides a general descrip-
tion of the behavior of an interpreter for alogic programming language. It allows
connectives in right formulas to be viewed as instructions for search.

This construction applies to any sequent calculus with appropriate permutabil-
ities, not just LMU. For example, we might also apply it after adapting the results
of (Fitting, 1983; Smullyan, 1973; Wallen, 1990; Ohlbach, 1991; D’ Agostino and
Gabbay, 1994) to derive an explicitly-scoped sequent cal culus of intuitionistic prov-
ability by purely semantic methods. However, the syntactic analysis of the proofs
obtained plays an important part of describing the logic programming language. For
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example, as observed in (Miller, 1989), LJ proofs gain a natural modular structure
from how they ensure that the assumption of A can only contribute to the proof of
B in proving A O B. We have already used syntactic methods to put LMU proofs
in correspondence with LJ proofs. LMU can therefore be used immediately to
extend the logical analysis of modules presented in (Miller, 1989) to other logical
fragments.

5.2 Extracting A-terms

As mentioned in 1.1, amajor motivation for considering intuitionistic deduction is
the automatic synthesis of functional programs (Martin-Lof, 1982; Constable et al .,
1986). In the deductive approach to program synthesis, the input is a specification
of the type of afunction (including constraints on the rel ation between its argument
anditsresult). Theoutput isafunction that provably hasthistype. Using the Curry-
Howard isomorphism (Howard, 1980), the type of the function can be specified as
aformulain intuitionistic logic and the resulting program can be extracted from the
proof of theformula. Thisrequiresthe derivation not only of intuitionistic theorems
but also of intuitionistic natural deductions.

LMU'’s contribution to this research program is to offer advantageous search
for proofs that correspond to intuitionistic natural deductions. Now, the proof of
correctness of LMU gave a system for permuting LMU inferencesfirst to LMP in-
ferencesand thento LMM inferencesand finally to LJ inferences. Thus, performing
these permutations on an LMP or LMU deduction already gives a way to extract
A-terms. This technique is rather unsatisfactory, however, in so far as the majority
of the permutations dictated by the correctness proof will have no impact on the
A-term ultimately obtained. We now consider how to extract A-terms directly from
LMU proofs.

521 Motivation
Intuitively, acompleted LMU proof specifies acollection of intuitionisticinferences
labeled with the scope in which each isto be performed.

Thus far, the collection of inferencesis represented only by the inferences that
the proof contains. The first step in extracting a A-term from an LMU proof isto
maketheinferencesexplicit. Wewill do thisin the style of (Felty, 1991) by labeling
formulas with terms recording the inferences that derive them. In this presentation,
formulas on the left may be labeled with complex proof-terms built by applying
left rules; this contrasts with presentations such as that in (Gallier, 1993) where
left formulas are always labeled with variables, and substitutions are performed
at the application of left rules. This alows each sequent to record the inferences
performed in each scope.

The second step is to assemble a A-term from these scoped inferences. With
structural scope, it is possible for this assembly to proceed incrementally in lock-
step with the construction of the sequent proof. The structure of the proof matches
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the abstraction and substitution operations that need to be performed in assembling
a \-term (the specifications in (Felty, 1991; Gallier, 1993) do this). However, in
LMU, scopesdo not always correspond to regions of the proof. Wethereforerequire
arecursivetraversal of therecord of scoped inferencesto assemblethefinal A-term.

Bittel’s method of extracting A-terms aso involves an incremental |abeling and
a postprocessing traversal (Bittel, 1992; Bittel, 1993). Bittel’s traversal procedure
isqualitatively quite similar to the one here. Our process, unlike his, exploitsan in-
dependent discipline of explicit scope to streamline deduction and guide extraction.
At the same time, we account for a greater range of ordering of rules and therefore
need an additional mechanism to accumulate inferences during the construction of
proofs.

We can illustrate the issues involved by the contrast between the two proofs of
Figure5.2.1. If f names A O C and g names B O C, these proofs both derive a
function Au.case(u of inl(v) = f(v)|inr(v') = g(V)). Inthe proof of Figure 5.2.1a,
this term matches the scoped structure of the proof. Thelowest ruleis (— D) just as
the widest scope connectiveis A, the next ruleis (v —) just as the next connective
IS case, etc.

In LMU, it is more complicated. The (v —) rule corresponding to the case
statement lies at the upper left, while the (—D) rule appears three times! The
annotations define the scope of connectives: scope is no longer ssimply areflection
of the structure of the proof tree. To see that scopeis still represented, observe that
all subproofs contain the annotation « corresponding to the one X in the resulting
term. Because these scope-annotations propagate through unification during proof
construction, the synthesis of case statements for disunctions and casex statements
for existentia quantifiers from LMU proofs will be delayed until the proof is
complete and the exact scope of connectives is determined.

This process requires a new mechanism for assembling proof-terms from sep-
arate subtrees of a proof. In the proof of Figure 5.2.1b, the right subproofs, even
though combined by (O — ), each partially constrain the deduction associated with
the conclusion. Oneisassociated withtheinferenceinl(v) = f(v), the other withthe
inferenceinr(V') = g(V'). To handle this, the term associated with a formula must
be regarded as apartial specification of the natural deduction proof of that formula.
The need to assemble these partial specifications into complete ones reflects the
implicit role of contraction in collapsing repetitions of formulas in sequents after
permutations.

5.2.2 Recording inferences
A precise simultaneous specification of LMU and intuitionistic natural deductionis
asfollows. We begin here by describing how the inferences made in an LMU proof
arerecorded. We continuein 5.2.3 by describing how terms are reconstructed from
thisrecord.

We will use variables in terms as placeholders for content that cannot be deter-
mined until scopes are fixed. Since annotations determine scope in the proof and
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Jos . AY —= AX . olo>...Cx—= C¥... o/te...BY — B ... T/T>...CY —= C~.
Jor...ADC AY — C* ... o/tr>...BDC,B* — C*...
/T>ADC,BDOC,(AVvB)> — C*...
/T>ADC,BOC—AVBDOC

a. TheLMU rendering of ausua intuitionisticlogic proof; o = a/X; 7 = a/X, a/y.

Jos . AT —= AX . o/te...BY — B ...
/7> . (AvB)Y — A B, C*... T/T>...CX—= C¥. ..
[T>...—= A B (AVvBDC) r/t>...C-—= B, AyBDO C T/t>...CY —= C¥...
/T>...ADC—B,AVvBDOC r/r>...CY — AVBDOC

/T>ADC,BOC—AVBOC

b. An LMU proof equal to thefirst up to permutations; o = a/X; 7 = a/X, a/y.

Figure 6: Permutations motivate partiality and a different treatment of scope.
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in the corresponding A-term, we implement this through two maps that associate
distinct variables with annotation eigenvariables. K, abstracts the term that ulti-
mately will describe the right side formulaof the rule introducing annotation «; v,
will describe thelabel of the left side formula. Thus, every (— D) ruleintroducing
annotation « will be effectively assigned the anonymous proof term \v,.K,. As
described below, separate structureswill determinewhat termsthe proof says should
actually correspond to these variables.

In ordinary natural deduction, case and casex statements indicate not only scope,
but also thelink between aterm and the variablesthat represent their different possi-
ble values. Since the construction of case statements is delayed, these associations
must now be treated explicitly. We will implement them using maps from scope-
labeled formulas to variables, and thereby obtain a mnemonic that signals how the
relevance of variables may depend on the cases introduced by that formula at that
scope. In particular, fst?(A v By;) and snd?(A Vv By;) indicate the variables to be
introduced in applying the (V —) ruleto a principal formulaA v By;. Meanwhile,
unx?(35AY) indicates the term variable to be introduced in applying the (3 —)
rule to a principal formula with label 3gAY. (Since LMU maintains substitutions
mapping logic variablesto values, it will be necessary to apply such a substitution V
to anatural deduction term; in so doing, V must be extended to rename these special
variables, so that V(fst?(M)) = fst?(VM), etc.)

Termsfor labeling formulasin sequents are constructed according to the follow-
ing grammar:

T = var |[fst(T) | snd(T) | (T, T) |
inl(T) | inr(T) | inx(t, T)
(TT#*) | asxinT| (Tt*) | typevinT |

The superscript on applications indicates the scope of the application. The notation
asvin T correspondsto Av.T but emphasizes that this construction does not bind v,
and likewise typein T for A¢. T. (The ), case, and casex statements that indicate

scope come | ater.)

To encode the partial specification of terms in different parts of the proof, the
label of a formulawill be a set of terms. Each element of this set will specify a
sequence of natural deduction steps which could be appropriately included in the
analyses of certain of the cases described by the proof. In describing the labels
of formulas, we alow a variable v to abbreviate the singleton {v}, and we alow
f(F1,...Fy) to abbreviate {f(M,...,Mx)|M1 € F1,..., My € Fi} for constructors
and destructorsf.

Ruleswhich ordinarily bind variablesin proof-termsmust be adjusted to accom-
modate explicit scope. Thisisdone by registering the proof-terms of the inferences
on the sequent for later processing. There are two such repositories. First, there
isaset T of pairs of annotation terms and proof terms. In each scope, T describes
aternative terms that might be constructed, depending on the different cases that
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must be considered in that scope. T specifications are augmented at (—>) and
(— V) applications to include the proof terms under which the right side formula
is derived. For example, suppose the sequent rule for (— D) applies with its side
formulaB associated with terms F and |abel ed with scope i««. Then therule extends
T asderivedin thesubderivationto TU {(pa, M)|M € F}—abbreviated TU (par, F).
The proof-termsfor B are otherwise discarded; the principa formulais associated
with an anonymousterm—asv, inK,, : A D B*.

Second, there is a set C of triples of annotation terms, labeled formulas, and
proof terms. C contains a tuple (1, A,M) if a case analysis of the formula A,
depending on the value of M, may be required in scope ;. C specifications are
augmented at (V —) and (3 —) applications, to record the proof terms under which
the principal formulais derived. The side formulas are associated with appropriate
new variables.

C and T thus indicate how terms are to be reconstructed to replace each K,
variable: cases are introduced corresponding to appropriate elements of C and
proof terms are derived in each case corresponding to an appropriate element of
T. Now, like substitutions and indexing contexts, the specifications of C and T
grow incrementally during a proof, so that input and output values are required on
sequents. The overall form of sequentsis therefore

T,C,U;Z/T;C;V,;0pT — A

(the change in substitution from U to V and the change in indexing from X to ©
records the incremental evolution of state asin LMU). The formulasinT" and A are
associated with sets of proof terms (in addition to the labeling already needed from
LMU). Itis convenient also to notate A as L : A to indicate that each formula A in
A is associated with a proof term L(A).

Unlike labels of scope, which allow dependencies that are not used, term labels
for right formulas must represent dependencies exactly. Thus, the axiom rule takes
theform

T.C U Z/T,C;MGU(MGU(U, A B), px,v); 2 I'F By — F 1AL, O 1A

where © : Aindicatesthat A isamultiset of formulas each associated with an empty
function from cases to terms. Because dependencies are exact, term labels must be
merged by sequent rules. For example:

.o — F:A;, G:AAB], LA .o — F By, G:AABL L A
. >T — (F,FJUGUG :AABL,LUL : A - A

The notation L U L’ : A indicates the multiset in which each formula occurrence A
of A isassociated with L(A) U L'(A).

Complete rules elaborating LMU sequents with proof-terms are given in Fig-
ure 5.2.2. Apart from the nuances about partiality and scope described above, the
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presentation is essentially identical to that found in (Felty, 1991) and should offer
No Surprises.

Observe that the various transformations that we have considered so far in this
paper can be extended naturally to apply in this calculus. (Each of these regularities
can be proved straightforwardly by examination of cases and induction on proofs, if
necessary.) For example, if D isaderivation with proof terms, then we can obtain a
weakened derivation A + D by adding any multiset A of decorated formulas on the
left throughout D and another weakened derivation D + ¢ : A obtained by adding
on the right throughout D any multiset A in which each formulais assigned the
empty set of terms. Moreover, from a derivation ending

T,C;U;X/T;C;V;0-T — A
we can construct an analogous derivation ending
T//. C//. U//. ZII/T//. C//. U//. 2// > F — A

aslongasT’, C”, ¥ contain al thetuplesin T', C' and ©® and aslong as U” always
equatestermsthat V equates. These factsallow derivationsto be copied and reused:
thus, full permutations of inference remain possible in the cal culuswith proof terms,
and, in fact, permutations applied in a proof do not ater its end-sequent.

Moreover, appropriate transformations of contraction are available. A proof
whose end-sequent contains two identical formulas with identical proof-term la-
bels on the left can be simplified to a proof whose end-sequent contains a single
occurrence of this assumption.

Finally, consider cases where ' omits part of D, but has identical formulas on
left and right in the end-sequent to D, with proof-terms labeled identically on the
left, and contains only inferences from D. This leaves open that D has the form:

T,CU;X/T;C;V;0-T — L: A
whereas 7’ has the form:
T,CU;X/TC"V;0-T — L' : A

Insuchacase, " C T, C" C C,and L'(A) C L(A) forall A € A.
Together with the the theorems of sections 3.2, 3.4 and 5.1, these regularities
ensure that for any labeled proof

T,CU;X/T;C;V;00 — F: A
where A does not contain Herbrand terms or variables and is labeled with the empty
path, thereis proof
T,CU; /T C";V;00 — F : A
which contains a correctly-ordered sequence of inferences corresponding to an LJ
proof and where T C T, C" C C'andF C F.
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5.2.3 Reconstructing terms

Given specifications T and C and a set ¢ of variables guaranteed to be bound in
the current scope and case, aterm M : A is reconstructed by a recursive traversal
in which subterms of the form K, are elaborated. The elaboration, giving cases,
introduces the case and casex statements needed at scope «, adds the appropriate
variable bindings, and recursively reconstructs alternative actions to take at each
case. Intherecursiveinvocation, we consider only the subsets of T and C involving
tuples with annotation terms that have a proper prefix ending in «; we abbreviate
those subsets T,, and C,,. These processes take for granted that the substitution V
has applied to T, C and M, and also that eigenvariables have been substituted for
Herbrand terms (as performed in showing the correctness of LMU).

The procedures of reconstruction and giving cases are specified nondetermin-
istically, because multiple reconstructions may be possible. These multiple recon-
structions arise because LMU allows some inferences to go unused and othersto be
redundant. Whether such redundant proofs actually are discovered automatically
depends on the search strategy; in many cases they will not be.

Definition 5 (Reconstruction/Giving cases) One term is a reconstruction of an-
other at 6 (given T and C) as described by the following cases:

e For any variable x, x isa reconstruction of x at ¢ if and only if x € 6.

e For anytermM, if Nisareconstruction of M at 6, thenfst(N), snd(N), inl(N),
inr(N), inx(t, N) and Nt are reconstructions at ¢ of fst(M), snd(M), inl(M),
inr(M), inx(t, M) and Mt*, respectively.

e For any terms M and M, if N and N’ are reconstructions at 6 of M and M
respectively, then (N, N') and NN’ are reconstructions at 6 of (M, M) and
MM’*, respectively.

e For anytermK,, if N gives cases at 6 U {v, } for K, (given T and C), then
AV, N isareconstruction at 6 of asv, in K, and \:N isa reconstruction at ¢
of type:inkK,.

N gives cases for K,, at 6 given T and C according to the following conditions:

e Thereis some formula A of the form 3yxBy; with a tuple («, A, M) € C with
unx?(A) ¢ ¢ and for which there is a reconstruction M’ of M at ¢ (given T
and C).

N may be any term of the form:
casex(M' of inx(a, unx?(M)) = R)

where a is the eigenvariable introduced by the quantifier, and R gives cases
for K, at 6 U {unx?(M)} (given T and C).
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e Thereis some formula A of theform B v Cj with a tuple («, A,M) € C with
neither fst?(A) € 6 nor snd?(A) € 6 and for which there is a reconstruction
M’ of M at 6.

N may be any term of the form:
case(M’ of inl(fst?(A)) = R inr(snd?(A)) = R)

where R gives cases for K, at 6 U {fst?(A)} (given T and C), and R gives
casesfor K, at ¢ U {snd?(A)} (given T and C).

e Otherwise, N may be any term obtained by reconstructing at 6 any term M
for which (a, M) € T, given T, and C..

Observethat if T C T, C' C T and there is areconstruction of M at 6 given T
and C/, then there is a reconstruction of M at ¢ given T and C. This must be so if
M does not refer to K,, terms, since T and C will not figure in the reconstruction of
M. Inductive reasoning then shows that for each case treated during reconstruction
of M for T and C', a case binding the same variables will also be treated during
reconstruction of M for T and C; thus, athough additional cases may show up in
reconstructing M for T and C, after each path the sametermin T can bereconstructed
as the term reconstructed in the analogous case from T'.

It is also easy to see that the result of reconstruction corresponds to a natural
deduction proof.

Theorem 6 (correctness of extraction) Consider a proof with end-sequent of the
form
0, 0;U; Z/T;C;V;00 — F: A

(Such a proof describes a complete derivation.) Suppose that N is a reconstruction
of anytermM € F for Tand C at ©. Then N represents a natural deduction proof
of A.

Proof. When any proof-term variable x is reconstructed in aterm, it will be bound.
For this will happen only when x € ¢, but when we reconstruct starting from ©,
at each recursive invocation ¢ contains only variables whose binding operators will
surround the term being constructed.

Since every variable in N is thus correctly bound, to show that N represents a
natural deduction proof of A, it suffices to show that each variable is used with a
consistent type throughout N. This follows immediately from the construction and
deconstruction of proof-terms in lock-step with formulas in the sequent calculus,
and the existence of a unifying substitution matching the types of left and right
occurrences of variables. O

We can also establish that a A term can always be reconstructed according to
this scheme:
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Theorem 7 (completeness of extraction) Given a deduction D with end-sequent
0, 0;U; Z/T;C;V;00 — F: A
Then for some M € F there is some reconstruction of M for Tand C at 0.

Proof. Asobserved in 5.2.2, we can transform D to a deduction corresponding
to an LJ inference, which recordsinferences T C T and C' C C and derives terms
F CF.

As observed above, if there is a reconstruction of any term M in F from T' and
C, then thereis a reconstruction of M from T and C. So it sufficesto consider 7.
This has the advantage that reconstruction of 7 can proceed in lock-step with the
syntactic structure of the proof.

We show by induction on the structure of 7’ the following property of proofs.
L et the end-sequent of the proof be

T,C.../T;C...T — A

Let 6 denote the proof-term variables free in the labels of " formulas and suppose
some term in each of those labels can be reconstructed according to T and C at
6. Let F : A* be the distinguished formula in A such that, by the force of the
transformations applied, the proof corresponds to a proof of ...I" — F : A",
Then if the proof ends in a left rule then giving cases for K, at ¢ after @ given
T U (p, F) and C' succeeds; and otherwise we have M € F where reconstructing M
at 6 given T' and C' succeeds.

Note that the requirement placed on deductions ending in right rules entails that
placed on deductions ending in left rules. If reconstructing M at ¢ given T' and C’
succeeds, then no matter what further cases are introduced in elaborating cases at «
using T'U (¢, M) and C', we always arrive at aleaf at which the reconstruction of
M can be used.

We illustrate the key cases of the induction here. At axioms, the label F is a
label of some left formula, which by assumption can be reconstructed.

At (D—), theleft subderivation ends

T,C.../T;C'"...T — G:A ...

By the construction of 7, this derivation cannot end in aright rule (see lemma 1);
G:Aisthe side formulaof the (O— ) inference. Therefore, by theinduction hypoth-
esis, thereis areconstruction of G:A given T” and C”. Now the right subderivation
ends
T,C ... /)T, C.. T, (FG)" :By — F 1 A, ...

We can now conclude that the induction hypothesis applies to this derivation. The
labels of T" continue to have reconstructions given T” and C”, because they extend
T and C. Moreover, since we have reconstructions for elements of F and G given
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T and C”, we must also have a reconstruction for an element of (FG)* there. The
induction hypothesistherefore suppliesareconstruction or case analysisof F. Since
thisis aleft rule, this suffices.

At (V —), we have two subderivations:

T,C.../T,C' ... T fst?2(AVB,) : Ay — F: A, ...
T,C".../T;C...Tsnd?(AVBj) : B — F 1 A}~ ...

The induction hypothesis applies to both. Further, the condition on I" ensures that
some element of the label G of the principal formulaof the rule can be reconstructed
given T and C—and thus given T' and C'. We must show that we can give cases for
K. givenT'U(va, FUF)andC'U(u, AV By, G). Giving cases can begin by treating
the case for G at 6 corresponding to the free variables end-sequent. Thisleaves the
subproblems of giving cases for 6 U {fst?(AV B)} and é U {snd?(A Vv By) }—that
thisisfeasible is guaranteed by the induction hypothesis.
At (—D), the subderivation ends:

T,C.../T;C'"...T)v, : Al — M:BY,...

The induction hypothesis applies immediately; this shows (at least) that thereis a
case analysis of K, given T" U (ua, M) and C" a 6 U {v,,}. But if thisis possible,
then we can reconstruct asv, inK, at ¢ given these records. Thisis just what we
need to establish for the overall derivation. O

Figure5.2.3 showsthe application of thissystem to theproofsof Figure5.2.1, and
illustrates this result. In both cases, we are |eft with the problem of reconstructing
the term asv, inK, given T = {(«, f(fst?(v,))*), («, g(snd?(v,))*)} and C =
{(a, AV B”,V,)}. Wegive cases for K, by finding the case v,,, which reconstructs
to itself, and reconstructing the terms f(fst?(v,))* and g(snd?(v,))¥ for the two
outcomes of v,,. Lettingv = fst?(v, ) and V' = snd?(v, ), we arrive, as expected, at
v, case(V, of inl(v) = f(v)|inr(V) = g(Vv)).

6 Conclusion
This paper has considered an alternative proof system for intuitionistic logic, and
justified it by asyntactic argument. Althoughinspired by translation proof methods,
this is a distinct, more direct result. In fact, together with the soundness and
completeness theorems for classical logic, this result effectively amounts to an
alternative demonstration of the soundness and completeness of (fallible) Kripke
semantics for characterizing LJ proofs. Further, its proof-theoretic formulation
makes possible new applications of translation methods in logic programming and
program synthesis.

More generally, this work shows one way to construct efficient inference proce-
dures by devel oping syntactic abstractionsfor scope and information-flow in proofs.
This new strategy contrasts with the strategy of (D’ Agostino and Gabbay, 1994) of
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labeling formulas based on the content of the sequents from which they are to be
proved. We use symbols to name the inferences in the proof that represent a change
of scope and strings of symbolsto encode the scoped position of other inferencesin
the proof. By imposing constraints on these symbols that mirror to the constraints
imposed in a structural discipline of scope, we arrive at system of explicit scope
that allows rules to be used in any order. Because terms represent positions in the
proof, the terms themselves describe where the inferences belong according to the
origina structure of proofs.

We see then that such procedures can have extremely simple statements and
extremely natural justifications. Moreover, as the development of a family of
systems including LMA and LMT shows, such abstractions are not tied directly to
any one semantics and can build on structure aready implicit in a proof system.
This raises the prospect of applying this idea to other systems, particularly linear
logic (Girard, 1987), even in the absence of compelling classical semantics. The
task remains daunting since there must be at least three kinds of scope transition
in linear logic, corresponding to the splitting of context at (— ©), the copying of
context at (— V), and the modalization of context at (—!). These scope transitions
interact in complicated ways, as underscored by permutability studies (Andreoli,
1992; Galmiche and Perrier, 1994; Tammet, 1994). We |leave this problem to future
research.
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