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Abstract
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where Xi. is the chiral admittance. The periodicity is described by a sinusoidal perturbation of the
permittivity, permeability and chiral admittance. The coupled-mode equations are derived from physical
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transmitted fields. Chirality is observed predominantly in transmission while periodicity is present in both
reflection and transmission.
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Periodic Chiral Structures

DWIGHT L. JAGGARD, seNior MEMBER, IEEE, NADER ENGHETA, SENIOR MEMBER, IEEE,
MAREK W. KOWARZ, PHILIPPE PELET, sTUDENT MEMBER, IEEE, JOHN C. LIU, anD
YUNIJIN KIM, MEMBER, IEEE

Abstract—The electromagnetic properties of a structure that is both
chiral and periodic are investigated using coupled-mode equations. The
chirality is characterized by the constitutive relations D = ¢E +if.B and
H = it E + B/u, where & is the chiral admittance. The periodicity is
described by a sinusoidal perturbation of the permittivity, permeability
and chiral admittance. The coupled-mode equations are derived from
physical considerations. The coupled-mode equations are used to exam-
ine bandgap structure and reflected and transmitted fields. Chirality is
observed predominantly in transmission while periodicity is present in
both reflection and transmission.

1. INTRODUCTION

HE STUDY OF WAVE propagation in periodic struc-

tures has attracted attention since the pioneering work of
Rayleigh [1] in 1887. In the 1950’s, Brillouin [2] examined
electromagnetic wave propagation in periodic media using the
mathematical theory developed by Floquet. This rigorous the-
ory gives rise to an infinite number of space harmonics which
need to be appropriately truncated or approximated by a fi-
nite number of terms. Alternatively, the physically motivated
coupled-mode approach, first introduced by Pierce [3] for
transmission lines, has also been applied to the problem of
waves in periodic structures. This approximate but highly ac-
curate approach stresses the concept of wave coupling by pe-
riodic perturbations and places in evidence the resonant space
harmonics [4]. Both approaches have been used in a variety
of fields such as solid-state physics, antenna theory, and more
recently, integrated optics.

The fundamental techniques, both exact and approximate,
used for waves in simple periodic structures have been
extended to more complex periodic geometries. Here, we
note applications to almost periodic structures [5], periodic
anisotropic materials [6], periodic plasmas [7] and periodic
guided-wave structures [8] as representative examples.

The original investigations of optical activity, or the effect
of chirality on the polarization of light, also date back to the
nineteenth century. Arago [9], Biot [10], Pasteur [11] and
Fresnel [12] all examined optical activity in solid and liquid
chiral media. A simple chiral medium can be modeled by a
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collection of uniformly distributed, randomly oriented chiral
objects. Objects are defined as chiral if they cannot be brought
into congruence with their mirror image, or enantiomorph,
by translation and rotation. An example of a chiral object,
the Mobius strip, and its enantiomorph are shown in Fig. 1.
Note that these objects exhibit handedness and lack bilateral
symmetry.

Recently, there has been revived interest in such media.
A set of simple constitutive relations describing their prop-
erties has been found based on simple macroscopic models
[13]. This has opened the door to new research topics such
as simple and distributed sources in chiral media [14]-[16]
and wave propagation through chiral-achiral interfaces [17],
[18]. Additional work includes fundamental theorems on bian-
isotropic media [19], [20] and light scattering from bounded
chiral structures [21], [22].

In this paper, we blend effects of simple periodicity and
simple chirality by considering structures which are both pe-
riodic and chiral. The problem of electromagnetic wave prop-
agation in such structures is investigated, and a set of coupled-
mode equations is derived. These equations describe the cou-
pling between forward and backward propagating eigenmodes
with appropriate polarizations. The bandgap structure and
the reflected and transmitted fields are then obtained from
the coupled-mode equations. Physical meanings of these cou-
plings are examined and the effects of chirality and periodicity
are shown to be discernable in the transmitted and reflected
waves, respectively.

I1. ProBLEM FORMULATION

It has been shown that a chiral medium is characterized by
the constitutive relations [13]:

D =¢(2)E +it.(z)B 1)

H =it (2)E +B/u(z). ()

In these relations, the z dependence of the parameters that
contain the periodicity of the medium, is written explicitly.
The sign of the chirality admittance £.(z) indicates the hand-
edness of the medium, where a positive (negative) value of
£.(z) corresponds to a right-handed (left-handed) structure.!
For the achiral case, £.(z) is equal to zero. Here, €(2) is the
permittivity and u(2) is the permeability.

! For example, in the optical regime for 1-um wavelengths, TeO, exhibits
a chirality admittance magnitude of 2.2 x 10~7 S. This results in a rotation
of the plane of polarization, characteristic of chiral media, of 30° per mm.

0018-926X/89/1100-1447$01.00 © 1989 IEEE
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Fig. 1. A sample chiral object, the Mdbius strip, and its enantiomorph.
A=2w/K
Ene N~ A~~~ Errans
EHEFLW
&, S g,
0 1 z

Fig. 2. A chiral medium of infinite transverse extent with a perturbation
over a length /. Also shown are the incident, reflected and transmitted
fields. Here A is the spatial period of the perturbation.

A periodic one-dimensional perturbation, of spatial fre-
quency K, is here assumed to be

€(2) €
p@) | =1|n
() &

Ne

1+ n. | cos (K2)|, 0<z<!
Ne
1 z2<0orz>I
3)

where the 7 represent the amplitudes of the periodicities and
€, 1, and & are the unperturbed values of €(z), u(2),and &(z).
Taken together, (1)-(3) define the periodic chiral medium un-
der investigation. As shown in Fig. 2, the perturbation extends
from z = 0 to z =/. In subsequent developments, a weak cou-
pling approximation will be used. Therefore, the amplitudes
of the perturbations are taken to be much less than unity al-
though this condition may be relaxed somewhat.

From the constitutive relations and the sourceless time-
harmonic Maxwell equations with e~ excitation, the inho-
mogeneous chiral Helmholtz equation? is found to be

V x V x E = 20p(2)£:(2)V x E — ?p(2)e(2)E
— Vi(z) x V x E/p(z) — wt(@)Vp) xE=0 (@)

where E is the electric field vector. The second and fifth
terms in (4) produce polarization birefringence, whose ef-
fect will become clear later, since a single curl operation dis-
tinguishes between two opposite directions of rotation of the
electric field.

2 Equation (4) is obtained from (1), (2) and
V xE =iwB V-B=0

VxH=—-ieD V. -D=0.
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The solution of the source driven chiral Helmholtz equation,
using either Green’s functions [14] or a direct examination of
(4), reveals that two eigenmodes exist in chiral media, one
right-circularly polarized (RCP) and the other left-circularly
polarized (LCP). Separate wavenumbers can be associated
with each of these modes and are given by

ki =owpe + /w2u?E2 + k2 ©)

k- = —opke + \/o2u?2 + K2 ®)
with X corresponding to the RCP mode and k_ to the LCP
mode. Note that for ¢, =0,k, =k_ = w./pe =k, and that
for & > 0, k is greater than k_. In the latter case, the RCP
wave will propagate slower than the LCP wave.

To keep track of the two waves as they traverse the slab,
define the circular basis unit vectors

o, - & &)

V2

These vectors represent coordinate systems which are rotating
with the propagating wave fields. All of the fields can then be
expressed in terms of €, and é_.

In the perturbation region, there is weak coupling between
forward and backward propagating waves. The forward prop-
agating waves represent the depleted incident electric field,
while the backward propagating waves represent local reflec-
tions. Since the medium distinguishes between the &, and é_
polarizations, we make the ansatz

)

E=E, +E_ ®)

where

E, =[F,e*? + B_e~*-%)¢, ©)

E_=[F_e*-* L B e k+ja_ (10)

and where F,, F_, B,, and B_ are assumed to be slowly
varying quantities of z. It is convenient to group the fields in
this manner since, upon reflection, a normally incident RCP
(LCP) wave will become an LCP (RCP) wave. From these
physical considerations, we expect there to be no coupling
between the components of E, and those of E_. Indeed, the
following calculations confirm this notion.

Based on the above form for the electric field and the chiral
Helmholtz equation (4), the latter reduces to a pair of equa-
tions:

A 2i 1 K 4
27 F2wpé[1 + (e +m,) cos( z)](%

0
+k2[1 + (n. +1,) cos (Kz)] + K, Sin(KZ)(?_z
+ iwpé K. sin(Kz)| Ex =0. (11)

The upper (lower) sign corresponds to an incident RCP (LPC)
wave which, upon reflection, becomes an LCP (RCP) wave.
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(b)

Fig. 3. Schematic of coupling between (a) modes ¥, and B_ and (b)
modes F _ and B, . Here, |[R|? and [T|? represent the power reflection
and transmission coefficients.

Each case can be treated separately, since F .. is only coupled
with B_, and conversely, ' _ with B, as shown in Fig. 3.

Since there is no coupling between oppositely traveling
waves of the same handedness, conservation of momentum?
dictates that maximum coupling will only occur when K =
k, +k_ (the Bragg condition). Therefore, to allow for small
variations from the Bragg condition and to satisfy the require-
ments imposed by chirality, the wavenumbers &, and k_ are
here cast into the following form:

K
k+=5+A+6 (12)
k_=§—A+6 (13)

where 26 is a measure of the phase match per unit length from
perfect Bragg matching, as shown in Fig. 4, and A = wpé..

Substituting (9) and (10) into (11), and neglecting higher
order terms,* we obtain

E,: itky +k_)F'e™* —itk, +k_)B e *-*
+

(7’6 - nu)kz + 2n6w2ﬂ2£3
+ 2

. [F+e—i(k_—25)z + B_ei(k* —25)7.] =0 (14)
E_: ik, +k_)F" e*-* —i(k, +k_)B e~k

(e — k> + 29w p2E2
2

. [F_e—i(kﬁza)z +B+ei(k‘_25)z] =0

+

(15)

3 This is often denoted the condition for phase matching.

4 Second-order derivatives are neglected in this adiabatic approximation
@G.e., F.,F_, B, and B_ are slowly varying). Furthermore, higher order
phases are unphysical from phase matching considerations.

1449

(b

Fig. 4'. .The Bragg mismatch for (a) incident RCP and reflected LCP and
) 1{1c1dcnt LCP and reflected RCP, with £ > 0. Note & is greater than
k _ in magnitude for the example shown here.

where the primes denote differentiation with respect to the co-
ordinate z. For each equation, we group together coefficients
of the terms e*+% and e —+%, which correspond to the two
directions of wave propagation. For both eouations to equal
zero, the grouped coefficients must themselves be set equal
to zero. This leads us to the coupled-mode equations:

(e — nK? + 2nc0° p?El

F'. =i T e B, (16)
(e — nK? + 200 p2Et
B;:_l(n ﬂ;()k +k7lc) ué ez25zFi_ (17
++k_

These equations can be expressed in a more familiar form by
making the following substitutions:

F. =¢%F, (18)
B, =e 2B, (19)

_ (- n)k* + 2w’ p’

2k, +k_)

_ 2 2,242

_ (e nu)k +29cw°p Ec . (20
4\/?pu2E2 + k2
Then, (16) and (17) become:

F' —iF, =ixBz @1
— B —i6By =ixF+ (22)

where x denotes the coupling per unit length and é the phase
mismatch per unit length. The coupled-mode equations, for
each modal pair (¥, and B_) and (F _ and B,), are of the
same form as those for an achiral periodic medium [4]. How-
ever, we have two sets describing the coupling between the
incident RCP (LCP) and the reflected LCP (RCP).

It is interesting to examine the form of the coupling coef-
ficient x and to find the maximum coupling xmax. It appears
the value of the chiral admittance is limited by [13]

K2 (D)E(2) < p)e(z). (23)
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Therefore, to first order in perturbation

[1+ 27 cos(K2)IE2 <1+ (ne —n,) cos(K2)le/p (24)
which yields

(e —mu)e/n —€/p + £2 < 2q.£2
< (e —nu)e/p +e/p — £

Substituting (25) into (20), we obtain the maximum coupling
coefficient, subject to condition (23),

3 ('7]6 _nul"f‘% _532%) k2

Kmax = ky +k_

Keeping in mind that x is limited by xmax, the coupled-mode
equations (21) and (22) can be solved to examine various as-
pects of the propagating waves. In particular, we are interested
in finding the bandgap structure and the fields at the ends of
the periodicity. As can be seen from (26), due to the extra
degree of freedom in chiral media, the chirality admittance &,
can modify the effects of perturbations in ¢ and p and can
fine tune the coupling coefficient.

The bandgap structure can be found by obtaining wave
equations for £y and B, directly from the coupled-mode

(25)

(26

equations:
Fi\" F.
5 -D’ | =0 27
By By
where
D = /(& - 8. 28)
The solutions become
Fy
] ~etPE (29)
B

which yield either purely decaying or purely propagating
modal amplitudes F' * and B. It is apparent that a bandgap
exists when 62 < x2, as in the achiral case. Here, the inci-
dent mode decays as it passes through the perturbation due to
modal coupling. The largest exponential decay occurs when
the Bragg matching condition is satisfied, 8 = 0. Far from the
Bragg condition, 8” > x?, the modal amplitudes are propor-
tional to imaginary exponentials, which indicate propagating
waves.
We can write the Riccati equation for the local reflection

coefficient, ry = By JF ;

dr +

dz
'Solving the equation for a periodicity extending from 0 to /,
we obtain the same result for the total amplitude reflection
coefficient® R as for the achiral case [23]:

= —ix(l +r%) —2idr.. (30)

- X 31
" Dcoth DI —is° @D

3R =r.(0) = r_(0) where (26) is integrated from z =/ to z=0.
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Similarly, we can find the expression for the total transmission
coefficient amplitude:

_ D

" D cosh DI —i5 sinh DI *

(32

The total transmitted and reflected® electric fields can be found
separately for each component of the incident field in the &,
and €_ directions. In the € bases, the incident field can be
written as follows:

Enc,, =a.&; +a_é_ 33)

where @, and a_ are the magnitudes of the incident RCP
and LCP components, respectively. Then, the reflected and
transmitted fields become:

ErgrL, , = R@.8, +a_& ) 34

ik g

Erpans,, = T(@ e*é, +a_e*-le_). (35)

Since the incident field is usually written in terms of x and
¥ (parallel ang perpendicular) polarization components rather
than in terras of circular polarization components, it is con-
venient to express all the fields in the Cartesian coordinate
system:

EINCzd) = a,€, +ayéy (36)
EgerL,, = [R];=0Enc,, 37
Errans,, = [T];=Enc,, (38)
with

[R]; =0 =R[]] (39)

(k++k ) cos((A) —isin((A)
[T];e =Te 2 40)

isinA) cos(A)

where []] is the identity matrix.

III. DiscussioN

As can be obtained from results of Jaggard et al. on reflec-
tions from homogeneous chiral slabs [13], the handedness,
i.e., the sign of &, of the medium plays no role in reflection
coefficient matrix (39). We also observe that the polarization
ellipse of the transmitted wave has been rotated by an angle
of ¢ = /A = wpkl, as in the aperiodic chiral case [17].
This rotation is a result of the two unequal wavenumbers, k.
and k _, corresponding to the two eigenmodes of the chiral
medium.

Furthermore, the transmitted wave experiences a phase de-
lay of (k. +k _)! /2 with respect to the incident wave. This de-
lay is equivalent to that of a wave propagating through a length
{ with the average chiral wavenumber. When . is small, the
magnitudes of the reflection and transmission coefficients are

® Significant coupling and reflection takes place when the product x/ ap-
proaches unity. This can be easily accomplished with very small perturba-
tions, on the order of 10~ in the optical frequency regime, or with somewhat
larger perturbations in the microwave or millimeterwave regime.
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A
\ey

ETrANS

Fig. 5. The rotation of the polarization ellipse of the electric field after the

wave has traversed a chiral slab of length /.

RCP4————_RCP
., K,
—g =
~
K +
(a)
LCB———— LCP
-k. k.
h #
—
K

Fig. 6. Other Bragg matching possibilities. (a) K = K, =k, + k. (b)
K=K_=k_+k_.

equal, to second order, to those of the achiral case. However,
the chirality of the medium is still present in the rotation of the
major axis of the polarization ellipse. This effect is depicted in
Fig. 5. These results indicate that the amplitudes of reflected
and transmitted fields are more influenced by the periodicity
than by the chirality of the medium. However, the chirality
is unequally manifested in these fields. The only information
about chirality conveyed by the reflection coefficient matrix is
contained as a second-order term in £ affecting the reflected
field amplitude. On the other hand, chirality plays a larger
role in the transmitted wave through rotation of the polariza-
tion ellipse, even for small &..

Analogously to the multitone case [5], where several
bandgaps exist, one might here expect two extra bandgaps,
since the Bragg condition can also be satisfied if either
K=K, =k, +kyorK =K_ =k_+k_. See Fig.
6.

However, we have rigorously shown that these two modes of
coupling do not exist in the unbounded, singly periodic case.
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They can also be rejected on physical grounds, since normally
incident waves will change handedness upon reflection. RCP
(LCP) waves, propagating with wavenumbers &, (k_), upon
normal incidence, become LCP (RCP) waves with wavenum-
bers k_(k,).

IV. ConcLusioN

We examine electromagnetic wave propagation in simple
periodic chiral structures and study the effects of combining
chirality and periodicity. A set of coupled-mode equations is
derived from the chiral Helmholtz equation. Reflection and
transmission characteristics are investigated along with the
bandgap structure. We find that the periodicity affects the
magnitude of both the reflected and transmitted waves. The
chirality is predominantly manifested through the polarization
state of the transmitted wave. We also observe that the gen-
eral characteristics of bandgap structure are similar to that of
the achiral periodic case. However, the coupling and bandgap
size can be tailored when chirality is present, due to the extra
degree of freedom afforded by the chirality admittance.

The analysis reported in this paper can be extended to the
case of periodic chiral guided-wave structures. Such structures
have a variety of potential applications to integrated optical de-
vices and systems and to their millimeter wave and microwave
counterparts.

For oblique incidence, new effects are observed due to
a richer coupling scheme between forward and backward
modes. These richer couplings may occur, for example, in
holographic gratings and wave guides. This problem is under
present investigation.
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