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Complex magnetohydrodynamic low-Reynolds-number flows

Abstract
The interaction between electric currents and a magnetic field is used to produce body (Lorentz) forces in
electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction
and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This
capability is useful, not only for fundamental flow studies, but also for inducing fluid flow and stirring in
minute devices in which the incorporation of moving components may be difficult. This paper focuses on a
theoretical and experimental study of magnetohydrodynamic flows in a conduit with a rectangular cross
section. The conduit is equipped with individually controlled electrodes uniformly spaced at a pitch L. The
electrodes are aligned transversely to the conduit's axis. The entire device is subjected to a uniform magnetic
field. The electrodes are divided into two groups A and C in such a way that there is an electrode of group C
between any two electrodes of group A. We denote the various A and C electrodes with subscripts, i.e., Ai and
Ci , where i = 0, ±1, ±2, ... . When positive and negative potentials are, respectively, applied to the even and
odd numbered A electrodes, opposing electric currents are induced on the right and left hand sides of each A
electrode. These currents generate transverse forces that drive cellular convection in the conduit. We refer to
the resulting flow pattern as A. When electrodes of group C are activated, a similar flow pattern results, albeit
shifted in space. We refer to this flow pattern as C. By alternating periodically between patterns A and C, one
induces Lagrangian chaos. Such chaotic advection may be beneficial for stirring fluids, particularly in
microfluidic devices. Since the flow patterns A and C are shifted in space, they also provide a mechanism for
Lagrangian drift that allows net migration of passive tracers along the conduit's length.
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Complex magnetohydrodynamic low-Reynolds-number flows

Yu Xiang and Haim H. Bau*
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,

Pennsylvania 19104-6315, USA
~Received 29 January 2003; published 28 July 2003!

The interaction between electric currents and a magnetic field is used to produce body~Lorentz! forces in
electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction
and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This
capability is useful, not only for fundamental flow studies, but also for inducing fluid flow and stirring in
minute devices in which the incorporation of moving components may be difficult. This paper focuses on a
theoretical and experimental study of magnetohydrodynamic flows in a conduit with a rectangular cross
section. The conduit is equipped with individually controlled electrodes uniformly spaced at a pitchL. The
electrodes are aligned transversely to the conduit’s axis. The entire device is subjected to a uniform magnetic
field. The electrodes are divided into two groupsA andC in such a way that there is an electrode of groupC
between any two electrodes of groupA. We denote the variousA andC electrodes with subscripts, i.e.,Ai and
Ci , wherei 50,61,62, ... . When positive and negative potentials are, respectively, applied to the even and
odd numberedA electrodes, opposing electric currents are induced on the right and left hand sides of eachA
electrode. These currents generate transverse forces that drive cellular convection in the conduit. We refer to
the resulting flow pattern asA. When electrodes of groupC are activated, a similar flow pattern results, albeit
shifted in space. We refer to this flow pattern asC. By alternating periodically between patternsA andC, one
induces Lagrangian chaos. Such chaotic advection may be beneficial for stirring fluids, particularly in microf-
luidic devices. Since the flow patternsA and C are shifted in space, they also provide a mechanism for
Lagrangian drift that allows net migration of passive tracers along the conduit’s length.

DOI: 10.1103/PhysRevE.68.016312 PACS number~s!: 47.52.1j, 47.65.1a

I. INTRODUCTION

In recent years, there has been a growing interest in de-
veloping minute laboratories on a chip to facilitate chemical
reactions and biological interactions. Efficient mixing and
stirring of various reagents are essential to facilitate timely
operation. In minute devices, stirring is a challenge since the
flows are at very low Reynolds numbers, turbulence is not
available to promote mixing, and it is difficult to insert mov-
ing components into these devices. Not surprisingly, a great
amount of effort has been invested in devising various means
for fluid stirring. One such means is based on chaotic advec-
tion or Lagrangian chaos@1#. The basic idea is to temporally
and/or spatially alternate between two or more flow patterns.
With an appropriate choice of such patterns, one can gener-
ate quite complicated trajectories of passive tracers. Lagrang-
ian chaos is attractive since it does not require high Reynolds
numbers. For example, various authors@1–3# have studied,
theoretically and experimentally, flow through two- and
three-dimensional ‘‘twisted’’ conduits. The twists~or bends!
induce counter-rotating vortices that under certain conditions
interact to induce chaotic advection. Stroocket al. @4# imple-
mented a similar idea by machining into their flow conduits
oblique grooves with different angles with respect to the flow
direction. All the methods described above require a pressure
source to drive the flow. In some cases, pressure sources may
not be convenient to use, and it is desirable to consider al-
ternatives.

One such alternative is the use of Lorentz forces or mag-
netohydrodynamics~MHD!. The application of electromag-
netic forces to pump, confine, and control fluids is by no
means new. To date, however, magnetohydrodynamics has
mostly been used to pump and control highly conducting
fluids such as liquid metals and ionized gases and to study
ionospheric/astrophysical plasmas@5#. The potential use of
electromagnetic forces in small devices has attracted much
less attention. Recently, though, Jang and Lee@6#, Lemoff
and Lee@7#, and Zhonget al. @8# constructed MHD micro-
pumps on silicon and ceramic substrates and demonstrated
that these pumps are able to move liquids around in micro-
conduits. The liquids need to be at least slightly
conductive—a requirement met by many biological solu-
tions.

Subsequently, Bauet al. @9–11# demonstrated the feasibil-
ity of using magnetohydrodynamic forces to control fluid
flow in minute fluidic networks. The basic building block
~branch! of such a network consists of a conduit with two
electrodes deposited along its two opposing walls. The con-
duit is filled with an electrolyte solution. Many conduits are
connected to form a network. The entire device is subjected
to a uniform magnetic field. When a potential difference is
applied across the wall electrodes, the resulting current inter-
acts with the magnetic field to form body~Lorentz! forces
that propel the fluid. By judicious application of different
potential differences to different electrode pairs, one can di-
rect the liquid to follow any desired path without the need for
mechanical pumps and valves. In other words, MHD allows
one to control fluid flow in a minute fluidic network in very
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much the same way as one controls electric current flow in
an electronic circuit.

Since one can readily pattern electrodes of various shapes,
one can induce electric fields in different directions. The in-
teraction of such electric fields with the magnetic field can be
used to induce secondary complex flows that may be benefi-
cial for stirring and mixing@12–14#. In this paper, we de-
scribe yet another way of inducing complex flow patterns in
a conduit. The ideas articulated here can be used to construct
a MHD stirrer.

The paper is organized as follows. The mathematical
model is described in Sec. II. The experimental apparatus
and the processing of the experimental data are detailed in
Sec. III. Section IV compares the theoretical predictions with
experimental observations, and Sec. V concludes. The Ap-
pendix describes refinements in the theoretical solution that
facilitate accurate computation of the flow field while retain-
ing only a few terms in the series solution.

II. MATHEMATICAL MODEL

The stirrer consists of a long, liquid-filled conduit with a
rectangular cross section. Figure 1 depicts schematically the
top ~cross section I-I! and the side~cross section II-II! views.
The conduit’s width and height are, respectively,W and 2h.
The x, y, and z coordinates are, respectively, aligned along
the conduit’s axis, width, and height. The conduit’s sidewalls
are electrically insulating. Uniformly spaced electrodes are
positioned transversely to the conduit’s axis with a pitchL.
In other words, the electrodes are placed atx856nL and
z856h, wheren50,1,2, ... . The prime denotes dimensional
quantities that will later be made dimensionless. The elec-
trodes are divided into two groupsA and C in such a way
that there is always an electrode of groupC between any two
A electrodes. The electrodes within each group are sequen-
tially numbered asA6n andC6n . For simplicity, we assume
that the electrodes have zero width and height. The conduit is
filled with an electrolyte solution of viscositym and electric
conductivitys. The conduit is positioned in a uniform mag-
netic field of magnitude (B5Bêz) in the z direction.

When positive and negative potentials, respectively, are
applied to even and odd numberedA electrodes, electric cur-
rents in opposite directions are induced on the left and right
hand sides of theA electrodes. These currents, in turn, induce
body~Lorentz! forces directed toward the conduit’s sidewalls
in opposite directions on the two sides of the electrodes. As a

result, cellular convection is induced around the electrode
with the fluid moving in the positivey direction on one side
of the electrode and in the negativey direction on the other
side. The cells have a width of 2L.

According to Ohm’s law for a moving conductor of con-
ductivity s in a magnetic field, the potential difference
(DV5V12V2) induces a current of density

J5s~2“V1u83B!. ~1!

In the above, bold letters represent vectors;u85$u,v,w% is
the fluid’s velocity;u, v, andw are, respectively, the velocity
components in thex, y, andz directions; andV is the electric
potential.

Since we are concerned with relatively slow flows, the
term u83B can be neglected. Below, we write the various
equations in dimensionless form usingL as the length scale.
In other words, the electrodesA6n are positioned at locations
x562n. Furthermore, we restrict ourselves to the case
W/L;O(1) and h/L!1. Since in our experimenth/L
50.18, we use the two-dimensional Hele-Shaw approxima-
tion @15#. The error induced by the Hele-Shaw approxima-
tion is estimated to be of the order of (h/L)2. For further
discussion of this approximation, see the appendix to Ref.
@13#.

The current’s density in the interval between two adjacent
electrodesCn21 andCn is

J8;J0@sgn~x22n!#êx ~2n21,x,2n11!, ~2!

whereJ0;sDV/2L. Sgn(x) is positive~negative! for posi-
tive ~negative! arguments, and it equals zero for a zero argu-
ment. The momentum equation has the form of Darcy’s law:

u5
1

2
@“p1@sgn~x22n!#êy# ~2n21,x,2n11!.

~3!

The continuity equation is

“•u50. ~4!

Below, without loss of generality, we restrict ourselves to
the interval21,x,1. u5(u,v) is the two-dimensional ve-
locity vector.p is the pressure.U5J0B0h2/m is the velocity
scale,L/U is the time scale, andmUL/h2 is the pressure
scale. The boundary conditions include impermeable top and
bottom walls,

nS x,6
Ŵ

2
D 50, ~5!

and symmetry conditions atx561,

u~61,y!50, ~6!

whereŴ5W/L is the aspect radio. The assumption of a zero
thickness electrode results in a pressure discontinuity atx
50,

FIG. 1. Schematic top view~left! and cross section~right! de-
pictions of the stirrer. Black gray lines correspond, respectively, to
electrodes of groupsA andC.
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S ]p

]y
D

x→01

2S ]p

]y
D

x→02

52. ~7!

It is convenient to introduce the stream functionC(x,y).
In terms of the stream function, Eq.~3! assumes the form

¹2C522(
k50

` H cosF ~2k11!px

2 G J ~ uxu<1!. ~8!

The corresponding boundary conditions are

CS x,6
Ŵ

2
D 50 and C~61,y!50. ~9!

Equations~8! and ~9! can be readily solved, and the ve-
locity components are

u5
]C

]y
5 (

k50

`
2

m

sinh~my!

cosh~mŴ/2!
cos@mx# ~ uxu<1!

~10!

and

n52
]C

]x
52 (

k50

`
2

m H cosh~my!

cosh~mŴ/2!
21J sin@mx#

~ uxu<1!. ~11!

In the above,m5(2k11)p/2. Later in the paper, we will
compute the trajectories of passive tracers. These computa-
tions require numerous evaluations of the velocity compo-
nents at different$x,y% locations. Unfortunately, due to the
singularity of the function sgn(x) at x50, the series~10! and
~11! converge slowly~like k21) when uyu→Ŵ/2. To over-
come this shortcoming, we recast the series~10! and~11! in
terms of functions that mimic the singularities of the original
problem. We provide the results below and defer the deriva-
tion to the Appendix.

The series~10! and~11!, rewritten in the rapidly converg-
ing form, are

u52
1

2p
(
k50

`

~21!k lnH cosh@~y1Ŵ/21kŴ!p#1cos~px!

cosh@~2y1Ŵ/21kŴ!p#2cos~px!

cosh@~y1Ŵ/21kŴ!p#2cos~px!

cosh@~y1Ŵ/21kŴ!p#1cos~px!
J ~ uxu<1! ~12!

and

n5
1

2
sgn~x!2

1

p
(
k50

`

~21!kFarctanH sin~px!

sinh@~2y1Ŵ/21kŴ!p#
J 1arctanH sin~px!

sinh@~y1Ŵ/21kŴ!p#
J G ~ uxu<1!. ~13!

Typically, it is sufficient to retain five terms in these series to
obtain a precision better thanO(1025). For further details on
the series’ convergence, see the Appendix.

When the electrodesA are active, the flow field consists
of convective cells with spatial periodicity 2. Figure 2 de-
picts the corresponding streamlines. The streamlines corre-
spond to the trajectories of passive particle tracers inserted in
the flow. We refer to the flow field depicted in Fig. 2 as flow
patternA. A similar flow field, albeit shifted distance 1 in the
x direction, is observed when only electrodesC are active
~and electrodesA are disconnected!. We refer to the latter
flow field as patternC.

Next, we activate alternately electrodesA andC with the
dimensionless periodT. When the frequency of the alterna-
tions is relatively slow, one can invoke the quasistatic ap-
proximation, and the trajectories of a passive tracer particle
can be computed by solving the kinematic equations

ẋ~ t !5VA~ t !u~A!~x,y!1VC~ t !u~C!~x,y! ~14!

and

ẏ~ t !5VA~ t !n~A!~x,y!1VC~ t !n~C!~x,y! ~15!

with the initial conditionsx(0)5x0 , y(0)5y0 . The sub-
scriptsA andC refer, respectively, to patternsA andC. The
time-dependent functionsVA(t) and VC(t) define the stir-
ring protocol. One can explore various types of time modu-
lation @various functionsV(t)]. For brevity, we select the
simple on-off protocol

VA~ t !5H 1, nT,t,S n1
1

2DT,

0, S n1
1

2DT,t,~n11!T,

VC~ t !5H 0, nT,t,S n1
1

2DT,

1, S n1
1

2DT,t,~n11!T.

~16!

The resulting flow field is periodic in time with periodicityT.
Aref and Balachandar@1# investigated the effects of various
protocols on the kinematics of the flow between two rotating,
eccentric cylinders and determined that an on-off protocol

COMPLEX MAGNETOHYDRODYNAMIC LOW-REYNOLDS- . . . PHYSICAL REVIEW E 68, 016312 ~2003!
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gives qualitatively indistinguishable results compared to
those obtained with smoother protocols. Finally, we note that
the more interesting flow phenomena occur whenT is rela-
tively large and when the quasistatic approximation is likely
to be valid.

Although physically unrealistic, it is instructive to study
the flow field in the limit of T→0 ~high switching fre-

quency!. In this limit, Eqs.~14! and~15! form a Hamiltonian
system, and they are integrable. Figure 3 depicts the super-
posed flow fieldA1C. The figure illustrates the existence of
saddle~hyperbolic! points at$x,y%5$(4k11)/2,0% (kPZ)
~see the magnified image on the right!. Saddle~hyperbolic-
fixed! points are desirable since when they are perturbed cha-
otic advection and efficient stirring result@16#.

FIG. 2. The streamlines when electrodes of typeA are continuously active. The dashed lines depict the positions of the active electrodes.
The arrows indicate the flow direction.

FIG. 3. The superposed streamlines of flow patternsA andC. The dashed lines depict the positions of the electrodes. The inset on the
right depicts a magnified view of the saddle point region.
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WhenT.0, Eqs.~14! and ~15! are no longer integrable,
and we must resort to numerical techniques. To this end, we
use the fourth order accurate Runge-Kutta solver~ODE45! in
MATLAB . The predicted flow patterns whenT.0 are reported
in Sec. IV.

III. EXPERIMENTAL APPARATUS AND PROCEDURE

To verify the theoretical predictions, we carried out flow
visualization experiments. The apparatus consists of a con-
duit of length 750 mm, widthW55.0 mm, and height 2h
52.8 mm fabricated with Proteus Homopolymer~Poly Hi
Solidur!. To facilitate easy flow visualization, we did not cap
the conduit in the experiments. The electrodes were formed
with 0.5 mm diameter copper wires stretched along the con-
duit’s bottom. The electrodes were uniformly spaced with a
pitch of L57.5 mm. The conduit was filled with 0.1M so-
dium chloride~NaCl! solution.

The electrodes were divided into two groups. Each group
was connected through a computer-controlled relay actuator
~Advantech PCL735! to a power supply~Hewlett-Packard
6032A!. The device was positioned on top of a neodymium
~NdFeB, Polymag Inc.! permanent magnet that provided a
nearly uniform magnetic field of intensityB;0.4 T. The
magnetic field’s intensity was measured with a gaussmeter.

The electric potentials applied to the electrode groups
were about 1.5 V and the total electric current in the flow cell
was 1.1560.25 mA. At this potential level, there was no
significant bubble generation. The current was measured
with a Digital Multimeter~Hewlett-Packard 3458A!.

In some of the experiments, we visualized the flow field
by introducing a drop of dye~Fluorescent Liquid Dye, Cole-
Parmer Instrument Company, with an estimated diffusion co-
efficient of 2.531029 m2/s) at various locations inside the
channel and tracking its evolution as a function of time. In
other experiments, we traced a line of dye along the con-
duit’s midwidth and tracked its deformation as a function of
time. The spread and progression of the dye were monitored
with a digital camera~Nikon Cooplix 995!.

To obtain some estimate of the experimental time con-
stant, we compared the predicted and measured velocities at
$x,y%5$0.5,0%. The theory predicts that the dimensionless
velocity (v) in they direction is about 0.25. The correspond-
ing value measured in the experiments was 1 mm/s. We con-
clude therefore that the velocity scale in the experiments is
U;4 mm/s and that the corresponding time scale isL/U
;1.8 s. Comparisons between predicted and observed dye
traces indicated, however, that a better qualitative agreement
between theory and experiment was obtained when a some-
what smaller time constant of 1 s was used.

The color images obtained from the experiments were
transferred toMATLAB ’s image processing toolbox. The num-
ber of pixels that were contained in the image depended on
the size and quality of the image. Typically a pixel repre-
sented a square area of 0.130.1 mm2. Before the introduc-
tion of the dye, we took an image of the experimental setup
to obtain the ‘‘background.’’ Subsequently, the background
was subtracted from all the images. The process is illustrated
in Fig. 4. Figures 4~a! and 4~b! are, respectively, the gray

scale versions of the photographs of the original image at the
start of the experiment and the same image after the subtrac-
tion of the background.

To monitor the area occupied by the dye, we constructed a
filter. Briefly, the computer assigned to each pixel three num-
bers corresponding to the red, green, and blue color intensi-
ties. We found it convenient to work with the green color.
The green intensity of pixel~i,j! was denotedgi , j . The con-
trast level of the image was intensified using the contrast
enhancement filter withinMATLAB @17#. In brief, each pixel’s
value was recalculated as a weighted average of itself and its
nearest neighbors. Subsequently, the pixel values (gi , j ) were
normalized to a scale ranging between 0 and 1. Next, the
average intensity was calculated and denoted asḡ. A thresh-
old valueg05ḡ1m was defined, wherem was assigned the
value of 0.15. Pixels with valuesgi , j>ḡ and gi , j,ḡ were
assigned, respectively, values of 1 and 0.

Figure 4~c! depicts the processed image in which the pix-
els were assigned values of 1~white! and 0~black!. Finally,
we counted the total number of the 1-valued pixels to obtain
the areas covered by dye at various times. Alternatively, one
can find the sum of the 1-valued pixels at anyx location to

FIG. 4. Image processing steps to obtain the area covered with
dye as a function of time:~a! raw image;~b! image after back-
ground subtraction;~c! image pixels assigned value of 0~black! in
the absence of dye and 1~white! in the presence of dye; and~d! the
sum of the pixels along they coordinate as a function ofx.
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obtain the dye-occupied pixels as a function ofx. Figure 4~d!
is an example of the sum of the pixels’ values along they
direction as a function ofx.

The reduction in the dye’s intensity is a result of the mo-
lecular diffusion process. In the absence of diffusion, the area
occupied by the dye would have been conserved. Neverthe-
less, the rate of the spread of the dye provides a measure of
the stirring efficiency since, as the length of the interface
between the dyed and clear fluid increases, molecular diffu-
sion becomes more effective. Hence, indirectly, the rate of
the spread of the dye provides an indirect measure of the rate
of elongation of the interface between the dye blob and the
clear fluid.

Our attempts to measure the edge length of the blob of
dye as a function of time were frustrated by the complex
topology of this interface. As an alternative, we tracked the
length of an initially straight trace of dye as a function of
time. The processing steps of the experimental data are de-
picted in Fig. 5. Figure 5~a! is the photograph of an initially
straight trace of dye inserted along the device’s midheight.
The figure was retouched manually to improve the contrast
between the dye and the background in the electrodes’ vicin-
ity. Subsequently, the background was subtracted@Fig. 5~b!#.
We started withMATLAB ’s edge recognition routine to iden-
tify the pixels associated with the line’s boundaries. When
we compared the values obtained with this method with
known lengths of calibration curves, we observed a relatively
large error~about 20%!. As an alternative, we usedMATLAB ’s
spline function to approximate the curve locally with piece-
wise continuous~cubic! polynomials. To this end, we speci-
fied interpolating nodes~pixels! on the line trace@shown as
circles in Fig. 5~c!#. The precision of this approximation in-
creases as the number of nodes increases. An example of a
fitting spline curve is depicted in Fig. 5~d!. The length of the
line was estimated by integrating the piecewise continuous

interpolating functions. The lengths of calibration curves ob-
tained with the spline technique were in excellent agreement
with known values.

IV. RESULTS AND DISCUSSION

We carried out numerical simulations and flow visualiza-
tion experiments for various periodsT. We started by com-
paring the experimental results and the theoretical predic-
tions when only one set of electrodes is active~i.e.,
electrodesA!. Both in the experiment and theory, we tracked
the evolution of an initially straight line of ‘‘dye’’ inserted
along the conduit’s midwidth. Figure 6 depicts the dye trace
at various times. The left and right columns correspond, re-
spectively, to the experimental observations and the theoret-
ical predictions. Figures 6~a!, 6~b!, 6~c!, and 6~d! correspond,
respectively, to timest50, 1, 2, and 3. The traces are con-
sistent with a set of counter-rotating convective cells of
width 2L centered about electrodesAn . The experiments and
theory are in good qualitative agreement.

When T52 s, Fig. 7 depicts the experimental observa-
tions ~left! and theoretical predictions~right! of the evolution
of a drop of dye at timest50 ~a!, T ~b!, 2T ~c!, 3T ~d!, 4T
~e!, 5T ~f!, 6T ~g!, 7T ~h!, 8T ~i!, and 12T ~j!. To facilitate
the comparison with theory, we processed the experimental
image at timet50 to obtain the coordinates of the drop. This
provided us with the initial conditions for the numerical in-
tegration. The theoretical images were obtained by integrat-
ing the trajectories of 1500 passive tracer ‘‘particles.’’ The
experimental observations and theoretical predictions are in
good qualitative agreement: witness the stretching and fold-
ing that are characteristic of chaotic advection. The chaotic
island is, however, confined to a small region around the
superposed trajectory of flow patternsA and C that passes
through the hyperbolic fixed point. It is instructive to com-
pare Fig. 7~j! with Fig. 3. The presence of the saddle, hyper-
bolic point is clearly visible. WhenT is small, the passive
tracer trajectories approximately track the streamlines asso-

FIG. 5. Image processing steps to obtain the length of an ini-
tially straight trace of dye as a function of time.T5t54. ~a! Raw
image;~b! image after manual retouch and background subtraction;
~c! nodes chosen for spline approximation;~d! an approximated
piecewise polynomial curve determined with the spline function in
MATLAB .

FIG. 6. Deformation of an initially straight line of dye placed at
the channel’s midheight. ElectrodesA are continuously active. The
left and right columns correspond, respectively, to experimental ob-
servations and theoretical predictions at various timest50 s ~a!, 1 s
~b!, 2 s ~c!, and 3 s~d!.
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ciated with the superposed flows.
As T increases so does the size of the chaotic region.

Figure 8 depicts the experimental observations and the theo-
retical predictions for the spread of a drop of dye whenT
55 s. As in Fig. 7, the image at the beginning of the experi-
ment was processed to obtain the locations of the pixels as-
sociated with the area occupied by the dye att50. These
pixels then provided the initial conditions for the numerical
simulations. In the numerical simulations, we integrated the
trajectories of about 3000 points that the image processing
algorithm identified as having a pixel value of 1 at timet
50. Figure 8 depicts the evolution of the drop of dye at
times t50.2T ~a!, 0.4T ~b!, 0.6T ~c!, 0.8T ~d!, T(e), 1.2T
~f!, 2T ~g!, and 3T ~h!. The theoretical predictions are in
good qualitative agreement with experimental observations.

Figure 8 illustrates yet another phenomenon—that of
drift. Since flow patternsA andC are shifted by half a spatial
period, there is a mechanism for net migration of tracer par-
ticles along the conduit’s length. Even though there is no net
through flow, there is net migration of particles. We refer to
this migration as a Lagrangian drift. Although this phenom-

enon is somewhat reminiscent of dispersion, the mechanism
of the Lagrangian drift is different. It would be interesting to
devise an ‘‘effective diffusivity’’ for the Lagrangian drift.
Unfortunately, we have not found a convenient way for do-
ing so, short of massive numerical simulations.

It is also instructive to follow the evolution of an initially
straight line of dye under chaotic flow conditions. WhenT
54 s, Fig. 9 depicts the experimental observations~left! and
theoretical predictions~right! for an initially straight line of
dye at timest50 ~a!, T/4 ~b!, T/2 ~c!, 3T/4 ~d!, andT ~e!. In
the numerical simulation, we integrated the trajectories of
4000 uniformly spaced points. The images depict the stretch-
ing and folding process associated with chaotic advection.
The figure illustrates good qualitative agreement between ex-
periment and theory.

An important issue from the engineering point of view is
the quantification of the stirring efficiency. We use the dye’s
rate of spread as the measure of the stirrer’s performance.
Using theMATLAB image processing toolbox, we processed
the photographs of the experiments at various times. Em-
ploying a filter ~see Sec. III!, we identified whether various
pixels were occupied by dye or not. We normalized the dyed
areaA(t) at time t with the initial area occupied by the dye
drop A(0) at time 0 to obtain the dimensionless areaÂ(t)
5A(t)/A(0). Figure 10 depicts the dimensionless areaÂ(t)
as a function oft when T52, 5, and 10. The symbols and
solid lines correspond, respectively, to experimental data and
best fit curves~see below!. Clearly, asT increases so does the
rate of increase ofÂ(t). To obtain a single figure of merit,
we used regression to fit curves of the form exp(lt) to the
experimental data. In the above,l represents the growth rate
of the area occupied by the dye. The growth ratel is de-
picted as a function of the periodT in Fig. 11. In the range of
our experimental parameters,l increases asT increases ac-
cording to the correlationl5eT/T021, whereT0537.3. l

FIG. 7. The spread of a blob of dye as a function of timet/T
50 ~a!, 1 ~b!, 2 ~c!, 3 ~d!, 4 ~e!, 5 ~f!, 6 ~g!, 7 ~h!, and 8~i!. The left
and right columns at each time correspond, respectively, to experi-
mental data and theoretical predictions. The alternation periodT
52 s.

FIG. 8. The spread of a blob of dye as a function of timet/T
50.2 ~a!, 0.4 ~b!, 0.6 ~c!, 0.8 ~d!, 1 ~e!, 1.2 ~f!, 2 ~g!, and 3~h!. The
left and right columns correspond, respectively, to experimental
data and theoretical predictions. The alternation periodT55 s.

FIG. 9. Deformation of an initially straight line of dye placed at
the channel’s midheight. The left and right columns correspond,
respectively, to experimental observations and theoretical predic-
tions at various timest/T50 ~a!, 1/4 ~b!, 1/2 ~c!, and 1 ~d!. T
54 s.
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plays a similar role to that of the Lyapunov exponent, and it
can be used as a measure of the intensity of the chaotic
advection.

Similarly, one can determine the amount of time that it
takes for the area occupied by the dye to double. We denote
the ‘‘doubling’’ time ast. Figure 12 depictst as a function of
the periodT. In the range of our experimental parameters,t
decreases asT increases. This behavior is described well by
a correlation of the formt; ln T n1t0, wheren;29 and
t0;23. We attempted to calculate the variance of the color
intensity as a function of time@18–20#. However, the results
of these calculations were not particularly illuminating.

As we noted in Sec. III, in the absence of diffusion, the
area occupied by the dye would be conserved@Â(t)
5const#. The continuous stretching and folding of the inter-
face between the dyed liquid and the clear water enhances
the molecular diffusion process. Thus the rate of increase of
the dyed area is a measure of the combined effects of stirring
and molecular diffusion.

The elongation rate of the boundary between the dyed
blob and the clear fluid is likely to provide a better measure
of the stirring effectiveness. We were not able to track this

interface. As an alternative, we tracked the elongation rate of
an initially straight stretch of dye inserted at the device’s
midheight ~Figs. 6 and 9!. Figure 13 depicts the relative
length L̂(t)5L(t)/L(0) as a function of time for flow pat-
ternsA ~squares, no alternations! andA-C ~diamonds, alter-
nation periodT54). When the electrode potentials were not
alternated, the line elongated nearly linearly according to the
correlationL̂(t);110.4t. In the presence of chaotic advec-
tion ~flow patternC, T54), the elongation rate was expo-
nential and correlated well withL̂(t);exp(0.33t). The posi-
tive growth rate of 0.33 is consistent with chaotic advection.

We conclude our discussion with a few comments on the
suitability of MHD stirring for microdevices. The MHD
force is a volumetric one. Hence, as the size of the device
decreases, the magnitude of the velocity decreases rapidly.
There are, however, a few mitigating factors. As the charac-
teristic length decreases, the current intensity increases. The
characteristic velocity in terms of the electrode potential dif-
ference (V) is U5sVB0h2/mL, wheres is the electrolyte’s
electric conductivity. Typically, the threshold potential for
the hydrolysis of water dictates the maximum electrode po-
tential. Hence, we assume that this potential difference will
remain the same regardless of device size. Within a periodT,

FIG. 10. The dimensionless areaÂ(t) as a function oft when
T52, 5, and 10. The symbols and solid lines correspond, respec-
tively, to experimental data and the best fit curve.

FIG. 11. The growth ratel as a function of the periodT. The
symbols and solid lines correspond, respectively, to the experimen-
tal data and the best fit curve.

FIG. 12. The doubling timet as a function of the periodT. The
symbols and solid lines correspond, respectively, to the experimen-
tal data and the best fit curve.

FIG. 13. The relative lengthL̂(t) of an initially straight trace of
dye as a function of time. The symbols and solid lines correspond,
respectively, to the experimental data and the best fit curve. The
squares and diamonds correspond, respectively, to dc actuation and
periodic potential alternation.T54.
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a passive tracer particle travels a relative distanceUT/L
5(sVB0T/m)(h/L)2. If we accept the argument that differ-
ent size stirrers perform similarly when the passive tracer
particle travels similar relative distances within a periodT,
we may conclude that as long asT and V remain the same
andh andL are scaled down in like proportions, the stirrer’s
performance will be size invariant.

V. CONCLUSIONS

This paper demonstrates that magnetohydrodynamics pro-
vides a convenient way of inducing complicated flow pat-
terns that may be of interest for both fundamental research
and practical applications. The flow patterns are controlled
by the electrodes’ pattern and the potentials applied to the
various electrodes. Photolithography provides a great amount
of flexibility for patterning electrodes. In our particular ex-
ample, we demonstrated that by positioning the electrodes
transverse to the conduit’s axis and engaging only one group
of electrodes, one can generate cellular convection. By alter-
nately engaging two staggered groups of electrodes, one can
induce chaotic advection. As the period of alternations in-
creases, so does the intensity of the chaotic motion. The cha-
otic motion facilitates effective stirring. A method was used
to evaluate the stirrer’s efficiency through image processing.
In the range of parameters examined in this paper, the stir-
rer’s ‘‘efficiency’’ increased as the period of alternations in-
creased. Stirrers operating according to the concepts de-
scribed here may be useful for microfluidic systems since
they do not require any moving components and can be fab-
ricated readily with standard planar microfabrication tech-
nology. The theoretical predictions were in good agreement

with experimental observations, suggesting that the modeling
can be used as an effective tool for the design and optimiza-
tion of the stirrer. Interestingly, the chaotic flow also pro-
vides a mechanism for the net transport of passive particle
tracers along the length of the conduit. We refer to this phe-
nomenon as Lagrangian drift. The Lagrangian drift becomes
more pronounced as the period of the alternations increases.
The drift is somewhat reminiscent of dispersion, but it is
caused by a different physical mechanism. The phenomenon
can probably be quantified through the use of an effective
diffusion coefficient. We defer the derivation of such a dif-
fusion coefficient to future work.

APPENDIX: ACCELERATED RATE OF CONVERGENCE

Equations~10! and ~11! of Sec. IV provide expressions
for the velocity components in series form. Unfortunately,
when y approachesW/2, the series converge slowly~like
k21), and it may not be practical to use these solutions to
compute the passive tracers’ trajectories. The slow conver-
gence of series~10! and~11! results from the series attempt-
ing to approximate a singular function. This gives rise to the
Gibbs phenomenon and slow convergence. Happily, one can
recast the series in a form that allows rapid convergence.
Briefly, we expand the hyperbolic functions in the series into
geometric series to obtain double series. Subsequently, we
change the order of summation. This allows us to sum the
new inner series in a closed form. The new closed form
functions mimic the singularities of the original expression.
Thus, the resulting series converges very rapidly. The various
steps of the derivation are straightforward, and they are out-
lined below. We start with the series solution foru:

u5 (
n50

`
2

m

sinh~my!

cosh~mŴ/2!
cos@mx#

52 (
n50

`
2
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em~y2Ŵ/2!~12e22my!

~11e2mŴ!
cos@mx#

52 (
n50

` H 2

m
em~y2Ŵ/2!~12e22my!cos@mx#(
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`
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52 (
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`

~21!kH (
n50

`
2

m
em~y2Ŵ/22kŴ!~12e22my!cos@mx#J
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k50

`

~21!kH (
n50

`
2

m
em~y2Ŵ/22kŴ! cos@mx#J 1 (

k50

`

~21!kH (
n50

`
2

m
em~2y2Ŵ/22kŴ! cos@mx#J . ~A1!

Applying the identity@21#

(
n50

`
1

@112n#
exp@2~2n11!t#cos@~2n11!x#5

1

4
lnFcosht1cosx

cosht2cosxG , ~A2!

we have
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Similarly,
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emŴ/21e2mŴ/2
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2

m
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`
2

m
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`
2

m
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n50

`
2

m
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Next, we apply the identities@21#

(
n50

`
1

@112n#
exp@2~2n11!t#sin@~2n11!x#

5
1

2
arctanF sinx

sinht G ~A5!

and

(
n50

`
1

@112n#
sin@~2n11!t#5

p

4
sgn~ t !, 2p,t,p,

~A6!

to obtain

n5
1

2
sgn~x!2

1

p
(
k50

`

~21!k

3FarctanH sin~px!

sinh@~2y1Ŵ/21kŴ!p#
J

1arctanH sin~px!

sinh@~y1Ŵ/21kŴ!p#
J G . ~A7!

In the above,21,x,1. Given the periodicity inx, the for-
mula can be readily extended foruxu.1.

The series~A3! and ~A7! converge rapidly. For example,

whenŴ52/3, the first six terms in the series forv(0.5,0.5)
are 2.57331021, 9.8931022, 21.20031022, 1.510
31023, 1.82331024, and 2.24531025. Figure 14 depicts

the vertical velocityv(x,0) as a function ofx when Ŵ
52/3, using Eq.~11! with five terms~dashed line!, Eq. ~11!
with 100 terms~solid line!, and the accelerated series~A7!
with five terms~circles!. Witness that Eq.~11! exhibits the
Gibbs phenomenon~oscillatory, nonphysical behavior! while
the accelerated series behaves smoothly.

FIG. 14. The velocityv(x,9/20) as a function ofx calculated
with series~11! with five terms~dashed line!, series~11! with 100
terms~solid line!, and Eq.~A7! with five terms~circles!.
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