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Complex magnetohydrodynamic low-Reynolds-number flows

Abstract

The interaction between electric currents and a magnetic field is used to produce body (Lorentz) forces in
electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction
and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This
capability is useful, not only for fundamental flow studies, but also for inducing fluid flow and stirring in
minute devices in which the incorporation of moving components may be difficult. This paper focuses on a
theoretical and experimental study of magnetohydrodynamic flows in a conduit with a rectangular cross
section. The conduit is equipped with individually controlled electrodes uniformly spaced at a pitch L. The
electrodes are aligned transversely to the conduit's axis. The entire device is subjected to a uniform magnetic
field. The electrodes are divided into two groups A and C in such a way that there is an electrode of group C
between any two electrodes of group A. We denote the various A and C electrodes with subscripts, i.e., A; and
Ci, wherei=0, £1, £2, .... When positive and negative potentials are, respectively, applied to the even and
odd numbered A electrodes, opposing electric currents are induced on the right and left hand sides of each A
electrode. These currents generate transverse forces that drive cellular convection in the conduit. We refer to
the resulting flow pattern as A. When electrodes of group C are activated, a similar flow pattern results, albeit
shifted in space. We refer to this flow pattern as C. By alternating periodically between patterns A and C, one
induces Lagrangian chaos. Such chaotic advection may be beneficial for stirring fluids, particularly in
microfluidic devices. Since the flow patterns A and C are shifted in space, they also provide a mechanism for
Lagrangian drift that allows net migration of passive tracers along the conduit's length.
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Complex magnetohydrodynamic low-Reynolds-number flows

Yu Xiang and Haim H. Bati
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6315, USA
(Received 29 January 2003; published 28 July 2003

The interaction between electric currents and a magnetic field is used to producéLboelytz forces in
electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction
and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This
capability is useful, not only for fundamental flow studies, but also for inducing fluid flow and stirring in
minute devices in which the incorporation of moving components may be difficult. This paper focuses on a
theoretical and experimental study of magnetohydrodynamic flows in a conduit with a rectangular cross
section. The conduit is equipped with individually controlled electrodes uniformly spaced at d piitte
electrodes are aligned transversely to the conduit’s axis. The entire device is subjected to a uniform magnetic
field. The electrodes are divided into two groupsindC in such a way that there is an electrode of gr&ip
between any two electrodes of groApWe denote the various andC electrodes with subscripts, i.&,; and
C;, wherei=0,=1,=2, .... When positive and negative potentials are, respectively, applied to the even and
odd numbered\ electrodes, opposing electric currents are induced on the right and left hand sides 8f each
electrode. These currents generate transverse forces that drive cellular convection in the conduit. We refer to
the resulting flow pattern a&. When electrodes of group are activated, a similar flow pattern results, albeit
shifted in space. We refer to this flow pattern@sBy alternating periodically between pattey@ndC, one
induces Lagrangian chaos. Such chaotic advection may be beneficial for stirring fluids, particularly in microf-
luidic devices. Since the flow patterds and C are shifted in space, they also provide a mechanism for
Lagrangian drift that allows net migration of passive tracers along the conduit’s length.

DOI: 10.1103/PhysRevE.68.016312 PACS nunierd7.52:+j, 47.65+a

I. INTRODUCTION One such alternative is the use of Lorentz forces or mag-
netohydrodynamic$MHD). The application of electromag-

In recent years, there has been a growing interest in denetic forces to pump, confine, and control fluids is by no
veloping minute laboratories on a chip to facilitate chemicalmeans new. To date, however, magnetohydrodynamics has
reactions and biological interactions. Efficient mixing andmostly been used to pump and control highly conducting
stirring of various reagents are essential to facilitate timelyq jiqs such as liquid metals and ionized gases and to study
operation. In minute devices, stirring is a challenge since th fonospheric/astrophysical plasmi&). The potential use of

flows are at very low Reynolds numbers, turbulence is no : . .
available to promote mixing, and it is difficult to insert mov- electromagnetic forces in small devices has attracted much

ing components into these devices. Not surprisingly, a gred€SS attention. Recently, though, Jang and L&k Lemoff
amount of effort has been invested in devising various mear@nd Lee[7], and Zhonget al. [8] constructed MHD micro-

for fluid stirring. One such means is based on chaotic adved?umps on silicon and ceramic substrates and demonstrated
tion or Lagrangian chadd]. The basic idea is to temporally that these pumps are able to move liquids around in micro-
and/or spatially alternate between two or more flow patternsconduits. The liquids need to be at least slightly
With an appropriate choice of such patterns, one can genetonductive—a requirement met by many biological solu-
ate quite complicated trajectories of passive tracers. Lagrangions.

ian chaos is attractive since it does not require high Reynolds gypsequently, Baet al.[9-11] demonstrated the feasibil-
”“mbefs- For example, various authpts-3| have studied, ity of using magnetohydrodynamic forces to control fluid
theoretically and experimentally, flow through two- ar‘dflow in minute fluidic networks. The basic building block

three-dimensional *twisted” conduits. The twister bends branch of such a network consists of a conduit with two
induce counter-rotating vortices that under certain conditioné

interact to induce chaotic advection. Stroakal.[4] imple- ~ €/€ctrodes deposited along its two opposing walls. The con-
mented a similar idea by machining into their flow conduitsduit is filled with an electrolyte solution. Many conduits are
obligue grooves with different angles with respect to the flowconnected to form a network. The entire device is subjected
direction. All the methods described above require a pressur® & uniform magnetic field. When a potential difference is
source to drive the flow. In some cases, pressure sources mapplied across the wall electrodes, the resulting current inter-
not be convenient to use, and it is desirable to consider alcts with the magnetic field to form body.orent forces
ternatives. that propel the fluid. By judicious application of different
potential differences to different electrode pairs, one can di-
rect the liquid to follow any desired path without the need for
* Author to whom correspondence should be addressed. Electronimechanical pumps and valves. In other words, MHD allows
address: bau@seas.upenn.edu one to control fluid flow in a minute fluidic network in very
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Yy result, cellular convection is induced around the electrode
A - with the fluid moving in the positivg direction on one side
A, A A of the electrode and in the negatiyadirection on the other
z side. The cells have a width ofL.2
electrodes i According to Ohm'’s law for a moving conductor of con-

TR ductivity o in a magnetic field, the potential difference
1¢ tx (AV=V;—V,) induces a current of density

L7 (o > 0 # A w
(N 21 J=a(~VV+u'xB). 1)

FIG. 1. Schematic top viewleft) and cross sectiofright) de-
pictions of the stirrer. Black gray lines correspond, respectively,
electrodes of groupé andC.

In the above, bold letters represent vectars={u,v,w} is
Yhe fluid’s velocity;u, v, andw are, respectively, the velocity
components in thg, y, andz directions; and/ is the electric
much the same wa i .rpotential.
y as one controls electric current flow i Since we are concerned with relatively slow flows, the

an electronic circuit. term u’ X B can be neglected. Below, we write the various
Since one can readily pattern electrodes of various shapes 9 ‘ '

one can induce electric fields in different directions. The in_equatlons in dimensionless form usibgs the length scale.

teraction of such electric fields with the magnetic field can beIn other words, the electrodee., are positioned at locations
==*+2n. Furthermore, we restrict ourselves to the case

used to induce secondary complex flows that may be beneff- /L~O(1) and h/L<1. Since in our experimenh/L

cial for stirring and mixing[12—-14. In this paper, we de- . . .
: ; ; . =0.18, we use the two-dimensional Hele-Shaw approxima-
scribe yet another way of inducing complex flow patterns in,. n [15]. The error induced by the Hele-Shaw approxima-

a conduit. The ideas articulated here can be used to construté? - .
a MHD stirrer tion is estimated to be of the order ofi/(.)2. For further

The paper is organized as follows. The mathematicaEliSCUSSion of this approximation, see the appendix to Ref.
model is described in Sec. Il. The experimental apparatu 3. , i . .

and the processing of the experimental data are detailed inI The current's densny in the interval between two adjacent
Sec. lll. Section IV compares the theoretical predictions with® ectrodeLC,—; andC, is
experimental observations, and Sec. V concludes. The Ap-
pendix describes refinements in the theoretical solution that
facilitate accurate computation of the flow field while retain-
ing only a few terms in the series solution.

J'~Jo[sgnx—2n)]&, (2n—1<x<2n+1), (2

whereJy~cAV/2L. Sgn) is positive (negative for posi-
tive (negative arguments, and it equals zero for a zero argu-

ment. The momentum equation has the form of Darcy’s law:
Il. MATHEMATICAL MODEL

The stirrer consists.of a Ipng, quuid—f_illed conduit _with a = E[Vp+[sgr(x—2n)]éy] (2n—1<x<2n+1).
rectangular cross section. Figure 1 depicts schematically the 2

top (cross section jland the sidé€cross section II-)l views. (3
The conduit’s width and height are, respectivétyand 2h. o o

The x, y, andz coordinates are, respectively, aligned along The continuity equation is

the conduit’s axis, width, and height. The conduit’s sidewalls
are electrically insulating. Uniformly spaced electrodes are V-u=0. @)
positioned transversely to the conduit's axis with a pitch

In other words, the electrodes are placedkat +=nL and
z'=+*h, wheren=0,1,2, .... The prime denotes dimensional
guantities that will later be made dimensionless. The elec
trodes are divided into two groups and C in such a way
that there is always an electrode of grdDjpetween any two

A electrodes. The electrodes within each group are seque
tially numbered ag\.., andC..,,. For simplicity, we assume n
that the electrodes have zero width and height. The conduit is V( X+ ) -0 (5)
filled with an electrolyte solution of viscosity and electric T '

conductivity o. The conduit is positioned in a uniform mag-

Below, without loss of generality, we restrict ourselves to
the interval—1<x<1.u=(u,v) is the two-dimensional ve-
locity vector.p is the pressurel = JoBoh?/ u is the velocity
scale,L/U is the time scale, angtUL/h? is the pressure
scale. The boundary conditions include impermeable top and
hottom walls,

N[ Z

netic field of magnitudeB=B&,) in the z direction. and symmetry conditions at=*1,
When positive and negative potentials, respectively, are
applied to even and odd numberaclectrodes, electric cur- u(=1y)=0, (6)

rents in opposite directions are induced on the left and right R

hand sides of th& electrodes. These currents, in turn, inducewhereW=W/L is the aspect radio. The assumption of a zero
body (Lorent2 forces directed toward the conduit’s sidewalls thickness electrode results in a pressure discontinuity at
in opposite directions on the two sides of the electrodes. As &0,

016312-2
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ay
It is convenient to introduce the stream functidrix,y).

In terms of the stream function, E(B) assumes the form

=

The corresponding boundary conditions are

p
ay

2.

()

x—07t x—0~

(2k+1) X
2

Vig=-2>
k=0

] (K=<D. ®

©)
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and
v=—£=— E‘&njy)—llsir{mx]
X k=0 m | coshkmW2)
(Ix|=1). (12)

In the abovem=(2k+1)w/2. Later in the paper, we will
compute the trajectories of passive tracers. These computa-
tions require numerous evaluations of the velocity compo-
nents at differen{x,y} locations. Unfortunately, due to the

Y

Equations(8) and (9) can be readily solved, and the ve-
locity components are

x,iv—v)=0 and ¥(x1ly)=0. . X ) 4
2 singularity of the function sgmj atx=0, the serie10) and
(11) converge slowly(like k™) when |y|—>\7V/2. To over-
come this shortcoming, we recast the sefie3 and(11) in
terms of functions that mimic the singularities of the original
problem. We provide the results below and defer the deriva-

u= ﬂ - 2 E MCos{mx] (Ix|=<1) tion to the Appendix.
dy  k=0m coshmW2) The serieg10) and(11), rewritten in the rapidly converg-
(10 ing form, are

cosh (y+ W/2+ kW) ]+coqwx) cosh(y+ W/2+ kW) 7] —cog mX)

u=—i2 (—1)%In

|

} (IX<1) (12

2mk=0 coshi (—y+W/2+kW) 7] —cog mx) cosh (y+W/2+kW) 7]+ cog mx)
and
v:lsgr(x)—iE (—1)4 arcta Sin(jTX) — +arcta sinfwx) ~ ] (Ix]=1). (13
2 k=0 sinH (—y+W/2+ kW) 7] sinH (y +W/2+ kW) 7]

Typically, it is sufficient to retain five terms in these series towith the initial conditionsx(0)=xXq, y(0)=Y,. The sub-

obtain a precision better tha®(10~°). For further details on  scriptsA and C refer, respectively, to patter#sandC. The

the series’ convergence, see the Appendix. time-dependent functionQ (t) and Q(t) define the stir-
When the electrodeA are active, the flow field consists ring protocol. One can explore various types of time modu-

of convective cells with spatial periodicity 2. Figure 2 de- lation [various functions)(t)]. For brevity, we select the

picts the corresponding streamlines. The streamlines corraimple on-off protocol

spond to the trajectories of passive particle tracers inserted in

the flow. We refer to the flow field depicted in Fig. 2 as flow ( 1
patternA. A similar flow field, albeit shifted distance 1 in the 1, nT<t<|{n+ §)T1
x direction, is observed when only electrodésare active Qa(t)=1 1
(and _eIectrodesA are disconnectedWe refer to the latter 0, [n+Z|T<t<(n+1)T,
flow field as patterrC. \ 2
Next, we activate alternately electroddsand C with the
dimensionless period. When the frequency of the alterna- (
tions is relatively slow, one can invoke the quasistatic ap- 0, nT<t<(n+ 5 T,
proximation, and the trajectories of a passive tracer particle Qc(t)=9 L (16)
can be computed by solving the kinematic equations \ 1. [+ 5 T<t<(n+1)T.
X(O)=0OUN(xY)+Qecu@(xy) (14
The resulting flow field is periodic in time with periodicity
and Aref and Balachanddr] investigated the effects of various
protocols on the kinematics of the flow between two rotating,
V(=00 v (x,y) + Qc(t) O (x,y) (150  eccentric cylinders and determined that an on-off protocol

016312-3
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FIG. 2. The streamlines when electrodes of typare continuously active. The dashed lines depict the positions of the active electrodes.
The arrows indicate the flow direction.

gives qualitatively indistinguishable results compared toquency. In this limit, Egs.(14) and(15) form a Hamiltonian

those obtained with smoother protocols. Finally, we note thasystem, and they are integrable. Figure 3 depicts the super-

the more interesting flow phenomena occur wheis rela-  posed flow fieldA+ C. The figure illustrates the existence of

tively large and when the quasistatic approximation is likelysaddle(hyperbolig points at{x,y}={(4k+1)/2,0} (ke Z)

to be valid. (see the magnified image on the righfaddle(hyperbolic-
Although physically unrealistic, it is instructive to study fixed) points are desirable since when they are perturbed cha-

the flow field in the limit of T—0 (high switching fre- otic advection and efficient stirring resuit6].

Ca

An(+) C

Ai(-)

."/;\

FIG. 3. The superposed streamlines of flow pattékrend C. The dashed lines depict the positions of the electrodes. The inset on the
right depicts a magnified view of the saddle point region.

016312-4
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WhenT>0, Egs.(14) and (15) are no longer integrable,
and we must resort to numerical techniques. To this end, we
use the fourth order accurate Runge-Kutta sol@&E45) in
MATLAB . The predicted flow patterns whé@n>0 are reported
in Sec. IV.

50 100 150 200
I1l. EXPERIMENTAL APPARATUS AND PROCEDURE (a)

To verify the theoretical predictions, we carried out flow
visualization experiments. The apparatus consists of a con-
duit of length 750 mm, widthV=5.0 mm, and height 12 40r
=2.8 mm fabricated with Proteus Homopolym@?oly Hi 6ol i
Solidun. To facilitate easy flow visualization, we did not cap ; . ;
the conduit in the experiments. The electrodes were formed 50 100 150 200
with 0.5 mm diameter copper wires stretched along the con-
duit’s bottom. The electrodes were uniformly spaced with a
pitch of L=7.5 mm. The conduit was filled with M. so-
dium chloride(NaCl) solution.

The electrodes were divided into two groups. Each group
was connected through a computer-controlled relay actuator
(Advantech PCL73bto a power supply(Hewlett-Packard 50 100 150 200
6032A). The device was positioned on top of a neodymium
(NdFeB, Polymag Ing.permanent magnet that provided a
nearly uniform magnetic field of intensitB~0.4T. The 30 /A\
magnetic field’s intensity was measured with a gaussmeter. /

20 5

The electric potentials applied to the electrode groups 20
were about 1.5 V and the total electric current in the flow cell 10
was 1.15-0.25 mA. At this potential level, there was no / | .
significant bubble generation. The current was measured ¢ 50 100 150 200
with a Digital Multimeter(Hewlett-Packard 3458A
In some of the experiments, we visualized the flow field @
PAtmer Instriment Gompany, wih an esimated difusion co-._FIG- 4 Tmage processing steps o obtinthe ara covered with
efficient of 2.5< 10~ m?/s) at various locations inside the @Y€ @S @ function of time(a) raw image; (b) image after back-
hannel and tracking its evolution as a function of time. Inground subtraction(c) image p'.xels assigned value of(black) in
¢ . 9 . the absence of dye and(White) in the presence of dye; arid) the
other e)_(pe_nments, we trace_:d a line of_dye along th_e CONSum of the pixels along thg coordinate as a function of
duit’'s midwidth and tracked its deformation as a function of
time. The spread and progression of the dye were monitorescale versions of the photographs of the original image at the
with a digital camergNikon Cooplix 995. start of the experiment and the same image after the subtrac-
To obtain some estimate of the experimental time contion of the background.
stant, we compared the predicted and measured velocities at To monitor the area occupied by the dye, we constructed a
{x,y}={0.5,0;. The theory predicts that the dimensionlessfilter. Briefly, the computer assigned to each pixel three num-
velocity (v) in they direction is about 0.25. The correspond- bers corresponding to the red, green, and blue color intensi-
ing value measured in the experiments was 1 mm/s. We conies. We found it convenient to work with the green color.
clude therefore that the velocity scale in the experiments iThe green intensity of pixei,j) was denoted); ;. The con-
U~4 mm/s and that the corresponding time scald g trast level of the image was intensified using the contrast
~1.8s. Comparisons between predicted and observed dymhancement filter withimaTLAB [17]. In brief, each pixel's
traces indicated, however, that a better qualitative agreemermtlue was recalculated as a weighted average of itself and its
between theory and experiment was obtained when a someearest neighbors. Subsequently, the pixel valges) (were
what smaller time constanf @ s was used. normalized to a scale ranging between 0 and 1. Next, the
The color images obtained from the experiments wereaverage intensity was calculated and denoted. asthresh-
transferred toMATLAB 's image processing toolbox. The num- old valuegy,=g+ u was defined, wherg was assigned the
ber of pixels that were contained in the image depended onalue of 0.15. Pixels with valueg; ;=g andg; ;<g were
the size and quality of the image. Typically a pixel repre-assigned, respectively, values of 1 and 0.
sented a square area of 8.0.1 mnt. Before the introduc- Figure 4c) depicts the processed image in which the pix-
tion of the dye, we took an image of the experimental setugels were assigned values of(white) and O(black). Finally,
to obtain the “background.” Subsequently, the backgroundwe counted the total number of the 1-valued pixels to obtain
was subtracted from all the images. The process is illustratethe areas covered by dye at various times. Alternatively, one
in Fig. 4. Figures @) and 4b) are, respectively, the gray can find the sum of the 1-valued pixels at anjocation to

016312-5
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o =0 M 40 & S0 B0 0 B0 S0 FIG. 6. Deformation of an initially straight line of dye placed at
the channel’s midheight. Electrodésare continuously active. The
FIG. 5. Image processing steps to obtain the length of an inil€ft and right columns correspond, respectively, to experimental ob-

tially straight trace of dye as a function of timEé=t=4. (a) Raw  Servations and theoretical predictions at various titve8 s(a), 1 s

image;(b) image after manual retouch and background subtraction{b), 2 s(c), and 3 s(d).

(c) nodes chosen for spline approximatiail) an approximated

piecewise polynomial curve determined with the spline function ininterpolating functions. The lengths of calibration curves ob-

MATLAB . tained with the spline technique were in excellent agreement
with known values.

obtain the dye-occupied pixels as a functionxoFigure 4d)
is an example of the sum of the pixels’ values along yhe IV. RESULTS AND DISCUSSION
direction as a function of.

The reduction in the dye’s intensity is a result of the mo- We carried out numerical simulations and flow visualiza-
lecular diffusion process. In the absence of diffusion, the areion experiments for various periods We started by com-
occupied by the dye would have been conserved. Neverthgaring the experimental results and the theoretical predic-
less, the rate of the spread of the dye provides a measure tpns when only one set of electrodes is actidiee.,
the stirring efficiency since, as the length of the interfaceelectrodesd). Both in the experiment and theory, we tracked
between the dyed and clear fluid increases, molecular diffuthe evolution of an initially straight line of “dye” inserted
sion becomes more effective. Hence, indirectly, the rate oflong the conduit's midwidth. Figure 6 depicts the dye trace
the spread of the dye provides an indirect measure of the rag various times. The left and right columns correspond, re-
of elongation of the interface between the dye blob and thépectively, to the experimental observations and the theoret-
clear fluid. ical predictions. Figures(6), 6(b), 6(c), and &d) correspond,

Our attempts to measure the edge length of the blob ofespectively, to time$=0, 1, 2, and 3. The traces are con-
dye as a function of time were frustrated by the complexsistent with a set of counter-rotating convective cells of
topology of this interface. As an alternative, we tracked thewidth 2L centered about electroddg . The experiments and
length of an initially straight trace of dye as a function of theory are in good qualitative agreement.
time. The processing steps of the experimental data are de- When T=2s, Fig. 7 depicts the experimental observa-
picted in Fig. 5. Figure &) is the photograph of an initially tions(left) and theoretical predictior{sight) of the evolution
straight trace of dye inserted along the device’s midheightof a drop of dye at times=0 (a), T (b), 2T (c), 3T (d), 4T
The figure was retouched manually to improve the contraste), 5T (f), 6T (g), 7T (h), 8T (i), and 17 (j). To facilitate
between the dye and the background in the electrodes’ vicirthe comparison with theory, we processed the experimental
ity. Subsequently, the background was subtraffeg. 5b)]. image at timg =0 to obtain the coordinates of the drop. This
We started withvATLAB s edge recognition routine to iden- provided us with the initial conditions for the numerical in-
tify the pixels associated with the line’s boundaries. Whertegration. The theoretical images were obtained by integrat-
we compared the values obtained with this method withing the trajectories of 1500 passive tracer “particles.” The
known lengths of calibration curves, we observed a relativelyexperimental observations and theoretical predictions are in
large error(about 20%. As an alternative, we usa@ATLAB’s ~ good qualitative agreement: witness the stretching and fold-
spline function to approximate the curve locally with piece-ing that are characteristic of chaotic advection. The chaotic
wise continuougcubic) polynomials. To this end, we speci- island is, however, confined to a small region around the
fied interpolating nodegpixels) on the line tracéshown as superposed trajectory of flow patterAsand C that passes
circles in Fig. %c)]. The precision of this approximation in- through the hyperbolic fixed point. It is instructive to com-
creases as the number of nodes increases. An example ofpare Fig. Tj) with Fig. 3. The presence of the saddle, hyper-
fitting spline curve is depicted in Fig(&. The length of the bolic point is clearly visible. Whe is small, the passive
line was estimated by integrating the piecewise continuougracer trajectories approximately track the streamlines asso-
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{5

e

(Y= : g
'. <= :

(d) =3T/4

(G) UT=12

FIG. 7. The spread of a blob of dye as a function of titheé
=0 (a), 1(b), 2(c), 3(d), 4(e), 5(f), 6(g), 7 (h), and 8(i). The left
and right columns at each time correspond, respectively, to experi-

mental data and theoretical predictions. The alternation peFiod : gl RN |-
=2s. @T

X

ciated with the superposed flows. FIG. 9. D’eforr_natlpn of an initially stra!ght line of dye placed at
. . . . _the channel's midheight. The left and right columns correspond,
As T increases so does the size of the chaotic region, . . ) ) )
. : . . respectively, to experimental observations and theoretical predic-
Flgure 8 deplgts the experimental observations and the the(a-OnS at various times/T=0 (a), 1/4 (b), 1/2 (), and 1(d). T
retical predictions for the spread of a drop of dye whien _, ¢ ' ' '
=5s. As in Fig. 7, the image at the beginning of the experi-
ment was processed to obtain the locations of the pixels a

sociated with the area occupied by the dyetaD. These ¥non is somewhat reminiscent of dispersion, the mechanism

) . S . - of the Lagrangian drift is different. It would be interesting to
pixels then provided the initial conditions for the numerical devise an “effective diffusivity” for the Lagrangian drift.

simulations. In the numerical simulations, we integrated th%nfortunately we have not found a convenient way for do-
trajectories of about 3000 points that the image processinﬁ]g so. short ;)f massive numerical simulations

algorithm identified as having a pixel value of 1 at time It is also instructive to follow the evolution of an initially

.:0' F'QUVGZTS depicts tEe evolution of thg drop of dzyre atstraight line of dye under chaotic flow conditions. WhEn
?fr)ne;_lg—(()) an((?),:ﬂ(') 'g) (T)F]g.?r:e(()(;)e,tgg (re)é'-crt('gals 1eire i =4 s, Fig. 9 depicts the experimental observatigeft) and
go’o d qugli’tative agreehent with expl)erimpentail cl)bservatiolnstheoretical predictionsgright) for an initially straight line of
Figure 8 illustrates yet another phenomenon—that o ﬁ/e at tlme_S—Ol(a), T/-4 (b)'le- (©), 3T/4 (d), andT_ (©. n
e numerical simulation, we integrated the trajectories of

d”ﬁ' g":ﬁe ﬂO.W patterr;}s@\ "’!”dcfare sth'ft?d th halffa: spatial 4000 uniformly spaced points. The images depict the stretch-
period, there 1S a mecl ,anlsm or het migration ot tracer paran and folding process associated with chaotic advection.
ticles along the conduit’s length. Even though there is no n

) S . ®rhe figure illustrates good qualitative agreement between ex-
through flow, there is net migration of particles. We refer toperiment and theory.

this migration as a Lagrangian drift. Although this phenom- An important issue from the engineering point of view is
the quantification of the stirring efficiency. We use the dye’s

L -_ P ] rate of spread as the measure of the stirrer's performance.
R Using theMATLAB image processing toolbox, we processed
B e S the photographs of the experiments at various times. Em-
- S : pixels were occupied by dye or not. We normalized the dyed
{ ,f I J ; areaA(t) at timet with the initial area occupied by the dye

d) t=4s
T

q [ ' I\?.
i ' ' i ' '
q | ' ' ' : i
L | H H i
e) t=5s
T | | 1 H '
1 i ' ' |
[ ' i I i '

H

\

1 '

h

drop A(0) at time O to obtain the dimensionless are@)
=A(t)/A(0). Figure 10 depicts the dimensionless afd4)

as a function oft whenT=2, 5, and 10. The symbols and
solid lines correspond, respectively, to experimental data and
best fit curvegsee below Clearly, asT increases so does the

rate of increase oA(t). To obtain a single figure of merit,
we used regression to fit curves of the form expto the
experimental data. In the aboverepresents the growth rate
FIG. 8. The spread of a blob of dye as a function of tittie ~ Of the area occupied by the dye. The growth ratées de-
=0.2(a), 0.4(b), 0.6(c), 0.8(d), 1 (e), 1.2(f), 2(g), and 3(h). The  picted as a function of the periddin Fig. 11. In the range of
left and right columns correspond, respectively, to experimentaDur experimental parametens,increases a3 increases ac-
data and theoretical predictions. The alternation peTiedb s. cording to the correlationn=e"To—1, whereT,=37.3. A

i

3 } E 1 { ploying a filter (see Sec. I, we identified whether various
|
|

NOI=ES
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—— 80 1 7(5)
70
60
50
40
30
20 1
10 4

A(t)
7~-894InT +23.05

FIG. 12. The doubling time as a function of the period. The
) L s L L ' ' L L symbols and solid lines correspond, respectively, to the experimen-
tal data and the best fit curve.

FIG. 10. The dimensionless aréqt) as a function ot when  interface. As an alternative, we tracked the elongation rate of
T=2, 5, and 10. The symbols and solid lines correspond, resped@n initially straight stretch of dye inserted at the device’s
tively, to experimental data and the best fit curve. midheight (Figs. 6 and @ Figure 13 depicts the relative

length ﬂ(t)= L(t)/L(0) as a function of time for flow pat-
plays a similar role to that of the Lyapunov exponent, and itternsA (squares, no alternationand A-C (diamonds, alter-
can be used as a measure of the intensity of the chaotitation periodT=4). When the electrode potentials were not
advection. alternated, the line elongated nearly linearly according to the

Similarly, one can determine the amount of time that itcorrelationi (t)~1+0.4. In the presence of chaotic advec-
takes for the area occupied by the dye to double. We denoigon (flow patternC, T=4), the elongation rate was expo-
the “doubling” time asr. Figure 12 depicts as a function of nential and correlated well witﬁ(t)~exp(0.3$). The posi-

:jhe perlodT.j‘I;r! the range_lt_nrf]_oubr T]xpt_anmerétal pat:acrjnetelflst,) tive growth rate of 0.33 is consistent with chaotic advection.
ecreases asincreases. This benavior 1S described Weltby  yye conclude our discussion with a few comments on the

. Cn o
a correfation of the formr—InT+ 7, Whefe” 9 and suitability of MHD stirring for microdevices. The MHD
.T°~23." we attemp'ted o f:alculate the variance of the COIOIforce is a volumetric one. Hence, as the size of the device
Intensity as a fun_ct|on of t|mE:18—2q. Howeyer, t_he FES““S decreases, the magnitude of the velocity decreases rapidly.
of these calculat]ons were not particularly |IIum|_nat|r_19. There are, however, a few mitigating factors. As the charac-
As we no.ted in Sec. lll, in the absence of dn‘fuslon, theteristic length decreases, the current intensity increases. The
area occupied by the dye would be consered(t)  characteristic velocity in terms of the electrode potential dif-
=cons{. The continuous stretching and folding of the inter- ference ¥) is U= oVByh? uL, wheres is the electrolyte’s
face between the dyed liquid and the clear water enhance8ectric conductivity. Typically, the threshold potential for
the molecular diffusion process. Thus the rate of increase ahe hydrolysis of water dictates the maximum electrode po-
the dyed area is a measure of the combined effects of stirringential. Hence, we assume that this potential difference will
and molecular diffusion. remain the same regardless of device size. Within a périod
The elongation rate of the boundary between the dyed
blob and the clear fluid is likely to provide a better measure 1w
of the stirring effectiveness. We were not able to track this o}

0441 ;
0.35 -
03
0.25 -
0.2
0.15 -
0.11
0.5 |

L) = 0408t + 1

0 1 2 3 4 5 6 7 8 9 10

FIG. 13. The relative length(t) of an initially straight trace of
dye as a function of time. The symbols and solid lines correspond,
FIG. 11. The growth rata as a function of the period. The respectively, to the experimental data and the best fit curve. The
symbols and solid lines correspond, respectively, to the experimersquares and diamonds correspond, respectively, to dc actuation and
tal data and the best fit curve. periodic potential alternatior. = 4.
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a passive tracer particle travels a relative distabcEL  with experimental observations, suggesting that the modeling
=(oVB,T/x)(h/L)?. If we accept the argument that differ- can be used as an effective tool for the design and optimiza-
ent size stirrers perform similarly when the passive tracetion of the stirrer. Interestingly, the chaotic flow also pro-

particle travels similar relative distances within a perigd vides a mechanism for the net transport of passive particle
we may conclude that as long @sandV remain the same tracers along the length of the conduit. We refer to this phe-
andh andL are scaled down in like proportions, the stirrer’'s nomenon as Lagrangian drift. The Lagrangian drift becomes

performance will be size invariant. more pronounced as the period of the alternations increases.
The drift is somewhat reminiscent of dispersion, but it is
V. CONCLUSIONS caused by a different physical mechanism. The phenomenon

can probably be quantified through the use of an effective
This paper demonstrates that magnetohydrodynamics prejiffusion coefficient. We defer the derivation of such a dif-
vides a convenient way of inducing complicated flow pat-fysion coefficient to future work.

terns that may be of interest for both fundamental research

and practical applications. The flow patterns are <_:ontr0||ed APPENDIX: ACCELERATED RATE OF CONVERGENCE

by the electrodes’ pattern and the potentials applied to the

various electrodes. Photolithography provides a great amount Equations(10) and (11) of Sec. IV provide expressions

of flexibility for patterning electrodes. In our particular ex- for the velocity components in series form. Unfortunately,
ample, we demonstrated that by positioning the electrodesheny approachesV/2, the series converge slowl§ike
transverse to the conduit’s axis and engaging only one group '), and it may not be practical to use these solutions to
of electrodes, one can generate cellular convection. By altecompute the passive tracers’ trajectories. The slow conver-
nately engaging two staggered groups of electrodes, one caience of serie§l0) and(11) results from the series attempt-
induce chaotic advection. As the period of alternations ining to approximate a singular function. This gives rise to the
creases, so does the intensity of the chaotic motion. The ch&ibbs phenomenon and slow convergence. Happily, one can
otic motion facilitates effective stirring. A method was usedrecast the series in a form that allows rapid convergence.
to evaluate the stirrer’s efficiency through image processingBriefly, we expand the hyperbolic functions in the series into
In the range of parameters examined in this paper, the stigeometric series to obtain double series. Subsequently, we
rer’s “efficiency” increased as the period of alternations in- change the order of summation. This allows us to sum the
creased. Stirrers operating according to the concepts de&ew inner series in a closed form. The new closed form
scribed here may be useful for microfluidic systems sincdunctions mimic the singularities of the original expression.
they do not require any moving components and can be fabFhus, the resulting series converges very rapidly. The various
ricated readily with standard planar microfabrication tech-steps of the derivation are straightforward, and they are out-
nology. The theoretical predictions were in good agreemenined below. We start with the series solution far

2 28mk(_my) cog mx]
n=0 M cosmW2)

2 em(y—W/2)(1_e—2my)
=— — cog mx]
n=0m (1+e™ ™)

0 2 . % A
- _ E [_em(y—W/Z)(l_e—Zmy)CO{mX] 2 (_ 1)ke—mkw}
n=0 | m k=0

= —kz_:o (—1)k[ > Ee”‘(y"A‘”Zk‘;")(l—eZ”‘V)cos{mx]]

n=0m
2 o] oo 2 . .
=—E (—1) [2 2 gmly—Wiz—kw) coimx]]JrE (—1) {E — eM(=y=Wiz=kw) coimx]]. (A1)
=0m
Applying the identity[21]
cosht + cosx

Z o & —(2n+tcod (2n+1)x]= 7In (A2)

cosht—cosx |’

1+2n]

we have
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___2 1)kln[ cosh (—y+W/2+kW) ]+ cog mx) cosh(y+W/2+kW)7]—cog mx) 43)
2 k=0 cosh (—y+W/2+kW)w]—cog mx) cosh (y+W/2+kW) ]+ cog mx)
Similarly,
2 o2 eMre™ o2
v=— — cost(—rrjy)_l sifmx]= E ——eJr—e—sir[mx]JrE ~sinmx]
n=0 M| cosimW2) =0 m gMW24 g~mW2 A=0m
m(y—W/2) —2m o
=—> ze (1re wsir{mx]JrE Esin[mx]
n=0m (1+e™ MW n=0m
-3 {%em<y—‘7V’2>(1+e—2my)sin[mx]k20 (- 1)ke—mkw] +3 %sir{mx]
:_kEO (—1)k[ 20 2e m(y—Wi2— "W)(1+e‘2m305|r[mx]]+2 ES|r[mx]
= m
=—k2 [2 m(y— Wiz kW)sw[mx]} 2 (-1) [2 Eem( y- Wiz I”"’)sw[mx] +2 Esw[mx]
=) = om
(A4)

Next, we apply the identitief21]

o

2 [1+2n]eXF[—(2n+l)t]sir[(2n+1)x]
1 sinx
2 N Gt (A5)
and
2 [1+2n]SIr[(2n+l)t]=%sgr{t), —r<t<m,
(AB)
to obtain

o]

v= Esgrtx E — 1)

X

sin(x)
arcta - -
r‘ sinf{ (—y+WI/2+kW) 77]]
+ arctar‘ siri(wx) - } l (A7)
sint (y +W/2+ kW) ]

In the above,— 1<x<1. Given the periodicity irx, the for-
mula can be readily extended fbq>1.

The seriegA3) and (A7) converge rapidly. For example,

whenW=2/3, the first six terms in the series f0(0.5,0.5)
are 2.57%10°!, 9.89x10°2, —1.200x10 2, 1.510
X103, 1.823x10 4, and 2.24% 10 °. Figure 14 depicts

the vertical velocityv(x,0) as a function ofx when W
=2/3, using Eq(11) with five terms(dashed ling Eq. (11)
with 100 terms(solid line), and the accelerated serie&7)
with five terms(circles. Witness that Eq(11) exhibits the
Gibbs phenomenofoscillatory, nonphysical behaviowhile
the accelerated series behaves smoothly.

04 -
031
0.2F

O

04}

-0.2F

03

04| g

i L ) L '
-1 08 06 04 -02 0 0.2 0.4 08 08 1

FIG. 14. The velocityv (x,9/20) as a function ok calculated
with series(11) with five terms(dashed ling series(11) with 100
terms(solid ling), and Eq.(A7) with five terms(circles.
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