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A 1.2 V, 38 microW Second-Order DeltaSigma Modulator with Signal
Adaptive Control Architecture

Abstract
A 1.2 V, 38 μW second-order ΔΣ modulator (ΔΣM) with a Signal Adaptive Control (SAC) architecture is
fabricated in a 0.35 μm standard CMOS technology (Vt,n = 0.6V, Vt,p = -0.8V). This modulator achieves 75
dB dynamic range and 63 dB of peak SNDR at 6.8kHz Nyquist rate and an oversample ratio of 64. The
proposed architecture effectively reduces the power dissipation while keeping the modulator performance
almost unchanged.
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A 1.2 v, 38 ,!m SECOND-ORDER nc MODULATOR 'WITH SIGNAL 
ADAPTIVE CONTROL ARCHITECTURE 

Qunying Li 

Texas Instruments, New Jersey 
15 Independence Blvd., Suite 402 

Warren, NJ 07059 
q-lil @ti.com 

ABSTRACT 

A 1.2 V,  38 pW second-order AC modulator (ACM) 
with a Signal Adaptive Control (SAC) architecture is 
fabricated in a 0.35 pm standard CMOS technology 
(K,, = 0.6V, = -0.W). This modulator achieves 
75 dB dynamic range and 63 dB of peak SNDR at 
6.8kHz Nyquist rate and an oversample ratio of 64. 
The proposed architecture effectively reduces the power 
dissipation while keeping the modulator performance 
almost unchanged. 

1. INTRODUCTION 

Recently, work [l] has been directed towards low-voltage 
/low-power ACM designs with switched op-amp tech- 
niques. For an optimum power-resolution-speed trade- 
off in the ACM design, the in-band quantization noise 
should be less than the in-band thermal noise. Even 
when this is satisfied, the first stage SC integrator usu- 
ally consumes 60%-75% of the total power of the mod- 
ulator. The reason for this is as follows. In the ACM 
SC circuit, the dynamic range is limited by the voltage 
supply at the upper end and by noise at the lower end. 
For a low-voltage design, lowering the supply voltage 
inevitably reduces the linear signal swing, i.e. reduces 
the achievable dynamic range at the upper end. On 
the other side, it is the noise at the input node of the 
modulator that dominates the total noise of the mod- 
ulator. This noise is proportional to kT/Cs, in which 
Cs is the sampling capacitance at  the input node, k 
is the Boltzmann constant, T is the absolute tempera- 
ture. Thus, for a specific dynamic range and a reduced 
signal swing, the capacitors in the first integrator stage 
need to be large enough to suppress the noise, requiring 
a large current consumption and a large die area. The 
capacitors used in the following stages can be much s- 
maller, because these capacitor sizes are determined by 
matching requirements rather than the noise. Further- 
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more, for a certain signal level, the integrator linearity 
degrades when the supply voltage is lowered. To save 
power and improve Performance further, it is key to de- 
crease the power and reduce the distortion at the first 
stage. For this purpose, this paper presents an axchi- 
tecture level solution, using Signal Adaptive Control 
(SAC) architecture. 

2. LOW-VOLTAGE SC CIRCUIT 

For advanced deep submicron CMOS technologies, the 
challenge is to implement low-voltage SC circuits with- 
out using a voltage multiplier or low-threshold devices. 
Using a voltage multiplier could necessitate the use of 
thicker gate oxides to maintain the specified MOS tran- 
sistor reliability. The use of low transistor thresholds 
would increase the Subthreshold currents and degrade 
the performance of the switched capacitor circuit. In 
this implementation we used a switched op-amp [2] and 
a bootstrapped switch [3]. The bootstrapped switch 
in [3] was modified to be driven by a two-phase non- 
overlapping clock and the conventional voltage doubler 
was removed (see Fig.1). We also used a low-voltage 
class-AB differential OTA that is similar to the one 
being used in [l]. 

3. THE PROBLEMS IN A 
CONVENTIONAL ARCHITECTURE 

In the conventional second-order ACM (Fig.2), the 
first stage integrates the signal x[n] - vr[n]. The input 
signal x is oversampled, therefore it can be considered 
constant for several successive iterations. The DAC 
feedback signal takes the value of +Vref or -Vref, 
where V,,p is the reference voltage, in any iteration de- 
pending on the comparator output. As a result, the 
input to the first integrator stage can be as large as 
2V,,f and the output changes between two successive 
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iterations Au, = u[n] - u[n - 13 are large. This re- 
sults in a large amount of power consumption in the 
first stage, where large capacitances are usually used 
to suppress kT/C noise. If a class-AB OTA is used, its 
dynamic power dissipation is proportional to CL ( 4 ~ ) ~ ~  
where CL is the effective load of the first stage OTA. 
If a class-A OTA is used, the required slew rate is pro- 
portional to max(Azl,), the stand-by current must be 
large enough to accommodate the slew rate to satisfy 
the integration settling requirement. 

In the low-voltage ACM design, the first-stage con- 
figuration shown in Fig.3 is usually used. In this con- 
figuration, the OTA input common-mode signal can be 
set at ground to minimize the voltage supply of the 
OTA and to maximize the over-drive voltage (vgs - &) 
of the switches used at the input node. The disad- 
vantage of this configuration is that the DAC feedback 
paths involving CF and associated switches are intro- 
duced. This feedback path increases the effective load 
capacitance of the OTA, which is shown in Eq. (1). 

where CS, CF, CI are the sampling capacitance, the 
feedback capacitance, and the integrating capacitance 
respectively, CL includes the sampling capacitance of 
the common-mode feedback circuits and the sampling 
capacitance of the next stage. The introduction of the 
DAC feedback paths also boosts the kT/C noise at the 
input node. To further improve the performance and 
reduce the power dissipation of the A C M ,  in next sec- 
tion we propose a Signal Adaptive Control (SAC) ar- 
chitecture. In this architecture, we show that the feed- 
back signal vf to the first stage is not necessary in all 
integration iterations. 

4. SAC ARCHITECTURE 

In the conventional AX modulator (Fig.2), the DAC 
feedback signal vf[n] to the first stage exhibits redun- 
dancy. When the analog input signal is small, i.e. 
151 << V,.,f, the DAC feedback signal vf [n]  takes +V& 
or -Vref with almost equal probability. In the inte- 
gration process of the first stage, the integrated con- 
tributions of vf = .tVr,f cancel each other out. This 
situation is equivalent to that where the first stage in- 
tegrates on the input signal z[n] only. When the input 
signal is large, there still exist some iterations where 
~f = +Vref and vf = -Kef can cancel each other out, 
though less often than when the input signal is small. 
The basic operation of SAC architecture is to achieve 
this cancellation at successive iterations, while keep- 
ing the modulator output transparent to these actions. 

This is accomplished in the SAC .architecture shown in 
Fig.4, by adaptively controlling the switches S1, S2, S3 
and S4. More detail about the SAC operation can be 
found in [4]. The essence of the SAC architecture is 
to switch off the DAC feedback to the first stage for 
some iterations in an adaptive manner and to compen- 
sate for the signal at the second stage. The signal load 
in the first stage is considerably reduced at the cost 
of a very small load increase in the second stage. But 
the overall power dissipation of the modulator is re- 
duced because the first stage is much larger than the 
second stage. The signal load reduction at the first 
stage also improves the linearity of the first stage. The 
noise, distortion, and mismatching error introduced at 
the second stage are all suppressed with the first-order 
noise shaping. 

Reduced Power Dissipation. If a class-AB OTA is 
used, its dynamic power dissipation is proportional to 
c~(Azl)~. However, the SAC operation reduces the 
output changes Au of the first stage between two suc- 
cessive iterations (not for all successive iterations, but 
for some of them). When the DAC feedback path is 
switched off, CF does not contribute to the OTA out- 
put effective load. Simulation shows that the dynamic 
power of the first stage can be reduced by 2/3 when the 
input is a sinusoid signal with an amplitude of 0.7Vr,f 
and a frequency of O.OOlfs, where fs is the sampling 
frequency of the modulator. If a class-A OTA is used, 
the SAC operation reduces the required slew rate (SR) 
of the OTA to half the SR required in a conventional 
modulator, which in turn reduces the power dissipation 
by half. In a ACM, the integration settling process is 
more likely limited by the OTA’s slew rate than by its 
gain-bandwidth product. The required slew rate of the 
first stage OTA is proportional to the maximum input 
level, which can be as large as 2Vr,f in the convention- 
al architecture but is reduced to be V,,f in the SAC 
architecture. 

Improved Farst-Stage Linearity. In an integration 
process, the nonlinear settling exists because of non- 
ideal factors which causes distortion. If referring to the 
input node, the time-domain error due to distortion can 
be expresped as follows [5]. 

where coefficients ci can be determined by simulation or 
measurements for a specific design. The SAC operation 
reduces the integrator input (z - vf) by switching off 
DAC feedback for some iterations, therefore, it reduces 
the first stage distortion. 
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conventional 
modulator 

SAC 
modulator 

supply voltage 
sampling frequency 
s imd bandwidth 

1.2 v 
500 kHz 

300 Hz - 3.4 kHz 

I technology I 0.35 um standard CMOS 1 

max. input level 
peak SNR 
Deak SNDR 

Table 1: The performance summary of the experimen- 
tal prototype. The second-order and the third-order 
distortions were measured when the input is -3 dB of 
the full scale. 

0.9 v 
75 dB 

65dB I 63 dB 

5. TEST RESULTS AND DISCUSSION 

second-order distortion 
third-order distortion 
power consumption 
chip core area 

An experimental prototype, including both the con- 
ventional modulator and the proposed SAC modulator, 
was fabricated with a 0.35 p m  standard n-well CMOS 
technology (&,, = 0.6 V and &,, = -0.8 V). The 
measured performance of the prototype is summarized 
in Table 1. The test results show that the SAC mod- 
ulator can reduce power dissipation with little to no 
degradation in performance. Fig.5(a) and (b) show the 
modulator output power spectrum plots for the conven- 
tional modulator and the SAC modulator, respective- 
ly. Fig.G(a) and (b) show the SNR/SNDR versus input 
plots for the conventional modulator and the SAC mod- 
ulator, respectively. Comparing SAC modulator to the 
conventional one, the third-order distortion is reduced 
by 8dB, but the second-order distortion is increased 
by 17 dB. Ideally, the even-order harmonic distortion 
should be well suppressed because the fully differen- 
tial configuration is employed. In reality, however, the 
differential circuit may not be ideally matched. Test 
results show that the SAC architecture is more sensi- 
tive to this kind of mismatch. This is mainly due to the 
three DAC feedback paths at the second stage operat- 
ing in an adaptive manner. This is different from the 
conventional modulator where only one two-level DAC 
operates in all iterations, which maintains the lineari- 
ty. As shown in Fig-7, simulations indicate that if the 
capacitor matching level of the second stage DACs is 
O.l%, the second-order distortion performance of the 
SAC modulator is almost same as that of the conven- 
tional one. The tested distortion performance corre- 
sponds to 1 %‘ capacitor matching level of the second- 
stage DACs. 

-81 dB -64 dB 
-62 dB -70 dB 
60 pW 38 p W  

0.7 mm2 

6. CONCLUSION 

A 1.2 V, 38pW second-order A C M  with SAC archi- 
tecture is presented. The SAC architecture effectively 
reduces the power dissipation while keeping the mod- 
ulator performance almost unchanged. Higher than 
expected second-order distortions were measured for 
both the conventional and the SAC modulators, with 
that of the SAC modulator being larger. We believe 
that the larger SAC second-order distortion is due to 
its increased sensitivity to the capacitor mismatches 
at the second-stage DACs. Simulations indicate that 
improving the capacitor matching to 0.1% reduces the 
second-order distortion of both modulators and brings 
the second-order distortion of the SAC modulator to 
very close to that of the conventional modulator. 
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4 D A C k  Vf[n]=? Vref 

SI 

DAC - 
Figure 4: The block diagram of the SAC ACM.  

~~~~ . 

Figure 2: 
second-order A C M .  

The block diagram of the conventional 

P' - 
P2 a J-pqg-1 Fb where Fa=YI Y P2 is the modulator Fb=T- p2 output 

-+ Vref 

(b) 
PI Pi - 

1, (a) 

Figure 3: (a) A single-polarity reference SC integra- 
tor; (b) a non-overlapping two-phase clock and control 
signals. Switches SWla and SWlb employ the boot- 
strapped switch shown in Fig.1. 

- -40 h I 

10' 1 0' io3 10' io5 
frequencyIH4 

10' to' 1 o3 10' 10' 
frequency lH4 

Figure 5: The measured power spectrum of the mod- 
ulator output when the input is -3dB of full scale: (a) 
Conventional architecture; (b) SAC architecture. 
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/ I 
inpuvfutl-sate [dB] 
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Figure 6: (a) SNR versus input curve (with sign +) 
and SNDR versus input curve (with sign 0) for the con- 
ventional AX modulator; (b) SNR versus input curve 
(with sign +) and SNDR versus input curve (with sign 
0) for the SAC AX modulator. 

2nd-order disloilbn 01 mnventioml modulalor 

3rd-order disonmn of ~ o n v e n l i ~ l  modulator 

Pnd-order distortion Of SAC modulator 

Sfd-omer dislonion of S K  modulator 

matching lev& 

Figure 7: The distortion performance of both the con- 
ventional modulator and the SAC modulator versus the 
matching level of DACs at the second stage. 
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