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Electronic Transport Properties of Incipient Graphitic Domains
Formation in PAN Derived Carbon Nanofibers

Abstract
The carbon nanofibers used in this work were derived from a polyacrylonitrile (PAN)/N, N-dimethyl
formamide (DMF) precursor solution using electrospinning and vacuum pyrolysis techniques. Their
conductivity, σ, was measured at temperatures between 1.9 and 300 K and transverse magnetic field between
-9 and 9 T. Zero magnetic field conductivity σ(0,T) was found to increase monotonically with the
temperature with a convex σ(0,T) versus T curve. Conductivity increases with the external transverse
magnetic field, revealing a negative magnetoresistance at temperatures between 1.9 and 10 K, with a
maximum magnetoresistance of - 75 % at 1.9 K and 9 T. The magnetic field dependence of the conductivity
and the temperature dependence of the zero-field conductivity are best described using the two-dimensional
weak localization effect.
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Electronic Transport Properties of Incipient Graphitic
Domains Formation in PAN Derived

Carbon Nanofibers
Yu Wang, Idalia Ramos, Rogerio Furlan, and Jorge J. Santiago-Avilés

Abstract—The carbon nanofibers used in this work were
derived from a polyacrylonitrile (PAN)/N, N-dimethyl formamide
(DMF) precursor solution using electrospinning and vacuum
pyrolysis techniques. Their conductivity, , was measured at
temperatures between 1.9 and 300 K and transverse magnetic
field between 9 and 9 T. Zero magnetic field conductivity
(0 ) was found to increase monotonically with the tempera-

ture with a convex (0 ) versus T curve. Conductivity increases
with the external transverse magnetic field, revealing a negative
magnetoresistance at temperatures between 1.9 and 10 K, with
a maximum magnetoresistance of 75 % at 1.9 K and 9 T. The
magnetic field dependence of the conductivity and the temperature
dependence of the zero-field conductivity are best described using
the two-dimensional weak localization effect.

Index Terms—Electronic transport, electrospinning, graphitic
domains, magnetoresistance, nanofibers.

I. INTRODUCTION

CARBON nanofibers, like other quasi-one-dimensional
nanostructures such as nanowires, nanotubes and molec-

ular wires, are receiving increased attention. This is due to
their potential application in a multiplicity of fields, such as
high-temperature catalysis, heat-management materials in
aircraft, and filters for separation of small particles from gas
or liquid. Of more importance to us, there is a possibility of
its use as building blocks for bottom-up assembly applications
in nanoelectronics and photonics [1]–[3]. Carbon fibers are
usually produced by spinning from organic precursor fibers
or by chemical vapor deposition (CVD). While the spinning
method can only produce microscale carbon fibers, CVD can
synthesize carbon fibers with diameters from several microns
down to less than 100 nm [4], [5]. However, CVD involves a
complicated process and high cost. Electrostatic generation, or
electrospinning technique, invented in the 1930s [6], recently
gained renewed interest because it can spin a variety of ultrafine
polymer fibers in a micro- or even nanoscale at low cost [7]. By
simply pyrolyzing electrospun ultrafine polymer fibers, with a
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subsequent heat treatment, Chun et al. [8] and the authors [9]
have obtained carbon nanofibers.

It is well known that the electrical conductivity of py-
rolytic graphite increases with temperature. Such temperature
dependence was at first explained by the simple two-band
(STB) model [10]. The STB model also predicts a level off of
the conductivity at a very low temperature. However, recent
experimental results show that the conductivity of carbon fibers
is very sensitive to temperature at very low values ( K)
[11]–[13]. Such anomaly has been attributed to weak electron
localization [13], electron–electron interaction [13], the Kondo
effect [13], and hopping mechanism [14], all of which show
very weak effects unless evaluated at very low temperatures.
As to the overall temperature dependence of conductivity,
two-dimensional (2-D) weak localization, hopping and tun-
neling [15] mechanisms have been put forward as possible
explanations.

Although classical electron transport theory predicts an in-
crease of electrical resistance in the presence of a magnetic field
[16], Mrozowski and Chaberski found a decrease of resistance
with magnetic field, or negative magnetoresistance, in partially
ordered (pregraphitic) carbons [17]. Since then, negative mag-
netoresistance has been found not only in poorly graphitized
bulk carbon [18] and carbon thin film [19], but also in carbon
fibers, irrespective of whether the carbon fibers were derived
from PAN [13], benzene [20], pitch-derived [11], or CVD [21].
The most commonly accepted model accounting for the neg-
ative magnetoresistance was Bright’s model [22]. This model
attributes the resistance decrease to the increase of the density
of the states and carrier density with magnetic field, arising
from the formation of Landau levels. However, the Bright model
cannot account for all of the observed phenomena, including
the strong temperature dependence of magnetoresistance below
liquid-helium temperature, and the absence of magneto–resis-
tance saturation at high-magnetic field. Then, Bayot et al. [23],
[24] explained the effect using a weak-localization mechanism,
which results as a consequence of any small disorder in the
electronic system. The weak-localization effects in pregraphitic
carbon fibers are due to their turbostratic phase structure, in
prior 2-D.

II. EXPERIMENTAL

The precursor is commercial polyacrylonitrile (PAN) and N,
N-dimethyl formamide (DMF) solution, in a ratio of 600 mg
PAN to 10 ml DMF. The substrates, silicon wafers with a

1536-125X/04$20.00 © 2004 IEEE
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Fig. 1. Schematic of carbon nanofiber deposited on substrate.

150-nm-thick film of silicon oxide, were lithography patterned
with 1 1 mm gold contact array. A homemade electrospin-
ning setup discussed elsewhere [9], was used to spin single
precursor fibers between two isolated gold contacts (Fig. 1).
The as-spun PAN fibers were pyrolyzed and heat treated at
1273 K for 30 min in a vacuum of torr in a Brew model
466-S vacuum furnace equipped with a mesh-heating element.
The processed fibers were characterized using a Renishaw
Raman microspectrometer at room temperature with a green
laser ( nm) as the exciting radiation.

We used a two point-probe setup to continuously monitor
the conductance ( ) in the temperature range between 300
and 1.9 K, back and forth, without any applied magnetic field,
using Model 6000 Physical Properties Measurement System
by Quantum, Inc., equipped with a Keithley 237 high-voltage
source measurement unit. Conductance was also measured at
1.9, 3.0, 5.0, and 10.0 K while the applied magnetic field, per-
pendicular to the fiber, was increased or decreased continuously
between and T twice. To suppress possible heating effects,
the total measuring power was limited to 5 nW. According to
a previous analysis [25], the contact resistance is much less
than that of the nanofiber itself. The length L and cross section
area S of the fibers were measured using an optical microscope
and a scanning probe microscope (SPM) operated in tapping
mode. Their details have been reported elsewhere [25]. The
conductivity was finally determined using GL/S.

III. RESULTS

Fig. 2 shows SPM height image of vacuum pyrolyzed and
heat-treated carbon nanofiber and its apparent average cross
section profile, from which the vertical and horizontal diame-
ters of the fiber (b, a) and, therefore, its cross section area ( ),
were determined [25]: nm, nm,

nm . Fig. 3 shows the Raman spectrum of
the same carbon nanofibers whose G and D peaks, centered at
1371 and 1588 cm , attest to the coexistence of disorder and
graphitic carbon in the nanofibers. From the ratio of the inte-
grated intensity of D peak to G peak, the inplane graphitic crys-
tallite size was estimated to be nm [9].

Fig. 4 shows as a smooth and monotonic increasing func-
tion of T, showing apparently semiconducting nature. Moreover,

versus curve is convex, in other words,
decreases with the increase of .

Fig. 5(a) shows the magnetoresistence MR, defined as
, and the magnetoconductivity

of the fibers at temperatures of 1.9, 3.0,
5.0, and 10 K with magnetic field B from to T. At all four
investigated temperatures, the MR is negative. Its magnitude
increases with an increase in B and a decrease in T. It is
noteworthy that at K and T, one
of the largest negative magnetoresistance known to the authors.
Since is quite large, is not always valid.

Fig. 2. (a) SPM height image of Carbon fiber and (b) average cross section
profile.

Fig. 3. Raman spectrum of the pyrolized fiber.

IV. DISCUSSION

A. Magnetic Field Dependence of Magnetoresistance

For most electronic systems exhibiting 2-D weak localization,
the physical origin of the 2-D character is relatively easy to
understand. In carbon fibers, however, the origin is a priori not
obvious. Bright attributed the origin to the turbostratic nature
of the samples, which should have an electronic structure
nearly the same as that of 2-D graphite. In the 2-D regime,
the correction to the sheet conductance produced with the
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Fig. 4. Temperature dependence of the conductivity of carbon fibers.

Fig. 5. (a) Large negative magnetoresistance and (b) positive magneto-
conductance of carbon fibers with magnetic field from �9 to 9 T.

magnetic field B perpendicular to the plane of the 2-D carrier
system is given by the following expression [23], [24], [26]:

(1)

where
is the sheet conductance

at infinite magnetic field, or as calculated in the classical
Boltzmann formulation of the transport theory; is digamma
function, and represents the characteristic
field associated with the scattering mechanism k standing for
elastic scattering (0), inelastic scattering (i), magnetic impurity

scattering (s) and spin-orbit coupling (s.o.). Therefore, the
magnetoconductance takes the form

(2)

where .
Given a temperature , (2) contains only four unknown

parameters: , and . They can be derived from
a nonlinear fitting. The results show that and have
very close fitting values. In fact, their difference is less than
their respective fitting errors. This indicates that both and

are very small, i.e., both magnetic impurity scattering and
spin-orbit coupling are very weak, in our sample. For simplicity,
we assume , and .
Then, (2) can be simplified as

(3)

Nonlinear curve fitting using (3) and Mathematica software
(shown in Fig. 6) showed that increases with T, i.e., the
inelastic scattering intensifies when the temperature increases.

B. Temperature Dependence of Zero Field Conductivity

In parallel to the modified STB model [27], which accounts
for the conductivity phenomenologically, several other models
can explain the temperature dependence of the conductivity,
namely:

1) 2-D weak localization model: According to 2-D weak lo-
calization model [28]–[30]

(4)

where and are two constants. If (4) is used
to fit the temperature dependence of the zero field conduc-
tivity, we obtain, , and (Fig. 7). The
value is in agreement with the previous results
of in carbon microfibers [23] and multiwalled
carbon nanotube [30]. It indicates that the dominating in-
elastic scattering mechanism is likely to be disorder en-
hanced electron–electron scattering in 2-D system.

2) Variable range hopping model: This phenomenon occurs
in highly disordered materials because the distribution of
energy states makes it more favorable to hop to a dis-
tant empty state of nearly the appropriate energy than to
a nearby empty state that has a much higher energy level.
Because of the high resistivity and lack of long-range
order of the fiber, one would expect that the electrical con-
duction would result from a hopping mechanism. The di-
mensionality enters the equation during the summing of
the available states. For a -dimensional system [31]

(5)
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Fig. 6. Comparison of magnetoconductance fitting curves [using (3)] with experimental curves.

Fig. 7. Fitting of conductivity curve to (4).

where , and are two constants. Since
there is controversy about the dimensionality of the
carbon fibers with respect to variable range hopping, a
good three-parameter fit to all the data was found by least
square fitting of the data to (5) (Fig. 8). The fitting results

indicates that the dimensionality of hopping
lies between 2 and 3, or that and coexist.

3) Tunneling between conducting particles model: The
tunneling model was developed for metallic particles
imbedded in a highly resistive matrix but the only essen-
tial feature of the metallic particles is that the conduction
electrons therein are delocalized. As revealed by XRD

Fig. 8. Fitting of conductivity curve to (5).

and Raman spectra, the graphite domains within our
carbon nanofibers have a size of 1 to 2 nm [9]. Since
electrons on the small fully carbonized basic units fit this
criterion, it is not unreasonable that the model may apply
to the investigated fibers. For dc conduction, electron
tunnel between the charging centers imbedded in a highly
resistive matrix of totally disordered carbon might be
plausible. When the electric field is low, the conduction
is ohmic resulting in thermally activated charge carriers
hopping to the nearest neighbor charging center. For
high-electric fields, the conduction is highly nonohmic
and is the result of field-induced tunneling.
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Fig. 9. Fitting of conductivity curve to (6).

Fig. 10. Fitting of conductivity curve to (7).

The conductivity in this model has the same form as 1-d vari-
able range hopping [15]

(6)

where and are two constants. If the versus
curve is fit to (6) [Fig. 9], we obtain

K . It seems reasonable to try to fit the data to a
model in which 3-D variable range hopping and tunneling be-
tween domains in which the electrons are delocalized, coexist.
The conductivity for such a case is

(7)

Fig. 10 shows the results of fitting the data to (7). The fitting is
excellent. The figure also shows the curves for the two compo-
nents. They indicate that the conduction is mostly undertaken by
a tunneling mechanism. It increases convexly with the temper-
ature, the hopping mechanism accounting for only a small frac-
tion of the total (its contribution to the conductivity increases
concavely with the temperature). As such, the hopping mecha-
nism can be excluded from the main transport mechanism(s) in
the investigated carbon fiber.

Since both (4) and (6) fit the experimental versus curve
quite well, the fitting alone seems not enough to determine
whether the main transport mechanism is 2-D weak localiza-
tion effect, or the tunneling mechanism. However, the good
description of the - and - dependence of the large MR that
can be done using 2-D weak localization effect indicates that
the same effect is mainly responsible for the -dependence
of the conductivity. This harmonizes with the low-electrical
field setup during the conductance measurement. The voltage
applied between the two conducting pads, separated by a
distance of 1 mm, is 0.03–0.6 V. So, the average electrical field
in the carbon nanofiber between the two pads is 30–600 V/m,
not strong enough for the tunneling mechanism to dominate.

V. CONCLUSION

Partially graphitized carbon nanofibers were synthesized
from PAN/DMF solution using electrospinning and subse-
quent vacuum pyrolysis technique. Their zero magnetic field
conductivity and magnetoconductivity were measured using a
two-probe method. Large negative magnetoresistance %
was found at 1.9 K and 9 T. The temperature dependence of
zero magnetic field conductivity, temperature and magnetic
field dependence of the large magnetoresistance were best
described using the 2-D weak localization effect.
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