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TRANSCRIPTIONAL AND TRANSLATIONAL CONTROL OF
ZEBRAFISH MESODERMAL DEVELOPMENT

Abstract
Establishment of the mesodermal germ layer is a process dependent on the integration of multiple
transcriptional and signaling inputs. Here I investigate the role of the transcription factor FoxD3 in zebrafish
mesodermal development. FoxD3 gain-of-function results in dorsal mesoderm expansion and body axis
dorsalization. FoxD3 knockdown results in axial defects similar to Nodal loss-of-function, and was rescued by
Nodal pathway activation. In Nodal mutants, FoxD3 did not rescue mesodermal or axial defects. Therefore,
FoxD3 functions through the Nodal pathway and is essential for dorsal mesoderm formation. The FoxD3
mutant, sym1, previously described as a null mutation with neural crest defects, was reported to have no
mesodermal or axial phenotypes. We find that Sym1 protein retains activity and induces mesodermal
expansion and axial dorsalization. A subset of sym1 homozygotes display axial and mesodermal defects, and
penetrance of these phenotypes is enhanced by FoxD3 knockdown in mutant embryos. Therefore, sym1 is a
hypomorphic allele, and reduced FoxD3 function results in reduced cyclops expression and subsequent
mesodermal and axial defects. The sym1 molecular lesion, a point deletion leading to a seven codon frameshift
and premature termination, is predicted to be a truncated protein lacking part of the DNA-binding domain
and an essential Groucho corepressor interaction domain (GEH). Strongly predicted to be functionally
inactive, the hypomorphic character of sym1 suggested that a -1 translational frameshift may correct the
reading frame and produce functional protein. Consistent with this hypothesis, mutation of the distal GEH
ablated sym1 cDNA activity. Within the frameshift region are three rarely used codons predicted to cause
ribosomal pausing and promote translational frameshifting. Conversion of these codons to highly used codons
encoding the same residues rendered the sym1 cDNA inactive. Biochemical analyses confirm that a full length
FoxD3 protein is produced from sym1 cDNA, but not when the rare codons are replaced. These results
indicate that the null character of the sym1 mutation is suppressed by a novel translational frameshifting
mechanism, and support the conclusion that FoxD3 is a Nodal-dependent regulator of zebrafish mesodermal
development.
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ABSTRACT 

 

TRANSCRIPTIONAL AND TRANSLATIONAL CONTROL OF ZEBRAFISH 

MESODERMAL DEVELOPMENT 

 

Lisa L. Chang 

 

Daniel S. Kessler 

 

 Establishment of the mesodermal germ layer is a process dependent on the 

integration of multiple transcriptional and signaling inputs. Here I investigate the role of 

the transcription factor FoxD3 in zebrafish mesodermal development. FoxD3 gain-of-

function results in dorsal mesoderm expansion and body axis dorsalization. FoxD3 

knockdown results in axial defects similar to Nodal loss-of-function, and was rescued by 

Nodal pathway activation. In Nodal mutants, FoxD3 did not rescue mesodermal or axial 

defects. Therefore, FoxD3 functions through the Nodal pathway and is essential for 

dorsal mesoderm formation. The FoxD3 mutant, sym1, previously described as a null 

mutation with neural crest defects, was reported to have no mesodermal or axial 

phenotypes. We find that Sym1 protein retains activity and induces mesodermal 

expansion and axial dorsalization. A subset of sym1 homozygotes display axial and 

mesodermal defects, and penetrance of these phenotypes is enhanced by FoxD3 

knockdown in mutant embryos. Therefore, sym1 is a hypomorphic allele, and reduced 

FoxD3 function results in reduced cyclops expression and subsequent mesodermal and 
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axial defects. The sym1 molecular lesion, a point deletion leading to a seven codon 

frameshift and premature termination, is predicted to be a truncated protein lacking part 

of the DNA-binding domain and an essential Groucho corepressor interaction domain 

(GEH). Strongly predicted to be functionally inactive, the hypomorphic character of sym1 

suggested that a -1 translational frameshift may correct the reading frame and produce 

functional protein. Consistent with this hypothesis, mutation of the distal GEH ablated 

sym1 cDNA activity. Within the frameshift region are three rarely used codons predicted 

to cause ribosomal pausing and promote translational frameshifting. Conversion of these 

codons to highly used codons encoding the same residues rendered the sym1 cDNA 

inactive. Biochemical analyses confirm that a full length FoxD3 protein is produced from 

sym1 cDNA, but not when the rare codons are replaced. These results indicate that the 

null character of the sym1 mutation is suppressed by a novel translational frameshifting 

mechanism, and support the conclusion that FoxD3 is a Nodal-dependent regulator of 

zebrafish mesodermal development.  
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1. Chapter 1 – Introduction 

 The three primary germ layers—the ectoderm, the mesoderm, and the 

endoderm—are established from the epiblast during the process of gastrulation. The 

embryonic body plan arises from these major cell lineages, which are progressively 

patterned and specialized to give rise to the many tissues and organs in the body. The 

lineages derived from the mesodermal germ layer give rise to a broad range of tissues and 

organs, including the embryonic tissues prechordal plate, notochord, somites, heart, 

pronephros, and hematopoietic precursors. The developmental mechanisms that control 

the induction and patterning of the mesodermal germ layer have been studied in a variety 

of embryonic model systems for decades. These studies have revealed cellular and 

molecular mechanisms that underlie the induction, patterning, differentiation, and 

morphogenesis of mesodermal lineages. Beginning during gastrulation and continuing at 

later stages, the instructive signals received by mesodermal progenitors are interpreted as 

transcriptional programs that initiate positive and negative regulatory feedbacks, 

conferring the stability of cell-fate choices and leading ultimately to determination and 

differentiation. Conserved mechanistic similarities have been identified when defining 

the cell movements and the inductive signals that control mesodermal development in 

vertebrates and invertebrates, as well as interesting and unexpected differences in 

developmental mechanism.  

 In Xenopus and zebrafish, mesoderm-inducing signals arise largely from the 

vegetal pole or yolk cell, whereas the major mesodermal patterning center is the Spemann 

organizer or embryonic shield. The distinction between mesoderm induction and 

patterning is somewhat arbitrary at the molecular level, where in vitro, an individual 
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pathway is capable of inducing mesoderm de novo while differing levels of that same 

signal can induce distinct types of mesoderm. In the embryo, however, the formation and 

patterning of mesoderm is dependent on the integration of multiple inductive signals that 

arise in a spatially and temporally dynamic manner; a number of pathways are required 

but no individual pathway is sufficient for complete mesodermal development (Heasman, 

1997, 2006). Much has been learned about the formation of the mesodermal germ layer, 

including the identity of major mesoderm-inducing pathways and the complex regulatory 

networks that modulate pathway activity, however, despite the advances in this research 

area, many questions are yet to be answered. For example, given that the major 

mesoderm-inducing pathways regulate distinct lineages throughout development, how is 

cellular response controlled to ensure an appropriate mesodermal response during early 

development? Mesoderm formation is a critical embryonic event and its study has, and 

will continue to provide profound insight into fundamental developmental mechanisms 

that could aid in developing successful molecular therapeutics for human benefit. 

 

1.1.  Embryonic induction and formation of the Zebrafish shield 

 During the first hours of zebrafish embryonic development the zygote is 

composed of a small blastoderm disc over a vast yolk cell. The yolk syncytial layer 

(YSL) forms by fusion of the marginal blastomeres with the yolk cell at the mid-blastula 

stage (1000 cells) and will then separate the blastoderm from the yolk cell, while the 

enveloping layer (EVL) covers the outer surface of the blastoderm as a single cell layer. 

The onset of gastrulation in zebrafish begins with the process of epiboly, where cells 

from the blastoderm start to spread out and surround the yolk cell. Next, when the leading 
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edge of the epibolyzing blastoderm reaches the equator cells move inward and coalesce 

to form the hypoblast, while the outer cells form the epiblast. At the same time clonal 

groups of blastoderm cells become fate restricted, and the shield forms as a thickening 

along the blastoderm margin on the future dorsal side. Cells in the blastoderm disc form a 

single homogeneous population where the margin of the blastoderm contains mesoderm 

and endoderm precursors. Cells initially located near the blastoderm margin involute first 

and form the deepest layer of the newly forming hypoblast and give rise to mesodermal 

and endodermal derivatives, cells that are more distant from the margin involute later and 

form only mesoderm while non-involuting cells farther from the margin form ectoderm 

(Kimmel et al., 1990; Warga and Kimmel, 1990). After involution, mesoderm is 

positioned as a ring of cells that includes the dorsal embryonic shield domain. Further, 

transcription factors required for the formation of the shield have been localized to the 

YSL at early gastrula stage and importantly, shown to act in a non-cell-autonomous 

manner (Koos and Ho, 1998; Yamanaka et al., 1998). The shield will ultimately 

contribute cells to the hatching gland, head mesoderm, notochord, somatic mesoderm, 

endoderm and part of the neuraxis (Shih and Fraser, 1996). (Fig. 1.1) 

In Xenopus, localization of dorsal determinants to the vegetal blastomeres on the 

future dorsal side of the embryo and rearrangement of the egg cytoplasm result from a 

process of cortical rotation which occurs prior to the first cleavage (Gerhart et al., 1989; 

Gerhart et al., 1981). However, in zebrafish, no cortical rotation occurs, presumably 

because of the large dense yolk cell, therefore the dorsoventral axis of the embryo is not 

set during or before the first cleavage. Alternatively, it is thought that the dorsal  
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(a)             (b)             (c)   

            
 

 

Figure 1.1 The Zebrafish gastrula and 24 h fate map. Position and movement of ventral 

(red) and dorsal (blue) marginal cells at the (a) shield stage, and at (b) 24 h after 

fertilization. The dorsal margin contributes to axial structures like the hatching gland, 

head mesoderm, notochord, somatic mesoderm, endoderm and part of the neuraxis (blue); 

ventral margin to non-axial tissues (red). (Adapted from Agathon et al., 2003) (c) 

Zebrafish fate map after cell mixing has stopped. (Adapted from Langeland and Kimmel, 

1997) 
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determinants present in the vegetal yolk are transported to the future dorsal side later, 

during early cleavage stages (1-8 cell stage), through microtubule-mediated  transport 

(Jesuthasan and Strahle, 1997). These dorsal determinants are derived and transported 

from the yolk cell to the dorsal blastomeres through the YSL (Jesuthasan and Stahle, 

1997; Jesuthasan and Strahle, 1997; Mizuno et al., 1996), which will later act as the 

equivalent of the Xenopus Nieuwkoop center. The Nieuwkoop center induces the dorsally 

localized Spemann organizer in Xenopus, and in a similar manner the YSL induces 

formation of the dorsal shield in zebrafish. In addition, formation of the shield on the 

dorsal side of the blastoderm is one of the first signs of dorsoventral polarity and will 

proceed to pattern the mesoderm to establish the proper organization of the zebrafish 

body axis. The dorsal shield forms in response to Nodal and Wnt signals and serves as a 

source for multiple signaling antagonists. The removal of the shield from a developing 

embryo prevents formation of dorsal structures, and conversely, when transplanted into a 

host embryo, is able to induce a secondary axis (Saude et al., 2000).  

 

1.2.  Mesoderm induction in Zebrafish 

 Mesoderm is initially induced at the equator of the embryo by signal emanating 

from the YSL, and this is followed by activation of inducing signals expressed in the 

mesendodermal blastomeres localized dorsally and closest to the YSL. Mesodermal 

development therefore is a progressive process in which the exposure of competent cells 

to inducing signals during the blastula and early gastrula stages results in the 

specification of mesodermal fates. In zebrafish, extensive cell rearrangements occur 

during early cleavage divisions, so cell fates cannot be assigned until the onset of 
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gastrulation (Kimmel et al., 1990). In contrast, in Xenopus the initial cleavage divisions 

define the dorsal–ventral and left–right axes. Therefore, the mesodermal fate map reflects 

the distribution of distinct maternal factors that establish animal–vegetal and dorsal–

ventral patterns and that initiate regional gene expression during the mid-blastula stage 

(Dale and Slack, 1987; Moody, 1987). Mesoderm is further patterned by zygotic factors 

produced by cells of the organizer and by competing factors expressed in non-dorsal 

mesoderm (lateral and ventral mesoderm) (Heasman, 2006). Beginning during 

gastrulation and continuing at later stages, the instructive signals received are interpreted 

as transcriptional programs that initiate positive and negative regulatory feedbacks, 

conferring the stability of cell-fate choices and leading ultimately to determination and 

differentiation. Although embryonic induction involving communication between cell 

populations via extracellular factors is an inherently cell-nonautonomous process, cell-

autonomous factors functioning within mesodermal precursors are required to bias cell 

fate decisions during induction and to stabilize mesodermal identity during determination 

and differentiation. In zebrafish, the mesodermal fate map is set at the gastrula stage and 

reflects a precise dorsal–ventral organization, with notochord and anterior somite 

precursors in the dorsal domain, pronephros and trunk somites in lateral domains, and tail 

somites and blood in the ventral domain. Although there is much conservation in 

developmental mechanisms between organisms, the coordination of cell division, cell 

adhesion, cell rearrangements, and the timing of embryonic induction differ among 

embryos of different organisms. These differences determine the stage at which 

meaningful fate maps can be established. 
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 An essential aspect of embryonic development is the ability to limit the 

responsiveness of cells both temporally and spatially. The organizer is a source of 

secreted antagonists of multiple signaling pathways rather than a source of positive-

acting instructional signals. Rather than producing signals that directly confer dorsal 

identity of adjacent tissue, it produces inhibitors of pathways that promote ventral 

identity, thus permitting the dorsal development of adjacent tissues. The function of these 

signaling antagonists in developmental patterning of the mesoderm is to exclude pathway 

activity from the organizer domain and to produce an activity gradient in the non-

organizer mesoderm, with the highest levels at the ventral marginal zone (Harland and 

Gerhart, 1997). 

 

1.3.  Molecular mediators of mesoderm induction 

 A number of major signaling pathways, including Nodal, Bmp, Wnt, and Fgf, are 

required for multiple aspects of vertebrate development. Fgfs and Activin-like members 

of the transforming growth factor (TGF)-β superfamily have the ability to induce 

mesoderm formation in Xenopus animal pole explants. Furthermore, when these signaling 

pathways are inhibited in vivo, mesodermal development is disrupted. Although the 

stimulation of individual pathways is sufficient to influence mesoderm induction and 

patterning, cellular integration of multiple signaling inputs and cross-talk between the 

components of these signaling pathways are essential for the correct development and 

differentiation of the germ layers (Candia et al., 1997; Kretzschmar et al., 1997; Nishita 

et al., 2000). In addition, given the roles of these pathways in many distinct embryonic 
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processes, mechanisms must exist that confer the spatial and temporal specificity of 

cellular response. 

 The TGF-β ligands that influence mesodermal development are: activins, Vg1, 

Nodals, Gdfs and Bmps. TGF-β ligands stimulate signaling by binding to 

heterotetrameric receptor complexes with intrinsic serine/threonine kinase activity, and 

this results in the phosphorylation and activation of Smad proteins that mediate the 

cellular response (Massague, 1998). Nodals are a subfamily of the TGF-β superfamily of 

signaling factors. Nodal ligands bind to the extracellular domain of a type II receptor, a 

type I receptor is recruited into a signaling complex and phosphorylated to activate the 

serine/threonine kinase activity of the type I receptor. The type I receptor will then 

phosphorylate and activate Smad 2 or Smad 3 proteins, which then bind to the co-smad, 

Smad 4, and as a complex are the intracellular signaling mediators of TGF-β signaling. 

Active Smad proteins translocate to the nucleus, complex with specific DNA-binding 

proteins, and function as coactivators for transcriptional target genes. Three classes of 

Smad proteins have been identified in vertebrates, including the receptor-activated Smads 

(R-Smads), Smads 1, 2, 3, 5, and 8, which each contain an SSXS motif that is 

phosphorylated by active receptor. This R-Smads class is subdivided into two groups 

based on the types of TGF-β signals transduced, with Activin-like signals mediated by 

Smads 2 and 3 and BMP-like signals mediated by Smads 1, 5, and 8. A second class 

includes Smad 4, a collaborating Smad (co-Smad). The third class includes the inhibitory 

Smads (I-Smads) 6 and 7, which bind to type I receptors and limit the access of R-Smads. 

Smad 7 negatively regulates a broad range of TGF-β signaling pathways, including 

Activin-like and BMP-like pathways, whereas Smad 6 specifically regulates only the 
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BMP-like pathways. Signaling through a subset of TGF-β ligands including Nodal, Vg1, 

Gdf1 and Gdf3 requires a coreceptor protein of the EGF-CFC family (FRL1 in Xenopus, 

Cryptic in chick, Cripto and Cryptic in mouse and human, and one-eyed pinhead in 

zebrafish) (Shen and Schier, 2000). 

 Activin was identified early in the search for mesoderm-inducing factors as a 

protein that was present in the supernatants of Xenopus tissue culture cells and 

macrophage cell lines. Activin induces dorsal mesoderm at high doses, muscle at 

intermediate doses and ventral–posterior mesoderm at low doses. However, despite the 

presence of maternal activin protein, a series of inhibitor studies suggested that activin 

was not an endogenous inducer of mesoderm (Kessler, 2004), but is required to maintain 

maximal levels of mesodermal gene expression at the gastrula stage (Piepenburg et al., 

2004).  

 A maternal mRNA that is localized to the vegetal cortex of the Xenopus oocyte 

encodes Vg1. After fertilization, cleavage divisions trap Vg1 protein in vegetal 

blastomeres, and, therefore, Vg1 has been viewed as a strong candidate for endogenous 

mesoderm inducer. However, the native form of Vg1 is not processed efficiently, and, 

although the mature domain can strongly induce mesoderm like activin, native Vg1 was 

not found to have significant mesoderm-inducing activity (Kessler, 2004). In Xenopus, a 

second Vg1-related gene, Derriere, is efficiently processed, and it is required for the 

development of posterior mesoderm, but not for the initiation of mesoderm formation 

(Sun et al., 1999). The knockdown of Vg1, like activin knockdown, results in the 

reduction of mesodermal gene expression during the gastrula stage, but it does not 

prevent the initial induction of mesoderm (Birsoy et al., 2006). Vg1 orthologs and Vg1-
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like factors have been identified in the zebrafish (DVR1), the chick (cVg1), and the 

mouse (Gdf1 and Gdf3), and, although processed proteins can each strongly induce 

mesoderm, loss-of-function studies indicate that Vg1-like proteins is not essential for the 

initiation of mesodermal development in these systems. Given that Vg1-related proteins 

signal via the same signaling complex as Nodal proteins, it may be that some degree of 

functional redundancy obscures the early developmental requirement for a subset of Vg1-

like proteins (Kessler, 2004). 

 BMPs function in the early vertebrate embryo to promote ventral mesoderm 

formation and to limit the domain of dorsal mesoderm formation. BMPs 2, 4, and 7 are 

expressed in ventral–lateral regions of the early embryo, and they play essential roles in 

the dorsal–ventral patterning of mesoderm in Xenopus and zebrafish (De Robertis and 

Kuroda, 2004). BMP gain-of -function suppresses dorsal mesodermal development, 

whereas the knockdown of BMP function or the overexpression of BMP inhibitors results 

in an expansion of the dorsal mesodermal domain and the induction of ectopic axial 

structures (Reversade et al., 2005). Although it is essential for dorsal–ventral patterning 

of the mesoderm, BMP function is not required for the initiation of mesodermal 

development. Zebrafish mutants with null alleles of BMP ligands or BMP signaling 

components are strongly dorsalized, and they show an expansion of dorsal mesoderm 

(Hammerschmidt and Mullins, 2002). In the mouse, BMP signaling in the epiblast is 

essential for the proper recruitment of epiblast cells into the primitive streak, and 

embryos that are null for the BMP receptor BMPR1A fail to gastrulate or form mesoderm 

normally (Beppu et al., 2000; Mishina et al., 1995; Winnier et al., 1995). 
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 The Wnt genes constitute a large family of secreted, cysteine-rich, lipid-modified 

glycoproteins that are involved in many critical processes of early embryonic 

development (Nusse, 2005). Wnt signaling can stimulate a number of distinct signaling 

outputs, including the canonical β-catenin–dependent activation of transcription, the 

planar cell polarity, a calcium-dependent response, and others. In mesodermal 

development, the canonical pathway plays several important roles. In Xenopus, cortical 

rotation during the first cell cycle results in the displacement of dorsal determinants to the 

future dorsal side of the embryo. The resulting activation of the canonical Wnt pathway 

stabilizes β-catenin, which accumulates in the nuclei of dorsal blastomeres during the 

blastula stage and activates the transcription of dorsal gene expression, including Nodal-

related genes. Recent evidence suggests that Wnt 11 is the maternal ligand that is 

responsible for the early activation of the Wnt pathway (Tao et al., 2005). During the 

gastrula stage, zygotic activation of the canonical Wnt pathway results in the stabilization 

of β-catenin in ventrolateral regions, which promotes the developmental of ventral–

posterior mesoderm and antagonizes dorsal–anterior mesoderm. Therefore, the canonical 

Wnt pathway is first used during the maternal phase of development to promote dorsal 

fates and then to promote ventrolateral fates in response to zygotic signals. 

 The fibroblast growth factors comprise a large family of signaling factors that 

play essential roles in mesoderm induction and maintenance. Purified Fgf protein was 

one of the first proteins identified as a mesoderm inducer in the Xenopus animal explant 

assay. Fgf signaling is crucial as a competence factor in mesoderm induction, and FGF 

activity is required for the response of animal explants to Activin-like signals. Fgfs also 

regulate the T-box transcription factors that are necessary for the specification and 
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maintenance of mesoderm. Dominant-negative, inhibitor, and knockdown studies 

indicate that Fgf signaling is essential during the gastrula stage for the development of 

trunk and tail structures, but not for the initial induction of mesoderm. In addition, studies 

in zebrafish suggest an early role for Fgf signaling in repressing BMP transcription 

during the late blastula stages to promote dorsal development (Furthauer et al., 2004; 

Koshida et al., 2002; Londin et al., 2005). 

 

1.4.  Nodal signaling and regulation 

 Nodal-related genes are conserved in vertebrates and are essential for mesodermal 

development (Shen, 2007). Many Nodal-related genes are expressed during early 

embryogenesis in the prospective mesoderm and in the organizer domain, however, 

Nodals are also essential in additional developmental processes, therefore mechanisms 

must exist that confer spatial and temporal specificity to cellular response. In contrast 

with Activin and Vg1, Nodal-related proteins appear to be the critical signaling factors 

for mesoderm induction in all vertebrates. Nodals require the co-receptor EGF-CFC 

protein (cripto/one-eyed pinhead, Oep in zebrafish) extracellularly for Nodal ligands to 

bind to and activate their receptors (Gritsman et al., 1999), in contrast to activin which 

does not require a co-receptor to initiate signaling. Therefore, Oep could function as a 

spatial and temporal regulator of Nodal signaling. Humans, mice, and chicks have a 

single Nodal gene, while zebrafish have three, squint, cyclops, and southpaw, and 

Xenopus has five Nodal-related genes, Xnr-1, -2, -4, -5, and -6, with mesoderm-inducing 

activity.  
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 In Xenopus, Nodal expression is regulated by the maternal factors VegT and β-

catenin, and this results in a dynamic expression pattern first in vegetal blastomeres 

during the late blastula stage, then in the organizer domain during the early gastrula stage, 

and finally at lower levels throughout the marginal zone during the midgastrula stage. 

Nodal expression in the marginal zone establishes a dorsal to ventral gradient of Nodal 

signaling activity that contributes to mesodermal patterning. The inhibition of Nodal 

signals with the specific inhibitor Cerberus-short results in a complete block of mesoderm 

induction; this supports the idea that Nodal proteins are the essential initiators of 

mesoderm formation (Piccolo et al., 1999). Similarly, cyc and sqt are expressed in 

partially overlapping domains before gastrulation, with sqt expressed earlier and found in 

both the YSL and future mesendoderm, while cyc is only expressed in mesendoderm 

(Feldman et al., 2000; Feldman et al., 1998; Gritsman et al., 2000; Schier and Talbot, 

2001). Both signals activate the same downstream targets and in a concentration 

dependent manner. Further, sqt has been shown to activate target genes in distant cells 

while cyc acts more locally (Chen and Schier, 2001). Nodal gain- and loss-of-function in 

the zebrafish results in the dramatic perturbation of mesodermal development (Schier and 

Talbot, 2005). As in Xenopus, Nodal gain-of-function in zebrafish induces ectopic dorsal 

mesoderm and axial duplication (Feldman et al., 1998). Single mutants in sqt or cyc loss 

of function results in mild phenotypes with minor defects in mesoderm induction (Hatta 

et al., 1991). Zebrafish embryos that are null for both cyc and sqt, or have a maternal-

zygotic loss-of-function for the Nodal coreceptor (mzOep), lack all trunk and head 

mesoderm as well as endoderm, and display defects during the initial induction of 

mesoderm during the gastrula stage (Feldman et al., 2000; Whitman, 2001). However, in 
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contrast to Xenopus, zebrafish embryos lacking active Nodal signaling form some tail 

mesoderm. In additional, nodal loss-of-function in mouse results in a failure to maintain 

the primitive streak and a failure to form embryonic mesoderm and extraembryonic 

ectoderm, and this leads to death during early gastrulation (Conlon et al., 1994). 

Consistent with an essential role for Nodal signaling in mesoderm formation, loss-of-

function for the Nodal antagonists Lefty/Antivin in mouse, Xenopus and zebrafish results 

in an expansion of mesodermal derivatives. Furthermore, overexpression of 

Lefty/Antivin in zebrafish results in a phenotype strikingly similar to cyc;sqt or mzOep 

(Bisgrove et al., 1999). Nodals are autoregulatory, and a target of Nodal signaling 

Lefty/Antivin acts as a competitive feedback inhibitor by binding Nodal receptors, and 

restricting Nodal activity (Meno et al., 1999). Consistently, expression of the Nodal 

inhibitor Lefty/Antivin closely follows the expression of cyc and sqt in the developing 

gastrula, and overexpression of Nodal signals induces the widespread expression of 

Lefty/Antivin. Additional negative regulators of Nodal, signaling include Tomoregulin-1, 

which binds the Nodal coreceptor to inhibit Nodal signaling, Dapper2 which promotes 

receptor turnover, and BAMBI, a pseudoreceptor that functions in a dominant-negative 

manner to inhibit signaling by most type I receptors. Smurf1, Smurf2, and Ectodermin 

are ubiquitin ligases that target Smads 1 and 5, Smad 2, and Smad 4, respectively, for 

proteosome-mediated degradation. Protein inhibitor of activated STAT (PIASy) 

associates with Smad proteins in the nucleus to inhibit transcriptional coactivation 

function. Therefore, the Nodal pathway is subject to multiple layers of negative 

regulation to limit its activity during development, and this stringent regulation of Nodal 
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pathway activity is critical for proper organization of the embryonic mesoderm and other 

tissues of the vertebrate gastrula (Fig. 1.2). 

 

1.5. The role of FoxD3 in mesoderm and neural crest development 

 FoxD3, a member of the forkhead class of transcription factors, has multiple roles 

in the vertebrate embryo during early embryogenesis and later in neural crest 

development. FoxD3 expression is present in mouse and human embryonic stem cells, in 

mouse trophoblast stem cells and in the preimplantation mouse embryo (Hanna et al., 

2002; Sutton et al., 1996; Tompers et al., 2005). Interestingly, neither embryonic stem 

cell lines nor trophoblast stem cell lines can be established from foxd3 null embryos 

(Hanna et al., 2002; Tompers et al., 2005). During early embryogenesis in Xenopus, 

FoxD3 functions as a transcriptional repressor to induce dorsal mesoderm and axis 

formation, and the antagonism or knockdown of FoxD3 results in severe axial defects and 

a loss of dorsal mesodermal gene expression. FoxD3 is also necessary and sufficient for 

the expression of several Nodal-related genes and is dependent on the active Nodal 

signaling pathway to regulate mesodermal development (Steiner et al., 2006; Yaklichkin 

et al., 2007). As in Xenopus, foxd3 in zebrafish also presents a biphasic expression. It is 

expressed at shield stage, and later in the premigratory neural crest cells (Odenthal and 

Nusslein-Volhard, 1998). Several groups have studied FoxD3 function in zebrafish neural 

crest development and have determined that FoxD3 is necessary for differentiation of 

neural crest derivatives, including craniofacial cartilage, peripheral neurons, glial, and 

iridophore pigment cells (Kelsh et al., 2000; Lister et al., 2006; Montero-Balaguer et al., 

2006; Stewart et al., 2006), however, an early function during zebrafish gastrulation has 
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Fig 1.2. The Nodal pathway. Nodal binds to the type II receptor and the co-receptor Oep. 

The type II receptor phosphorylates the type I receptor. This results in activation of the 

type I receptor, which phosphorylates Smad2/3. Smad2 and Smad3 are specific mediators 

of Nodal pathway. Phosphorylated Smad binds Smad4 and translocate to the nucleus 

where they bind to specific DNA-binding factors to allow transcriptional activation of 

specific targets.  
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not been demonstrated. 

 During vertebrate development the neural crest (NC) is a transient population of 

cells that delaminates from the neural tube. Early migrating NC cells are specified as 

neurons and glial cells, while later migrating cells form most pigment cells, melanoblasts. 

FoxD3 regulates the fate choice between neural/glial and pigment cells in a subset of 

neural crest cells during the early phase of neural crest migration to repress 

melanogenesis and inhibit melanoblast differentiation into melanophores or melanocytes. 

FoxD3 acts by repressing the mitfa promoter indirectly in the initial subset of migrating 

cells. The mechanism of repression involves FoxD3 interaction with the transcriptional 

activator Pax3 to inhibit Pax3 binding to the mitf promoter (Curran et al., 2009; Thomas 

and Erickson, 2009). The expression of foxd3 is controlled by Disc1, which has a role in 

the transcriptional repression of foxd3 and sox10 (Arduini et al., 2009). sox10 is 

expressed by all neural crest cells and is essential for their differentiation into pigment 

and glia cells. Disc1 is thought to regulate migration of the cranial NC and sublineage 

specification (Arduini et al., 2009; Drerup et al., 2009). kit and foxd3 interact to regulate 

melanophore survival at later stages in the zebrafish. In kit mutants, loss-of-function for 

foxd3 results in partial rescue of melanophores from apoptosis, while FoxD3 

overexpression induces early melanoblast death. Therefore, Kit and FoxD3 may 

cooperate to establish proper melanophore patterning and number (Cooper et al., 2009). 

Consistent with a conserved role in neural crest development, foxd3 has been found to be 

a strong candidate gene for vitiligo susceptibility in AIS1-linked families with autosomal 

dominant vitiligo linked to chromosome 1p (Alkhateeb et al., 2005) 
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FoxD3 has also been reported to function in a variety of other processes. FoxD3 

regulates OTK18, a C2H2 type zinc finger protein involved in the regulation of HIV-1, by 

binding its promoter after HIV-1 infection (Buescher et al., 2009). It has also been 

reported that FoxD3 plays a role in regulating myf5 in somite and adaxial cells but not in 

presomitic mesoderm (Lee et al., 2006), although we could not replicate or confirm these 

results (unpublished).  

 Two FoxD3 mutants have been identified in zebrafish from ENU mutagenesis 

screens, the mother superior (mosm188) mutant and the sympathetic mutation 1 (sym1) 

mutant. mosm188 was isolated based on its prominent craniofacial phenotype and the 

mutation likely resides in an distal neural crest-specific regulatory element of the FoxD3 

locus, leading to depletion of neural crest derivatives (Montero-Balaguer et al., 2006). 

The sym1 mutant was identified in a screen for genes required for normal development of 

the peripheral sympathetic nervous system. The sym1 molecular lesion is a point deletion 

that results in the production of a truncated protein predicted to be a null allele based on 

the absence of essential domains. sym1 embryos have defects in a subset of neural crest 

derivatives, including peripheral neurons, glia and craniofacial cartilage (Stewart et al., 

2006). However, neither of these foxd3 mutants have reported defects in mesoderm 

formation, gastrulation or axial development, as would be expected from the described 

role of FoxD3 during early embryogenesis of the mouse and Xenopus. 

 

1.6.  Regulation of gene expression 

 Gene expression is a highly specific and regulated multilayer process with a 

plethora of interconnections as well as safeguard and feedback mechanisms. Organisms 
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contain genomes that vary from thousands to tens of thousands genes and each and every 

one of these individual genes has to be properly controlled so to have the correct 

expression of their products at the right time, at the right place and at the right rate. They 

also have to be able to modulate protein expression in response to new signals and 

changing environments depending on the needs of the cell or organism and therefore, 

drive processes of cellular differentiation and morphogenesis. The study of these 

regulatory mechanisms is not only to understand how the pattern of gene expression is 

regulated in a specific cell or tissue, but also to understand misregulated gene expression 

that may lead to disease. 

There are several mechanisms for gene expression regulation: structural 

modification, transcriptional regulation, post-transcriptional modification, RNA 

processing and transport, mRNA stability, ribosomal translation efficiency, and post-

translational modification. A brief explanation of mechanisms of gene expression 

regulation follows, with a more detailed focus on translational regulation. 

 One form of regulation at the DNA level is structural, in which regions of DNA 

are more or less tightly packed so that transcriptional machinery has more or less access 

to target genes. Histones, around which DNA is packaged, have “tails” which extend 

outwards and present amino acid sequences that can be modified to alter the packaged 

state of DNA. Another mechanism to control gene transcription is to alter the availability, 

quantity, or activity of transcription factors. The activity of transcription factors is 

regulated in many different ways: they can themselves be produced in higher or lower 

levels; they may be activated or deactivated by chemical modifications such as 

phosphorylation; their localization to the nucleus can be regulated, such as by binding to 
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a ligand; or their activity can be enhanced or inhibited by interaction with other cofactors 

and transcription factors (Lackner and Bahler, 2008; Munshi et al., 2009; Sonenberg and 

Hinnebusch, 2009).  

 At the level of the RNA transcript, RNA molecules are constantly being 

synthesized and degraded. Every RNA has a different longevity, depending on features 

such as the length of the polyadenylation tail and the presence of sequence elements in 

the regulatory region of the transcript. These features influence the interaction of each 

RNA with the cellular degradation machinery. Messenger RNA was thought of as a mere 

subcarrier of genetic information and only recently has been recognized as a key player 

of regulation and control of gene expression. Moreover, the awareness of not only 

protein, but also mRNA as a modulator of genetic disorders has vastly increased in recent 

years. MicroRNAs (miRNAs) function at this level to alter target RNA stability. miRNAs 

are short non-coding RNAs that regulate gene expression post-transcriptionally. They 

generally bind to the 3′-UTR of their target mRNAs and repress protein production by 

destabilizing the mRNA and silencing translation. In animals, once dsRNA enters the 

cell, it is cleaved by an RNase III –like enzyme, Dicer, into double-stranded small 

interfering RNAs (siRNA) 21-23 nucleotides in length (Nykanen et al., 2001). The 

miRNA single strands base pairs with their complementary mRNA molecules and inhibit 

translation or sometimes induce mRNA degradation by Argonaute proteins (Martinez et 

al., 2002).  

Nonsense mediated mRNA decay is a post-transcriptional surveillance 

mechanism which results in destruction of mRNA encoding incomplete protein products, 

such as those with premature termination codons. This applies, for example, to 
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termination codons of upstream ORFs, to termination codons that are followed by splice 

events in the 3′ untranslated region, or to termination codons that are introduced into an 

ORF as the result of somatic DNA rearrangements or mutation, alternative splicing, 

ribosomal frameshifting, or mRNA editing (Neu-Yilik and Kulozik, 2008). During the 

process of splicing, a dynamic multiprotein complex, the exon junction complex, is 

deposited 20–24 nucleotides 5′ to the exon junctions and accompanies the mRNA into the 

cytoplasm and polysomes. If positioned in the 3′ UTR, this complex serves during 

translation as a spatial reference point for the discrimination between premature and 

“normal” termination codons. In contrast, if positioned within the ORF, it enhances 

translation. A translation termination codon is generally seen as “normal” if no exon 

junction follows more than 50–55 nucleotides downstream (Nagy and Maquat, 1998). In 

this way, the physiological termination codon would be found in the last exon. 

 Finally, genes are extensively regulated at the protein level. Proteins can have 

active or inactive conformations, or can require chemical modifications or cofactors to be 

functionally active. This allows a cell to control where and when a protein is active and to 

allow a rapid conversion in a functional or nonfunctional state. In addition, cellular levels 

of proteins can be downregulated by targeted degradation. A well-known mechanism to 

selectively degrade proteins in the cell is through the ubiquitin–proteasome pathway, a 

process in which a small signal molecule is added to designated proteins, marking them 

for transport to the proteasome where ubiquitinated proteins are degraded into peptides 

and amino acids. 

 Viewed together, the activity of genes can be regulated on every level, from DNA 

to RNA to protein. In many instances, the control of any single gene may occur on 
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several different levels, with continuous precise adjustments to ensure the levels of gene 

activity are appropriate. 

 

1.7.  Translation and frameshifting 

 The ribosome translates the genetic information of an mRNA molecule into a 

sequence of amino acids. Amino acids are transferred to a growing polypeptide chain at 

the ribosomal site of protein synthesis during translation by transfer RNA (tRNA), a 

small RNA (74-95 nucleotides in length). tRNA has a 3' terminal site for amino acid 

attachment and also contains a three base region called the anticodon that can base pair to 

the corresponding three base codon region on an mRNA. Each type of tRNA molecule 

can be attached to only one type of amino acid, however because of the genetic code 

being degenerate, tRNA molecules with different anticodons can carry the same amino 

acid. tRNA molecules corresponding to specific codons are present in different 

concentrations, depending on cell or tissue type within an organism or between distinct 

organisms. In general, there is a ~10-fold difference in concentration between the most 

and least abundant tRNAs (Ikemura and Ozeki, 1983). Organisms also have a codon 

usage bias, which refers to differences among organisms in the frequency of occurrence 

of specific codons in protein-coding DNA sequences. Different factors have been 

proposed to be related to codon usage bias, including gene expression level, %GC 

composition, amino acid conservation, transcriptional selection, RNA stability, and 

optimal growth temperature (Ermolaeva, 2001; Lynn et al., 2002; Paul et al., 2008). 

 Three tRNA-binding sites are located on the ribosome, termed the A, P and E 

sites. The A site, containing the decoding centre, binds an aminoacyl-tRNA 
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corresponding to the codon displayed at this site. The P site binds the peptidyl-tRNA, the 

tRNA carrying the nascent chain before peptide-bond formation, and the E site binds 

deacylated tRNAs, tRNAs that have already participated in chain elongation. In the 

course of two elongation cycles a tRNA moves in succession through the ribosomal A, P 

and E sites. The first and the third tRNA-binding sites, the A and the E sites, are coupled 

in a reciprocal fashion. A tRNA bound to the E site induces a low-affinity state for an 

aminoacyl-tRNA or a ternary complex at the A site and vice versa; occupying the A site 

promotes a low-affinity state for the E site, thus triggering the release of the deacylated 

tRNA (Geigenmuller and Nierhaus, 1990). A consequence of this mechanism is that 

statistically, only two tRNAs are found on the ribosome during protein synthesis, either at 

the A and P sites (PRE state) or at the P and E sites (POST state). This will be relevant in 

discussing the process of translational frameshifting, where a mismatch in one site will 

result in decoding a different amino acid than predicted (Vimaladithan et al., 1995). 

 The correct decoding of genetic information is a crucial step in the process of 

protein synthesis. As mentioned previously, ribosomal frameshifting is a mechanism that 

can alter the primary structure of proteins, either by introducing alternate amino acid 

sequences or a premature termination codon. Therefore, frameshifting can alter the 

function or production of protein products. Unusual translational events, including 

frameshifting are well established. Ribosomes are known to misincorporate amino acids 

at frequencies as high as 10-4 to 10-3 per codon. Ribosomes have been documented to 

engage in alternative reading frames during translation, such as frameshifting to −1, +1, 

to undergo short and long distance ribosomal hopping (+6 or +60), and read through stop 

codons in both eukaryotic and prokaryotic cells (Atkins et al., 1990; Parker, 1989). For 
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example, the HIV gag-pol gene is a well-known system in which a highly efficient (12% 

of products) −1 frameshift takes place. In this case, frameshifting occurs within an 

overlap region for the open reading frames of the genes encoding the structural (gag) and 

enzymatic (pol) products involved in the process of reverse transcription. Many 

retroviruses synthesize gag-pol fusion proteins even though these two genes lie in 

different translational reading frames with the gag and pol open reading frames 

overlapping by 230 nucleotides (Jacks et al., 1987). The production of the fusion protein 

requires a programmed –1 ribosomal frameshifting within the overlap region as 

ribosomes translate the viral messenger RNA. This frameshift occurs at a slippery 

sequence followed by an RNA structural motif that stimulates frameshifting. This motif 

is commonly a stem–loop for HIV-1 and the sequence following the stem–loop can 

influence the frameshift efficiency in HIV-1 (Dulude et al., 2002). Frameshifting occurs 

only when the ribosome pauses occurs at a sequence that can induce the shift in reading 

frames. The mechanisms leading to this pause include blockage of ribosomal movement 

by a RNA pseudoknot, slow decoding of an in-frame sense codon, and slow recognition 

of an in-frame termination codon by peptide release factor. Since frameshift efficiency 

appears to vary directly with the duration of the pause, rare codons and those will low 

abundance tRNAs are likely targets for physiological frameshifting (Farabaugh, 1996). In 

our studies of the FoxD3 sym1 mutant we have found that translational frameshifting 

suppresses the otherwise null character of this mutation, providing an interesting example 

of frameshifting control in a developmental context. 
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1.8.  Summary of Results Presented in this Thesis   

In my thesis research I have focused on regulation of dorsal mesoderm 

development in zebrafish, specifically, the role of the transcription factor FoxD3 in this 

regulatory network. Two zebrafish foxd3 mutants have been identified: the mother 

superior (mosm188) mutant that leads to a depletion of neural crest derivatives (Montero-

Balaguer et al., 2006) and the sympathetic mutation 1 (sym1) mutant which shows defects 

in a subset of neural crest derivatives (Stewart et al., 2006). Both mutants were identified 

in a mutational analysis screening for neural crest deficiencies. FoxD3 function is 

necessary and sufficient for dorsal mesoderm formation in Xenopus, where it maintains 

nodal expression in the Spemann organizer (Steiner et al., 2006). foxd3 expression in the 

Xenopus organizer is conserved in the zebrafish shield where foxd3 is coexpressed with 

the Nodal-related genes, cyclops (cyc) (Rebagliati et al., 1998) and squint (sqt) (Erter et 

al., 1998). Therefore, we would expect defects in dorsal mesoderm development, in the 

gastrula and during axis formation in the zebrafish foxd3 mutants, but this has not been 

reported. To assess the role of foxd3 in zebrafish mesodermal development I examine the 

function of FoxD3 during early gastrulation in wild type zebrafish and in the sym1 mutant 

to address these contrasting findings.  

 I have found that in the zebrafish embryo FoxD3 acts to modulate dorsal 

mesoderm formation through the Nodal signaling pathway (Chapter 2). These results 

confirm that FoxD3 is an essential and conserved component of the regulatory pathways 

that pattern the embryonic mesoderm of vertebrates. Further, studies of FoxD3 mutant, 

sym1, show indeed, these mutants do display defects in mesodermal and axis formation, 

consistent with a requirement for FoxD3 function in these processes. However, the sym1 

product retains activity, contrary to the predictions based on the molecular lesion, and is a 
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hypomorphic mutation (Chapter 3). Finally, I present evidence that the retention of 

activity in the sym1 mutant is a result of an unexpected translational frameshifting 

process that suppresses the null character of sym1 (Chapter 4). 
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2. Chapter 2: FoxD3 regulation of mesodermal development in Zebrafish 

2.1. Summary 

 FoxD3, a member of the Fox family of transcription factors, has roles in 

regulation of neural crest development and maintenance of mammalian stem cell 

lineages. Mouse FoxD3 null embryos die by 6.5 dpc, and FoxD3 null trophoblast 

progenitors are defective in self-renewal and differentiation. Further, neither embryonic 

stem cell lines nor trophoblast stem cell lines can be established from FoxD3 null 

embryos. Differentiation of embryonic stem cells into distinct tissue lineages has also 

been shown to be regulated by expression of Nodal. In addition, Nodal ligands, members 

of the TGFβ superfamily, are required for germ layer induction in vertebrates. During 

zebrafish gastrulation, the expression domain of the Nodal-related genes, Cyclops (Cyc) 

and Squint (Sqt), overlaps that of FoxD3 in the shield, suggesting a possible role for 

FoxD3 in mesodermal development. At shield stage, dorsal mesoderm markers are 

expanded when FoxD3 is overexpressed, and reduced after FoxD3 knockdown (KD) by 

morpholinos. KD phenotypes observed at 24hrs are similar to the Nodal loss-of-function 

phenotype. FoxD3 is dependent on a functional Nodal pathway for dorsal mesoderm 

induction as FoxD3 does not rescue mesodermal development or induce ectopic 

mesoderm in MZoep embryos that lack a functional Nodal pathway. The results suggest 

that FoxD3 regulates dorsal mesoderm induction through the Nodal pathway, at least in 

part. 
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2.2. Introduction 

 The basic vertebrate body plan is initiated by signaling cascades induced by Wnt, 

BMP, Nodal, and FGF ligands. These signals act in a temporally and spatially 

coordinated manner (Kimelman, 2006) and are regulated by extra cellular inhibitors of 

Wnt, BMP and Nodal proteins, that are secreted by the organizer (De Robertis and 

Kuroda, 2004). These inhibitors shape and refine the growth factor gradients into 

dynamic, overlapping signaling territories. Although a great deal is known about these 

signaling pathways, much is to be explored on how the specific germ layer boundaries 

are formed and maintained.  

 The primary signaling center responsible for dorso-ventral patterning of the 

mesoderm during gastrulation is the Spemann organizer in Xenopus, and the dorsal 

embryonic shield in zebrafish. Nodal ligands, members of the TGFβ superfamily, are 

expressed in the shield and are required for induction and patterning the mesoderm and 

endoderm in all vertebrates (Schier, 2003). The zebrafish nodal Sqt is expressed in a 

dorsal region of the blastula that includes the extraembryonic yolk syncytial layer (YSL) 

while Cyc is expressed only in the dorsal blastula (Feldman et al., 1998). Nodals are 

conserved and expressed in all vertebrates and require EGF-CFC proteins as cofactors 

(Ding et al., 1998; Gritsman et al., 1999). In zebrafish, nodals signal by binding type II 

and type I receptors together with the EGF-CFC coreceptor (Oep). This induces 

phosphorylation and activation of smads 2/3, which form a complex with smad4. This 

complex can then enter the nucleus and regulate target gene expression.  

 Nodal antagonists are also present during early embryogenesis. Antivin proteins 

negatively regulate mesoderm induction through inhibition of Nodal activity by 
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competing for binding to their common receptors. Further, overexpression of antivin in 

zebrafish embryos blocks head and trunk mesoderm formation that results in a phenotype 

identical to that of Nodal-loss of function (Bisgrove et al., 1999; Meno et al., 1999; 

Thisse and Thisse, 1999). In a similar level, tomoregulin-1 (TMEFF1) binds to the nodal 

coreceptor Oep, however does not associate with either nodal or the type I ALK4 

receptor (Harms and Chang, 2003). Cerberus, on the other hand, functions by directly 

binding Nodals to block their activity, and its expression is activated by Nodals during 

gastrulation therefore acting as a feedback inhibitor of Nodals (Piccolo et al., 1999). 

Dapper2 (dpr2) is positively regulated by Nodal signals and is expressed in mesoderm 

precursors during embryogenesis. Dpr2 acts by binding Alk5 and Alk4 receptors to aid in 

their lysosomal degradation (Zhang et al., 2004). The zinc-finger transcription factor 

Churchill (ChCh) represses transcriptional response to Nodal signaling and can be 

induced by FGFs. It also regulates cell fate by regulating cell movements, therefore, 

ChCh shows a dynamic role in regulating cell movement and fate during early 

development (Londin et al., 2007a; Londin et al., 2007b). 

 FoxD3, a member of the forkhead class of transcription factors, is essential for 

neural crest development and maintenance of mammalian stem cell lineages. FoxD3 

expression is present in mouse and human embryonic stem cells, in mouse trophoblast 

stem cells and in the preimplantation mouse embryo. FoxD3−/− embryos die after 

implantation; they present a reduced epiblast and lack a primitive streak. FoxD3 is also 

required for maintenance of embryonic cells of the early mouse embryo and ES cell lines 

cannot be established from FoxD3−/− embryos. Taken together, FoxD3 is a factor 

required for the maintenance of progenitor cells in the mammalian embryo (Hanna et al., 
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2002; Sutton et al., 1996). Interestingly, trophoblast progenitors in FoxD3−/− embryos do 

not self-renew, and are not multipotent, but instead give rise to an excess of trophoblast 

giant cells, therefore trophoblast stem cell lines can not be established from FoxD3 null 

embryos (Tompers et al., 2005). During Xenopus early embryogenesis FoxD3 is essential 

for Nodal expression in the Spemann organizer, dorsal mesodermal development and axis 

formation. FoxD3 function in mesoderm induction is dependent on the recruitment of 

transcriptional corepressors of the TLE/Groucho, and blocking FoxD3 activity results in 

axial defects and loss of dorsal mesodermal gene expression. FoxD3 also requires the 

Nodal signaling pathway for expression of several Nodal-related genes (Steiner et al., 

2006; Yaklichkin et al., 2007). In zebrafish, FoxD3 is expressed at shield stage in the 

dorsal cells and in paraxial mesoderm, and later in the premigratory neural crest cells 

(Odenthal and Nusslein-Volhard, 1998). FoxD3 function in the neural crest has been 

determined to be necessary for differentiation of neural crest derivatives, including 

cranio-facial cartilage, peripheral neurons, glia, and iridophore pigment cells (Kelsh et 

al., 2000; Lister et al., 2006; Montero-Balaguer et al., 2006; Stewart et al., 2006), 

however, its early function during gastrulation has not been nearly as well documented. 

 Here we show that FoxD3 gain-of-function is able to induce dorsal mesoderm 

markers and dorsalized embryos and that it is required for dorsal mesoderm development 

as FoxD3 knockdown results in reduced dorsal marker expression. Further, FoxD3 

knockdown phenotypes are similar to those for nodal loss-of-function, further implying a 

role for FoxD3 is dorsal mesoderm development. We make use of MZoep fish, which are 

deficient in the EGF-CFC co-receptor essential for nodal signaling, to examine the 

regulatory relation of FoxD3 and the Nodal pathway. FoxD3 overexpression does not 
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rescue the MZoep fish. This result places FoxD3 upstream of Oep and shows the 

requirement of a functional nodal pathway for FoxD3 to regulate dorsal mesoderm gene 

expression. 

 

2.3. Materials and methods 

2.3.1. Zebrafish methods and microinjection 

 Zebrafish (Tubingen strain) were raised under standard laboratory conditions as 

previously described (Mullins et al., 1994), and developmental stage was determined 

according to (Kimmel et al. 1995). Microinjection of wild-type embryos was performed 

at the one-cell stage using standard methods (Westerfield, 1993). WT and injected 

embryos were stage matched for all experiments. 

 

2.3.2. FoxD3 expression constructs 

A pCS2-myc-FoxD3 plasmid (Lister et al., 2006) was used for expression of wild-

type zebrafish FoxD3. The pCS2-myc-FoxD3 construct (Lister et al., 2006) was used for 

expression of FoxD3 protein. For microinjection in vitro transcribed mRNA was 

generated from NotI linearized plasmid templates using the Ambion SP6 mMessage 

mMachine system (Austin, TX). Microinjections were done at the one cell stage. 

 

2.3.3. Morpholino oligonucleotides 

 Morpholino antisense oligonucleotides were obtained from Gene Tools 

(Philomath, OR). Lyophilized oligonucleotides were resuspended in water, then diluted 

into 1X Danieau buffer (Nasevicius and Ekker, 2000) and 1nl was injected into one-cell 
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stage embryos. Two morpholino antisense oligonucleotides were designed to Danio rerio 

FoxD3 (BC095603): FoxD3MO1 (5'-TGCTGCTGGAGCAACCCAAGGTAAG-3') is 

complementary to nucleotides 160-184 of the 5’ UTR and FoxD3MO2 (5’-

TGGTGCCTCCAGACAGGGTCATCAC-3’) is complementary to nucleotides 194-218 

and overlaps the start codon. A mixture of the two oligonucleotides (total dosage 20ng 

per embryo) was used for knockdown experiments in wild-type embryos. Injection of the 

individual oligonucleotides at higher dosage (30-40ng) yielded similar results but with 

some associated toxicity. As specificity controls, a mismatch oligonucleotide was 

injected at equal dosage, and Cyc or Xenopus FoxD3 (Steiner et al., 2006) were injected 

to rescue.  

 

2.3.4. In situ hybridization 

Whole-mount in situ hybridization was performed as previously described 

(Schulte-Merker et al., 1992), using the following digoxigenin-labeled antisense RNA 

probes: bmp7 (Schmid et al., 2000), chordin (Miller-Bertoglio et al., 1997), cyclops 

(Rebagliati et al., 1998), goosecoid (Stachel et al., 1993), no tail (Schulte-Merker et al., 

1992), and sonic hedgehog (Krauss et al., 1993). All images were taken from an 

MZFLIII12.5 stereomicroscope (Leica) with a Retiga 1300 camera (Q-imaging) and 

processed using Adobe Photoshop. 

 

2.4. Results 

2.4.1. Dorsal mesoderm induction by FoxD3 
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To determine the activity of FoxD3 in mesodermal development, gastrulation and 

axis formation, gain-of-function analysis was performed by mRNA injection, and 

embryos were examined at the gastrula and 24hpf stages (Fig. 2.1). Wild-type embryos 

were injected at the one-cell stage with 25pg of FoxD3 mRNA, and at the shield stage 

morphology was assessed in live embryos and mesodermal gene expression was 

evaluated by whole-mount in situ hybridization. In response to FoxD3, excessive 

convergence to the midline was observed as a thickening of the dorsolateral blastoderm 

and shield (94%, n=500), as compared to uninjected embryos (Fig. 2.1A,B). In a majority 

of injected embryos, expansion of dorsal or panmesodermal gene expression into lateral 

or animal domains was observed (92%, n= 556) (Fig. 2.1C-J). For cyclops, chordin, and 

goosecoid, genes normally restricted to the shield domain (Miller-Bertoglio et al., 1997; 

Rebagliati et al., 1998; Stachel et al., 1993), FoxD3 induced lateral expansion (Fig. 

2.1D,F,H), as well as animal expansion for chordin (Fig. 2.1F) and ectopic expression for 

goosecoid (Fig. 2.1H). The panmesodermal gene no tail is expressed by mesodermal cells 

throughout the margin at the shield stage (Schulte-Merker et al., 1992), and an expansion 

of no tail towards the animal pole was observed in response to FoxD3, resulting in a 

broader marginal domain of no tail expression (Fig. 2.1J). Consistent with the expansion 

of dorsal markers, the ventrolateral domain of bmp7 expression (Schmid et al., 2000) was 

reduced and limited to the ventralmost margin in response to FoxD3 (Fig. 2.1L). 

FoxD3-injected embryos were strongly dorsalized at 24hpf (90%, n=230) (Fig. 

2.1M,N), consistent with the expansion of dorsal mesodermal genes at the shield stage. 

To assess the organization of the axial mesoderm at 24hpf, no tail and sonic hedgehog 

expression was examined (Fig. 2.1O-R). no tail expression was not perturbed throughout 
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Figure 2.1 FoxD3 expression results in dorsalized embryos. (A-L) whole mount view of 

shield stage embryos (6hpf). (A,B) live embryos showing (A) WT shield structure and 

blastoderm and (B) expanded shield and blastoderm after FoxD3 overexpression. In situ 

hybridization of WT control embryos showing expression of (C) cyc in the shield, (E) 

chd in the shield and paraxial mesoderm, (G) gsc in the shield (I) ntl throughout 
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mesoderm, and (K) bmp7 in the ventral region. In situ hybridization of FoxD3 

overexpressing embryos showing expansion of dorsal markers (D) expansion of cyc 

laterally, (F) expansion of chd laterally and towards the animal pole, (H) misexpression 

and expansion of gsc, (J) expansion of ntl towards the animal pole and (L) reduction of 

ventral marker bmp7 from ventral regions. (M-R) 24hpf embryos (M) control embryo 

showing normal phenotype, (N) FoxD3 overexpressing embryos showing a dorsalized 

phenotype. (O) In situ hybridization of control embryo for ntl expression seen in the 

notochord, (P) ntl expression in the FoxD3 overexpressing embryo, (Q) Shh expression in 

the ventral neural tube along the dorsal axis of a control embryo (dorsal view), (R) 

ectopic expression of Shh in a FoxD3 overexpressing embryo (dorsal view) (arrow head). 
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much of the body axis, but was disorganized in the tailbud (Fig. 2.1P), consistent with the 

morphogenetic disruption of posterior structures in dorsalized embryos (Holley, 2006). 

At 24hpf sonic hedgehog is expressed in the notochord, floor plate, and part of the 

diencephalon (Krauss et al., 1993), and expanded (83%, n=64) or ectopic (17%, n=13) 

expression was observed in response to FoxD3 (Fig. 2.1R), consistent with axial 

dorsalization and, in a minority of embryos, axial duplication. The phenotypic and gene 

expression changes observed at the shield and 24hpf stages demonstrate that FoxD3 can 

strongly induce the expansion of the dorsal mesoderm, resulting in a predicted 

dorsalization of the body axis. Furthermore, the embryonic response to FoxD3 is similar 

to that observed for Nodal pathway gain-of-function in the zebrafish (Feldman et al., 

1998). 

 The gain-of-function studies described here show that zebrafish FoxD3 can 

influence mesodermal development within the intact embryo, but do not demonstrate an 

ability of FoxD3 to induce dorsal mesoderm de novo from competent tissue. To assess 

this function zebrafish FoxD3 was expressed in Xenopus animal explants, which 

normally differentiate as atypical epidermis, but are competent to form mesoderm in 

response to appropriate inducers (Smith et al., 1987). At the one-cell stage, FoxD3 

mRNA (100pg) was injected into the animal pole, explants were isolated at the late 

blastula stage, cultured to the tailbud stage, and mesodermal gene expression was 

examined by RT-PCR. Zebrafish FoxD3 strongly induced the expression of muscle actin 

and collagen II, markers of somitic muscle and notochord, respectively (Fig. 2.2). 

Therefore, zebrafish FoxD3 has potent dorsal mesoderm-inducing activity, identical to 

that previously described for Xenopus FoxD3 (Steiner et al., 2006). 
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Figure 2.2 FoxD3 can induce dorsal mesoderm de novo from competent tissue. Zebrafish 

FoxD3 was expressed in Xenopus animal explants at the one-cell stage and mesodermal 

gene expression was examined by RT-PCR at tailbud stage. Similar to the induction of 

Xenopus FoxD3, zebrafish FoxD3 can induce mesoderm in Xenopus animal caps. 

Zebrafish FoxD3 strongly induced the expression of muscle actin and collagen II, 

markers of somitic muscle and notochord, respectively, in the same way Xenopus FoxD3 

does. EF1α is used as an expression control. (The Xenopus animal explant studies and 

RT-PCR experiments were performed  by Qun Lu). 
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2.4.2. FoxD3 is essential for dorsal mesoderm and axial development 

 To determine the requirement for FoxD3 in zebrafish mesodermal development, 

knockdown studies were performed using morpholino antisense oligonucleotides. A 

mixture of two oligonucleotides, one targeting the FoxD3 5’UTR and one overlapping 

the initiator codon (see materials and methods), was injected at the one-cell stage (total 

dosage 20ng), and embryos were analyzed at the shield and 24hpf stages (Fig. 2.3). At 

the shield stage, FoxD3 knockdown embryos had reduced or absent shield structures (Fig. 

2.3B), and a severe reduction of dorsal mesodermal gene expression (Fig. 2.3C-H). 

cyclops and goosecoid expression was detectable, but substantially reduced in a majority 

of knockdown embryos (86%, n=438 and 73%, n=554) (Fig. 2.3D,F), and no tail 

expression was reduced to a thin marginal expression domain (70%, n=523) (Fig. 2.3H). 

In addition, chordin expression in the shield was strongly reduced (79%, n=431) (data not 

shown). 

 FoxD3 knockdown embryos display reduced head structures, notochord defects, 

loss of trunk somites, and retention of tail somites (78%, n=330) (Fig. 2.3I,J). Analysis of 

sonic hedgehog expression indicated disruption of notochord and floor plate development 

(Fig. 2.3K,L). Moreover, the spectrum of mesodermal and axial defects observed in 

FoxD3 knockdown embryos are similar to cyclops/squint mutants and MZoep mutants 

(Dougan et al., 2003; Feldman et al., 1998; Gritsman et al., 1999). Specificity controls for 

the knockdown studies included injection of a morpholino mismatch oligonucleotide, as 

well as knockdown rescue experiments. At a dosage (20-40ng) equal to or greater than 

the two perfect match oligonucleotides, a FoxD3 oligonucleotide with multiple  
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Figure 2.3 Reduced dorsal markers after FoxD3 knock down. Lateral view of, (A-G) 

shield stage embryos (6hpf), (H-K) 24hpf. (A,B) live embryos showing (A) WT shield 

structure and blastoderm and (B) FoxD3 morphants with no obvious shield structure and 

reduced blastoderm. In situ hybridization for (C) cyc in the shield, (E) gsc in the shield, 

(G) ntl throughout mesoderm. FoxD3 morphants show reduced dorsal marker expression 

(D) reduced cyc within the shield, (F) reduced and thinning expression of gsc (H) 

reduced expression of ntl towards the vegetal pole in the shield. At 24hpf (I) control 

embryo, (J) morphant embryos show nodal loss of function phenotype. (K) Shh 

expression along the ventral neural tube in a control embryo, (L) Shh expression presents 

gaps in FoxD3 morphants, particularly in the more posterior tail area.
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mismatches did not produce any mesodermal or axial phenotypes (data not shown). In 

addition, injection of knockdown embryos with Xenopus FoxD3 rescued normal 

development in most embryos (82%, n=126) (fig.2.4 C,E). Taken together, results 

indicated that a specific knockdown of endogenous FoxD3 results in severe mesodermal 

and axial defects, strongly supporting an essential conserved role for FoxD3 in 

mesodermal development. Furthermore, the similarity of phenotype for FoxD3 

knockdown and Nodal pathway loss-of-function is consistent with the predicted role of 

FoxD3 in promoting Nodal expression and signaling (Steiner et al., 2006). This 

regulatory relation of FoxD3 and the Nodal pathway is further supported by the ability of 

injected cyclops mRNA to fully rescue normal development in FoxD3 knockdown 

embryos (fig.2.4 D,E). 

It is important to note that previous FoxD3 knockdown attempts resulted only in 

neural crest defects, and not in the mesodermal phenotypes we report (Kelsh et al., 2000; 

Lister et al., 2006; Montero-Balaguer et al., 2006; Stewart et al., 2006). This difference 

may simply reflect the efficacy of FoxD3 knockdown. We have used a mixture of two 

FoxD3-specific oligonucleotides in our studies, while the previously studies made use of 

only single oligonucleotides. If in fact our approach results in a more complete 

knockdown of FoxD3 protein, this would suggest that neural crest development is more 

sensitive to FoxD3 dosage than is mesodermal development, and this would account for 

the differences in results obtained. However, this explanation would not account for the 

absence of mesodermal phenotypes in the sym1 mutant, which has been reported to be a 

FoxD3 null mutation (Stewart et al., 2006). 
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Figure 2.4 Specificity controls for the FoxD3 MO1+2 knockdown.  Knockdown rescue 

experiments were done with Xenopus FoxD3 or zebrafish cyclops. MO1+2 morpholino 

combination results in (B) embryos with phenotypes similar to nodal losss-of-function at 

24 hpf. Embryos show reduced head and trunk mesoderm as well as expanded tail 

somites (88%, n=396) compared to (A) uninjected control embryos. Co-injection of 

knockdown embryos at the one cell stage with (C) Xenopus FoxD3 rescued normal 

development in most embryos (82%, n=126), in a similar manner, co-injection of  (D) 
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cyclops, a zebrafish Nodal protein, results in rescue of the mesodermal and axial tissues 

(73%, n=202). These results indicate that FoxD3 MO1+2 specifically knocks-down 

endogenous FoxD3. (E) shows the ability of Xenopus FoxD3 and zebrafish cyclops to 

rescue the morphant phenotype. Blue bars show the wild-type phenotype in the control 

embryos as well as in the rescued embryos, grey bars show the knockdown phenotype 

after morpholino oligo injection and green bars show dorsalized phenotypes as a result of 

excess dorsalizing activity of the rescuing Xenopus FoxD3 or zebrafish cyclops. FoxD3 

MO1+2 results in morphant phenotypes in 88% of the embryos. Rescue injections with 

Xenopus FoxD3 result in close to wild-type phenotypes for 82% of the morphant 

embryos and zebrafish cyclops injections results in 73% of morphant embryos showing a 

close to wild-type phenotype. 
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2.4.3. FoxD3 function is dependent on an active Nodal signaling pathway 

 The FoxD3 gain-of-function and knockdown results are consistent with a role for 

FoxD3 in maintaining Nodal expression and activity in the organizer, where FoxD3 and 

Nodal genes are coexpressed during gastrulation. To further examine the regulatory 

relation of FoxD3 and the Nodal pathway, we made use of MZoep mutant zebrafish that 

lack an essential Nodal co-receptor (Gritsman et al., 1999). In MZoep embryos, Nodal 

cannot bind its functional receptor complex and Nodal signaling output is eliminated. If 

FoxD3 acts solely as an upstream positive regulator of the Nodal pathway in the gastrula, 

it is predicted that the mesodermal activity of FoxD3 would be fully suppressed in MZoep 

embryos. At the one-cell stage, MZoep embryos were injected with FoxD3 and 

mesodermal gene expression was examined at the shield stage (Fig. 2.5). As predicted, 

FoxD3 did not rescue or induce the expression of cyclops, goosecoid, chordin, or no tail 

in any embryos (100%, n=97) (Fig. 2.5I,O,U,A’). As a control for rescue, MZoep 

embryos were injected with Activin, a TGFß ligand that activates the Nodal pathway 

independent of the coreceptor requirement (Gritsman et al., 1999), and strong rescue of 

mesodermal gene expression was observed (Fig. 2.5J,P,V,B’). As positive controls for 

FoxD3 and Activin function, wild-type embryos injected with either FoxD3 or Activin 

showed strong induction of mesodermal gene expression (Fig. 2.5K,L,Q,R,W,X,C’,D’). 

Injected MZoep embryos were also examined at 24hpf for axial and midline rescue, and 

similar results were obtained (Fig. 2.6). FoxD3 failed to rescue head, trunk or notochord 

development (Fig. 2.6E,F), while Activin partially rescued head and trunk, and fully 

rescued notochord (Fig. 2.6H,I). 
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Figure 2.5 FoxD3 acts through the Nodal pathway. (A-F) lateral view of live embryos at 

shield stage, (A) shield structure in a wt control embryo, (B) no shield structure is evident 

in a MZoep mutant embryo, (C) no shield structure is obvious in a FoxD3 overexpressing 

MZoep mutant embryo, (D) expanded shield structure observed on the dorsal side of an 

MZoep mutant embryo overexpressing activin, (E) control embryo overexpressing 

FoxD3, the blastoderm and shield are thickened, (F) a control WT embryo 

overexpressing activin showing an expanded shield. (G-D’) Whole-mount in situ 

hybridization at shield stage, dorsal view. (G,M,S,Y) control embryos showing wt 
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expression of cyc, chd, and gsc in the dorsal shield, (Y) showing expression of ntl 

throughout mesodermal tissue. (H-Z) no dorsal markers expressed in the MZoep dorsal 

shield, (I-A’) no dorsal markers expressed after overexpression of FoxD3 in MZoep 

embryos. (J-B’) expansion of dorsal markers after activin overexpression in MZoep 

embryos. (J) cyc, (P) chd, (V) gsc, (B’) ntl. (K-C’) control showing expansion of dorsal 

shield markers after FoxD3 overexpression in WT control embryos (K) cyc is 

misexpressed and expanded towards the animal pole, (Q) chd is expanded laterally, (W) 

gsc is expanded laterally, (C’) ntl is expanded towards the animal pole. (L-D’) control 

showing expansion of dorsal shield markers after activin overexpression in WT control 

embryos, (L) cyc is expanded towards the animal pole, (R) chd is expanded towards the 

animal pole and laterally, (X) gsc is expanded laterally, (D’) ntl is expanded towards the 

animal pole. 
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Figure 2.6 FoxD3 acts through the Nodal pathway. (A) 24hpf WT control embryo, (B) 

24hpf MZoep embryo, (C) ISH for ntl at early somite stage, no notochord present. (D) 

24hpf dorsalized embryo overexpressing FoxD3, (E) 24hpf MZoep embryo 

overexpressing FoxD3, (F) ISH for ntl at early somite stage MZoep embryo 

overexpressing FoxD3, no notochord present. (G) 24hpf dorsalized embryo 

overexpressing activin, (H) 24hpf MZoep embryo partially rescued with activin. Notice 

some dorsal somites and eye structures. (I) ISH for ntl at early somitogenesis (11hpf), 

notice formation of the notochord. 
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 Further support for these conclusions was obtained by coexpressing FoxD3 and 

Antivin, an atypical TGFß-related protein that inhibits Nodal signaling by sequestration 

of the Oep coreceptor (Thisse and Thisse, 1999). At the shield stage, Antivin fully 

suppressed mesodermal gene expression and coinjection of FoxD3 did not rescue 

expression of cyclops, goosecoid, or no tail (100%, n=102) (Fig. 2.7). The results 

demonstrate that the mesodermal function of FoxD3 in the gastrula is completely 

dependent on a functional Nodal signaling pathway, consistent with a model in which 

FoxD3 acts upstream of Nodal in the organizer domain to promote mesodermal 

development. 

 

2.5. Discussion 

2.5.1. FoxD3 maintains dorsal mesoderm in the zebrafish shield 

 In this study we show several lines of evidence to support a function for zebrafish 

FoxD3 is the gastrula in regulating dorsal mesoderm development. These include the 

timing and location of FoxD3 expression, the dorsalizing activity resulting from ectopic 

expression of the zebrafish gene in Xenopus and zebrafish embryos, and the embryonic 

phenotypes and reduced dorsal marker expression produced by knockdown of FoxD3. 

 We have found that FoxD3 protein plays an important role during early dorsal 

mesodermal gene expression and development in the zebrafish, and that FoxD3 requires a 

functional Nodal pathway to regulate dorsal mesoderm. 
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Figure 2.7 Antivin blocks FoxD3s ability to induce mesoderm. (A-D) lateral view of live 

embryos at shield stage showing (A) wt control shield, (B) antivin treated embryos with 

no shield structure being formed, (C) embryo showing co-expression of antivin and 

FoxD3, no shield structure is formed, (D) embryos showing a thickened blastoderm and 

expanded shield after FoxD3 expression. (E-P) ISH at shield stage (E,I,M) ISH of wt 

control embryos showing (E) cyc expression in the shield, (I) gsc expression in the shield, 

(M) Ntl expression through out the mesoderm (animal pole view). (F,J,N) ISH of antivin 

treated embryos (F) cyc is not expressed in the shield, (J) gsc is not expressed in the 
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shield, (N) ntl is not expressed in the shield (animal pole view).  (G, K, O) ISH of 

embryos co-expressing antivin and FoxD3 showing (G) no cyclops expression in the 

shield, (K) no gsc expression in the shield, (O) no expression of ntl in the shield (animal 

pole view). Note how FoxD3 does not rescue the expression of any of the dorsal genes. 

(H, L, P) ISH of embryos overexpression FoxD3, (H) cyclops is expanded towards the 

animal pole and laterally, (L) gsc is expanded laterally and (P) ntl expression is expanded 

towards the animal pole (animal pole view). 
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2.5.2. FoxD3 in mesoderm induction  

 Nodal proteins are endogenous mesoderm inducers in vertebrates (Agius et al., 

2000). The precise expression and regulation of Nodal signaling is essential for normal 

embryo development. Dorsal mesoderm induction results from a balance of inducing and 

repressing molecules, being expressed from the ventral mesoderm and the dorsal 

mesoderm (embryonic shield).  

 Results after overexpression of FoxD3 show that it is able to expand dorsal 

mesoderm marker expression and so would be regulating expression of target genes 

required during early dorsal mesoderm development. The Xenopus FoxD3 WH-DNA 

binding domain was cloned into constructs with VP16 or Eng as activator or repressor 

domains (Steiner et al., 2006). FoxD3 was found to act as a transcriptional repressor as 

the Eng-FoxD3 repressor fusion protein showed dorsalizing activity similar to WT 

FoxD3. In the same way, Eng-FoxD3 induced dorsal mesoderm marker expression and 

dorsalized zebrafish embryos, acting as a transcriptional repressor. We propose that 

FoxD3 acts as a repressor to maintain expression of dorsal mesoderm genes in the shield. 

Outside the shield, FoxD3 would be repressed and Nodal gene expression not maintained.  

 Morpholino knockdown of FoxD3 interferes with the required maintenance of 

dorsal mesoderm gene expression, and the result is phenotypes with reduced shield 

structures and reduced dorsally derived structures at 24hpf as expected. The floor plate, a 

specialized group of cells in the ventral midline of the neural tube of vertebrates, plays 

crucial roles in patterning the central nervous system, and is induced by nodals. A group 

of the MO oligo treated embryos analyzed for sonic hedgehog expression at 24hpf show 

reduced expression in the ventral floor plate, this may be a result of failure to specify 
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axial mesoderm adequately. These observations are consistent with what is seen in oep 

mutant embryos, where a small minority show defects in formation of the notochord, the 

more posterior axial mesoderm (Schier et al., 1997). Results are also consistent with the 

requirement of cyclops signaling during gastrulation for induction of the floor plate and 

ventral brain (Sampath et al., 1998). FoxD3 overexpression results in the expansion of 

sonic hedgehog expression in the floor plate as a result of cyclops upregulation. Zebrafish 

cyclops regulates the expression of sonic hedgehog in the ventral neural tube (Tian et al., 

2003) and the floor plate cells that express sonic hedgehog at 24hpf originate from the 

embryonic shield (Krauss et al., 1993). 

 Nodal gain- and loss-of-function in the zebrafish results in the dramatic 

perturbation of mesodermal development (Schier and Talbot, 2005). Embryos that are 

null for two Nodal genes (cyclops and squint) or the Nodal coreceptor one-eyed-pinhead 

(mzOep) lack all trunk and head mesoderm as well as endoderm, and display defects 

during the initial induction of mesoderm at gastrula stages (Feldman et al., 2000; 

Whitman, 2001). We found that phenotypes observed after FoxD3 knockdown at 24hpf 

and later show similar characteristics to nodal loss-of-function phenotypes. This further 

establishes a role of FoxD3 in regulating the nodal signaling pathway and so, in 

regulating dorsal mesoderm development. 

 Our model predicts that FoxD3 function is upstream of Oep in the Nodal pathway. 

Consistent with our model, overexpression of FoxD3 has no effect on dorsal gene 

expression in MZoep fish or in Antivin-treated embryos, demonstrating that FoxD3 

requires a functional nodal pathway to regulate dorsal mesoderm gene expression. 
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2.5.3. Differences in Nodal requirements between vertebrate species 

 In mouse, nodal loss-of-function results in drastically reduced mesodermal gene 

expression and the primitive streak does not form (Conlon et al., 1994), blocking Nodal 

signaling in Xenopus results in anterior truncations, together with delayed and suppressed 

induction of mesendodermal markers (Osada and Wright, 1999). In zebrafish, embryos 

that are null for the two Nodal genes (cyclops and squint) or the Nodal co-receptor one-

eyed-pinhead (mzOep) do not gastrulate and lack all trunk and head mesoderm as well as 

endoderm and present expanded tail somites which form more ventral mesoderm 

(Feldman et al., 2000; Feldman et al., 1998; Gritsman et al., 1999; Whitman, 2001). 

Squint;cyclops double mutants lack mesendodermal derivatives, including notochord, 

somites, heart, pronephros, blood and gut, and lack head and trunk tissues (Feldman et 

al., 1998). Single mutants for cyclops and squint give milder phenotypes, as do single 

maternal or zygotic oep mutants (Dougan et al., 2003; Hatta et al., 1991). Single mutants 

display cyclopia and defects in prechordal plate and ventral nervous system. Given the 

severity of the double mutants, it is thought that these molecules have significant and 

overlapping activities. Further, because signaling pathways and molecules are conserved 

between organisms, these inconsistent nodal loss-of-function phenotypes between 

organisms remain to be understood. 

 

2.5.4. Previous FoxD3 observations 

 Several FoxD3 loss of function approaches using antisense morpholino 

oligonucleotides in zebrafish show NC defects, albeit no early gastrulation defects 

(Cooper et al., 2009; Ignatius et al., 2008; Lister et al., 2006; Montero-Balaguer et al., 
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2006; Stewart et al., 2006). A plausible explanation is that affected embryos might have 

been overlooked since the experiments were designed to study the activity of FoxD3 

during neural crest development, a process that occurs several hours (~10h) after 

gastrulation and mesoderm induction. Further, this could be due to incomplete 

knockdown with the dose of morpholino used. In our studies we make use of two 

morpholino oligonucleotides at slightly higher doses, described by Lister et al. (2006) and 

a second one targeted to the FoxD3 ATG start codon (designed by genetools, see 

methods). The combination of these two oligonucleotides is effective in knocking down 

FoxD3 activity at shield stage. Embryos injected with both oligos that survive and 

develop to 3dpf have craniofacial defects and iridophore as well as melanocyte reduction, 

as reported previously (Lister et al., 2006). An alternate explanation might be the 

presence of a FoxD3 ortholog or perhaps the presence of collaborating factors, however, 

we have not been able to come across either. These results also highlight the difference in 

requirement of FoxD3 at diverse stages and the importance of understanding FoxD3 

function and regulation at different stages of development. 

  

 In chapter 3, I reexamine sym1, a previously described FoxD3 mutant (Stewart et 

al., 2006). In conflict with our gain-of-function and knockdown studies, Stewart and 

colleague conclude that sym1 is a null allele, but do not report any defects in mesodermal 

or axial development. We use genetic, phenotypic, and gene expression analyses to 

reassess mesodermal development in the sym1 mutant. 
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3. Chapter 3: Reexamination of sym1, a Zebrafish FoxD3 mutant  

3.1 Summary 

 The FoxD3 mutant, sym1, has been reported to encode a truncated protein 

predicted to be a null allele. Phenotypic deficiencies include craniofacial defects and 

delayed development of chromatophores, consistent with the role of FoxD3 in neural 

crest formation. Based on our earlier results, we would predict early gastrulation 

deficiencies and defects in axial tissues derived from dorsal mesoderm. We assess the 

function of the Sym1 protein product by expressing sym1 mRNA in zebrafish embryos. 

Phenotypic and gene expression analysis demonstrates that sym1 retains partial function 

as dorsal markers are induced at the shield stage and embryos are dorsalized at later 

stages, similar to the activity of wild-type FoxD3. Furthermore, gene expression analysis 

of sym1 heterozygous cross progeny showed that 20% of the embryos present reduced 

dorsal gene expression, while a considerable proportion (9%) of the swimming larva 

analyzed have axial defects, a phenotypic class not previously reported. This phenotypic 

class is enhanced by FoxD3 knockdown in mutant embryos. The results suggest that 

sym1 is a hypomorphic allele of FoxD3 with partial penetrance of mesodermal defects, 

consistent with our earlier analysis of FoxD3 function in mesodermal development. 

 

3.2 Introduction 

 FoxD3 is a member of the Forkhead transcription factor family that contain a 

conserved 100 amino acid DNA-interaction motif called the forkhead domain (FHD), 

which is a variant of the helix–turn–helix motif (Lai et al., 1990; Sutton et al., 1996). 

Forkhead proteins present highly conserved amino acid sequences in the DNA 
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recognition helix, but maintain particular DNA-binding specificity which is likely 

conferred by the sequences outside the recognition helix (Overdier et al., 1994). FoxD3 

acts as a transcriptional repressor by binding DNA through its conserved winged helix 

(WH) DNA binding domain. Downstream of this WH domain, FoxD3 contains a 

Groucho repressor (GEH) motif which is necessary for its repressor activity (Yaklichkin 

et al., 2007).   

 FoxD3 in the early Xenopus gastrula is expressed in the Spemann organizer, and 

this expression domain is conserved in the zebrafish shield, in the chick node and the 

mouse gastrula. FoxD3 is also expressed at an earlier stage of mouse development in 

embryonic stem cells where it regulates stem cell maintenance (Pan et al., 2006) and later 

in pre-migratory and migrating neural crest (NC) cells (Barembaum and Bronner-Fraser, 

2005), and motor-neuron progenitors of the developing spinal cord (Hromas et al., 1999; 

Labosky and Kaestner, 1998).  

 Two zebrafish FoxD3 mutants have been reported, both mutants arose form a 

mutational analysis screening for neural crest deficiencies. One is the mother superior 

(mosm188) mutant, which was isolated based on its prominent craniofacial phenotype. 

mosm188 mutants have no FoxD3 expression in NC progenitors and show defects in early 

stages of specification and differentiation of NC derivatives, including the craniofacial 

cartilage, peripheral nervous system, and pigment cells. The authors suggest that the 

mosm188 mutation lies in a distal NC-specific regulatory element within the FoxD3 locus 

(Montero-Balaguer et al., 2006). The second FoxD3 mutant is sympathetic mutation 1 

(sym1). The sym1 embryos have similar defects in a subset of neural crest derivatives, 

including peripheral neurons, glia and craniofacial cartilage, but retain normal numbers 
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of melanocytes (Stewart et al., 2006). The only phenotypic descriptions reported are 

craniofacial defects observed as a reduced jaw, and delayed development of 

chromatophores after 3dpf, consistent with the role of FoxD3 in neural crest formation. 

However, there is no mention of defects in gastrulation or dorsal mesoderm derivatives, 

as would be expected from our earlier results on FoxD3 regulation of dorsal mesodermal 

development. The sym1 mutation is a point deletion (G537), which results in a shift of the 

reading frame and introduction of an early termination codon seven codons downstream 

of the point deletion. The point deletion in the sym1 mutant truncates the second wing 

(W2) of the winged helix domain, which binds the minor groove and confers DNA 

recognition specificity for binding and transactivation (Berry et al., 2005).  

 We hypothesize that sym1 mutants do display previously unappreciated defects in 

mesodermal and axial development. To assess the early developmental consequences of 

the sym1 mutation we pursued genetic, phenotypic, and gene expression analyses. We 

find that sym1 is a hypomorphic allele of FoxD3 with reduced penetrance of mesodermal 

phenotypes. 

 

3.3 Material and methods 

3.3.1 Heterozygous zebrafish mating and maintenance 

 Embryos and adult fish were raised and maintained under standard laboratory 

conditions (Westerfield, 1993). Two female and one male sym1 +/- fish were obtained 

from the Look lab (Stewart et al., 2006). Fish were mated and heterozygous individuals 

were maintained in the fish facility. Embryos were genotyped and phenotyped for 

experimental use. 
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3.3.2 FoxD3 and sym1 expression constructs 

 For expression of Sym1, pCS2-myc-FoxD3sym1 was generated by site-directed 

mutagenesis using pCS2-myc-FoxD3 as template and the following mutagenic primers: 

Forward 5’-CGACCCCCAGTCGGAAGATATTTCGACAACGGTAGCTT TCTG-3’ 

and reverse 5’-CAGAAAGCTACCGTTGTCGAAATATCTTCCGACTGGGGG TCG-

3’. For microinjection in vitro transcribed mRNA was generated from linearized plasmid 

templates using the Ambion SP6 mMessage mMachine system (Austin, TX). 25pg of 

FoxD3 mRNA and 25-125pg of sym1 mRNA were injected into one cell stage embryos. 

 

3.3.3 Genotyping 

 Heterozygous sym1 adults were crossed and individual progeny were harvested 

for genotyping at 5dpf. For each phenotypic class (wild-type, no jaw, short axis with no 

jaw) 7-14 individual embryos were analyzed. Genomic DNA was isolated as previously 

described (Westerfield, 1993) with the modification of incubating the embryos at 50°C 

overnight after the addition of extraction buffer. Primers flanking the position of the sym1 

point deletion were used to PCR amplify this region of FoxD3 from genomic DNA 

(forward 5’-GCGAATTCCTTCGTC AAGATCCCACG-3’; reverse 5’-

CATATGGAATTCACCCGGCGAATTCAG-3’) and products were subcloned into the 

pCR4-TOPO vector (Invitrogen). For each individual embryo 6 to 17 subclones were 

sequenced, and individual fish were assigned to genotypic categories based on the 

sequence of 6 or more subclones with matching top and bottom strands. For the 

phenotypically wild-type class, 14 individual embryos were analyzed and of these 7 were 

wild-type and 7 were sym1 heterozygotes. For the mutant classes, 7 “no jaw” embryos 
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and 8 “short axis with no jaw” embryos were analyzed, and in every case were confirmed 

as sym1 homozygotes. The genotype of wild-type and sym1 heterozygous parents was 

also confirmed using this strategy.  

 

3.3.4 Morpholino oligonucleotides  

Morpholino antisense oligonucleotides were obtained from Gene Tools 

(Philomath, OR). Lyophilized oligonucleotides were resuspended in water, then diluted 

into 1X Danieau buffer (Nasevicius and Ekker, 2000) and 1nl was injected into one-cell 

stage embryos. Two morpholino antisense oligonucleotides were designed to Danio rerio 

FoxD3 (BC095603): FoxD3MO1 (5'-TGCTGCTGGAGCAACCCAAGGTAAG-3') is 

complementary to nucleotides 160-184 of the 5’ UTR and FoxD3MO2 (5’-

TGGTGCCTCCAGACAGGGTCATCAC-3’) is complementary to nucleotides 194-218 

and overlaps the start codon. A mixture of the two oligonucleotides (total dosage 20ng 

per embryo) was used for knockdown experiments in wild-type embryos. Injection of the 

individual oligonucleotides at higher dosage (30-40ng) yielded similar results but with 

some associated toxicity. As specificity controls, a mismatch oligonucleotide was 

injected at equal dosage, and Xenopus FoxD3 (Steiner et al., 2006) was injected to rescue. 

For FoxD3 knockdown in sym1 embryos a mixture of FoxD2MO1 and FoxD3MO2 was 

injected at a total dosage of 2-4ng.  

 

3.3.5 In situ hybridization 

Whole-mount in situ hybridization was performed as previously described 

(Schulte-Merker et al., 1992), using the following digoxigenin-labeled antisense RNA 
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probes: bmp7 (Schmid et al., 2000), chordin (Miller-Bertoglio et al., 1997), cyclops 

(Rebagliati et al., 1998), goosecoid (Stachel et al., 1993), no tail (Schulte-Merker et al., 

1994), and sonic hedgehog (Krauss et al., 1993). All images were taken from an 

MZFLIII12.5 stereomicroscope (Leica) with a Retiga 1300 camera (Q-imaging) and 

processed using Adobe Photoshop. 

 

3.3.6 Phenotypic analysis 

Embryos were analyzed based on their phenotypic appearance between 3dpf and 

5dpf, and scored for presence of lower jaw structures as well as axial length and 

curvature of the body and tail. Complete clutches from Sym1+/- parents were separated 

into three groups: (1) wt fish, (2) fish with no jaw, (3) fish with no jaw and axial defects 

(short and curved).  

 

3.4 Results 

3.4.1 Reexamination of sym1 embryos reveals defects in axial development 

sym1 is a mutation predicted to inactivate FoxD3 due to a point deletion, causing 

a frameshift that results in a premature stop codon (Stewart et al., 2006). The sym1 

protein is predicted to be truncated in the W2 domain, which is required for DNA binding 

and confers DNA recognition specificity necessary for transcriptional activity. Mutations 

in this region of the winged helix domain have been shown to impair DNA binding and 

transactivation (Berry et al., 2005). In addition, the truncation removes a distal effector 

domain (GEH) that recruits Groucho corepressors. Given the strong evidence from our 

zebrafish and Xenopus knockdown studies that FoxD3 is an essential regulator of 
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mesodermal development, the reported absence of mesodermal phenotypes in sym1 

embryos is difficult to accommodate. 

In an attempt to resolve this conundrum, we reexamined the phenotypic 

consequences of the sym1 mutation. Mating pairs of heterozygous sym1 adults were 

obtained and cross progeny were examined and assigned to phenotypic classes (Fig. 3.1). 

While most embryos fit the predicted phenotypic classes – 75% wild-type (Fig. 3.1A.B) 

and 16% craniofacial defects (Fig. 3.1C) – an unexpected smaller phenotypic class (9%) 

was apparent and these embryos displayed both craniofacial defects and axial defects, 

including curved or short axes (Fig. 3.1D,E). This novel phenotypic class has not been 

previously reported for the sym1 mutant, but the nature of the axial abnormalities is 

consistent with the mesodermal function of FoxD3. To determine the correlation of each 

of these phenotypic classes with FoxD3 genotype, multiple individual embryos from each 

class were subjected to genotyping analysis (see Material and Methods). As predicted, the 

phenotypically wild-type class consisted of wild-type and sym1 heterozygous embryos, 

while the craniofacial defect class and the craniofacial and axial defect class consisted 

only of sym1 homozygotes (data not shown). Importantly, these results show that a 

genetic loss-of-function in FoxD3 does lead to phenotypic defects consistent with an 

essential mesodermal function for FoxD3. 

 

3.4.2 Analysis of early gene expression in Sym1 

To determine the underlying developmental origins of the axial defects present in 

sym1 homozygotes, mesodermal gene expression was examined in cross progeny at the 

shield stage (Fig. 3.2). While ~80% of cross progeny had normal mesodermal gene  
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Figure 3.1 Sym1 phenotypes. Phenotypes observed from Sym1 +/- cross. We observed a 

phenotypic distribution of 77% WT and 23% with no jaw, of which 9% have axial 

defects (see text). Representative samples where genotyped from each group. (A,B) 

phenotypically wt larvae, 14 where genotyped, 7 were homozygote wt, 7 where 

heterozygotes (C) larvae that present no jaw, 7 samples where genotyped and shown to 

be homozygote mutant. (D, E) Representative samples of larvae that present no jaw as 

well as a short axis, 8 samples where genotyped and shown to be homozygous mutant.
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Figure 3.2 Reduced dorsal markers in Sym1. ISH of Sym1 showing wt and reduced 

dorsal shield marker expression in a Sym1 clutch. ISH was done with a complete clutch 

per marker. (B,D,F,H) 20% of a single clutch showed reduced shield markers at shield 

stage for each cyc, chd, gsc and ntl. Representative samples were genotyped and found to 

be homozygote mutant for sym1. (A,C,E,G) ISH for cyc, chd, gsc and ntl, 80% of each 

clutch had wt marker expression as shown. 
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expression, ~20% of the embryos displayed a substantial reduction in of cyclops, chordin, 

goosecoid, and no tail expression (Fig. 3.2B,D,F,H). Following in situ hybridization, 

embryos from each class were genotyped, and while embryos with normal expression 

were either wild-type or sym1 heterozygotes, every embryo with reduced mesodermal 

gene expression was homozygous for sym1 (data not shown). Importantly, these results 

confirm the requirement for FoxD3 for dorsal mesodermal development at the gastrula 

stage. It is interesting to note that while most of the predicted 25% homozygous embryos 

show mesodermal deficits at the shield stage, the phenotypic severity appears to diminish 

during development so that by 24hpf only 9% of embryos display axial defects. This may 

reflect a process of compensation or regulation, during gastrulation or later, that 

moderates the consequence of FoxD3 loss-of-function in many, but not all homozygous 

embryos. 

 

3.4.3 Sym1 protein retains mesoderm inducing activity 

Despite the strong prediction that sym1 is a functional null allele of FoxD3, the 

reduced penetrance of the mesodermal defects at both the gastrula and 24hpf stages raises 

the possibility that the sym1 product may retain some level of activity. To assess the 

developmental activity of the sym1 product, the point deletion was introduced into the 

wild-type FoxD3 cDNA, and sym1 mRNA was injected into wild-type embryos at the 

one-cell stage.  Injected embryos were examined for mesodermal gene expression at the 

shield stage and axis formation at 24hpf (Fig. 3.3). Surprisingly, sym1 injection resulted 

in expanded expression of cyclops, goosecoid, chordin, and no tail in most embryos 

(84%, n=946) (Fig. 3.3B,E,H,K). Similarly, sym1 induced strong dorsalization of the 
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body axis at 24hpf (76%, n=330) (Fig. 3.3N). In fact, when sym1 mRNA was injected at 

doses ~5-fold higher than wild-type FoxD3, the embryonic response was 

indistinguishable (Fig. 3.3C,F,I,L,O). This retention of activity indicates that sym1 is a 

hypomorphic allele, not a null, despite the strong prediction otherwise. 

  

3.4.4 Functional FoxD3 protein is produced in sym1 mutant embryos 

The demonstration that sym1 retains activity, at least in a gain-of-function assay, 

raises the possibility that a low level of FoxD3 function persists in sym1 homozygotes. 

To assess this possibility, we attempted to further knockdown FoxD3 function in sym1 

cross progeny. If sym1 is indeed a hypomorphic allele, it is predicted that knockdown of 

the sym1 product would result in increased penetrance of the axial phenotype. The 

mixture of two FoxD3-specific oligonucleotides was injected at low dosage (2-4ng) into 

the one-cell stage progeny of sym1 het crosses. At this low dosage no phenotypic 

response was observed in wild-type embryos (Fig. 3.4). In contrast, injection of this low 

dose into sym1 progeny resulted in a dramatic increase in both the craniofacial only and 

craniofacial and axial phenotypic classes. In these experiments, the phenotypic 

distribution of uninjected sym1 progeny was 76% wild-type, 19% craniofacial only, and 

5% craniofacial and axial (n=167) (Fig. 3.4). FoxD3 knockdown in cross progeny 

resulted in 24% wild-type, 46% craniofacial only, and 30% craniofacial and axial 

(n=107) (Fig. 3.4). This distribution, with the two affected classes accounting for 76% of 

the embryos, likely represents a phenotypic response to FoxD3 knockdown in both 

homozygous and heterozygous sym1 embryos. Nevertheless, the results indicate that 

functional FoxD3 protein is retained in sym1 homozygotes, and that knockdown of the 
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Figure 3.3 Sym1 gain of function. Sym1 mutant retains wt activity (A, D, G,J) ISH for 

dorsal markers at shield stage in wt control embryos (A) cyc, (D) gsc, (G) chd (animal 

pole view) expression in the shield (J) ntl expression throughout mesoderm. (B,E,H,K) 
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ISH for dorsal markers at shield stage after Sym1 overexpression (B) cyc is expanded 

laterally and towards the animal pole, (E) gsc is expanded towards the animal pole, (H) 

chd is expanded laterally and towards the animal pole, (K) ntl is expanded towards the 

animal pole. These results recapitulate what is seen for FoxD3 overexpression, 

confirming that Sym1 retains dorsalizing activity. (C, F, I, L) ISH showing dorsal 

markers at shield stage after FoxD3 overexpression (C) cyc is expanded, (F) gsc is 

expanded towards the animal pole, (I) chd is expanded laterally and towards the animal 

pole (animal pole view), (L) ntl is expanded towards the animal pole. All dorsal shield 

view except where noted. (M,N,O) 24hpf live images showing phenotypes (M) wt 

control, (N) after Sym1 overexpression, (O) after FoxD3 overexpression. Note similar 

dorsalization in (N) and (O). 
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Figure 3.4 FoxD3MO results in more penetrant Sym1 phenotypes. Quantification of 

sym1 phenotypes with and without FoxD3 MO1+2 treatment. 2.5ng of MO1+2 was used 

to determine if FoxD3 activity could be further reduced in the no jaw phenotype group. 

FoxD3 MO1+2 injections result in higher numbers of embryos with jaw and short axis 

phenotypes when compared to uninjected sym1 phenotypes. The 2.5ng concentration of 

MO used in sym1 embryos had no activity in WT embryos, implying that the +/+ Sym1 

progeny was not affected and does not contribute to the no jaw phenotype group. 
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remaining FoxD3 function results in increased penetrance of axial phenotypes, 

confirming that FoxD3 function is essential for zebrafish mesodermal development. 

 

3.5 Discussion 

3.5.1 Analysis of a FoxD3 mutant 

 sym1 is a FoxD3 mutant, in which a point deletion results in an early stop codon 

that truncates the protein, removing part of the DNA-binding domain and an essential 

distal transcriptional effector domain. sym1 has been previously examined for neural crest 

defects, however no early gastrulation defects had been reported. To assess the role of 

FoxD3 in zebrafish mesodermal development, we reexamined sym1 to determine if any 

early mesodermal and axial defect were present as would be expected from our earlier 

results. Several FoxD3 studies have been published on the role of FoxD3 in neural crest 

formation in zebrafish, and these studies also used MO knockdown, however, no early 

gastrulation defects were reported in these publications. We believe that the early 

phenotypes may have been overlooked and not taken into consideration as those studies 

were not focused on early development, but on neural crest development, which occurs 

some 10 hours later. Also, the levels of FoxD3 activity necessary to mediate FoxD3 

function in the neural crest lineage may differ from those in the gastrula. We examined 

the sym1 mutant more in depth and found that it does indeed present early mesodermal 

deficiencies as well as defects in dorsal mesoderm derivatives, which are obvious at later 

stages. These results are consistent with our pervious results showing that FoxD3 acts 

through the Nodal pathway to induce dorsal mesoderm (chapter 2 of this thesis). 

               75



 The second FoxD3 mutant, mother superior, has defects only in neural crest 

development. In contrast to sym1, which alters the structure of FoxD3 protein, mother 

superior is a regulatory mutation in a distal transcriptional regulatory element that drives 

expression in the neural crest. Gastrula expression of FoxD3 in the shield is not perturbed 

in mother superior, and therefore mesodermal defects are not expected in this FoxD3 

regulatory mutant. 

 

3.5.2 sym1 as a hypomorphic allele of FoxD3 

 From a structural and mechanistic perspective, the sym1 mutant should not 

produce functional FoxD3 protein. Instead, it should be a functional null given that it 

does not contain part of its W2 domain, which has been shown in fox genes to be 

necessary for DNA binding and transactivation (Berry et al., 2005), as well as the distal 

Groucho binding motif (Yaklichkin et al., 2007). We have shown that sym1 retains 

dorsalizing activity, similar to that of the wild-type FoxD3 protein, as sym1 can induce 

and expand dorsal markers at the shield stage. This suggests that sym1 is a hypomorphic 

allele, and not a true null. This is further supported by the ability of the FoxD3 

morpholino to enhance the penetrance of the short axis phenotypic group from 5% to 

30%, indicating that functional FoxD3 protein is present in the sym1 mutant.  

 Overall, we propose that the sym1 mutation does have dorsal mesodermal defects 

and subsequent defects in axis formation. Importantly, we show that a mutant that was 

thought to be a null is acting as a hypomorph. However, the retention of FoxD3 activity 

by the sym1 mutant is confounding. In Chapter 4, we address one potential hypothesis for 
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this unexpected retention of activity. We propose that a -1 translational frameshift results 

in a correction of reading frame and production of a full length FoxD3 protein.   
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4. Chapter 4: Translational frameshifting suppresses a potential FoxD3 null 

mutation in Zebrafish 

4.1 Summary 

The FoxD3 mutant, sym1, has been reported to encode a truncated protein 

predicted to be a null allele due to a point deletion that results in seven codon frameshift 

and a premature stop codon. In contrast to this prediction, we have found that sym1 

retains activity, and induces mesoderm and axial dorsalization, as does wild-type FoxD3. 

To determine if the predicted sym1 protein product had activity, a FoxD3 cDNA 

truncated to encode the same product predicted from the sym1 cDNA was expressed in 

zebrafish embryos. This product, lacking part of the DNA-binding domain and GEH 

effector domain, had no developmental activity, in contrast to the intact sym1 cDNA. 

This difference in the activity of the intact and truncated cDNAs suggests that 3’ 

sequences, present in the sym1 cDNA, but not in the truncated FoxD3 cDNA, are 

required for the activity of the sym1 product. An inactivating point mutation introduced 

into the GEH-encoding region of the sym1 cDNA, downstream of the predicted 

premature stop, rendered the sym1 cDNA inactive when overexpressed. This suggests 

that a corrective frameshift occurs during translation of the sym1 cDNA to generate a full 

length FoxD3 protein with an active GEH domain. Within the seven codon frameshift 

region downstream of the sym1 point mutation are three codons rarely used in the 

zebrafish, and rare codons are known to cause ribosomal pausing and promote 

frameshifting. Conversion of those three residues to highly used codons encoding the 

same residues rendered the sym1 cDNA inactive. Biochemical analyses confirm that a 

full length FoxD3 protein is produced from the sym1 cDNA, but not when the rare 
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codons have been replaced. These results indicate that the null character of the sym1 

mutation is suppressed by a novel translational frameshifting mechanism. 

 

4.2 Introduction 

 Translation is the mechanism by which RNA is decoded into a sequence of amino 

acids. This mechanism requires the ribosomal machinery that will scan the RNA for 

specific sequences as AUG start sites and required translation initiation factors. 

Eukaryotes require the Kozak sequence ~6 base pairs before the AUG start codon, while 

prokaryotes require the Shine-Dalgarno ribosomal binding site (Kozak, 1986; Shine and 

Dalgarno, 1975). During the translation process, transfer RNAs (tRNAs) move through 

three binding sites in the ribosome where they encounter specific mRNA codons. These 

binding sites are the aminoacyl or A acceptor site which binds the tRNA with the amino 

acid to be added to the growing protein, the peptidyl or P site which carries the tRNA 

with the growing peptide chain, and the exit or E site which releases the deacylated 

tRNA. All tRNAs except the initiator tRNA-met have to enter the ribosome at the A 

acceptor site. The amino acid chain grows when the charged tRNA and its bound amino 

acid enter the A site, a peptide bond is formed between the A and P sites, and the 

ribosome translocates to the next codon and the deacylated tRNA leaves the ribosome at 

the E site.  

 Proteins are translated from template mRNA by the ribosomal machinery, in 

which tRNAs recognize the mRNA codons through their anticodon sequence, and add the 

corresponding amino acid to the growing peptide chain. The 20 amino acids that are the 

building blocks of proteins are encoded by up to six distinct codon sequences, and for 
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each codon multiple tRNAs, with differing abundance, contain a matching anticodon 

sequence. For each individual amino acid, the corresponding codons differ in their 

frequency of use and protein coding sequence, and this codon usage bias has species-

specificity. The pattern of codon usage reflects a complex balance between biases 

generated by mutation, selection and random genetic drift (Bulmer, 1991; Sharp et al., 

1993). The data available in eukaryotes shows that there is a link between codon usage 

frequency and tRNA abundance, and that strong codon usage bias increases with 

increasing levels of gene expression (Duret and Mouchiroud, 1999).  

 There are several instances where the rules for decoding mRNA are altered. 

While rare, this occurs at specific sites, where signals or structures are present in the 

mRNA sequence. The specific pausing of ribosomes at such sites is thought to play an 

essential role in promoting recoding (Gesteland and Atkins, 1996; Kontos et al., 2001). 

During ribosomal pausing, frameshifts most often occur when one or more ribosome-

bound tRNAs slip between cognate or near-cognate codons, but some frameshifts may 

occur without slippage. Ribosomal pausing can be induced in several ways, including 

mRNA secondary structures, termination codons, and limiting availability of amino-acyl-

tRNAs for low frequency codons, all of which increase the time that ribosomes are held 

at a recoding site (Farabaugh, 2000). Recoding and frameshift mechanisms are diverse. 

Most common are -1 frameshifts, +1 frameshifts are rare, and translational hop sites that 

program the ribosome to bypass a region of several dozen nucleotides are by far the rarest 

(Gesteland and Atkins, 1996).  

 It is thought that a minority of genes across species rely on recoding for proper 

translation. A well studied -1 programmed ribosomal frameshift occurs in the human 
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immunodeficiency virus type 1 (HIV-1) where frameshifting is used to produce the Gag-

Pol polyprotein. Conventional translation of this RNA by the majority of ribosomes 

produces the Gag polyprotein, the precursor of the structural proteins of the virus, while 

the -1 frameshift changes the reading frame and extends the translation past the stop 

codon of the gag gene, producing a product that terminates at a stop codon in the pol gene 

reading frame (Park and Morrow, 1991). Programmed -1 ribosomal frameshift has also 

been reported in several other retroviruses, coronaviruses, plant viruses, in a yeast virus, 

in bacteria and, recently, in humans (Brierley, 1995; Chandler and Fayet, 1993; 

Shigemoto et al., 2001; Tzeng et al., 1992). 

sym1 is a FoxD3 mutant, which, as we show in Chapter 3, retains activity despite 

a point deletion that results in an early stop codon midway through the protein. FoxD3, a 

member of the Forkhead (Fox) family, contains a characteristic winged helix DNA- 

binding domain (Sutton et al., 1996). For Fox family proteins, deletion of the sequence 

encoding wing 2 (W2) results in a loss of DNA-binding activity (Clark et al., 1993), and 

this region is downstream of the predicted premature stop in sym1. In addition to deletion 

of W2 domain, sym1 lacks a distal transcriptional effector domain, a Goosecoid-

Engrailed homology motif required in FoxD3 for Groucho corepressor recruitment and 

mesoderm induction activity (Stewart et al., 2006; Yaklichkin et al., 2007). Both 

domains, the W2 and the GEH, are necessary for the developmental and transcriptional 

function of FoxD3, however, in the sym1 mutant, these domains are predicted to be 

absent from the protein, yet the sym1 product retains activity (see Chapter 3).  

 How is it then possible for sym1 to retain activity? The protein product of sym1 is 

predicted to lack functional domains localized downstream of the early stop codon that 
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are essential for developmental function of FoxD3 activity. Yet we have found that sym1 

retains dorsalizing activity, albeit at reduced levels. In an attempt to reconcile these 

results we propose that translational frameshifting occurs immediately downstream of the 

point deletion to correct the reading frame and allow production for full length functional 

FoxD3 protein. In this chapter we provide support for this hypothesis, and the results 

suggest that rare codons present in the sym1 mRNA cause ribosomal pausing and 

facilitate a -1 frameshift, correcting the reading frame and suppressing the sym1 mutation. 

 

4.3 Material and methods 

4.3.1 FoxD3 and sym1 expression constructs 

The pCS2-myc-FoxD3 construct (a gift of David Raible; Lister et al., 2006) was 

used for expression of FoxD3 protein. FoxD3 and sym1 point deletion mutants (F>E, ∆C, 

∆N) were generated by using DPNI-mediated PCR mutagenesis. PCR primers: FWD 

FoxD3/Sym1 F>E 5' - CCGTCCAGTCGACCATCAGAAAGCATAGAAAACATCATC 

- 3' , REV FoxD3/Sym1 5' -  GATGATGTTTTCTATGCTTTCTGATGGTCGACTGGA 

CGG - 3' . FWD FoxD3/Sym1 ∆, 5’-TCCTCGAGATGACCCTGTCTGGAGGC-3’, 

REV FoxD3∆C 5’-CCCTCGAGTCAGGTCAGAAAGCTACCGTTG-3’, REV Sym1∆C 

5’-ACCCTCGAGTCAGAAAGCTACCGTTGTCGAA-3’, FWD FoxD3/Sym1∆N 5’-

ATGATGCAGAGTTTTGGGGCATAC-3’, REV FoxD3/Sym1∆N 5’-

GGATCCTGCAAAAAGAACAAGTAGCTT-3’. (Fig. 4.1) 

For mRNA injection, plasmids were linearized with NotI, and transcribed with 

SP6 polymerase (mMessage mMachine, Ambion). Microinjections were done at the one 

cell stage.
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Figure 4.1 FoxD3 and Sym1 constructs. The pCS2-myc-FoxD3 construct was used for 

expression of FoxD3 protein. FoxD3 and sym1 point deletion, point mutation and 

truncated constructs were generated from the pCS2-myc-FoxD3 using DPNI-mediated 

PCR mutagenesis. 
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4.3.2 Codon optimization 

For the sym1op construct we optimized three low frequency codons found 

between the point deletion and the premature stop codon. Third base changes were 

introduced while maintaining the amino acid they encoded. pCS2-myc-Sym1op was 

obtained by PCR site-directed mutagenesis of pCS2-myc-Sym1 using the following 

primers  FWD 5' - CCAGTCGGAAGATATTTCTACAACAGTGGCTTTCTGAGG - 3'  

and REV 5’- TTCTCCTCTCAGAAAGCCACTGTTGTAGAAATATCTTC - 3’. For 

mRNA injection, the plasmids were linearized with SacII or NotI, and transcribed with 

SP6 polymerase (mMessage mMachine, Ambion). Microinjections were done at the one 

cell stage with 25-50pg. 

 

4.3.3 Western analysis 

Injected embryos and control embryos (50-100 embryos per sample) were 

harvested at shield stage and manually deyolked by puncturing the yolk cell with forceps. 

Embryos were collected and lysed in 200ul ice-cold nuclear lysis buffer (50mM Tris 

pH7.5, 0.5M NaCl, 1% NP-40. 1% deoxycholate, 0.1% SDS, 2mM EDTA, protease 

inhibitors) by repeated pipetting in a microtube.  

For western analysis, 25-100 embryos were lysed, the extracts were cleared by 

centrifugation and 25ul were loaded per well. An anti-myc (rabbit polyclonal IgG) 

antibody (Upstate, Lake Placid, NY) was used at 1:5000 dilution and was detected with a 

1:5000 dilution of anti-rabbit IgG, horseradish peroxidase linked antibody (GE 

healthcare, UK) by chemiluminescence with ECL+Plus reagent (GE healthcare, UK). 
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4.3.4 Phenotypic analysis 

 Embryos were injected at the one-cell stage with 25-50pg of RNA encoding 

FoxD3∆C, Sym1∆C, FoxD3∆N, FoxD3F>E, or Sym1F>E and axial phenotypes were 

analyzed at 1-3 dpf. Embryos were assigned to three phenotypic groups, strongly 

dorsalized, weakly dorsalized and wild-type. 

  

4.4 Results  

Given that sym1 is predicted to be a null mutation yet retains dorsalizing activity, 

we were interested in further exploring the mechanism by which sym1 retains activity. 

The sym1 protein is predicted to be approximately half the size (182 aa) of the wild-type 

protein (371aa), and would lack part of the W2 binding domain, as well as the Groucho 

repressor interaction motif, both domains necessary for FoxD3 activity. It is important to 

note that despite the point deletion, the sym1 mRNA is full length and retains the coding 

capacity for the C-terminal half of FoxD3 in the -1 reading frame. 

 

4.4.1 The predicted truncated Sym1 product has no activity 

 To determine if the predicted sym1 protein has activity, constructs were generated 

from the sym1 and wild-type FoxD3 sequences that lack all coding regions downstream 

of the premature stop, Sym1∆C and FoxD3∆C. Embryos injected with Sym1∆C or 

FoxD3∆C mRNA were not dorsalized (0%, n=159 and 0%, n=161) and were 

indistinguishable from uninjected wild-type embryos (Figure 4.2). In the same 

experiments sym1 (41%, n=235) and foxd3 (81%, n=155) strongly dorsalized embryos. 

We also assessed the activity of the C-terminal half of FoxD3 (FoxD3∆N), which 
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contains all the sequences downstream of the early stop codon and found that it was 

inactive (0%, n=153). Finally, we coexpressed the N- and C-terminal halves of FoxD3, to 

determine if these fragments of FoxD3 could interact in trans to reconstitute FoxD3 

activity, and no activity was observed in embryos (0%, n=153). For these experiments, 

the accumulation of the predicted protein products was verified by western blotting of 

embryonic extracts (data not shown). The results are consistent with previous structure-

function analyses of FoxD3 in Xenopus (Yaklichkin et al., 2007), and confirm that the 

predicted sym1 product has no biological activity in the zebrafish embryo. This points to 

a requirement for downstream coding sequence, 3’ to the predicted premature stop, for 

the activity of sym1. 

 

4.4.2 The distal GEH domain is required for sym1 activity 

 A -1 translational frameshift presents a possible mechanism to return downstream 

sequences, including the essential GEH motif, back into frame. If the -1 frameshift occurs 

soon after the G537 point deletion, this frameshift would result in frame correction and 

translation of a full length protein with minimal amino acid sequence changes. All FoxD3 

orthologs contain a conserved GEH sequence (271-FSIENII-303 in zebrafish FoxD3) that 

is essential for protein function. A single point mutation in the absolutely conserved first 

residue (F297E) renders the protein inactive (Yaklichkin et al., 2007). Given that  

sequence 3’ to the predicted premature stop is essential for sym1 activity, we examined 

the requirement for the distal GEH effector domain in sym1 activity. A single point 

mutation was introduced into the GEH encoding region of sym1 and wild-type FoxD3, 

substituting phenylalanine for glutamate (F297E). It should be noted that this site is more  
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Figure 4.2 The expected Sym1 truncated protein has no activity. Deletion of the C 

terminal domain of Sym1 results in complete loss of activity compared to Sym1, 

demonstrating that the predicted truncated Sym1 peptide has no activity. Coexpression of 

ΔC and ΔN has no activity, similar to ΔN and FoxD3ΔC. 
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than 300 nucleotides 3’ to the predicted premature stop of sym1. One-cell stage embryos 

were injected with FoxD3F>E or Sym1F>E, and axial development was examined at 

24hpf (Figure 4.3). In both cases a reduction of dorsalizing activity was observed. FoxD3 

strongly dorsalized 70% (n=240), while FoxD3F>E strongly dorsalized only 3% (n=300). 

Similarly, Sym1 strongly dorsalized 16% (n=252) and Sym1F>E did not have strong 

dorsalizing activity (0%, n=280). Western blotting of embryo extracts confirmed the 

accumulation of both protein products (data not shown). Therefore, the distal sequence 

encoding the GEH motif is required for the strong dorsalizing activity of FoxD3 and 

sym1. More important, these results demonstrate that distal sequences, far past the 

predicted site of the premature stop, encode an essential functional domain of the sym1 

product. This provides strong support for a role for translational frameshifting in the 

retention of activity in the sym1 mutant. 

 

4.4.3 Optimization of rare codons suppresses sym1 activity 

 Several mechanisms can induce translational frameshifting, including the 

presence of a rarely used codon (a codon represented at low frequency in the protein 

coding sequence of a specific organism). Rare codons cause the ribosome to pause and 

wobble while waiting to engage the cognate tRNA, which are themselves often present at 

lower abundance. During this waiting period, wobble or shifting of the ribosomal 

complex can result in engagement of an alternative reading frame containing a more 

commonly used codon. 
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Figure 4.3 The C-terminal end of Sym1 is necessary for dorsalizing activity. 

Sym1F>E shows greatly reduced dorsalizing activity compared to Sym1, evidence 

that Sym1 translates downstream sequences (GEH) previously though to be truncated. 

As a control, FoxD3 shows high dorsalizing activity, while FoxD3F>E has reduced 

activity, as expected from the F>E point mutation in the GEH domain. These results 

support the hypothesis of a translational frameshift to generate a functional full length 

protein. 
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In the seven residue frameshift region between the sym1 point deletion and the 

premature stop, three rarely used codons in the zebrafish are found, a Serine codon 

(TCG) representing only 6.8% of serine codons, a Threonine codon (ACG) at 13.4% and 

a Valine codon (GTA) at 10.5% (Figure 4.4). Given such low frequency of usage, these 

are potential sites of ribosomal pausing in sym1. No codons of such low frequency are 

found within the sequence of wild-type FoxD3. To determine if these low frequency 

codons promote frameshifting, we substituted the third position of each codon, 

converting each into a high frequency codon (20.5-44.3%) encoding the same amino acid 

(Figure 4.4). We then tested the function of this translationally optimized form of sym1 

(Sym1op). We predict that this optimization will prevent ribosomal pausing, suppress 

frameshifting, and result in the production of the predicted truncated sym1 product, which 

we have shown as non-functional. Zebrafish embryos were injected at the one-cell stage 

with equal doses of FoxD3, Sym1 and Sym1op and axis formation was evaluated at 

24hpf (Figure 4.5). While the strongly dorsalized class represented 82% (n=139) for 

FoxD3 and 51% for Sym1 (n=156), Sym1op-injected embryos were only weakly 

dorsalized, 5% (n=146).  

 These results indicate that low frequency codons present in the sym1 mRNA are 

required for developmental activity, strongly supporting a role for ribosomal pausing and 

translational frameshifting. 
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Figure 4.4 Codon frequency in FoxD3, FoxD3sym1, FoxD3sym1op. Three low frequency 

codons in FoxD3sym1were optimized to higher frequency codons without affecting the 

coding capacity to create the pCS2-FoxD3sym1op construct. These codons are located 

within the frameshifted sequence, between the Sym1 point deletion and the early stop 

codon. We would predict that translation should efficiently read through this sequence 

and come to a stop at the early termination codon generating a truncated protein with no 

activity. 
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Figure 4.5 Codon optimization in Sym1op results in loss of activity. (A) WT 24hr 

live embryo. (B) Expression of the Sym1op mRNA weakly dorsalized 5% (n=146) of 

the embryos. (C) Expression of FoxD3 mRNA dorsalizes the majority of embryos 

82% (n=139), while (D) Sym1 mRNA dorsalized 51% (n=156). 
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4.4.4 Detection of the Sym1 protein product 

 The translational frameshifting model we propose predicts that a full length 

FoxD3 protein is produced by the sym1 mRNA. FoxD3, Sym1 and Sym1op were 

epitope-tagged, expressed in embryos, and extracts analyzed by western blotting (Figure 

4.6). FoxD3 produced the predicted full length protein (~51kD). Two products were 

detected for Sym1, one with the size of the predicted truncated Sym1 protein and one 

with the approximate size of full length FoxD3. For Sym1op, only a single product was 

detected with the size of the predicted truncated protein. These results appear to fulfill 

expectations based on the translational frameshifting model. In other cases of 

translational frameshifting, a maximal efficiency of ~10% is observed, so it would be 

expected that Sym1 would produce a mixture of full length and truncated proteins, with 

the frameshifted product present at lower abundance. In contrast, Sym1op produced a 

single product of the size predicted for the truncated product, consistent with a 

suppression of frameshifting. These results provide biochemical support for the 

translational frameshifting of sym1 to produce functional FoxD3 protein. We note, 

however, that the results shown in Figure 4.6 were only observed in a subset of attempted 

experiments; so additional biochemical confirmation of this model is required. 
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(a) (b)   

 

 

Figure 4.6 Western blots analysis of Sym1-op. (a) Western blot showing the FoxD3 

protein at 51KDa, the Sym1 protein at its expected 31KD and the full length product at 

51KDA and at a much lower concentration, and the Sym1-op protein at the expected 

31Kda size with no full length product detectable. (b) Cartoon depicting the expected 

protein sized expected. * site of G537 Sym1 lesion in the W2 domain, early 

termination codon resulting from the frameshift. 
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4.5 Discussion 

4.5.1 Sym1 structural analysis 

 The functional analysis of potential Sym1 products demonstrated that the 

predicted truncated product had no activity. There are several downstream start sites 

following the point deletion in Sym1, which would produce proteins that could 

potentially interact with the Sym1 product in trans. We show that there is no activity 

when co-expressing the N-terminal and C-terminal halves of FoxD3, therefore 

eliminating the possibility that dorsalizing activity derives from the trans acting protein 

fragments. In addition, the results obtained after introducing a mutation in the GEH 

domain further indicates that C-terminal region of FoxD3 is functional in the sym1 

product in zebrafish embryos, and that this protein can actively dorsalize embryos. All 

together these results further support the idea of a frameshift correction in the sym1 allele. 

The argument is strengthened by the observation that the frameshift could be suppressed 

by substituting the rare codons immediately following the point deletion with frequent 

codons without altering the amino acid sequence. The contribution of the rare codons to 

the frameshift can be explained by the low abundance of cognate tRNA, which leads to 

ribosomal pausing and frameshifting to incorporate a high frequency codon in an 

alternative reading frame (Gallant et al., 2004). The predicted -1 frameshift then places 

the ribosomal machinery back into frame with the natural FoxD3 sequence, and therefore 

results in production of a full length functional protein. 

 Apart from low frequency codons, the presence of a slippery sequence is a 

possible mechanism for promoting repositioning of the ribosome. This occurs by the 

simultaneous slippage of ribosome-bound A- and P-site tRNAs by one base, resulting in 
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the tRNA binding a non-cognate codon in the -1 position, thus allowing for the next 

codon to be in frame again (Shigemoto et al., 2001). This slipping of the ribosome has 

been shown to occur at different specific sequences in prokaryotes and eukaryotes. 

Interestingly, eukaryotic frameshift signals are not recognized by prokaryotes and the 

typical prokaryotic slip sequence does not lead to significant frameshifting in eukaryotes 

(Garcia et al., 1993). However, we have not found any obvious slippery sequences in 

sym1. 

 

4.5.2 Implications of translational frameshifting for protein diversification 

 Frameshifted products resulting in truncated and out of frame proteins are 

generally assumed to be loss-of-function changes. However, evolutionarily, frameshift 

mutations might offer a significant mechanism to create novel functional motifs, which 

might be essential to the functional diversification of transcription factor families and 

other gene families. The rate at which frameshifted sequences would adopt new roles and 

result in novel functional domains is probably very low, but not impossible. 

Frameshifting has been suggested as the mechanism for floral MADS-box gene evolution 

(Vandenbussche et al., 2003), but vertebrate examples are yet to be identified. Further 

insight into sequence conservation and discrepancies between protein families will be 

important in bringing to light the complexities and consequences of frameshifting in 

protein diversification over a range of organisms. 
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5. Chapter 5: Conclusions and future directions 

 The results presented in this thesis establish that FoxD3 has an essential role in 

dorsal mesoderm formation during zebrafish development. We find that FoxD3 function 

in mesodermal development is dependent on an active Nodal pathway, consistent with its 

role in maintaining Nodal gene expression in the embryonic shield. This thesis also 

explores the activity of sym1, a zebrafish FoxD3 mutant, demonstrating that sym1 is a 

hypomorphic allele that retains activity, correcting a previous conclusion that sym1 was a 

functional null allele of FoxD3. Based on the results obtained, we propose that the null 

character of sym1 is suppressed by a translational frameshifting mechanism that results in 

the production of a full-length active protein. This novel mechanism for frame correction 

of a mutant allele has not been previously reported in vertebrates. 

 

5.1  The role of FoxD3 in the Nodal pathway 

 Mesoderm induction occurs through activation of the Nodal signaling pathway. 

Mesoderm is induced in a confined marginal area surrounding the developing embryo, 

while dorsal mesoderm is induced in only the dorsal side of the embryo. Therefore, 

signals that instruct dorsal mesodermal development must be restricted to the dorsal 

domain. FoxD3 expression is limited to the shield and expands laterally towards the 

paraxial mesoderm when it is first expressed at shield stage. We have shown that FoxD3 

knockdown results in strong reduction of Nodal signaling, consistent with the idea that 

FoxD3 is necessary for Nodal signaling maintenance in the shield as well and that FoxD3 

is a component of the autoregulatory loop that maintains Nodal signaling. We propose 

that FoxD3 regulates dorsal mesoderm development by negatively regulating a repressor 
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of mesoderm development in the zebrafish, and that it does so through the Nodal 

signaling pathway. These results are consistent with what has been reported in Xenopus 

for dorsal mesoderm development (Steiner et al., 2006). 

Nodal expression is dynamic throughout embryogenesis in a wide array of 

organisms, implying that multiple developmental processes are regulated by Nodal 

signaling, and at the same time, meaning that different regulators must be required in a 

tissue and time dependant manner. FoxD3 is also required at different developmental 

stages in zebrafish and Xenopus. FoxD3 is expressed at shield stage to regulate dorsal 

mesoderm development, and it is also expressed later in premigratory neural crest cells, 

where it is necessary for differentiation of neural crest derivatives, including craniofacial 

cartilage, peripheral neurons, glial, and iridophore pigment cells (Kelsh et al., 2000; 

Lister et al., 2006; Montero-Balaguer et al., 2006; Stewart et al., 2006). Our lab has 

carried out a microarray screen in Xenopus aimed at identifying transcriptional targets of 

FoxD3 that negatively regulate Nodal expression. Among the potential FoxD3 targets 

identified are Blimp1, Xema and Gata4. It will be interesting to further analyze these 

factors and determine how these and other factors are involved in FoxD3 activity and 

Nodal regulation. Even though Nodal signaling is essential in all vertebrate species for 

dorsal mesoderm development, an interesting conundrum arises when the Nodal loss-of-

function phenotypes are compared between these species. Nodal loss-of-function 

phenotypes differ between species in a very broad manner. The basis for these differences 

has not yet been elucidated, but most certainly it will involve orthologous gene function 

with conserved as well as differing functions, and perhaps this will include regulatory 

factors such as FoxD3.  
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5.2  Differences in the developmental requirements for the Nodal pathway 

 Two Nodal signaling factors act during dorsal mesoderm development in 

zebrafish, cyclops and squint. Xenopus presents five Nodal-related genes with mesoderm 

inducing activity, while mouse has a single nodal gene. Single mutants for zebrafish 

cyclops and squint give mild phenotypes, as do single maternal or zygotic oep mutants 

(Dougan et al., 2003; Hatta et al., 1991). These single mutants display cyclopia and 

defects in prechordal plate and ventral nervous system. Further, zebrafish double mutants 

of cyclops and squint or maternal-zygotic oep (mzOep) mutants lack head and trunk 

mesoderm, but form some tail mesoderm. In contrast, mouse nodal mutants lack most 

embryonic mesoderm and extraembryonic ectoderm, which leads to failure to maintain 

the primitive streak and death during early gastrulation. Similarly, in Xenopus inhibition 

of Nodal signaling with the antagonist Cerberus-short fully blocks mesodermal 

development and embryos arrest in gastrulation (Conlon et al., 1994; Feldman et al., 

1998; Osada and Wright, 1999; Piccolo et al., 1999; Zhou et al., 1993). These differing 

Nodal loss-of-function phenotypes between organisms remain to be understood. 

Importantly, loss-of-function for each individual Nodal gene results in slightly or 

dramatically differing phenotypes depending on the organism, which points to important 

differences, either quantitative or qualitative, in the signaling output and/or cellular 

response to individual Nodal ligands. It will therefore be important to define the precise 

signaling output of the Nodal pathway in response to specific Nodal ligands, as well as to 

define the cellular and temporal controls that confer specificity to the developmental roles 

of the Nodal pathway. 
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Our findings that FoxD3 regulates Nodal signaling in zebrafish add one small 

piece to the puzzle. Comparative studies of the molecules involved and discovery of new 

ones, will aid in resolving many questions. In addition, the early morphological events 

that take place during the development of these embryos are somewhat distinct. In the 

early zebrafish embryo, the blastoderm cells form a single homogeneous population on 

the top half of the yolk, until blastula stages where cell mixing is halted and cells acquire 

their prospective fates, then the embryonic tissue migrates towards the vegetal pole until 

it surrounds the yolk cell during epiboly. The Xenopus embryo develops as a complete 

sphere where extensive cell mixing does not occur, this results in a consistent early 

blastomere fate map.  The mouse embryo develops as a cylinder with characteristic 

extraembryonic tissue, where extraembryonic mesoderm and visceral endoderm will 

contribute cells to tissues of the developing embryo (Kimmel and Law, 1985; Kimmel et 

al., 1990; Moody, 1987; Tam and Behringer, 1997). Embryos present these 

morphological differences in embryonic development even though signaling pathways 

and transcription factors that regulate early embryo patterning are conserved between 

species. Further understanding these mechanisms will be of significant interest to 

understand determinant positioning and embryo patterning.  

 Finally, because the Nodal pathway is essential in mesodermal development, 

understanding how its regulated might aid in treating mesoderm defects, which are the 

cause of many embryonic malformations and abnormalities as well as adult diseases. 

Furthermore, FoxD3 could be of use in regulating Nodal signaling for mesodermal 

development from ES cells and for future therapeutics like induction of tissue 

regeneration.  
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5.3  When is a null mutation a true null? 

In my thesis work I reexamined the developmental defects of the FoxD3 mutant 

sym1 zebrafish. This mutation in FoxD3 was strongly predicted to be a functional null 

allele due to the presence of a point deletion, generating an early termination codon that 

results in the truncation of the DNA-binding domain and deletion of the C-terminal 

Groucho corepressor interaction motif. Based on previous structure-function studies of 

FoxD3, the predicted truncated sym1 protein products should not have transcriptional or 

developmental activity. However, I found that sym1 retains partial function when 

overexpressed in the zebrafish embryo. Sym1 protein can dorsalize embryos, although 

higher dosage is required compared to wild-type FoxD3, suggesting that sym1 is a 

hypomorphic allele, not a null. These results raise again the importance of functional 

testing of mutant alleles, as predictions based solely on the nature of the molecular lesion 

can often mislead. 

More important, the hypomorphic nature of sym1 begs the question, how can this 

predicted truncated protein retain activity? Given the nature of the sym1 molecular lesion, 

the most plausible hypothesis was that a translational frameshift mechanisms corrects the 

reading frame error caused by the point deletion, bringing the sequence back in frame and 

allowing a full-length functional protein to be translated. The efficiency of frameshifting, 

at most 10% in other described cases, could certainly account for the reduced function of 

sym1. We also note that depending on the precise site of the frame correction, a small 

amino acid substitution (1-5 residues) would be introduced into the C-terminus of the 

winged helix DNA-binding domain, and this could also contribute to the reduction of 

               105



protein function. While we describe an unusual scenario where translational 

frameshifting suppresses a null mutation, it may be that this mechanism is employed by a 

subset of “normal” genes for diversification of the vertebrate proteome. In the case of 

wild-type genes, frameshifting would generate alternative protein sequences, with 

potential quantitative or qualitative modifications of protein function. 

 

5.4  Larger implications of translational frameshifting  

 Frameshifting is a mechanism frequently employed by viruses and bacteria to 

produce two distinct protein products from one mRNA sequence. Frameshifting has also 

been associated with human disease. For example, a Ubiquitin-B +1 (UBB+1) frameshift 

results in a protein that cannot tag proteins for degradation, and itself accumulates in 

neuritic plaques, causing several tauopathies (van Leeuwen et al., 2006). In the case of 

sym1, translational frameshifting plays a role in correcting a point deletion, and likely 

suppressing the phenotypic consequences of the point deletion, as opposed to causing a 

loss or reduction of function as seen for UBB+1. This type of correction has not been 

reported previously in vertebrates and has implications for modifying the functional 

outcomes of mutation, and for the diversification of the vertebrate proteome. This 

mechanism may be more prevalent than previously appreciated, perhaps accounting for 

the disconnect between the predicted and actual activity of specific mutant alleles, as well 

as the lack of correspondence between the proteome and genome for certain genes. 

Further investigation into the prevalence and mechanisms of translational frameshifting 

should be pursued in vertebrate models. 
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 The potential significance of translational frameshifting is especially interesting to 

consider in the context of proteome diversification. In general, frameshifts within a gene, 

whether induced by mutation of other conditions, are deleterious and are expected to 

result in loss-of-function, with altered protein sequence, structure and function. In some 

cases, the truncated proteins resulting from a frameshift mutation may accumulate and 

function as a dominant negative that disrupts cellular function. However, seldom is 

frameshifting considered a mechanism for the generation of novel or alternative protein 

functions. Point mutations, gene duplication, retroposition, gene fusion and fission, and 

exon shuffling have been considered likely mechanistic explanations for the generation of 

novel gene/protein function (Long et al., 2003). Regulated translational frameshifting is 

an additional viable mechanism for generating novel or altered protein sequences. The 

region of the open reading frame distal to the site of frameshifting will encode a protein 

sequence unrelated to the original sequence. Such “new” protein could be viewed as a 

fusion protein derived from two overlapping reading frames that join at the site of 

frameshifting. In rare cases the generated fusion protein may gain an important role in 

development or other biological process. On the other hand, genes that undergo 

frameshifting must retain structural and functional features of the protein encoded N-

terminal to the frameshift, but also accommodate functions conferred by the distal 

sequences, thus allowing for the expression of novel functions by the frameshifted 

protein product. The likelihood of these conditions coming together may be low, 

however, given the complexity of the genome and the evolutionary timescale in which to 

sample mutations, a role for frameshifting in diversification of the proteome seems 

plausible (Raes and Van de Peer, 2005). The presence of a second redundant gene copy, 
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as is the case for many loci in the zebrafish (Meyer and Schartl, 1999), can clearly 

facilitate the generation of new protein function by frameshifting. The unmodified gene 

would maintain function, thus allowing the modification of function in a second gene 

copy. Whether this mechanism, as observed for sym1, is exceedingly rare or a mechanism 

used for a select group of natural genes remains to be determined. 

 Finally, defining the mechanisms that control frameshifting might be beneficial in 

identifying therapeutic approaches for viral disease. In the case of coronaviruses, 

production of RNA polymerase requires a -1 frameshift, and this polymerase is essential 

for viral replication (Plant and Dinman, 2008). Viral infection by organisms that depend 

on frameshifting for survival and viral replication could be targeted with small molecules, 

peptides or oligonucleotides that inhibit frameshifting, thus inhibiting viral multiplication 

and infectivity, allowing for a potentially effective treatment (Gareiss and Miller, 2009).  
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