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Abstract

Studying trip chaining behavior has been a challenging endeavor which requires
the support of microscopic travel data. New insights can be gained given real-time
GPS travel data. This research introduces a framework that considers two-destination
choice in the context of home-based trip chains. We propose and empirically compare
three alternatives of building choice sets where we consider various relationships of
the two destinations (such as major-minor destinations, selecting one first, and select-
ing two concurrently). Our choice set formation alternatives use survival models to
determine the selection probability of a destination. Our results reveal that trip chain-
ing behavior is shaped by the features of retail clusters, spatial patterns of clusters,
transportation networks, and the axis of travel. This research supports our hypoth-
esis that not only the spatial relationship but also the land use relationship of the
destinations in a trip chain affect the decision making process.

Keywords: GPS data, trip chaining, axis of travel, destination choice

1 Introduction

Based on the 2009 National Household Travel Survey, non-work trips account for ap-
proximately 90% of total trips in the US. The forces that shape non-work trip distribu-
tion are multifaceted and complex. Land use, transportation networks, geography, socio-
economic factors, time constraints, and travel contexts all impact non-work destination
choice. Compared with work destination choice, travelers tend to have greater flexibility
in non-work destination choice, which renders the intricacies of decision making difficult
to be sufficiently understood. Traditional paper-and-pencil surveys and interviews, while
useful in capturing some of the shaping factors, cannot paint a full picture of urban life.
Research on non-work destination choice needs to be pumped by travel data of fine gran-
ularity to test new hypotheses and to answer more complex questions on traveling such
as trip chaining. This research proposes a new framework which explicitly considers trip
chaining behavior in non-work destination choice. This approach is data-driven. Given
the real-time trip origin and destination information, we adopt mixed-effects logit mod-
els to model home-based trip chains with two destinations. We test several hypotheses
on the relationship of the destinations in a trip chain and investigate various forces that
shape destination choice.

Our work is made possible by the collection of in-vehicle GPS travel data in the Minneapolis-
St. Paul Metropolitan Area in 2008. The in-vehicle GPS devices recorded 141 participants’
vehicle trips including origins, parking destinations, and travel routes during a study pe-
riod of five months. Participants also periodically documented some of their trip pur-
poses. To understand non-work destination choice behavior, we introduce a model for
home-based trip chains with two destinations. The underlying hypothesis is that desti-
nation choice is not only influenced by the features of destinations but also by the con-
nections between the destinations. We take a quantitative approach to evaluating this
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hypothesis. Our model considers both the spatial and land use relationship of the desti-
nations in trip chains. In building choice sets, we propose three context-sensitive alterna-
tives and compare the goodness fit of different results.

Our work provides three major contributions. First, we propose a framework that explic-
itly considers two destinations in a trip chain. Second, we introduce three alternatives
of building choice sets for multi-destination trip chains. Our approach reflects the rela-
tionship of chained destinations based on multi-day GPS travel data. Third, we examine
several hypotheses on the spatial and land use relationships of destinations in trip chains.

The rest of this paper is organized as follows: Section 2 describes the background and
related literature. Section 3 introduces the framework of the model. Section 4 overviews
the key independent variables, following which is the choice set formation mechanism.
Section 6 determines choice set size used in the models. Section 7 discusses the modeling
results and Section 8 summarizes the key findings and concludes this paper.

2 Background and related work

The in-vehicle GPS data were collected in the Minneapolis-St. Paul Metropolitan Area
from September to December of 2008 with 141 participants. The advantage of this data
set is that in-vehicles GPS devices recorded geo-coded origins, parking destinations, and
vehicles’ other positions on travel routes. Further, as individuals’ socio-demographics
and home and work locations were reported, non-work destinationsv (parking desti-
nations outside workplaces) were singled out for modeling. Note that specific build-
ings/stores one visited were unknown and detailed trip purposes for all trips were not
totally amassed. The corresponding strategy is to measure cumulative walking oppor-
tunities (total number of existing services) around parking destinations. Consistent with
(Huang and Levinson, 2015), this paper uses 15-min walking areas around destinations
to measure walking accessibility and the diversity of services. Such land use features
are measured using the business data set which records the number of establishments
categorized by the North American Industry Classification System (NAICS) code at each
Census block.

Our research on non-work destination choice is grounded in earlier works in discrete
choice modeling. Exemplary models that have been used in modeling shopping destina-
tion choice include: Multi-nomial logit (MNL) (Timmermans, 1996; Pellegrini et al., 1997;
Wang and Lo, 2007; Auld and Mohammadian, 2011), hazard model (Leszczyc et al., 2000),
nested logit model (Newman and Bernardin, 2010), and decision tree model (De Palma
et al., 2010). Such studies often use traffic analysis zones or major shopping malls as
destinations. In deciding choice sets, there are two general approaches: (1) A consumer
considers all possible alternatives in a region. (2) Individuals initially evaluate clusters of
alternatives and then evaluate alternatives in a cluster (Fotheringham, 1988). As micro-
scopic travel data become increasingly available, there have been a number of studies that
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investigate destination choice in the context of trip chains (Kitamura, 1984; Joh et al., 2002)
and household travel activity patterns (Kwan, 2000; Srinivasan and Bhat, 2005; Charypar
and Nagel, 2005; Ferdous et al., 2010). Nevertheless, not much such research is based on
real-time GPS data. Given that the multi-day GPS travel data has become more and more
available, there is a need for investigating chained destination choice using a data-driven
approach. Huang and Levinson (2015) proposed a mixed-effects logit model to under-
stand single-destination choice for non-work trips using the in-vehicle GPS travel data.
This research expands this effort by modeling two-destination choice in non-work trip
chains.

3 Model formulation

The trip chains of interest are home-based, two-destination chains (i.e., home→ destina-
tion 1→ destination 2→ home). Here we exclude trip chains involving work destinations
where non-work destination choice is more likely to be influenced by work locations and
work schedule. The reason why two-destination chains are selected is that in our GPS
data set there are significantly fewer trips with three destinations for home-based, non-
work trip chains. Our goal is to understand how spatial and land use relationships of two
non-work destinations in a trip chain affect the decision making process.

In modeling destination choice, the utility-based MNL model and its variations are widely
used. Since the GPS data are panel data with repeated choices for individuals, there exists
unobserved heterogeneity. To tackle this issue, we apply the mixed-effects logit model to
investigate two-destination choice. The utility for a subject to select a trip chain consisting
of two destinations j and k is defined as:

Uj,k = f [ln(Tj,k),Λj,k,Θj,k,∆j,k, b] (1)

Where Tj,k represents travel time of the whole trip chain of visiting the two destinations
j and k. Λj,k indicates a vector of land use variables for destination j and k including
the similarity of the two destinations. Θj,k indicates a vector of transportation network
measures of the trip chain’s travel route. ∆j,k represents a vector of axis of travel variables
for trip chains. b is an extra random effect term for a subject generated from a standard
normal distribution with mean zero.

4 Independent variables

The independent variables include land use measures, transportation network measures,
axis of travel measures, travel time saving ratio, and the interaction terms between socio-
demographics and other independent variables.
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4.1 Land use measures

As the buildings/stores one visited were unknown, we respectively measure walking ac-
cessibility and diversity of services of the 15-min walking area around two parking desti-
nations j and k. Walking accessibility is measured by the total number of services within
the 15 min walking area (cumulative opportunities). If the two destinations in a trip chain
are surrounded by more services, they provide more opportunities for comparison/multi-
purpose shopping, and thus make the trip chain more attractive.

The diversity of services or land use mix at destinations j and k quantifies the number of
types of stores and the number of stores of each type. Mathematically, it can be measured
by the entropy index (Shannon, 1948). The diversity of services at destination k equals:

Hk = −
V∑

v=1

ρkvln(ρkv) (2)

where ρkv is the proportion of service type v in destination k’s walking area. The service
type of a store is defined by the 6-digit North American Industry Classification System
(NAICS) code. V is the total number of services in the destination’s walking area. The
greater Hk is, the more diverse services a destination has. It is hypothesized that greater
accessibility and diversity of services at either destination, all else equal, make the trip
chain more favorable.

We further measure the similarity of the two destinations. Here we use Lieberson’s simi-
larity measure (Lieberson, 1969):

Ξj,k =
G∑

g=1

ρjgρkg (3)

where g indicates a common category of service at destination k and destination j. G
is the total number of common types of services at the two destinations. ρjg represents
the proportion of service type g at destination k. ρkg refers to the proportion of service
type g at destination j. The definition suggests that the more common services the two
destinations have (i.e., the bigger

∑G
g=1 ρjgρkg is), the more similar the two destinations

are. The natural logarithm form of Ξj,k is used in the model for comparing its elasticity of
the odds of selection of a trip chain with other independent variables. It is hypothesized
that the similarity of the two destinations is negatively associated with the attractiveness
of the trip chain, as individuals may enjoy visiting more services in trip chain reduce the
average travel cost for each task involved.
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Figure 1: Examples of calculating the similarity index. In Figure 1-(1), the two destina-
tions share one common type of service (red). The similarity index of the two destinations
can be calculated as 2

7
· 1

6
= 0.05. In Figure 1-(2), the two destinations have two types of

services in common (red and blue). The similarity index of the two destinations equals
2
6
· 3

6
+ 3

6
· 2

6
= 0.32. The two destinations in Figure 1-(1) have greater similarity than the

two destinations in Figure 1-(2).

4.2 Transportation network measures

The road network measures used in this study include speed discontinuity (Levinson and
El-Geneidy, 2009) and turn index.

Speed discontinuity measures changes of speed along the fastest path between an origin
and a destination divided by the length of this route (Xie and Levinson, 2007; Parthasarathi
et al., 2012). Speed discontinuity for a trip chain including destinations j and k is mea-
sured as:

ψj,k =

{
ln 0.5

Tj,k
if
∑

(|vq − vq+1| = 0

ln
∑

(|vq−vq+1|)
Tj,k

if
∑

(|vq − vq+1| > 0
(4)

When
∑

(|vq − vq+1|) = 0, we use the midpoint of 0 and 1 to replace 0 to make the defini-
tion meaningful. It is hypothesized that greater speed discontinuity on the route dampens
the attractiveness of the trip chain.

Turn index (ϑk) quantifies the number of turns a drivers needs to make from home to
destination (Huang and Levinson, 2015). If the acute angle between every two connected
road links is between 170 degrees (inclusive) and 180 degrees (inclusive), a driver is con-
sidered as not having to make any turning maneuver to transition from one link to the
other; otherwise, a driver is considered as having to make a turn. Turn index (ϑj,k) for a
trip chain including destinations j and k is defined as:
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ϑj,k =

{
ln 0.5

Tj,k
if Γj,k = 0

ln Γk

Tj,k
if Γj,k > 0

(5)

where Γj,k is the total number of turns on the trip chain. It is hypothesized that a greater
turn index reduces the convenience of driving on the route, and thus lowers the attrac-
tiveness of a trip chain.

4.3 Axis of travel

The axis of travel measures include two variables: travel time to work (Tw,jk) and travel
time to the nearest downtown (Td,jk).

4.3.1 Travel time to work

We are interested in how travel time to work from the two destinations influences desti-
nation choice. The measure that produces the highest goodness of fit is travel time from
the major destination of the two destinations to a person’s workplace. For actual trips,
the major destination is defined as the destination that has a longer length of stay. The
travel time to work measure (Tw,jk) is defined as:

Tw,jk =

{
Tw,j if destination j is the major destination
Tw,k if destination k is the major destination (6)

where Tw,j represents the network travel time between destination j and workplace. Tw,k

indicates the network travel time between destination k and workplace. Tw,jk is used to
indicate one’s familiarity with the major destination because one tends to be familiar with
the area close to workplace. A smaller value indicates that one may be more familiar with
the major destination. All else equal, travelers prefer a choice with less travel time to
work due to greater familiarity with the destination. The natural logarithm form of Tw,jk

is used in the model for comparing its elasticity of the odds of selection of a trip chain
with other independent variables.

4.3.2 Travel time to the nearest downtown

After several different definitions are tested, travel time to the nearest downtown (Td,jk)
is defined as travel time from the major destination to the nearest downtown. Mathemat-
ically, it can be written as:
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Td,jk =

{
Td,j if destination j is the major destination
Td,k if destination k is the major destination (7)

This measure implies one’s consideration of parking constraints, narrower streets, and
more traffic lights, etc. If Td,jk is smaller, the major destination is closer to the nearest
downtown where parking is more limited and more costly, and thus the trip chain is less
attractive to travelers for non-work trips. It is hypothesized that smaller Td,jk makes a trip
chain less attractive.

4.4 Travel time savings

According to the reference-dependent theory (Tversky and Kahneman, 1991), chained
destinations can be more attractive than making two separate trips due to travel time
savings. We use ζj,k to represent the travel time saving ratio of a trip chain with two des-
tinations compared with making two separate round trips to visit the two destinations.
The travel time saving ratio of a trip chain can be written as:

ζj,k = 1− Tj,k
Tj + Tk

(8)

where Tj,k represents the home-based trip chain’s travel time. Tj refers to travel time of
making a home-based round trip to visit destination j only (i.e., home → destination j
→ home). Tk represents the travel time of making a home-based round trip to visit k
only (i.e., home → destination k → home). Travel time saving ratio reflects the value of
chaining the trips. It is hypothesized that if a two-destination trip chain has a greater
travel time saving ratio, all else equal, it is more likely to be selected.

5 Choice set formation

The choice set formation methods proposed in this research is built upon Huang and
Levinson (2015) for single-destination choice. Huang and Levinson (2015) proposed a
new choice set formation approach combining survival analysis and random selection.
Based on each individual’s historical travel data, the survival function of selecting a des-
tination is estimated using travel time and the destination’s accessibility (total number of
services) as independent variables. The survival function aims to produce the probability
of selection for each destination given travel time and accessibility. Then destinations are
selected probabilistically into the choice set. This approach provides every destination in
the area an opportunity to be selected into the choice set, but a destination with shorter
travel time and more services is more attractive. Two-destination trip chains are more
complicated than single-destination chains because the relationship of the destinations
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Figure 2: Examples of calculating travel time saving ratio. In Figure 2-(1), travel time for
making the home-based two-destination trip chain equals 10 + 5 + 15 = 30 minutes. The
total travel time for making two separate home-based one-destination trip chains equals
10× 2 + 15× 2 = 50 minutes. The travel time saving ratio equals (1− 30

50
)× 100% = 40%.

In Figure 2-(2), travel time for making the home-based two-destination trip chain equals
30 minutes. The total travel time for make two separate home-based one-destination
trip chains equals 10 × 2 + 10 × 2 = 40 minutes. The travel time saving ratio equals
(1− 30

40
)× 100% = 25%. Therefore, Figure 2-(1) has a greater travel time saving ratio than

Figure 2-(2).

9



affects the choice set formation process. Here we propose three alternatives of building
choice sets for home-based, two-destination trip chains.

5.1 Alternative I

Figure 3: Alternative I of selecting two destinations to constitute a trip chain.

The procedure of Alternative I is shown in Figure 3. Given each individual’s GPS trips,
the first step is to calculate travel time from home to the first destination and travel time
from home to the second destination (which equals travel time from home to the first
destination plus travel time between the first destination and the second destination).
The second step is for each individual to estimate a survival function based on travel
time from home to the first destination, and to estimate another survival function based
on travel time from home to the second destination. According to the estimated survival
functions we can predict the weights of all destinations. Given the weights of all potential
destinations from the first survival function, we select destination j using random sam-
pling. Likewise, given the weights of all destinations from the second survival function,
we select the other destination k using random sampling.

After the two destinations are chosen, the fastest-path travel route of the home-based
trip chain can be identified based on the road network by solving the traveling salesman
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problem (Gutin and Punnen, 2002) where the sequence of visiting the two destinations is
not fixed.

5.2 Alternative II

Alternative II assumes that one destination is first selected and the other destination is
secondly selected based on travel time from the first destination to the second destination.
The procedure of Alternative II is shown in Figure 4. The first step is for each individual
to estimate the first destination j’s survival function based on travel time from home to
the first destination j. The second step is to estimate the second destination k’s survival
function based on travel time between the first destination j and the second destination k.
Destinations j and k are randomly selected separately based on the weights of all possible
destinations from the two survival functions. The fastest-path travel route of the home-
based trip chain to visit the two destinations are created based on the road network, given
that the sequence of visiting j and k is fixed.

Figure 4: Alternative II of selecting two destinations to constitute a trip chain.
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Figure 5: Alternative III of selecting two destinations to constitute a trip chain.
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5.3 Alternative III

Alternative III assumes that an individual first selects the major destination and then de-
cides the minor destination. Although we do not have direct information regarding which
destination is the major one, we may infer it based on the individual’s length of stay at a
destination. A destination associated with longer length of the stay is considered as the
major of the two. While this assumption is not always true, it serves as a plausible start.
The procedure of Alternative III is shown in Figure 5. The first step includes identifying
the major destination and the minor destination based the length of stay and calculating
travel time from home to the major destination and travel time between the major des-
tination and the minor destination. The second step is for each individual to separately
estimate the survival function based on travel time from home to the major destination
and based on travel time between the two destinations. The third step is to separately
predict the weights of all destinations based on the major destinations’ survival function
and the minor destinations’ survival function. The last steps are to randomly select a ma-
jor destination based on the weights of destinations from the major destinations’ survival
function, and to randomly select a minor destination based on the weights of destinations
from the minor destinations’ survival function. After the two destinations are selected,
the fastest-path travel route of the home-based trip chain can be created based on the
road network by solving the traveling salesman problem where the sequence of visiting
the two destinations is not fixed (note that the major destinations may be visited later
than the minor destination).

6 Choice set size

6.1 Theory

In a metropolitan area, a large number of destinations (Census blocks) make it compu-
tationally difficult to include all destinations in a choice set. Here we use the revised
RMSE model proposed in Huang and Levinson (2015) to decide an appropriate choice set
size. The RMSE of the model is defined as the average of RMSEchosen and RMSEunchosen.
In other words, we assign a 50% weight to RMSEchosen and the other 50% weight to
RMSEunchosen, which can be presented as:

RMSEmodel = p ·RMSEchosen + (1− p) ·RMSEunchosen (9)

where p = 0.5. The reason for doing so is to balance accuracy between predicting chosen
trip chains and unchosen trip chains. It reduces the effects of having more undesirable
destinations in a choice set on RMSE.

The RMSEs of models with different choice set sizes developed by different alternatives
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are further compared to decide an appropriate choice set size. The choice set sizes tested
range from 10 to 100, with an increment of 10. The choice set size that produces the
minimum RMSEmodel is used.

6.2 Results

0

0.06

0.12

0.18

0.24

0.3

0 10 20 30 40 50 60 70 80 90 100

Approach I
Approach II
Approach III

RMSE (model)

Choice set size

Figure 6: Comparison of root mean squared errors of different choice set sizes for models
developed by the three alternatives.

The RMSEs of various choice set sizes are shown in Figure 6. Though there are excep-
tions, the generation trend is that as the choice set size increases from 10 to 60, the RMSE
value drops. As the choice set size continues to climb, the RMSE value for the models
developed by Alternative I decreases, but it fluctuates for models developed by Alterna-
tive II and Alternative III. The fluctuation can be partially attributed to a certain degree
of randomness in selecting trip chains. In models developed by Alternative III, the model
with choice set size 60 produces the lowest RMSE. In models developed by Alternative
II, the RMSE value fluctuates around 0.16, and for models developed by Alternative II,
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the value stays around 0.19. Figure 7 displays the running times versus RMSE values for
various models. As the choice set size increases, the running time rises. Balancing accu-
racy and running time and for consistent comparison of models developed by different
alternatives, we decide to choose choice set size 60 for models developed by the three
alternatives. This is believed to have sufficient accuracy compared with other sizes and
does not demand too high computational cost.

0 150 300 450 600

Choice set size

0.10.20.3

Processing time (min)

10
20
30
40
50
60
70
80
90 
100

0.0750.150.225

RMSE

0

Alternative I
Alternative II
Alternative III

Figure 7: The RMSE values and running times for the models of different sizes developed
by the three alternatives.

7 Modeling results

The results of the mixed-effects logit models under the three alternatives are shown in
Table 1. In Model 1 under Alternative I, the coefficient of the first destination’s accessibil-
ity has a positive coefficient and is statistically significant. The first destination’s entropy
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Table 1: Modeling home-based, two-destination choice in the context of trip chains

Model type Mixed-effects logit model
Model’s name Model 1 Model 2 Model 3

Choice set generation method Alternative I Alternative II Alternative III
Choice set size 60 60 60

Land use at
Destination 1 ?

Accessibility (ln(Aj)) 0.39 *** 0.30 *** 0.22 ***
Diversity of services (ln(Hj)) 9.37 *** 9.15 *** 10.69 ***

Land use at
Location 2 •

Accessibility (ln(Ak)) 0.82 ** 0.70 *** 1.15 ***
Diversity of services (ln(Hk)) -0.09 -0.01 -0.69

Land use
relationship Similarity (Ξj,k) -13.00 *** -12.70 *** -15.27 ***

Travel features

Travel time (ln(Tj,k)) -2.02 *** -1.81 *** -3.96 **
Turn index (ϑj,k) -0.95 *** -0.79 *** -0.67***
Speed discontinuity (ψj,k) 0.67 *** 0.52 ** 0.57 ***

Spatial
relationship Time saving ratio (ζj,k) 7.48 *** 6.81*** 9.62 ***

Axis of travel
Time to work (ln(Tw,jk)) 0.93 *** 0.71 *** -0.40
Time to downtown (ln(Td,jk)) 1.22 *** 1.16 *** 1.62 ***

Goodness of fit

AIC 963 1122 223.0
log likelihood -468.8 -548 -364.9
McFadden’s R2 0.88 0.86 0.90
Nagelkerke R2 0.89 0.87 0.91

In Alternative I and Alternative II, ? indicates the first visited location in the trip chain. In Alternative III, ? repre-
sents the major destination in the trip chain, defined as the one with longer length of stay.
In Alternative I and Alternative II, • indicates the secondly visited location in the trip chain. In Alternative III, •
represents the minor destination in the trip chain, defined as the one with shorter length of stay.
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measure has a positive coefficient which is statistically significant. Regarding the second
destination, the accessibility measure is statistically significant but the entropy measure
is not statistically significant. The relatively large absolute values of coefficients for the
entropy measure for the first destination and the similarity measure may suggest corre-
lation, which is confirmed by the Pearson correlation test (Table 2). The coefficient of the
similarity of the two destinations in a trip chain is negative and statistically significant.
Greater dissimilarity of the two destinations, all else equal, makes a trip chain more at-
tractive. It can be explained by more complementary services in these destinations. Total
travel time of a trip chain is also an important factor in influencing a trip chain’s attrac-
tiveness. Greater travel time for the whole trip chain, all else equal, is associated with less
attractiveness of a choice.

The turn index variable in all three models carries a negative sign, suggesting that more
turns per unit travel time, all else equal, lower the attractiveness of the trip chain. It pin-
points the impact of routes-specific factors on two-destination choice. Contrary to our
hypothesis, the coefficient of speed discontinuity has a positive sign, implying that all
else equal, a route with more changes of speed per unit length along the route make a
trip chain more attractive. Further investigation reveals that the Pearson correlation coef-
ficient between turn index and speed discontinuity equals 0.80 (see Table 3). A relatively
strong correlation may bias the estimates of the two variables’ coefficients. When remov-
ing turn index from the model, speed discontinuity’s coefficient becomes negative but is
not statistically significant. Travel time saving ratio has a positive coefficient, indicating
that all else equal, if a trip chain has a higher travel time saving ratio compared with
making separate round trips, it is more attractive to travelers. Travel time saving ratio is
influenced by the relative spatial distance between the two destinations. The closer the
two destinations are, all else equal, the greater the travel time saving ratio is.

In terms of the axis of travel, the distance to downtown has a positive coefficient, sug-
gesting that favorable non-work trip chain destinations, all else equal, tend to be farther
away from the closer downtown. The correlation between the two variables equals 0.75
(Table 3). When only one of the two variables is retained in the model, the other variable
becomes statistically significant in all three models and the sign of the coefficient is con-
sistent with our hypothesis. As shown in Figure 1, all three models seem to have high
goodness of fit, as evidenced by high McFadden’s R2 and Nagelkerke R2 measures. All
these measures show that Model 3 seems to perform the best. Therefore we recommend
the major/minor-approach for modeling two-destination choice for our travel data.

The elasticity of key independent variables are further calculated (Figure 8). Considering
the correlations among variables, we first run the mixed-effect model on one variable at
a time, and then calculate the elasticity for each estimated coefficient. Travel time has the
biggest impact on destination time. A 1% increase of a trip chain’s travel time, all else
equal, is associated with a 95% decrease of the likelihood of selecting the trip chain. The
No.2 factor is travel time to work. A 1% increase of the travel time between the major
destination and work, all else equal, is associated with a 73% drop of the likelihood of
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Table 2: Correlations of land use variables in Model 3

ln(Aj) Hj ln(Ak) Hk Ξj,k

ln(Aj) 1 0.09*** 0.15*** 0.01*** 0.37***
Hj 1 -0.007*** 0.01*** -0.61***

ln(Ak) 1.0 0.22*** 0.08***
Hk 1.0 -0.08
Ξj,k 1

Table 3: Correlations of route-specific network measures in Model 3

ϑj,k ψj,k ζj,k ln(Tw,jk) ln(Td,jk)
ϑj,k 1.0 0.80*** -0.11*** -0.06*** -0.06
ψj,k 1.0 -0.11*** -0.10*** -0.08***
ζj,k 1.0 -0.21*** -0.16***

ln(Tw,jk) 1.0 0.75***
ln(Td,jk) 1.0

selecting the trip chain, suggesting the influence of one’s familiarity with the destinations
on two-destination choice. We further test a new independent which is the multiplication
of the trip chain’s travel time and travel time between the major destination and work.
Its elasticity carries a negative sign, suggesting that the farther away a trip chain is from
the axis between home and work, the less attractive the trip chain is.

8 Conclusions

Trip chaining is an interesting and complex travel behavior which has been not suffi-
ciently investigated. Microscopic GPS data can help us gain a deeper understanding
of such behavior and the dynamics of urban life. This research explicitly models two-
destination choice in home-based trip chains using the in-vehicle GPS travel data. We
further propose and empirically test three alternatives of building choice sets for such trip
chains. The mixed-effects logit model framework is utilized to estimate the coefficients.
Our results show that all three models produce satisfactory goodness of fit. Alternative
III based on the notion of major-minor destinations produces the highest goodness of fit
of all three alternatives.

This research supports our hypothesis that not only the spatial relationships (as illus-
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Figure 8: Elasticity of key independent variables.

trated by travel time and travel time saving ratio) but also the land use relationships (as
illustrated by similarity) of the destinations in a trip chain affect decision making. In ad-
dition, the axis between home and work is a contributing factor. The familiarity with the
environment may have played a role there. Route-specific measures such as discontinuity
and turn index also influence destination choice.

Overall, our results provide a new step in understanding destination choice behavior and
the built environment using GPS travel data. Our models have several potential appli-
cations. First, they can be integrated into activity-based regional travel demand models
through automated algorithms. Our method bodes well to modeling trip chains with
more than two non-work destinations. Second, our approach can be used in testing other
in-vehicle or on-person GPS data for engineers, planners, and business developers who
are interested in understanding consumers’ travel behavior. Third, it can be expanded to
build a web-based tool for testing parameters and visualizing the distribution of travel
destinations.
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