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Hard Disks on the Hyperbolic Plane

Abstract
We examine a simple hard disk fluid with no long range interactions on the two-dimensional space of constant
negative Gaussian curvature, the hyperbolic plane. This geometry provides a natural mechanism by which
global crystalline order is frustrated, allowing us to construct a tractable model of disordered monodisperse
hard disks. We extend free-area theory and the virial expansion to this regime, deriving the equation of state
for the system, and compare its predictions with simulation near an isostatic packing in the curved space.
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Hard Disks on the Hyperbolic Plane

Carl D. Modes and Randall D. Kamien
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA

(Received 31 August 2007; revised manuscript received 2 October 2007; published 3 December 2007)

We examine a simple hard disk fluid with no long range interactions on the two-dimensional space of
constant negative Gaussian curvature, the hyperbolic plane. This geometry provides a natural mechanism
by which global crystalline order is frustrated, allowing us to construct a tractable model of disordered
monodisperse hard disks. We extend free-area theory and the virial expansion to this regime, deriving the
equation of state for the system, and compare its predictions with simulation near an isostatic packing in
the curved space.

DOI: 10.1103/PhysRevLett.99.235701 PACS numbers: 64.10.+h, 02.40.Ky, 05.20.Jj, 61.43.�j

The precise connections between the virial equation of
state, the crystalline transition, glass transitions, and ran-
dom close packing remain elusive [1,2]. The systematic
calculation of the equation of state is perturbative and
analytic in volume fraction, � [3], and thus it is difficult
to comprehend how it can, taken at face value, probe the
nonanalytic, large volume fraction regime where crystal-
lization occurs. At the other extreme, crystal free energies
are well modeled by Kirkwood’s free volume theory [4],
especially near their maximum density. How can we probe,
in three dimensions for instance, the crystalline phase
transition in hard spheres at �X � 0:5 and the possible
existence of a maximally random jammed state near
�RCP � 0:64 [1,5]? Focusing on two-dimensional systems
as a simple starting point is fraught with difficulties. Unlike
the situation in three dimensions where local tetrahedral
and icosahedral packing competes with global fcc crystal-
lization [6], it is problematic to prevent crystallization in
simulations of monodisperse disks [7], as triangular close
packing is commensurate with crystalline order. Here we
formulate the problem on a curved surface which serves to
frustrate global crystalline order in a manner analogous to
that in three dimensions. In particular, we study hard disks
on the hyperbolic plane, H2, at a curvature near a known
regular tesselation. This model is numerically tractable and
allows us to study the truly disordered regime, in contrast
to the defect-laden, curved crystal where the defects them-
selves continue to exhibit an underlying order [6,8]. We
find the equation of state for hard disks via molecular
dynamics and compare our results to free-area theory for
the packing derived from the nearby tesselation.

Experimentally, one could consider crystalline order and
packing problems on any of the many bicontinuous struc-
tures in lipid and diblock phases [9] and present in the cell,
such as the periodic cubic membrane in the mitochondria
of Chaos carolinensis [10]. These bicontinuous structures,
often close to minimal surfaces, have negative intrinsic
curvature and the regular tesselations we consider here
should serve as a scaffolding to model transitions on these
surfaces.

On a two-dimensional manifold with constant intrinsic
curvature K, the area of a circle of radius r is a � A�r� �

�2�K�1�cosh�
��������
�K
p

r� � 1� ! �r2 as K ! 0, as re-
quired. When we insert a disk of radius r onto our mani-
fold, it excludes an area of radius 2r to the other disks.
Thus the number of disks that cannot be inserted once the
first disk is placed A�2r�=A�r� � expf

��������
�K
p

rg grows expo-
nentially with curvature and so we should expect that large,
negative curvatures will lead to highly correlated disk
packings due to the harsh entropic cost of this excluded
area. Equivalently, the kissing number, nkiss, the number of
spheres which may simultaneously touch a central sphere
grows with K [11]:

 nkiss �
2�

cos�1� cosh�2
������
�K
p
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������
�K
p

r�
�
�

K!�1
�e

������
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To explore this systematically, we study the virial expan-
sion for the pressure P in terms of the number density �,
written P � kBT

P
1
n�1 Bn�

n, where the B1 term arises
from the usual ideal gas law. While it may be tempting
to assume B1 � 1, the ideal gas on a curved manifold
requires some thought; the circumference of a circle,
C�r� � 2� sinh�

��������
�K
p

r�=
��������
�K
p

, grows as fast as A�r� mak-
ing the infinite area, thermodynamic limit subtle.

The textbook approach to the ideal gas law begins with
particle-in-a-box eigenenergies and takes the large area
limit to calculate the partition function for a single particle,

Z1 � V=�dT , where �T �
������������������������
2�@2=�mT�

p
is the thermal

wavelength. Fortuitously, the spectrum of the Laplacian
on a general Riemann surface has been well studied [12].
McKean and Singer [13] developed the Weyl expansion
[14] for the partition function of a single particle on a
periodic two-dimensional domain D:
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where the sign of the first correction depends on Neumann
(	) or Dirichlet (�) boundary conditions and H is the
mean curvature. Now we see that the circumference di-
rectly affects B1 and the only way to avoid the problem
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with the boundary is to consider periodic boundary con-
ditions, i.e., no boundary. We note that for hard disks the
virial expansion includes only local interactions among
clusters of particles. As long as the clusters in question
do not wrap around the periodic space, we ignore the
periodicity and perform the cluster integrals on H2. In
order to ensure that this is possible, we may continue to
increase the area available to a cluster by constructing ever
higher genus manifolds [15] and, thus, we can neglect
‘‘winding’’ of the disks around the periods. For manifolds
with constant K < 0, Z1 � A���2

T 	 K=�12���> 0 when
�2
T <�12�=K. In other words, we are forced to work in

the regime where the curvature of the manifold does not
probe the quantum regime of the gas. In this regime, the
pressure P � NkBTd lnZ=dA is independent of the pro-
portionality constant.

To calculate the virial coefficients, we employ the
Poincaré disk model of H2, popularized by Escher [16],
which conformally maps the hyperbolic plane with curva-
ture K to the disk of radius

�������������
�K�1
p

on R2. Using the
complex coordinate � � x	 iy, the metric is ds2 � 4�1	
K� ����1d�d �� , where � �� � �1=K [15]. Geodesics in this
model are arcs of circles which intersect the bounding
circle normally; circles in the hyperbolic plane remain
circles in this model, but their coordinate centers and radii
vary. The radius of curvature sets a length scale and,
consequently, any system on H2 is manifestly not scale
invariant.

We take advantage of this lack of scale invariance to
probe higher curvatures not by changing the ambient
space, but simply by considering larger and larger disks.
We consider disks of radius r

��������
�K
p

. Without loss of gen-
erality we fix the Gaussian curvature to be K � �1.
Dimensional analysis may always be employed to insert
the appropriate factors of K. As in flat space, the second
virial coefficient, B2�r�, is given by half the excluded area
of a single disk: B2�r� � ��cosh�2r� � 1�. As r! 0 we re-
cover the d�2 Euclidean result: B2�r�� �4��

�d=2�rd=
�d��d2��. Though it is tempting to associate the higher
connectivity at larger curvatures with higher dimensions,
we know of no natural identification.

We turn to numerical integration to evaluate the higher
virial coefficients. In addition, as is traditional in flat space
[17], the higher coefficients Bn are reported in units of
an�1 � �A�r��n�1 to suppress size effects and generate the
expansion for P=��kBT� in the area fraction, � � �a:

 P � �kBT
�

1	
X1
n�2

Bn
an�1 �

n�1

�
: (3)

We have checked the r! 0 limit in all cases, and happily
find agreement with the known Euclidean results. We plot
B2=a, B3=a

2, B4=a
3, and B5=a

4 in Fig. 1 and see that the
normalized virial coefficients grow rapidly with r, or
equivalently, K. This demonstrates that the fluid phase
quickly becomes correlated at ever higher curvatures. In

passing, we note that, to the accuracy of our calculation, B3

and B4 are positive, while B5 may have a zero crossing.
There is evidence that, in higher dimensional flat spaces,
the virial coefficients alternate in sign [17,18] and hence
the leading singularity that controls the radius of conver-
gence of the expansion sits on the negative real axis [18].
The location of this singularity, and hence the range of
applicability of the virial expansion itself, remains an open
question inD � 2; 3. Whether or not Bn�r� crosses zero for
the negatively curved system at any value of r is the subject
of future work.

Since our confidence in the reliability of the virial ex-
pansion wanes with ever larger curvature, both due to the
numerics and the likelihood of growing higher-order cor-
rections, we are forced to look at highly correlated struc-
tures on H2. Free-area theory is the standard approach to
ordered and disordered packings at high area fractions.
With this in mind, we start by considering regular packings
on the hyperbolic plane. We begin with a regular lattice of
Voronoi cells and consider a tesselation of F p-gons, with
q meeting at each vertex. The total number of vertices is
pF=q, the total number of edges is pF=2, and the total
number of faces is F. The Euler character � of the surface
constrains these three numbers and it follows that

 � � V � E	 F � pF
�

1

q
	

1

p
�

1

2

�
: (4)

For the flat periodic plane (i.e., the torus) � � 0, and we
find the three tilings represented by the Schläfi symbol
fp; qg � f6; 3g, f3; 6g, and f4; 4g, hexagons, triangles, and
squares, respectively. The spherical topology is the only
one with positive � � 2, admitting the five Platonic solids
fp; qg � f3; 3g; f3; 4g; f3; 5g; f4; 3g, and f5; 3g. Finally, we
turn to the pertinent geometries with negative Gaussian
curvature, for which �< 0 and p�1 	 q�1 < 1

2 . In this
case there are an infinite number of integral pairs fp; qg
and an infinite number of regular tesselations. Triangular
packing around each vertex, q � 3, corresponds to close
packing. We focus instead on isostatic packings, those for
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FIG. 1 (color online). The second, third, fourth, and fifth virial
coefficients in appropriate units of the area, a, as functions of
disk size (for K � �1) r.
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which each disk has p � 4 nearest neighbors. Recall that
an isostatic packing is one for which the number of force
balance equations is equal to the number of degrees of
freedom. For N frictionless particles in d dimensions with
coordination z, there are dN degrees of freedom and Nz=2
forces to balance: isostaticity requires zc � 2d [19].

We find the area fraction of fp; qg through application of
the Gauss-Bonnet theorem and hyperbolic trigonometry.
When there are F identical polygons, the area of each can
be found from the Euler character �: FAp-gon �

R
dA �

�
R
KdA � �2��, where we have used K � �1. The

radius of the in circle can be determined via the dual law
of hyperbolic cosines [20], cosh�r�� cos��=q�=sin��=p�.
We find the area fraction for the fp; qg tesselation:

 �fp;qg �
�
F
�

��
1�

cos��=q�
sin��=p�

�
: (5)

We recover the appropriate packing fractions, �=3
���
3
p

,
�=4, and �=2

���
3
p

, for the Euclidean tilings, f3; 6g, f4; 4g,
and f6; 3g, respectively. As p! 1 for close-packed q � 3
tesselations, we find �max � 0:9549, the known packing
fraction of the best packing on the hyperbolic plane at any
curvature [21]. The lowest packing fraction for an isostatic
configuration (p � 4) is �iso � �f4;1g �

���
2
p
� 1 �

0:4142, an area fraction far below that for the Euclidean
square lattice �=4 � 0:785. Also of note is the broadening
of the range in � that supports stable configurations:
�max ��iso � 0:54 on H2, as compared to a range of
roughly 0.13 in flat space. This is consistent with our
finding that the virial expansion breaks down at lower
area fractions on H2. Indeed, the f4;1g tesselation requires
cosh�r�� �

���
2
p

so that B2�r
��=A�r�� � 1

2 �2�=�
���
2
p
� 1� �

1=�f4;1g. Though possibly a mathematical profundity, the
fact that B2�r

���f4;1g=A�r
�� � B1 means that the first cor-

rection to the ideal gas is precisely equal to the noninter-
acting result and strengthens the case that we must study
the large � regime.

The presence of these large corrections, even at low area
fraction, necessitates an approach to the high-density re-
gime. We turn to free-area theory, known to be exact near
close packing [22,23]. In flat space, scale invariance en-
sures that the shape of the free-area region, available to
each disk’s center of mass, has precisely the same shape as
the corresponding Voronoi cell. However, the rigidity of
H2 forces us to consider how the shape of the cell changes
as the size of the disks change. In Fig. 2 we show how we
break up the Voronoi cell to calculate the resulting free
area.

The free area can be found by starting with Ap-gon and
subtracting the area of each of the p strips, Astrip � �s�
2�� sinh�r� [24] and each of the p corners Acorner � ��
�� 2�=q. The hyperbolic law of cosines [20] allows us to
find cosh� � cos��=2� csc��=q�, coshs � �cos�2�=p� 	
cos2��=q��csc2��=q�, and sin��=2� � cos��=q�= coshr.

We can relate r to �, p, and q and write Afree in terms of
p, q, and �: setting 	 � 1� ��

F and 	pq � 1�
��fp;qg
F , we

have

 Afree � 2psin�1

�
sin
�
�
p

� 	pq
	

�
� 2�

� 2p
��������������
	2 � 1

p
cosh�1

�cos��p�

sin��q�

�

	 2p
��������������
	2 � 1

p
cosh�1

2
4

�����������������������������
1�

	2
pq

	2 sin2��p�

r

sin��q�

3
5: (6)

Unfortunately, this expression is cumbersome to the point
of uselessness, so we instead turn to Fig. 3, where we plot
the free-area equations of state for various fp; qg tessela-
tions using PFA � �Ta�1�2 d

d� ln�Afree�. Note that a is set
by Ap-gon� � a.

Finally, we turn to disordered packings. We employed
constant energy molecular dynamics on a periodic hyper-
bolic octagon with sides identified to give the topology of
the 2-torus [15]. Note that we cannot vary � by changing
the disk size, as we must in free-area theory, since that is,
by the absence of scale invariance, equivalent to a change
in the background curvature. Instead, we change � by
changing the number of disks in the periodic octagon.
We could choose a larger, higher genus periodic cell on
which to do our simulation in which case we could probe a
larger number of area fractions, filling in the data points in
Fig. 3, though this is computationally intensive. Although
the simulation and free-area theory share a common end-
point, the pressure in the latter samples ever-changing
curvatures on its way to close packing. We choose to study
curvatures r � 0:53 and r � 0:531, just below and just
above that for the f4; 5g tesselation, rf4;5g � 0:5306. At
these curvatures no regular tesselation is allowed, and so
noncrystalline arrangements give the best packings [25].
Thus we expect to probe disordered configurations even at

α

2π
δ

δ δ

FIG. 2. Partition of a fp; qg Voronoi cell into its free-area cell,
p corners, and p strips. Note that the boundaries of the free-area
cell are not geodesics.
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high densities with this choice. Indeed, the simulation
suggests that the disordered system attains higher pressures
less rapidly than the nearby, ordered, isostatic configura-
tions, particularly at larger values of � (Fig. 3). The r! 0
limit should be a way to study these disordered packings on
the Euclidean plane. Fortuitously, roughly 10 disks fill the
periodic octagon, the smallest periodic region on H2, and
thus we could quickly approach a dense packing. We
require many more disks to study the Euclidean limit;
this work is in progress.

We studied a hard disk gas through simulation, at cur-
vatures close to that for a regular tesselation and compared
with free-area theory. Thus we have a model which ap-
proaches disordered packings of monodisperse disks for
which we can understand the equation of state. Note that
our approach allows us to ponder the structure of the virial
expansion: in d dimensions, the 2dth virial coefficient, B2d,
is required to probe isostaticity, while crystallization re-
quires the nth

kiss virial coefficient. Though increasing the
dimension d pushes nkiss ever larger [26], the study of
disordered packings forces us to calculate ever more virial
coefficients. The hyperbolic plane sidesteps this problem
by keeping isostaticity at p � 4. Further work will focus
on other tesselations, in particular, the Euclidean limit, and
on mapping the results and predictions of H2 onto the
bicontinuous structures present in biological systems.
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FIG. 3 (color online). The equation of state for free-area theory
for a range of fp; qg tesselations. Note that the pressure curves
diverge at their maximum packing fractions and that they differ
even at low area fractions, �. The vertical dashed lines indicate
the maximum area fraction for the tesselations listed on top of
the figure. The inset compares our numerical results with the
f4; 5g free-area theory at larger values of the pressure. The larger
(light blue) circles are the result of our molecular dynamics
simulation for curvature just below the f4; 5g tesselation and the
smaller (black) circles are for curvature just above f4; 5g. The
number of particles ranges from 1 to 9.
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