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Nonperturbative Yukawa Couplings from String Instantons

Abstract
Nonperturbative D-brane instantons can generate perturbatively absent though phenomenologically relevant
couplings for type II orientifold compactifications with D-branes. We discuss the generation of the
perturbatively vanishing SU(5) GUT Yukawa coupling of type (10 10 5H). Moreover, for a simple globally
consistent intersecting D6-brane model, we discuss the generation of mass terms for matter fields. This can
serve as a mechanism for decoupling exotic matter.
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Nonperturbative D-brane instantons can generate perturbatively absent though phenomenologically
relevant couplings for type II orientifold compactifications with D-branes. We discuss the generation of
the perturbatively vanishing SU�5� GUT Yukawa coupling of type h10 10 5Hi. Moreover, for a simple
globally consistent intersecting D6-brane model, we discuss the generation of mass terms for matter fields.
This can serve as a mechanism for decoupling exotic matter.

DOI: 10.1103/PhysRevLett.100.061602 PACS numbers: 11.25.Sq

Introduction.—Nonperturbative mass generation by
gauge instantons is essential to explain the pattern of
meson masses in QCD. Specifically, QCD instantons gen-
erate a nonperturbative, effective fermion interaction [1]
that involves Nf flavors of quark fields and breaks the
perturbative U�1�A axial symmetry to a discrete Z2NF sub-
group. In this way the mass of the �0 meson gets generated
[2,3]. In addition, gauge instantons of the weak SU�2�
gauge group are responsible for baryon number violating
processes in the standard model of particle physics.

Following these observations, it would be very interest-
ing if also some of the quark and lepton masses are of
nonperturbative origin in theories beyond the standard
model. For instance, Weinberg [4] suggested that quark
masses could be due to gauge instantons of some hyper-
color interactions in subquark models.

Also in string theory compactifications, quark and lepton
masses, or rather the respective Yukawa couplings, can be
generated by nonperturbative effects, more precisely by
string world-sheet [5] or by spacetime instantons. Most
importantly, string theory opens up some new perspectives
in that nonperturbative effects do not only include gauge
instantons of the effective gauge theory, but also entirely
stringy instantons not related to effective gauge interac-
tions. In fact, during the last year there has been some
progress towards a better understanding of nonperturbative
effects in N � 1 supersymmetric four-dimensional string
compactifications on Calabi-Yau orientifolds ([6–9] and
further developments in [10–19]; for closely related earlier
work see [20,21]). Type IIA orientifolds with intersecting
D6-branes (see, e.g., the recent reviews [22,23] for refer-
ences) receive nonperturbative corrections from Euclidean
D2-brane instantons, short E2-instantons, wrapping spe-
cial Lagrangian three-cycles of the internal Calabi-Yau
space.

Once a conformal field theory (CFT) description of the
background is available, the induced nonperturbative cou-
plings can be studied using methods from open string
theory. An analysis of the zero mode structure of such in-
stantons shows that so-called O(1)-instantons [14–17] can

generate terms in the effective four-dimensional super-
potential.

Of particular interest are those induced interactions
which are forbidden perturbatively due to global U�1� se-
lection rules. Under suitable circumstances, E2-instantons
can break these global U�1� symmetries to certain discrete
subgroups and generate U�1� violating interactions [6,8].
Important examples of these new couplings are nonpertur-
bative Majorana mass terms for right-handed neutrinos or
�-terms in the Higgs sector for the minimal supersymmet-
ric standard model [6,8,13,16,19].

The existence of such perturbatively forbidden type IIA
couplings resolves one of the puzzles about the proposed
large coupling dual description in terms of M-theory com-
pactifications on singular G2 manifolds [24–26]. In this
picture, non-Abelian gauge symmetries are localized at an
ADE-singularity over a supersymmetric three-cycle on the
G2 manifold. Clearly, the perturbative U�1� gauge symme-
tries on the type IIA D6-branes become massive due to the
Green-Schwarz mechanism and therefore decouple com-
pletely in the strong coupling M theory dual description,
but how then should the resulting global U�1� selection
rules appear? The resolution to this puzzle is given by the
appearance of the describedU�1� breaking nonperturbative
terms in the type IIA picture. Therefore, each coupling
present in M-theory vacua on G2 manifolds should be
realized either perturbatively or nonperturbatively in the
type IIA orientifold.

In this Letter we explore two new types of phenomeno-
logically important instanton generated couplings for
type II orientifolds. In particular, we investigate the gener-
ation of the crucial SU�5�-like grand unified theory (GUT)
model Yukawa couplings of type 10 � 10 � 5H, which are
known to be absent perturbatively [27]. In the second part
of the letter we provide a globally consistent intersecting
D6-brane model and show that an E2-instanton generates a
mass term for certain matter fields, thus providing a new
mechanism for decoupling exotic matter.
SU�5� Yukawa couplings.—Grand unified SU�5�-like

models based on intersecting D6-branes generically suf-
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fer from the absence of the important Yukawa coupling
10 � 10 � 5H and are therefore so far not considered realis-
tic. Such models were first generally proposed in [28] and
explicitly constructed for intersecting D6-branes in
[27,29–33].

In the sequel we abstract from concrete models and
analyze the general setup of minimal intersecting
D6-brane models realizing SU�5� GUT as shown in
Table I. Such a setup involves only two stacks a and b of
branes giving rise to a U�5�a �U�1�b gauge symmetry.
TheU�5�a splits into SU�5�a �U�1�a, so that there are two
Abelian gauge groups U�1�a �U�1�b. One linear combi-
nation of these is anomalous and becomes massive via the
generalized Green-Schwarz mechanism. However, it sur-
vives as a global symmetry in the effective action. Matter
fields transforming as 10 under SU�5�a arise at the inter-
sections of stack awith its image a0, while the matter fields
transforming as �5 as well as Higgs fields 5H and �5H are
located at intersections of stack a with b and b0. For a
globally consistent realization of this quiver the concrete
wrapping numbers decide if the anomaly free combination
U�1�X of the Abelian groups really remains massless. If
not, the model is of the usual Georgi-Glashow type, while
in the presence of a massless U�1�X it represents a flipped
SU�5� model.

From the U�1�a;b charges it is clear that perturbatively
the two Yukawa couplings

 h10�2;0� �5��1;1�
�5H
��1;�1�i; h�5��1;1�1�0;�2�5H�1;1�i (1)

are present. Focusing for concreteness on flipped SU�5�,
these give masses to the heavy (u, c, t) quarks and the
leptons. However, the Yukawa couplings for the light (d, s,
b) quarks

 h10�2;0�10�2;0�5H�1;1�i (2)

are not invariant under the two U�1�s. Note that this
interaction is also of key importance for the solution of
the doublet-triplet splitting problem for flipped SU�5�. For
a nonzero vacuum expectation value of the standard model
singlet component in 10� 10 there is no partner for the
weak Higgs doublet to pair up with. For Georgi-Glashow
SU�5� models, the role of (u, c, t) and (d, s, b)-quarks has
to be interchanged and the GUT Higgs field is usually in
the adjoint representation of SU�5�.

Our main result is that the coupling (2) can be generated
by an E2-instanton of suitable zero mode structure.
Concretely, the instanton has to wrap a rigid three-cycle
� invariant under the orientifold projection � �� and carry-
ing gauge group O�1� [14–17]. This guarantees that the
uncharged part of the instanton measure only contains the
four bosonic and two fermionic modes x�, �� required for
superpotential contributions. Now, from the arguments in
[6,8,9] the coupling (2) requires in addition charged fer-
mionic zero modes at intersections between � and the
D6-branes. These are responsible for an effective U�1�
charge of the instanton which can compensate for the
excess of U�1� charge of the operator (2). For intersection
numbers

 �� \�a	
� � �� \�b	

� � 0;

�� \�a	
� � �� \�b	

� � 1

we get five zero modes ��i
�5	 from the intersection of the

instanton with D6a and one zero mode ����1	 from the
intersection with D6b. The computation of the resulting
couplings can be performed following the prescription
proposed in [6] and exemplified for a concrete local model
in [13]. Since the instanton lies in an � �� invariant posi-
tion, one can absorb these six matter zero modes with the
three disc diagrams depicted in Fig. 1.

All charge selection rules are satisfied. Each tree-level
coupling is by itself a sum over world-sheet instantons
connecting the three intersection points in the disc dia-
grams like 10�

�ij	
��i ��j, where � � 1, 2, 3 denotes the gen-

eration index. These discs induce open string dependent
terms in the instanton moduli action of type

 exp��Smod� � exp�C10
� 10�

�ij	
��i ��j � C55m ��m ���; (3)

which are integrated over the charged fermionic measureR
d5 ��d ��. Because of its Grassmannian nature, the index

structure of the Yukawa coupling is

 WY � Y��
h10 10 5Hi

	ijklm10�ij10�kl5
H
me�SE2eZ

0
; (4)

where the instanton action can be written as SE2 �
2

�GUT
�

VolE2

VolD6
. Here we have used that the volume of the D6a-brane

determines the gauge coupling at the GUT scale. Note that
the ratio VolE2=VolD6 depends only on the complex struc-

TABLE I. GUT SU�5� intersecting D6-brane model, U�1�X �
1
4U�1�a �

5
4U�1�b. The multiplet 10�2;0� also contains the GUT

Higgs field which should appear as a vectorlike pair.

Sector Number U�5�a �U�1�b reps. U�1�X

(a0, a) 3� �1; 1� 10�2;0� 1
2

(a, b) 3 �5��1;1� � 3
2

(b0, b) 3 1�0;�2�
5
2

(a0, b 1 5H�1;1� � �5H��1;1� ��1� � �1�

D6a

D6’a

E2

[5]λ1

[5]λ2
10

D6a

D6’a

E2

[5]λ

[5]λ
10

D6

D6’a

E2

[5]λ

3

4

b

5
H

[−1]ν

5

α β

FIG. 1 (color online). Absorption of zero modes.
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ture moduli, which are known to be constrained by the
D-term supersymmetry conditions for the D6-branes. The
superpotential coupling WY also depends on the holomor-
phic part of the one-loop determinant eZ

0
arising from the

annulus and Möbius diagrams ending on the instanton and
the D6-branes or O plane, respectively [6]. As shown in
[10,11,18], these are related to one-loop gauge threshold
corrections [34,35].

One observes that the replication of the zero modes ��i is
entirely due to Chan-Paton indices so that each of the discs
in Fig. 1 depends only on the family index and not on the
pair of zero modes to which the open string operator
couples. Therefore the final instanton generated Yukawa
coupling factorizes into

 Y��
h10 10 5Hi

� Y�Y� (5)

and the induced mass matrix for the quarks is always of
unit rank. In order to exhibit nonperturbative masses for all
three generations the model therefore has to possess three
independent E2-instanton sectors.

Concerning the suppression scale of the instanton
generated Yukawa coupling, for �GUT � 1=24 and
VolE2=VolD6 � �RE2=RD6�

3 with the moderate suppres-
sion RD6 �

7
2RE2, the main instanton suppression factor

is exp��SE2� ’ 3� 10�2. Since the E2-instanton lies in a
�� invariant position it seems natural that the length scale of
the internal volume is smaller than that of theU�5� stack of
D6-branes.

To summarize, we find that D-brane instantons can
generate the h10 10 5Hi Yukawa coupling. The described
mechanism works both for Georgi-Glashow as well as
flipped SU�5� models. It is particularly attractive for the
case of flipped SU�5�: Here the E2-instanton not only
generates the desired couplings, but the complex structure
dependent exponential suppression exp��SE2� can explain,
as a bonus, the hierarchy between the (u, c, t) quarks and
the (d, s, b) quarks.

Instanton generated mass terms.—Most semirealistic
string models constructed so far come with exotic vector-
like states. For the phenomenological features of such
models it is important to know whether these states can
become massive. To date mostly perturbative mechanism
have been discussed in the literature for generating such
mass terms. In this section we demonstrate for a concrete
globally consistent model that E2-instantons can also gen-
erate such mass terms. We are working with a type IIA
orientifold background which serves as a simple model
based on U�4� gauge symmetry with a certain number of
matter fields in the antisymmetric representation of U�4�.
For a similar global model in type I theory see [12,15].

Concretely, we consider the orientifold T6=Z2 � Z02
with Hodge numbers �h11; h12� � �3; 51�. We employ the
notation of [36], to which we refer for details of the
geometry and the construction of rigid cycles (see also

[37]). The orbifold group is generated by � and �0 acting
as reflection in the first and last two tori, respectively.

Table II displays the wrapping numbers of the simplest
globally consistent, supersymmetric model for the choice
that the O6-plane lying parallel to the instanton is an
O6�-plane with the other three being O6�-planes.

It involves only one stack of four bulkD6-branes (and its
orientifold image) carrying U�4� gauge group with three
superfields in the adjoint representation. One can easily
check that all consistency conditions are indeed satisfied
and supersymmetry fixes the complex structure moduli to
the sublocus U1 �U2 �U3 � U1U2U3. The model has
also 32 chiral superfields in the conjugate antisymmetric
representation �6 of U�4�. This number can be reduced by
considering tilted tori, but for simplicity we consider the
untilted case in the sequel. Note that the 6 of SU�4� is a real
representation so that these states are chiral only with
respect to the diagonal U�1� 
 U�4�. Since U�1�’s can be
broken by instantons, there is a chance that mass terms are
nonperturbatively generated.

Following [13], the background of this model exhibits
one class of 8� 8 rigid O�1� instantons, whose bulk part is
also shown in Table II. The multiplicites are due to the two
possible positions of the instanton in each torus and the
different twisted charges, respectively. The intersection
number of these E2-instantons with the bulk D6 branes is
exactly one. Taking into account the Chan-Paton label of
the gauge group U�4�, there are four fermionic zero modes
localized at the intersection ofE2 and the matter branes. As
shown in Fig. 2, these four fermionic zero modes � can be
saturated via two disc diagrams thereby generating mass
terms for the matter fields in the �6 representation.

We denote the 32 matter superfields as �A
I �

�A
I � � 

A
I , where the lower index I � 1; . . . ; 8 refers to

the various intersections on T6 and A � 1; . . . ; 4 counts the
different orbifold images.

As in the previous section, we can compute the disc
diagrams in Fig. 2. Taking also the Grassmannian nature of
the fermionic zero modes into account, the overall struc-
ture of the generated mass terms is

 L mass � C0Mse
�SE2	ijklM

I;J
A;B� 

A
I �ij� 

B
J �kl (6)

with the instanton action SE2 �
2

�SU�4�

VE2

VD6
. Moreover, C0

includes all angle dependent constants due to the CFT
computation as well as due to integration over all bosonic
and fermionic zero modes [13,18]. Since the four instanton
zero modes arise from the Chan-Paton factors of U�4�, the
mass matrix due to each individual instanton factorizes

TABLE II. Wrapping numbers of U�4� global model.

Stack N �n1; m1� � �n2; m2� � �n3; m3� IE2x

U�4� 8 �1;�1� � �1; 1� � �1; 1� 1
E2 1 �1; 0� � �0; 1� � �0;�1�
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into

 MI;J
A;B � hIAh

J
B; (7)

where these factors are essentially the disc amplitudes in
Fig. 2 containing a sum over world-sheet instantons. Each
of the 8 choices for the position of the instanton results in a
different matrix of this type, which in turn is unaffected by
the twisted charges. The final mass matrix upon summing
up all contributions is then in general of rank 8. This
exemplifies that string instantons can also generate mass
terms for exotic matter fields.

We have shown that the phenomenology of intersecting
D-brane models in type II orientifolds requires the inclu-
sion of string instanton effects. These do generate impor-
tant couplings that are often absent perturbatively due to
the strongU�1� selection rules present forD-brane models.
This becomes even more striking when the instanton gen-
erated couplings are known to have certain hierarchies with
respect to perturbative couplings. Of particular interest is
the appearance of a (flipped) SU�5� Yukawa coupling. It
would be very important to find globally consistent semi-
realistic string vacua exhibiting this effect. A straightfor-
ward implementation into the models of [27,29–33] is
hampered by the necessity of absorbing dangerous instan-
ton zero modes due to nonrigidity of the cycles in the used
backgrounds. We hope to return to this question in the
future.
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