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Order Parameters and Phase Diagram of Multiferroic RMn2O5

Abstract
The generic magnetic phase diagram of multiferroic RMn2O5 (with R = Y, Ho, Tb, Er, Tm), which allows
different sequences of ordered magnetic structures for different R’s and different control parameters, is
described using order parameters which explicitly incorporate the magnetic symmetry. A phenomenological
magnetoelectric coupling is used to explain why some of these magnetic phases are also ferroelectric. Several
new experiments, which can test this theory, are proposed.
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Order Parameters and Phase Diagram of Multiferroic RMn2O5

A. B. Harris,1 Amnon Aharony,2,* and Ora Entin-Wohlman2,*
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2Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel
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The generic magnetic phase diagram of multiferroic RMn2O5 (with R � Y, Ho, Tb, Er, Tm), which
allows different sequences of ordered magnetic structures for different R’s and different control
parameters, is described using order parameters which explicitly incorporate the magnetic symmetry.
A phenomenological magnetoelectric coupling is used to explain why some of these magnetic phases are
also ferroelectric. Several new experiments, which can test this theory, are proposed.

DOI: 10.1103/PhysRevLett.100.217202 PACS numbers: 75.25.+z, 75.10.Jm, 75.40.Gb

There has recently been much interest in multiferroics,
which display simultaneous magnetic and ferroelectric
(FE) ordering [1–4]. In particular, the orthorhombic family
RMn2O5 (RMO), where R is a rare earth, exhibits interest-
ing sequences of magnetic density wave orderings, with
varying wave vector q, and some of these phases are also
FE [2,5–9]. In all these phases one has qy � 0, while jqx �
1
2 j & 0:02 and jqz �

1
4 j & 0:02. Cooling from the paramag-

netic (PM) phase, one first enters a phase in which both qx
and qz are incommensurate. We call this phase II1 (I �
“incommensurate”, and the subscript will be explained
below; some experimental papers call this phase 2DIC).
For R � Y [5], Er [6] and Tm [8], further cooling yields
transitions into a phase which we call IC2 (also called
1DIC), where qx is still incommensurate, while qz �

1
4

(C � “commensurate”), then into a ‘‘CC’’ phase (also
called CM), with q � �12 ; 0;

1
4�, and finally into a phase

where both qx and qz are incommensurate again (‘‘II2’’,
or LTI-2DIC). R � Ho [9] and Tb [7] go directly from II2

to CC. For R � Er, the low temperature (T) phase has qx �
1
2 , while qz is incommensurate (‘‘CI’’, or LTI-1DIC). While
the phases IC2 and CC exhibit a FE moment P along the
y�b� axis, such a moment appears in only some of the
observed low T phases [10,11]. Up to now, the microscopic
theories of these systems are controversial, and a phenome-
nological description which provides a unified explanation
of this complicated phase behavior does not exist. The
present Letter rectifies this situation, and provides a basis
for analyses of other multiferroics with large unit cells.

Although group theory has been applied to neutron
diffraction data from magnetic materials [12], its implica-
tions for multiferroics have not been fully exploited until
the definitive analyses of Ni3V2O8 and TbMnO3 [3,4,13–
15]. Following the same approach, we identify the order
parameters (OP’s) allowed by symmetry [16] and find the
generic phase diagram for RMO systems (Fig. 1), which
allows for the observed sequences of phases. The theory
also explains (a) which phases are simultaneously mag-
netic and ferroelectric, (b) the occurrence of two distinct
spin structures in neutron diffraction studies of the CC

phase [5,17], and makes several new predictions, which
can be tested experimentally.

The PM unit cell of the RMO’s contains 4 Mn3�,
4 Mn4� and 4 R3� ions. Denoting these ions by
��� 1; . . . ; 12), and the corresponding Fourier transforms
of the �-spin-components by S��q; ��, the quadratic terms
in the Landau free energy FM are

 FM;2 �
1

2

X

q;�;�;�;�0
��1
���q; �; �0�S��q; ���S��q; �0�: (1)

In principle one would diagonalize the (36� 36) inverse
susceptibility matrix ��1

���q; �; �0� (determined by the vari-
ous magnetic interactions). As T is lowered, the first phase
to order corresponds to the eigenvalue which approaches
zero first. The degeneracy of this eigenvalue has two
origins: first, all the nq wave vectors in the star of
symmetry-related optimal wave vectors q’s have the
same eigenvalue. Second, each of these q’s is associated
with irreducible representations (irrep’s) � of the PM
symmetry group of q (the ‘‘little group’’) [18]. Excepting
accidental degeneracy, a continuous transition from the PM
phase involves only a single irrep. If this critical irrep is d
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T
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II1
II1
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II2
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CI
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FIG. 1 (color). Left-hand side (LHS): Schematic 3D phase
diagram for qx (qz) near 1

2 ( 1
4 ). Jx and Jz are parameters which

control qx and qz. The red surface separates PM and II1. Below
the blue surface one has qz �

1
4 , in phases IC1 and IC2. The

green surfaces represent II1 ! II2 and IC1 ! IC2. Below the
orange surfaces qx �

1
2 , in phases CI or CC. RHS: a cut at

constant qx � 1=2. The dashed and dotted lines represent pro-
posed trajectories for specific RMO’s, as T is varied.
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dimensional (dD), then this eigenvalue is dnq-fold degen-
erate and this manifold is described by dnq real OP’s, or
dnq=2 complex ones. Each complex OP represents the
amplitude and the phase of the spin ordering eigenfunction,
fS��q; ��g. The symmetry of the eigenfunction is associ-
ated with the irrep and is inherited by the OP’s.

For each RMO, the optimal wave vector q is determined
by its specific material (e.g. the exchange and anisotropy
energies) and experimental (e.g., pressure, magnetic field)
parameters. We represent these control parameters by their
combinations, denoted Jx and Jz, which fix the values of qx
and qz, respectively. Figure 1 shows the phase diagram of
the RMO’s in terms of Jx and Jz. Following experiments,
we fix qy � 0. We start with the case qx � 1

2 (with qz near
1
4 ). For each such q, the ‘‘little’’ group contains only unity
and my, which maps (x, y, z) into (x� 1

2 , �y� 1
2 , z). This

group has two 1D irreps, �a and �b, with complex OP’s
�a�q� and �b�q�. Inversion symmetry I then implies non-
trivial relations between the S��q�’s and the S���q�’s
(which have the same eigenvalue), reducing the number
of independent parameters. This should ease future accu-
rate analyses of the neutron data. For �a, symmetry implies

 my�a � ��a�a; I�a � ei���a; (2)

and similarly for �b (� depends on the origin) [19].
For qx � 1

2 , the star of q contains four wave vectors,
namely, q� � �qx; 0;�qz� and �q�. Therefore, we intro-
duce two complex OP’s, ��a 	 �a�q

�a�
� � and ��a 	

�a�q�a�� �, associated with irrep �a and similarly for �b.
Then, FM;2 �

P
s�a;b�T � TC;s�
j��s j2 � j��s j2�. Reject-

ing accidental degeneracy, we set TC;a > TC;b and identify
the 2DIC phase with our II1 phase, associated with a single
irrep (the subscript 1 refers to the number of irreps),
represented by the ��a ’s. The transition PM! II1 occurs
at T � TC;a, represented by the top (red) surface in Fig. 1.
Which OP’s actually order depends on the quartic terms in
the free energy. For qx � 1

2 , these include

 F�a�M;4 � Va�j�
�
a j

2 � j��a j
2�2 �Uaj�

�
a �

�
a j

2

� �G�Waa
�
�
a ��

�
a �
��2 � cc��
G� �0; 0; 4qz��;

(3)

where G is a reciprocal lattice vector. For qz � 1
4 and T <

TC;a one has j��a j � j��a j> 0 if Ua < 0, and only one of
the OP’s orders otherwise. For qz near 1

4 , the umklapp term
with Waa locks qz to 1

4 , in a phase called IC1. Within
Landau theory, this happens below a first order surface
(blue in Fig. 1), parabolic in Jz.

As T is reduced, more quartic terms need to be consid-
ered, notably W

P
m��f
�a�q

�a�
m ��b�q

�b�
m ���2 � ccg��q

�a�
m �

q�b�m �. Assuming that q�a�� and q�b�� are almost the same, this
term locks the optimal q�b�� to q�a�� , at some T slightly below
TC;a, where �b has not yet ordered (without involving a
phase transition.) Accordingly, we no longer keep the

superscripts (a, b) on the q’s. As T is further reduced,
the tendency of the spins to have fixed length (rather than
oscillate sinusoidally) [3,20] may cause a second continu-
ous transition, into the phase II2 (or IC2), where both �a
and �b are nonzero. As shown below, this transition (green
surface in Fig. 1) occurs at a temperature which is para-
bolic in Jx.

We next discuss the special case qx �
1
2 (or Jx � Jx;c, at

the back of the 3D diagram in Fig. 1). For q � �12 ; 0; qz�,
the little symmetry group changes: it now contains the
additional glide operation mx [which maps (x, y, z) into
(�x� 1

2 , y� 1
2 , z]. This group has only one 2D irrep

[14,21], with two degenerate complex OP’s, �1 and �2,
and corresponding eigenvectors as listed in Table XVI of
Ref. [14] [22]. These OP’s transform as [14]

 mx�n � 	n�n; my�n � 	n�3�n; I�n � ��3�n;

(4)

where 	n 	 ��1�3�n, n � 1, 2. Cooling from the PM
phase, exactly at Jx � Jx;c and qz � 1

4 , one first goes into
the CI phase, with the free energy

 FM � �T � TC�
j�1j
2 � j�2j

2� � u
j�1j
2 � j�2j

2�2

�WCj�1�2j
2 � VC
�1�

�
2 � �2�

�
1�

2: (5)

On further cooling, additional umklapp terms cause a first
order transition into the CC phase where q � �12 ; 0;

1
4�. This

lock-in happens under a parabola, which connects to the
blue parabolas which appear for qx � 1

2 .
We next vary Jx away from Jx;c. The right-hand side

(RHS) of Fig. 1 shows a cut of the 3D phase diagram, at
fixed Jx � Jx;c � �J. For small �J, mirror symmetry,
qx ! �qx, implies that the inverse susceptibility has two
branches of eigenvalues given by ��1

� �qx� � T � TC �
ak2

x � bkx�J, where kx � 1=2� qx and a and b are con-
stants. At quadratic order (i.e., using FM;2), this implies
that TC;a � TC;b � 2bk�0�x �J, where k�0�x � b�J=�2a�
minimizes ��1

� �qx�. This gives rise to the (green) II1 !
II2 phase boundary, TC;a � TC;b / ��J�2.

For qx close to 1
2 , further cooling may lock it to 1

2 , due to
umklapp terms. This may generate transitions into the CI
or the CC phase, for T’s below the orange surfaces in
Fig. 1. A detailed analysis shows that these surfaces are
also parabolic in �J. The actual sequence of transitions
then depends on which parabola is narrower. In Fig. 1 we
show the case when the green parabolas are broader than
the orange ones. In this case, the orange surface represents
II2 ! CI and IC2 ! CC. In the opposite case, the phases
II2 and IC2 never appear. As shown in Fig. 1, both parab-
olas are shifted upwards below the blue surface, where
qz �

1
4 , due to umklapp terms.

Equations (4) and (5) lead to a natural interpretation of
neutron scattering results for the CC phase in YMO.
Figure 2 shows the Mn3� a-b plane spin components in
the CC phase of YMO, from the data of Refs. [5] [23] and

PRL 100, 217202 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
30 MAY 2008

217202-2



[17]. These two structures are obviously similar, and one
might ask what symmetry (if any) relates them [24]. Since
the structure on the left (right) is even (odd) under the glide
operation mx, we conclude that the structure on the left
(right) has �2 � 0 (�1 � 0). Going between these two
structures corresponds to a rotation in OP space; the in-
plane spin components belong to distinct but equivalent
structures. Since either �1 � 0 or �2 � 0, we conclude
that in Eq. (5), the net coefficient of j�1�2j

2 (WC � 4jVCj
plus the additional umklapp terms) is positive, preventing
both OP’s from ordering simultaneously [14].

For the phenomenological description of the multifer-
roicity, the total free energy is FME � FM �

1
2 P2
�1 �

Vint, where 
 is the dielectric susceptibility and Vint the
magnetoelectric (ME) interaction. Although such interac-
tions can also generate a spatially nonuniform P, here we
discuss only the uniform case. We again start with the II
and IC phases, where qx � 1

2 . To lowest order, wave vector
conservation and time-reversal invariance give [3,25]

 Vint �
X

s;t�a;b

X

q�q�

X

�

cst��s�q��t��q�P�: (6)

The terms with s � t vanish because they are odd under I .
For the II1�IC1� phase, only �a is nonzero, and therefore
P � 0. To have P � 0 with qx � 1

2 we must have the
superposition of two irreps, and this happens only in the
II2 or the IC2 phases. In these phases, we have

 Vint �
X

q�q�

X

�


ir��a�q��b��q� � cc�P�; (7)

and invariance under I requires that r� is real. From
Eq. (2), �a��b is odd under my. For Vint to be invariant
under my, P� must be odd under my: symmetry forces P to
be along y�b�, as observed (Higher order ME interactions
weakly violate this result [19]).

In the CC phase, Eq. (6) is invariant under the symmetry
operations of Eq. (4) only if [14]

 Vint � const 
j�1�q�j2 � j�2�q�j2�Py: (8)

Note that Eqs. (7) and (8) apply whether the microscopic
ME interactions are due to exchange striction [26] or to

charge ordering [27]. Thus, P must lie along y�b� also in
the CC phase [28]. Within mean field theory, Pb is propor-
tional to jh�2ij, as is the intensity of the magnetic Bragg
peaks. This is confirmed [29] in RbFe�MoO4�2 [which is
also described by Eq. (8)] and also apparently for ErMO by
Ref. [30] [31]. Since the CC phase is ferroelectric, the
fourth order terms in Eq. (5) (plus the umklapp terms)
must select �1�2 � 0, which we deduced from Fig. 2.
(The alternative would imply j�1j � j�2j, hence P � 0.)
In fact, the selection of which OP, �1 or �2, is nonzero is a
result of broken symmetry. An electric field along y�b�
would order Py, and then Eq. (8) would select either �1 or
�2, depending on the sign of the field. Therefore we
suggest that the sample should be cooled into the FE phase
in the presence of a small electric field along y. Depending
on the sign of the electric field one should get either the
left-hand or the right-hand panel of Fig. 2 [32].

Equation (7) has further implications. First, near the
P! II1 transition, a leading fluctuation expansion yields
�
 / hP2

bi / jh�
2
aih�2

bij. Since only �a becomes critical
there, we expect singularities in 
 which behave as the
energy (jT � TC1j

1��) and (for T < TC1) as the square of
the OP (�TC1 � T�

2�), but with n � 4 exponents [33].
Indeed, experiments [34] show a break in slope at TC1,
apparently confirming this prediction. In addition, this
anomaly in the zero frequency dielectric function 
�! �
0� reflects the emergence of a resonance in 
�!�, due to
electromagnons [35]. Second, in the II1 phase h�ai � 0, so
that Vint becomes �2rb=
h�ai�

�
b�Py. This bilinear cou-

pling between Py and =
h�ai��b� has several implications
on the critical behavior near the II1 ! II2, should this
transition be discovered in some new RMO [36].

Finally, we associate the different RMO’s with trajecto-
ries on our phase diagram. Since ErMO [6], TmMO [8],
and YMO [5] exhibit ferroelectricity in the phase denoted
1DIC, we must identify this phase with our IC2 phase,
where both �a and �b order. For these materials, the
experimental path in parameter space apparently goes
from II1 via IC2 into the CC phase, as indicated by the
dashed lines in the RHS of Fig. 1 (these lines have small
slopes, since the experimental optimal q varies with T: Jx
and Jz depend on T due to other degrees of freedom). The
last term in Eq. (3) implies that qz locks to 1

4 only if both q�
and q� appear in the IC1 and IC2 phases. If 2jWaaj>Ua >
0, then the two q’s first appear as the IC1 phase is entered.
If Ua < 0, then both wave vectors would have already
condensed simultaneously in the II1 phase. It would be
interesting to determine which scenario actually occurs.
Since the ME interaction is significant, we suggest to apply
an electric field parallel to one of the q’s, and check
whether in the II1 phase the two q’s arise in separate
domains or coexist within a single domain, following the
logic of Ref. [37]. In contrast to the above RMO’s, HoMO
[9] or TbMO [7] go directly from 2DIC to CM, as along the
dotted line in the RHS of Fig. 1. Both sequences are thus
allowed by our theory.

x 43

MM y YMO a

b

11

2

43

2

FIG. 2 (color). Schematic diagram of the a and b components
of the Mn3� spins in a single a-b plane of YMO for the CC
phase. The glide mx consists of a mirror plane M at x � a=4
followed by a translation b=2 along y. LHS: the structure given
in Table III of Ref. [5] (with the c components not shown). RHS:
the structure given in Fig. 2 [38] of Ref. [17] (who reported zero
c components of spin).
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The Landau theory is probably less useful at lower T: the
low T phases depend on the details of the magnetic inter-
actions, and higher order terms in FM should be included.
Such terms could turn the (orange or blue) surface bound-
ing the CC phase backwards, thus allowing transitions back
into the paraelectric II1 phase, the weakly FE phases II2 or
IC2 or the FE phase CI. Also, the trajectory describing each
material need not be straight (thick dashed line in Fig. 1). A
parabolic line, like the thin dashed line, would yield a
transition from CC to II2 (or even to II1) with decreasing
T. In fact, in ErMO [6] the LTI phase seems to have qx �
1
2 , which identifies this phase with our CI phase. Thus, the
observed LTI phase could be any of the phases on the other
side of the CC region, paraelectric or weakly ferroelectric.
The effects of a magnetic field can be explained as follows:
the field generates magnetic moments on the R ion (even
above their ordering temperature). Since these ions couple
to the Mn ions, their moment results in changes in the
effective Mn-Mn interactions, thus changing the ‘‘control
parameters’’ and the optimal q. Apparently, this often
moves the material towards the CM regime, resulting in a
transition from the low T phase (II1 or II2) back into the CC
phase [9,11]. Similar effects happen due to pressure [34].
Neutron diffraction measurements in a magnetic field and
pressure could help resolve these scenarios.

In summary, we have developed a phase diagram to
explain the multiferroic behavior of the family of RMO
systems and have proposed several experiments to explore
the unusual symmetries of these systems.

We thank M. Kenzelmann, S. H. Lee, and D. Mukamel
for helpful interactions. A. A. and O. E. W. acknowledge
support from the ISF and from the GIF, and the hospitality
of KITP, where this research was supported in part by the
National Science Foundation under Grant No. PHY05-
51164.
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