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of a Topological Insulator

Abstract
We study the proximity effect between an s-wave superconductor and the surface states of a strong topological
insulator. The resulting two-dimensional state resembles a spinless px + ipy superconductor, but does not
break time reversal symmetry. This state supports Majorana bound states at vortices. We show that linear
junctions between superconductors mediated by the topological insulator form a nonchiral one-dimensional
wire for Majorana fermions, and that circuits formed from these junctions provide a method for creating,
manipulating, and fusing Majorana bound states.
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Superconducting Proximity Effect and Majorana Fermions
at the Surface of a Topological Insulator

Liang Fu and C. L. Kane
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 11 July 2007; published 6 March 2008)

We study the proximity effect between an s-wave superconductor and the surface states of a strong
topological insulator. The resulting two-dimensional state resembles a spinless px � ipy superconductor,
but does not break time reversal symmetry. This state supports Majorana bound states at vortices. We
show that linear junctions between superconductors mediated by the topological insulator form a
nonchiral one-dimensional wire for Majorana fermions, and that circuits formed from these junctions
provide a method for creating, manipulating, and fusing Majorana bound states.

DOI: 10.1103/PhysRevLett.100.096407 PACS numbers: 71.10.Pm, 03.67.Lx, 74.45.+c, 74.90.+n

Excitations with non-Abelian statistics [1] are the basis
for the intriguing proposal of topological quantum compu-
tation [2]. The simplest non-Abelian excitation is the zero
energy Majorana bound state (MBS) associated with a
vortex in a spinless px � ipy superconductor [3–6]. The
presence of 2N vortices leads to a 2N-fold ground state
degeneracy. Braiding processes, in which the vortices are
adiabatically rearranged, perform nontrivial operations in
that degenerate space. Though MBSs do not have the
structure necessary to construct a universal quantum com-
puter [7], the quantum information encoded in their degen-
erate states is topologically protected from local sources of
decoherence [8].

MBSs have been proposed to exist as quasiparticle ex-
citations of the � � 5=2 quantum Hall effect [1,3], in the
cores of h=4e vortices in the p-wave superconductor
Sr2RuO4 [9] and in cold atoms [10,11]. In this Letter we
show that the proximity effect between an ordinary s-wave
superconductor and the surface of a strong topological
insulator (TI) [12–15] leads to a state that hosts MBSs at
vortices. We then show that a linear superconductor—
TI—superconductor (STIS) junction forms a nonchiral
1D wire for Majorana fermions. Such junctions can be
combined into circuits, which allow for the creation, ma-
nipulation, and fusion of MBSs.

A strong TI is a material with an insulating time reversal
invariant band structure for which strong spin orbit inter-
actions lead to an inversion of the band gap at an odd
number of time reversed pairs of points in the Brillouin
zone. Candidate materials include the semiconducting al-
loy Bi1�xSbx, as well as HgTe and �-Sn under uniaxial
strain [15]. Strong TIs are distinguished from ordinary
insulators by the presence of surface states, whose Fermi
arc encloses an odd number of Dirac points and is asso-
ciated with a Berry’s phase of �. In the simplest case, there
is a single nondegenerate Fermi arc described by the time
reversal invariant Hamiltonian

 H0 �  y��iv ~� � r ��� : (1)

Here  � � ";  #�T are electron field operators, ~� �

��x;�y� are Pauli spin matrices, and � is the chemical
potential. H0 can only exist on a surface because it violates
the fermion doubling theorem [16]. The topological metal
is essentially half of an ordinary 2D electron gas.

Suppose that an s-wave superconductor is deposited on
the surface. Because of the proximity effect, Cooper pairs
can tunnel into the surface states. This can be described by
adding V � � y"  

y
# � H:c: to H0, where � � �0e

i� de-
pends on the phase � of the superconductor and the nature
of the interface [17]. The states of the surface can then be
described by H � �yH�=2, where in the Nambu nota-
tion � � �� ";  #�; � 

y
# ;� 

y
" ��

T and

 H � �iv�z� � r ���z ��0��
x cos�� �y sin��:

(2)

~� are Pauli matrices that mix the  and  y blocks of �.
Time reversal invariance follows from ��;H � � 0, where
� � i�yK and K is complex conjugation. Particle hole
symmetry is expressed by � � �y�yK, which satisfies
f�;H g � 0. When � is spatially homogeneous, the exci-

tation spectrum is Ek � 	
������������������������������������������
�	vjkj ���2 � �2

0

q
. For

�
 �0, the low energy spectrum resembles that of a
spinless px � ipy superconductor. This analogy can be
made precise by defining ck � � "k � ei�k #k�=

���
2
p

for
k � k0�cos�k; sin�k� and vk0 ��. The projected
Hamiltonian is then

P
k�vjkj ���c

y
kck � ��e

i�kcykc
y
�k �

H:c:�=2. Though this is formally equivalent to a spinless
px � ipy superconductor, there is an important difference:
H respects time reversal symmetry, while the px � ipy
superconductor does not.

It is well known that a h=2e vortex in a px � ipy
superconductor leads to a MBS [3]. This suggests that for
�
 �0 a similar bound state should exist for (2). The
bound states at a vortex are determined by solving the
Bogoliubov–de Gennes (BdG) equation H	 � E	 in
polar coordinates with ��r; �� � �0�r�e	i�. A zero energy
solution exists for any �. The algebra is simplest for � �
0, where the zero mode has the form
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 		0 �r; �� � 
	e�
R
r

0
dr0�0�r0�=v; (3)

with 
� � ��0; i�; �1; 0��T and 
� � ��1; 0�; �0;�i��T .
Another feature of px � ipy superconductors is the

presence of chiral edge states [3,18,19]. With time reversal
symmetry, chiral edge states cannot occur in our system.
The surface—which itself is the boundary of a three-
dimensional crystal—cannot have a boundary. By break-
ing time reversal symmetry, however, a Zeeman field can
introduce a mass term M�z into (1) and (2), which can
open an insulating gap in the surface state spectrum. By
solving (2) we find that the interface between this insulat-
ing state and the superconducting state has chiral Majorana
edge states. This could possibly be realized by depositing
superconducting and insulating magnetic materials on the
surface to form a superconductor-TI-magnet junction. It is
interesting to note that for spinless electrons the px � ipy
superconductor violates time reversal, while the vacuum
does not. For our surface states it is the insulator that
violates time reversal. A related effect could also occur
at the edge of a two-dimensional TI [20–22], which is
described by (1) and (2) restricted to one spatial dimen-
sion. At the boundary between a region with superconduct-
ing gap ��x and a region with insulating gap M�z we
find a MBS, analogous to the end states discussed in
Refs. [23,24]. In the following we will focus on STIS
junctions, which can lead to nonchiral one-dimensional
Majorana fermions, as well as MBSs.

Consider a line junction of width W and length L! 1
between two superconductors with phases 0 and � in
contact with TI surface states. We analyze the Andreev
bound states in the surface state channel between the
superconductors by solving the BdG equation with
��x; y� � �0e

i� for y >W=2, �0 for y <�W=2, and 0
otherwise. The calculation is similar to Titov, Ossipov, and
Beenakker’s [25] analysis of graphene superconductor-
normal-superconductor (SNS) junctions, except for the
important difference that graphene has four independent
Dirac points, while we have only one. For W � v=�0

there are two branches of bound states, which disperse
with the momentum q in the x direction. For W � � � 0
we find

 E	�q� � 	�v
2q2 � �2

0cos2��=2��1=2: (4)

For � � � the spectrum is gapless. It is useful to con-
struct a low energy theory, for q� 0 and � � �� �.
Finite W and � can then easily be included. We first solve
the BdG equation for the two E � 0 modes �a�1;2�y� at
q � 0 and � � �. It is useful to choose them to satisfy
��a � �a. Up to a normalization they may be written

 �1 	 i�2 � ��1;	i�; �	i;�1��Te	i�y=v�
R
jyj

0
d~y�0�~y�=v: (5)

We next evaluate h�ajq�x�zj�bi and h�aj��0��y�
W��yj�bi to obtain the ‘‘k � p’’ Hamiltonian,

 

~H � �i~v�x@x � �
y; (6)

where ~v � v�cos�W � ��0=�� sin�W��2
0=��

2 � �2
0�

and  � �0 cos��=2�. The Pauli matrices �x;yab act on �a
and are different from those in (2). In this basis � � i�yK
and � � K. ~H resembles the Su-Schrieffer-Heeger (SSH)
model [26]. However, unlike that model, the E	�q� states
are not independent, and the corresponding Bogoliubov
quasiparticle operators satisfy ���q� � ����q�y. The
system is thus half a regular 1D Fermi gas, or a nonchiral
‘‘Majorana quantum wire.’’

Below it will be useful to consider junctions that bend
and close. When a line junction makes an angle � with the
x axis, the basis vectors (5) are modified according to �a !
ei�z�=2�a. ~H , however, is unchanged even when ��x�
varies. On a circle, �a changes sign when � advances by
2�. Therefore, eigenstates of ~H must obey antiperiodic
boundary conditions, ’�0� � �’�2��.

Next consider a trijunction, where three superconductors
separated by line junctions meet at a point, as in Fig. 1(c).
When �k�1;2 is in the shaded region of Fig. 1(d), a MBS
exists at the junction. Though the general BdG equation
cannot be solved analytically, this phase diagram can be
deduced by solving special limits. When �k � 0, there is
no bound state. Another solvable limit is when three line
junctions with W � 0 are oriented at 120, and �k �
	k�2�=3�. This is a discrete analog of a 	 vortex with
C3 symmetry, and is indicated by the circles in Fig. 1(d).
For � � 0 we find a MBS identical to (3) with the ex-
ponent replaced by ��0n̂ � r=v. Here n̂ is a constant unit
vector in each superconductor that bisects the angle be-
tween neighboring junctions. The MBS cannot disappear
when �k are changed continuously unless the energy gap
closes. The phase boundaries indicated in Fig. 1(d) there-
fore follow from the solution of the line junction and occur

TI

S S

φ 0
W

x
y

-1 1

∆0

-∆0

E

qv/∆0

0

φ
1

φ
2

(a) (b)

(c) (d)

0 π 2π
0

π

2π φ2

φ1

+

−

FIG. 1. (a) A STIS line junction. (b) Spectrum of a line
junction for W � � � 0 as a function of momentum for various
�. The solid line shows the Andreev bound states for � � �.
The dashed lines are for � � 3�=4, �=2, and �=4. The bound
states for � � 0 merge with the continuum, indicated by the
shaded region. (c) A trijunction between three superconductors.
(d) Phase diagram for the trijunction. In the shaded regions there
is a 	 MBS at the junction.
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when the phase difference between neighboring supercon-
ductors is �.

It is instructive to consider the limit where two of the
lines entering the trijunction are nearly gapless. For �1 �
�� �1 and �2 � �� �2 Fig. 1(d) predicts a MBS when
�1�2 < 0. This can be understood with Eq. (6), which
describes the lower two line junctions, which have masses
1;2 � �0�1;2=2. When �1�2 < 0,  changes sign, leading
to the well known midgap state of the SSH model [26,27],
which in the present context is a MBS.

A line junction terminated by two trijunctions allows
MBSs to be created, manipulated, and fused. When �
passes through �, MBSs appear or disappear at both
ends. To model this, we assume the phases of the super-
conductors on either side of the line junction are 0 and��
�, and that the superconductors at the left (right) ends have
phases �L�R�, which are not close to 0 or �. This allows us
to model the ends using a hard wall boundary condition
! 	1, where the sign at each end is sL;R �
sgn sin�L;R. It is straightforward to solve (6) to determine
the spectrum as a function of  � �0�=2 for a line of
length L using this boundary condition. There are two
cases depending on the sign of sLsR.

For sL � sR � 1 either zero or a 	 pair of MBSs are
expected. The spectrum, shown in Fig. 2(a), may be written

E	n �� � 	
����������������������
2 � ~v2k2

n

p
, where kn are solutions to

tanknL � �~vkn=. Midgap states are present for  < 0.
For L! 1 a pair of zero energy states 	1;2�x; y� are
localized at each end with wave functions

 	1 � �1e
�jjx=~v; 	2 � �2e

�jj�L�x�=~v; (7)

where �a�y� are given in (5). For finite �L=~v
 1 the
eigenstates are ’	 � 	1 	 i	2, with energies E	0 �� �
	2jje�jjL=~v. These define Bogoliubov quasiparticle op-
erators, �	 � �’	�y�. Since ’	 � �’�, it follows that
�� � �y� � ��1 � i�2�=2 where �a � �	a�y� are
Majorana operators. The pair �1;2 thus defines a two state
Hilbert space indexed by n12 � �y���. The splitting be-
tween ’	 then characterizes the interaction between the
MBSs,

 H � E�0 ����
y
��� � 1=2� � iE�0 ���2�1=2: (8)

The sL � sR � �1 case is similar. Equation (8) applies to
both cases, provided �2 is associated with the � vortex.

This provides a method for both creating and fusing
pairs of MBSs. Suppose we begin in the ground state at
 > 0 with no MBSs present. Upon adiabatically decreas-
ing  through 0, MBSs appear in the state j012i. Next
suppose that initially  < 0, and a pair of MBSs are present
in the state jn12i. When  is adiabatically increased
through 0, the system will remain in jn12i, which will
either evolve to the ground state or to a state with one extra
fermion. The difference between the two states can be
probed by measuring the current flowing across the linear
junction, which depends on whether the Andreev bound
state ’� is occupied. The measured current will be I �
�I 	 �I=2, where the current carried by ’� is �I �
�e=@�dE�0 =d�� e�0=2@ for L=~v * 1. For �0 �
0:1 meV, �I � 10 nA.

Finally, consider the case sL � �sR � 1, in which
a �MBS is at one end or the other, as in Fig. 2(b).

There are plane wave solutions with energy E	n �

	
���������������������������������
2 � �n�~v=L�2

p
for n � 1; 2; . . . , along with a single

E0 � 0 state with wave function

 	�x; y� / �1�y�ex=
~v: (9)

Depending on the sign of , 	 is exponentially localized at
one end or the other. When  changes sign, the MBS
smoothly switches sides. This provides a method for trans-
porting a MBS from one node to another.

We now discuss simple circuits built from STIS junc-
tions. First, consider Fig. 3(a) and a process in which the
phase of the central island is adiabatically advanced from 0
to 2�. For � � 0 there are no MBSs. At � � 2�=3 two
pairs of MBSs are created at the top and bottom line
junctions. At � � 4�=3 the MBSs are fused at the left
and right line junctions. If the system begins in the ground
state � � 0, then when �! 2� we find [8]

 j012034i ! �j014032i � j114132i�=
���
2
p
: (10)

Thus, after the cycle, the left and right segments are in an
entangled state. The currents measured across the left and
right junctions will be �I 	 �I=2 with 50% probability and
will be perfectly correlated.

Equation (10) can be understood in two ways. First, the
cycle effectively creates two pairs of MBS’s, interchanges
a pair (say, 2 and 4), and brings the pairs back together. As
shown by Ivanov [4], this corresponds to the operator
P24 � �1� �2�4�=

���
2
p

, which leads directly to (10).
Alternatively, this result can be derived from (6) and (8).
From (8), the Hamiltonian for � & 2�=3 is H1 /
i��1�2 � �3�4�. For � * 4�=3 it becomes H2 /
i��1�4 � �3�2�. Here the minus sign arises because, as
explained after Eq. (6), the closed 1D circuit must have
antiperiodic boundary conditions. Thus, one of the line
junctions must have a cut where the wave function changes

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

0

π+ε
-π/2π/2

0

π−ε
-π/2π/2

0

π+ε
π/2 π/2

0

π−ε
π/2 π/2

δ/∆Ε

Ε/
∆Ε

δ/∆Ε

− + − −

(a) (b)

FIG. 2. Energy levels in units of �E � ~v=L for a STIS line
junction terminated by two trijunctions as a function of  �
�0 cos�=2 for �� �. In (a) two MBSs are created or fused
when � passes through �. In (b) a single MBS is transported
from one end to the other. The insets depict the MBSs.
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sign. We chose the cut to be on the junction between 2 and
3. It is then straightforward to express the ground state of
H1 in terms of the eigenstates ofH2, which leads directly to
(10).

Figure 3(b) gives a geometry for interchanging MBSs
without fusing them. For � � 0 MBSs are located as
shown. When � advances by 2� the MBSs hop counter-
clockwise 3 times and are interchanged. Ivanov’s rules [4]
predict �2 ! �1, �1 ! ��2. Again the minus sign can be
understood in terms of the cut due to antiperiodic boundary
conditions. One can imagine larger arrays, where this
process performs elementary braiding operations.

The experimental implementation of this proposal will
require progress on many fronts. The first is to find a strong
TI with a robust gap. Bi1�xSbx and strained HgTe can have
gaps of order 30 meV [15]. The next is to interface with an
appropriate superconductor. �0 depends on the quality of
the interface, Schottky barriers, and the mismatch in the
Fermi wavelengths [17]. If these can be optimized, �0 can
be comparable to the gap of the bulk superconductor [28].

The simplest experimental geometry would be to con-
sider a single line junction with W & @v=�0. For �0 �

0:1 meV and @v� 1 eV �A, this could be achieved with
W & 1 �m. This should be similar to a graphene SNS
junction [25]. A signature of the Majorana character of
the junction could be probed by measuring the thermal
conductance along the channel for kBT <�0. For � � �
the central charge c � 1=2 of the gapless Majorana modes
leads to a quantized Landauer thermal conductance � �
c��2=3��k2

B=h�T. By constructing a pair of trijunctions as
in Fig. 2 the presence of MBSs can be controlled. It would
then be interesting to perform tests of the nonlocality of
MBSs envisioned in Refs. [24,29].

Manipulating and fusing MBSs places more stringent
requirements on the energy gaps. The junctions should be
sufficiently short that �E � ~v=L > kBT, but sufficiently
long that the MBSs are well localized. The good news is
that �E varies as a power of L, while the MBS overlap is
exponential, so at low temperature both criteria can be
achieved.

If the process of varying  to manipulate the MBSs is
nonadiabatic or �E< kBT, then additional quasiparticles
could be excited. If those quasiparticles escape and interact
with other MBSs, then the state of the MBSs will be
disturbed. However, if � �0, the excited quasiparticles

will be confined to the segment in which they were created.
If  is turned up so that kBT � � �0, and the system
relaxes back to its ground state, then the state of the MBSs
will remain intact. Thus, if there is sufficient dynamic
range between kBT and �0, the system can tolerate these
excitations.

We thank Sankar das Sarma and Steve Simon for helpful
discussions. This work was supported by NSF Grant
No. DMR-0605066, and by ACS PRF Grant No. 44776-
AC10.
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