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MicroBioRobots for Single Cell Manipulation

Abstract
One of the great challenges in nano and micro scale science and engineering is the independent manipulation
of biological cells and small man-made objects with active sensing. For such biomedical applications as single
cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate
microstructures that can be powered and controlled without a tether in fluidic environments. These
microstructures can be used to develop microrobots that have the potential to make existing therapeutic and
diagnostic procedures less invasive.

Actuation can be realized using various different organic and inorganic methods. Previous studies explored
different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages
as controllable micro actuators: they draw chemical energy directly from their environment, they are
genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be
selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control.
For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical
stimuli.

In the first part of the thesis, we demonstrate a bio-integrated approach by introducing MicroBioRobots
(MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes
ranging from 1-100 μm coated with a monolayer of the swarming Serratia marcescens. The adherent bacterial
cells naturally coordinate to propel the microstructures in fluidic environments, which we call Self-Actuation.
First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation
and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer
the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted
microscope. Examples of sub-micron scale transport and assembly as well as computer-based closed-loop
control of MBRs are presented. We demonstrate experimentally that vision-based feedback control allows a
four-electrode experimental device to steer MBRs along arbitrary paths with micrometer precision. At each
time instant, the system identifies the current location of the robot, a control algorithm determines the power
supply voltages that will move the charged robot from its current location toward its next desired position, and
the necessary electric field is then created. Second, we develop biosensors for the MBRs. Microscopic devices
with sensing capabilities could significantly improve single cell analysis, especially in high-resolution detection
of patterns of chemicals released from cells in vitro. Two different types of sensing mechanisms are employed.
The first method is based on harnessing bacterial power, and in the second method we use genetically
engineered bacteria. The small size of the devices gives them access to individual cells, and their large numbers
permit simultaneous monitoring of many cells.

In the second part, we describe the construction and operation of truly micron-sized, biocompatible
ferromagnetic micro transporters driven by external magnetic fields capable of exerting forces at the pico
Newton scale. We develop micro transporters using a simple, single step micro fabrication technique that
allows us to produce large numbers in the same step. We also fabricate microgels to deliver drugs. We
demonstrate that the micro transporters can be navigated to separate single cells with micron-size precision
and localize microgels without disturbing the local environment.
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ABSTRACT

MICROBIOROBOTS FOR SINGLE CELL MANIPULATION

Mahmut Selman Sakar

Supervisor: George J. Pappas

One of the great challenges in nano and micro scale science and engineering is the inde-

pendent manipulation of biological cells and small man-made objects with active sensing.

For such biomedical applications as single cell manipulation, telemetry, and localized tar-

geted delivery of chemicals, it is important to fabricate microstructures that can be powered

and controlled without a tether in fluidic environments. These microstructures can be used

to develop microrobots that have the potential to make existing therapeutic and diagnostic

procedures less invasive.

Actuation can be realized using various different organic and inorganic methods. Previ-

ous studies explored different forms of actuation and control with microorganisms. Bacte-

ria, in particular, offer several advantages as controllable microactuators: they draw chem-

ical energy directly from their environment, they are genetically modifiable, and they are

scalable and configurable in the sense that any number of bacteria can be selectively pat-

terned. Additionally, the study of bacteria inspires inorganic schemes of actuation and

control. For these reasons, we chose to employ bacteria while controlling their motility

using optical and electrical stimuli.

In the first part of the thesis, we demonstrate a biointegrated approach by introducing

MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated

structures with typical feature sizes ranging from 1-100 µm coated with a monolayer of the

swarming Serratia marcescens. The adherent bacterial cells naturally coordinate to propel

the microstructures in fluidic environments which we call Self-Actuation. First, we demon-

vi



strate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation

and develop an experimentally-validated mathematical model for the MBRs. This model

allows us to to steer the MBR to any position and orientation in a planar micro channel

using visual feedback and an inverted microscope. Examples of sub-micron scale transport

and assembly as well as computer-based closed-loop control of MBRs are presented. We

demonstrate experimentally that vision-based feedback control allows a four-electrode ex-

perimental device to steer MBRs along arbitrary paths with micrometer precision. At each

time instant, the system identifies the current location of the robot, a control algorithm

determines the power supply voltages that will move the charged robot from its current

location toward its next desired position, and the necessary electric field is then created.

Second, we develop biosensors for the MBRs. Microscopic devices with sensing capabili-

ties could significantly improve single cell analysis, especially in high-resolution detection

of patterns of chemicals released from cells in vitro. Two different types of sensing mech-

anisms are employed. The first method is based on harnessing bacterial power, and in the

second method we use genetically engineered bacteria. The small size of the devices gives

them access to individual cells, and their large numbers permit simultaneous monitoring of

many cells.

In the second part, we describe the construction and operation of truly micron-sized,

biocompatible ferromagnetic micro transporters driven by external magnetic fields capable

of exerting forces at the pico Newton scale. We develop micro transporters using a simple,

single step micro fabrication technique that allows us to produce large numbers in the same

step. We also fabricate microgels to deliver drugs. We demonstrate that the micro trans-

porters can be navigated to separate single cells with micron-size precision and localize

microgels without disturbing the local environment.

vii



Contents

Acknowledgements iv

Abstract vi

Contents viii

List of Figures xii

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 10

2.1 Life at Low Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The hydrodynamics of swimming microorganisms . . . . . . . . . . . . . . 11

2.2.1 Flagellar Dynamics in Viscous Fluids . . . . . . . . . . . . . . . . 12

2.3 Controlling Biological Systems . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Stochasticity and Single Cell Studies . . . . . . . . . . . . . . . . 15

2.3.2 Performing Collective Tasks with Cells and Microorganisms . . . . 16

viii



3 Experimental Characterization and Stochastic Modeling of Bacterial Actua-

tion 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Cell Culturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Mask design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Fabrication of Microstructures . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Microstructure tracking . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Experimental Characterization . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Mathematical modeling and analysis . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Stochastic kinematic model . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Quantitative analysis of the microbarge rotation . . . . . . . . . . . 30

3.5 Parameter estimation and model validation . . . . . . . . . . . . . . . . . . 34

3.5.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.3 The effect of orientation coherence on microbarge actuation . . . . 37

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Electrokinetic and optical control of bacterial microrobots 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Fabrication of experimental chamber . . . . . . . . . . . . . . . . . . . . . 41

4.3 Data acquisition and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Electrophysiology of bacteria . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Model for electrokinetic actuation . . . . . . . . . . . . . . . . . . . . . . 44

4.6 System Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Optical Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Microscale Manipulation, Transport and Biosensing using MBRs 61

5.1 Control of MBRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Control Law and Feedback . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Microassembly and Micromanipulation . . . . . . . . . . . . . . . . . . . 65

5.3 Biosensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Motility-based sensing . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Fluorescence-based sensing . . . . . . . . . . . . . . . . . . . . . 78

5.3.3 Stochastic Modeling of Lactose Sensing with Bacteria . . . . . . . 80

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Single Cell Manipulation using Magnetic micro transporters and Microgels 86

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Experimental Setup and Fabrication of Magnetic micro transporters . . . . 90

6.3 Motion Control and Visual Tracking . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2 Visual Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Fabrication of Microgels . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.1 Automated transport of Latex Microbeads . . . . . . . . . . . . . . 98

6.5.2 Transport of Agarose Microbeads . . . . . . . . . . . . . . . . . . 98

6.5.3 Manipulation of Tetrahymena cells . . . . . . . . . . . . . . . . . . 101

6.5.4 Manipulation of Hippocampal Neurons . . . . . . . . . . . . . . . 103

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

x



7 Conclusions 110

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 113

xi



List of Figures

2.1 (a) - (b) The gradual movement of the dye downwards while wrapping

around the filament and producing a fishscale-like pattern until it reaches

an unstable point at the tip of the helix. This instability forms due to the

helical shape of the flagellum and continues to be generated at the tip of

the helix as shown in (c). (d) Fully developed flow pattern. The flow in

the far field falls of inversely with distance. (e) A close-up of the tip of the

flagellum revealing complex flow patterns. . . . . . . . . . . . . . . . . . . 13

2.2 Controlling collective behavior of cells. (a) Using a global signal and/or

physical limitations. (b) Using an agent and local communication through

chemical and mechanical signals . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Control block diagram for the lactose regulation problem . . . . . . . . . . 18

3.1 Experimental approach. We integrate motile microorganisms with micro-

fabricated structures using a chemical treatment if needed to develop MBRs 21

xii



3.2 Microfabrication of biocompatible SU8 microstructures: (a) The glass slide

is coated with Dextran. (b) SU8 layer is spin coated onto the sacrificial

dextran layer. (c) UV light is transmitted through a photomask to create

an exposure pattern. (d) SU8 photoresist is developed. (e) Sections of the

glass slide each with many microstructures are inverted along the swarm

edge for bacterial attachment. (f) Individual microstructures are released

into motile buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Image processing procedure: (a) Phase contrast capture. (b) Binary image

tuned threshold. (c) Inverted image. (d) Closed region filling. (e) Size

thresholding. (f) Centroid identification . . . . . . . . . . . . . . . . . . . 25

3.4 A rectangular MBR (50µm x 100µm) that is used in this paper. The com-

puter vision tracking system marks the trajectory of the MBR and its com-

puted interframe velocity with the arrows. . . . . . . . . . . . . . . . . . . 26

3.5 A schematic of a microbarge and a bacterium. The angle α is formed by

the main axis of the microbarge and the x axis. The vector r denotes the

position of the microbarge’s center of mass. The vector bi denotes the

position of the i-th bacterium w.r.t the microbarge’s center of mass. The

vector ψi is a unit vector that denotes the orientation of the i-th bacterium.

The angle θi is formed by the microbarges main axis and the orientation of

the i-th bacterium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 A two-state continuous Markov chain model for the stochastic behavior of

the bacteria. The transition rates between the states are given as λ1 and

λ2. In chemical attractant free environment, measurements in biological

experiments reveal that λ1 = 1 s−1 and λ2 = 10 s−1. . . . . . . . . . . . . . 30

xiii



3.7 The computed data for a rectangular microbarge (50 µm × 100 µm). (a)

{ω̄i} in rad/s, (b) {v̄x,i} in µm/s, (c) {v̄y,i} in µm/s. The solid lines show

the averages of the data, while the gaps between the solid lines and the

dashed lines represent the standard deviations. . . . . . . . . . . . . . . . 33

3.8 The comparison between the experimental data (x), the deterministic model

prediction (thick line), and stochastic simulations (solid lines) for a rectan-

gular microbarge (50 µm × 100 µm). (a) α in rad/s, (b) x in µm, (c) y in

µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Histograms of the orientation of the bacteria on Microbarge A (top) and

Microbarge B(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Photograph of the PDMS galvanotaxis chamber. All experimental obser-

vations were performed in the central portion of the control chamber. . . . . 41

4.2 Histograms of the cell body orientation of S. marcescens at electrics fields

of 4.3 and 8.9 V/cm. Electric fields were coincident with zero degrees.

The individual cells do not exhibit galvanotaxis as might be expected, and

distributions are relatively uniform across the range of angles. . . . . . . . 44

4.3 MBR speed is directly proportional to applied electric field which shows

electrophoresis is the dominant electrokinetic phenomenon. The compo-

nent of speed due to self actuation appears as an offset along the vertical

axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiv



4.4 A schematic of an MBR. The angle α is formed by the main axis of the

MBR and the x axis. The vector r denotes the position of the MBR’s

center of mass. The vector bi denotes the position of the i-th bacterium

w.r.t the MBR’s center of mass. The vector ni is a unit vector that denotes

the orientation of the i-th bacterium. The angle θi is formed by the MBR’s

main axis and the orientation of the i-th bacterium. The angle Ψ is the

angle between the direction of electrophoretic force u and the x axis. . . . . 47

4.5 The comparison between the experimental data (blue line) and the model

prediction (red line) for a rectangular MBR (40 µm× 45 µm) showing self

actuation. (a) α in rad, (b) x in µm, (c) y in µm . . . . . . . . . . . . . . . 49

4.6 The comparison between the experimental data (blue line) and the model

prediction (red line) for a rectangular MBR (40 µm × 45 µm). 10V/cm

was applied to the MBR in +y direction. (a) α in rad, (b) x in µm, (c) y in

µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 The velocity of 20×22 µm2 rectangular MBR as a response to a sinusoidal

input voltage (dashed line) with an amplitude of 30 V and a frequency of

0.4 Hz. A least squares minimization was used to fit a sine curve (solid

line) representing the velocity data (*) . . . . . . . . . . . . . . . . . . . . 52

4.8 Bode plot of the system. The MBR follows the input signal quite well up

to a cutoff frequency near 3 Hz, where the magnitude drops off considerably 54

4.9 Sequence of cell patterning using a PDMS sieve. (a) PDMS sieve is at-

tached to the SU8 microstructures (b) Cell suspension is poured and the

solution is degassed in a vacuum chamber. (c)10X phase contrast image

of PDMS sieve in contact with microstructures (d) 63X phase contrast im-

age of microchannels filled with bacteria suspension (e)-(g) Bacteria were

patterned on different parts of microstructures. . . . . . . . . . . . . . . . 56

xv



4.10 Photoexposure characterization. (a) Shown is a representative selection of

results from several trials of exposure of MBRs to UV light, as well as a

trend lines before and after UV exposure. White regions represent UV ex-

posure. The results of the angular orientation (position) were normalized

and averaged to reveal characteristic trends. The final, motionless orien-

tation of the MBRs were normalized as zero radians. Angular rotation is

constant before exposure, varies near zero during the few seconds imme-

diately after exposure, and decreases exponentially afterward. (b) When

exposing repeatedly, angular speed may be adjusted lower, as reflected by

slope of the curve. Angular velocity remains constant when there is no UV

exposure, even after several repetitions. . . . . . . . . . . . . . . . . . . . 58

5.1 Block diagram for vision-based computer control of MBRs. The vision

system informs the control algorithm of the current position of the robot.

The control algorithm calculates the distance between the current and the

desired position and finds the power supply voltages that will create the

electric field required to steer the robot towards its next destination. . . . . 62

5.2 Steering of a 20×22 µm rectangular MBR along a star-shaped path. The

MBR passes through destinations 1-4 before stopping at its initial posi-

tion.The scale bar represents 50µm . . . . . . . . . . . . . . . . . . . . . . 64

5.3 The voltage applied to the system and the corresponding velocity of the

MBR in x (top) and y (bottom) direction during the experiment. The robot

responds to the changes in voltage immediately as expected. . . . . . . . . 66

5.4 The comparison between the experimental data (blue line) and the model

prediction (red line) for the star experiment. (a) x in µm, (b) y in µm . . . . 67

xvi



5.5 Steering of a 20×22 µm rectangular MBR along a circular and a diamond

shaped path. The MBR passes through destinations and returns to its orig-

inal position. The scale bar represents 50µm. . . . . . . . . . . . . . . . . 68

5.6 An MBR is directed through the entrance of a C-shaped microfabricated

goal using tele-operation. Scale bar represents time (2 min) as well as

length (100 µm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Micromanipulation experiment (a) Initial position of U-shaped MBR trans-

porter and target. (b) Transporter is moved to the right and down while rota-

tion continues. (c) Rotation is stopped in proper orientation upon exposure

to UV light. (d) Transporter engages the target object. . . . . . . . . . . . . 70

5.8 At left is shown a summary of the complete path of an MBR transporter

moving a target load described in detail in parts A-D. Total time is 2 min,

and scale bar is 25 µm. (A) The transporter initially rotates clockwise due

to the self-coordination of the bacterial carpet. Electric fields are applied

to move the transporter to the left, then up. (B) With the application of

UV light, the transporter stops rotating in 6 s. As rotation is stopped, elec-

tric fields are applied to position the transporter close to the target. (C)

The target is engaged and transported to the right. (D) The target is disen-

gaged/reengaged by switching field polarity. . . . . . . . . . . . . . . . . . 71

5.9 Fabrication process of the microdevices for motility-based and fluorescence-

based sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xvii



5.10 Motility-based sensing. (a) Schematic of the setup used for the copper

sensing experiment. (b) Sensing of copper ions is observed as a loss of

rotation. The translational movement due to applied electric field persists.

(c) Angular position and velocity vs time. Fluctuations in angular velocity

are caused by the torque applied by the electric field. Scale bar represents

time (100 sec) as well as length (50 µm). . . . . . . . . . . . . . . . . . . . 77

5.11 Fluorescence-based sensing. (a) Schematic description of the setup. Mi-

crostructures were patterned in the center of the glass slide so that they

could be trapped inside the PDMS microchannel. (b) Fluorescence image

visualizing GFP proteins produced by induced E.coli cells. The scale bar

is 100 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.12 Diagram of the lactose utilization network. The fluorescent reporter GFP

integrated in the genome is expressed in parallel with LacY under control

of the lac promoter and reports the induction level of the cell [1]. . . . . . . 81

5.13 Overlayed green fluorescence and inverted phase-contrast images of cells

that are initially uninduced for lac expression, then grown for 20 h in a

solution with (a) no TMG (b) 10 µM TMG (c) 100 µM TMG (d) Steady-

state solutions of the system. The induced state is shown as the upper

dark line whereas the uninduced state is shown as the lower dark line. The

intermediate unstable steady state is shown as a dashed line. . . . . . . . . 82

5.14 (a) Phase contrast image of the microstructure showing the attached E.coli

cells (b) Phase contrast image of a monolayer of the mixed population. S.

Marcescens cells fill all the gaps on the microstructure. (c) Fluorescence

image visualized only E.coli cells as they express GFP while Serratia cells

do not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xviii



6.1 Electromagnetic coils mounted on an optical microscope to actuate the mi-

cro transporters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Single step microfabrication of large numbers of biocompatible micro-

robots. (a) The glass slide is fcoated with Dextran. (b) First pure SU8

layer and then ferromagnetic composite SU8 layer are spin coated onto the

sacrificial dextran layer. Microrotransporters are magnetized with a per-

manent magnet. (c) Photoresist is developed and micro transporters are

released into experimental chamber. (d) Phase-contrast image of 30 × 30

× 10 µm3 U-shaped micro transporters. Scale bar is 30 µm . . . . . . . . . 91

6.3 Micro transporter velocity as a function of pulsing frequency. Each data

point represents five measurements and error bars indicate one standard error. 92

6.4 Micro transporter velocity as a function of magnetic field strength. Error

bars indicate one standard error. . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Microtransporter visual tracking output. The tracker estimates the posi-

tion and orientation of the manipulator in 2D, as well as the positions of

polystyrene beads. Several stages of processing are used to refine the es-

timate, resulting in a tracker capable of providing stable pose estimates at

30Hz. Figure by Anthony Cowley. . . . . . . . . . . . . . . . . . . . . . . 94

6.6 (a)-(c) Microfabricated hydrogels in different shape and sizes. (d) Phase-

contrast and (e) fluorescent images of a fluorescein doped microgel. (f)

Diffusion of fluorescein molecules from the microgel in water. ) . . . . . . 97

xix



6.7 Automated transport of a 10µm latex microbead. (a) The position of tar-

get bead and the micro transporter is detected and used to plan a two-step

trajectory. (b) The transporter successfully follows the pre-planned path

and engages the target. (c) When the transporter approaches the target,

non-contact manipulation is observed. The target bead moves slower than

the transport until the transporters comes into contact. (d) The bead is

released by moving the transporter back in the same orientation. Again,

target moves with the transporter for a while due to fluid coupling. Scale

bar is 20 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.8 The velocity of the transporter plus microbead as a function of the size of

the microbead. Agorose microbeads in different size and the microrobot

are shown in the inset figure. Scale bar is 30 µm . . . . . . . . . . . . . . . 100

6.9 Transport of target cells. (a) The orientation of the transporter is adjusted

according to the position of the target cell. (b) With the application of an

out-of-plane time-varying magnetic field, the transporter starts translating

towards the target. The pulsing frequency is 100 Hz. (c) The target is

engaged and transported out of the field of view. The average velocity of

the transporter is 350 µm/s. The scale bar is 100 µm. . . . . . . . . . . . . 102

6.10 Phase-contrast images of rat hippocampal neurons. (a) After 10 days in

culture, an extensive, intertwined network of neurons develops on glass

slides. (b) Trypsinized neurons. Scale bars, 25 µm . . . . . . . . . . . . . . 104

6.11 Transport of trypsinized neurons. (a) A cell is detected and targeted for

manipulation. (b) The target is engaged and transported. (c) Transported

cell is released by moving the micro transporter to the left with the same

orientation. The scale bar is 30µm. . . . . . . . . . . . . . . . . . . . . . . 105

xx



6.12 Delivery of microgels to the hippocampal cultures. (a)-(c) A microgel is

transported from its initial position to its target location. micro transporters

can be teleoperated on the neuron-coated surface without causing structural

damage to cells. (d) After releasing the microgel, another target is detected

and transported. The scale bar is 30µm. . . . . . . . . . . . . . . . . . . . 107

xxi



Chapter 1

Introduction

The field of microrobotics can be defined as the design and fabrication of robotic agents

in the micrometer range and the robotic manipulation of objects with characteristic dimen-

sions in a similar size range [2]. Applications of micromanipulation include manipulation

of biological cells and assembly of micro-sized parts. The dominant forces at these length

scales are considerably different than those in typical macroscale systems. As length scale

(L) decreases, surface forces (L2) begin to dominate body forces (L3). Gravitational and

inertial forces become less influential, and adhesive interactions as well as viscous fluid

forces become more significant [3]. In addition, traditional fabrication methods become

unfeasible and novel technologies must be considered in the design of microrobots.

The fundamental challenge with decreasing robot size is providing wireless actuation

and power to the robot. Microrobots can receive both power and instructions through a

patterned surface with a scratch drive actuation technique [4]. However, microrobots that

do not rely on specialized surfaces for power delivery and control are needed to perform

complicated tasks like single cell manipulation. It is well understood that non-reciprocal

movements are necessary for propulsion in low Reynolds number fluidic environments [3],

and bio-inspired devices based on the helical shape of the bacterial flagellum or the shape-
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varying stroke of the cilium have garnered considerable attention [5–9]. Such biomimetic

microactuators can be manufactured using inorganic materials. Inspired by the flagella of

bacteria, helical microrobots have been demonstrated to swim in low Reynolds number

regimes by using rotating magnetic fields. In one line of work, artificial bacteria with a

helical semiconductor tail and soft magnetic head are controlled using magnetic fields [6].

In a related work, artificial bacteria are fabricated from silicon dioxide using a glancing

angle deposition technique [7]. In this technique, silicon dioxide is vapor deposited on an

array of beads using a shadow growth method. However, the ability to fabricate the required

geometries is practically limited by the planar nature of microfabrication processes. Hybrid

organic/inorganic schemes can also be realized. Magnetic particles linked by DNA are

attached to a red blood cell, and created a propulsive, beating motion [5].

The use of magnetic fields provides an attractive source of energy for untethered wire-

lessly controlled microrobotic agents. Systems have been proposed that rely on field gradi-

ents to propel the robots [10]. Gradient propulsion requires relatively large magnetic fields

as magnetic force scales with both distance and agent volume. These restrictions place

strong limits on the minimum size of the robots [11]. Torques induced on ferromagnetic

materials in a magnetic field scale more favorably than the gradient force, which has led to

a number of different approaches for microrobotic locomotion. Miniature robotic systems

with wireless magnetic end effectors have been proposed for biomanipulation [12]. In a

similar approach, hard magnetic materials such as NdFeB have been employed to induce a

stick slip motion on different substrates [13]. Another class of actuators utilizes magnetic

energy from the environment and transforms it to impact-driven mechanical force. This

concept is called wireless resonant magnetic micro-actuation (WRMMa) for untethered

mobile microrobots and it has been introduced in [14] while their application and driving

performance were demonstrated by [15]. In another line of work, untethered thermobio-

chemically actuated microgrippers are employed as microscale tools to grasp, transport and
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release clusters of fibroblast cells [36].

Using biomolecular motors is another option [16,17]. The integration of parallel motor

assemblies, such as muscle bundles, withMEMS technologies is very attractive because the

developed system can be highly scalable. Besides, these devices have onboard actuators

that can be powered by glucose present in physiological liquids. Neonatal rat ventricular

cardiomyocytes [18, 19] and insect dorsal vessel tissue [20] are assembled on microfabri-

cated structures to develop muscle-powered controllable autonomous microdevices.

As an alternative solution, previous studies explored different forms of actuation and

control with microorganisms. Several groups reported attempts to integrate living or-

ganisms into micromechanical devices and presented methods for harnessing the power

produced by biological motors in efforts to realize microrobots or autonomous microde-

vices [21–24]. Such cyborg microrobots could use chemical gradients, light or other stimuli

to passively or actively control the motion of the cell component. The earliest demonstra-

tion of control of microorganisms for microrobotics involved the galvanotactic (electrode-

seeking) control of the protozoan Paramecium [25]. Similar work has recently demon-

strated steering Tetrahymena pyriformis cells using galvanotaxis while using phototaxis for

temporary cell trapping [26].

Bacteria, in particular, offer several advantages as controllable microactuators: they

draw chemical energy directly from their environment, they are genetically modifiable, and

they are scalable and configurable in the sense that the cells can be selectively patterned.

Bacteria are a key component of several biointegrated hybrid organic/inorganic MEMS

devices, including a host of actuators and sensors. In one of the first instances of bioin-

tegrated, mechanical actuators, microscale rotors were driven using the gliding bacteria

Mycoplasma mobile, which were directionally attached to the rotor teeth [21]. Lab-on-a-

chip fluid pumping and mixing was also demonstrated with Serratia marcescens and E.

coli, respectively [27]. The chaotic interactions of swimming bacteria with microscale

3



gears have also been shown to produce useful work given the proper choice of device ge-

ometry [28,29]. Other work that shows considerable promise has focused on using bacteria

for optical or chemical read-out techniques to develop hybrid sensors.

Much of the current work on harnessing the mechanical energy of bacteria has been

directed by researchers with interest in robotics. As such, there has been a focus on the

ability to control groups of cells with the goal of directing and harnessing their energy to

accomplish tasks such as manipulation and assembly. Magnetotactic bacteria may be con-

trolled to swim en masse in the direction of magnetic field lines, and have been used as

collectives to move microscale structures [30]. On/off microbead propulsion in response

to chemical stimulus has been demonstrated using the bacterium Serratia marcescens [31],

but controlled actuation in response to chemical gradients is inherently limited by the de-

velopment of the chemical concentrations, as governed by the diffusion equation. On/off

control of microstructure movement powered by swarming S. marcescens has also been

investigated using short-term exposure to ultraviolet light [32].

1.1 Problem Statement

Autonomous smart microdevices with sensing and information processing capabilities have

great potential use in drug delivery and single cell analysis [33]. For the specific application

of automatic, remotely controlled manipulation of cells or microobjects, control of both

rotation and translation is desired. Rotational control is of particular interest where the

device has a nonsymmetrical geometry designed for engagement and trapping. Since many

potential applications for micromanipulation are performed on a glass slide in a single focal

plane using standard light microscopy, the manipulation techniques presented in this work

are restricted to two-dimensional planar motion. There is still no microrobot that has a

characteristic length in the order of the size of a mammalian cell and has the capability
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of sensing biologically relevant chemicals. The ability to monitor the behavior of these

microrobots in response to biologically relevant chemicals is an important requirement for

further development.

As the length scales of robotic systems continue to decrease, one of the clear emerging

applications is the manipulation of single biological cells in fluid environments. Single-cell

manipulation has traditionally been achieved with pipettes, optical tweezers, or specialized

microfluidic channel designs [34]. Magnetic control of microrobots and microgrippers

has also been established as an effective means of microobject manipulation [15, 35–37].

However, significant challenges remain for applications relating to single cell manipulation

mainly due to appropriate scaling of robot size and geometry of existing designs.

To define the appropriate design constraints for robotic single cell manipulation, it is

assumed that the most appropriate workspace is on the stage of existing inverted or up-

right light microscopes. Such microscopes are ubiquitous in life science research laborato-

ries, and include essential capabilities such as phase contrast and fluorescence microscopy.

Therefore, the integration of the full design necessarily includes not only an appropriate

robot design, but also a compact controller that is compatible with the stage of existing

microscopes. By integrating the design into existing microscopes, imaging capture capa-

bilities of the microscopes may also be harnessed.

One of the most important length scales to consider for the system is the workspace for

the robot. When working with single cells, fine details of individual cells must be resolved.

It is essential to have microstructures with sizes in the same order of target cells in order

to transport and position them with some precision. The mammalian cell is an entity with

typical dimensions of tens of microns. This requires a magnification of at least 40X. The

workspace is then 150 µm × 150 µm. Based on this, it becomes clear that the robot must

not only be small relative to the workspace, but also that precise control of movement is

much more important than high speed. In fact, rapid movements may cause significant
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unwanted disturbances to the microenvironment.

Biocompatibility is another essential consideration for the design of a microrobotic cell

manipulator. For experiments with living cells, the idea of biocompatibility must be ex-

tended from the basic concept of not causing injury to cells to not influencing the behavior

of cells due to the chemical composition of the robot. Furthermore, the biocompatibility of

the overall design should include any chemicals released in the process of introducing the

robot to the cellular microenvironment.

Robotic manipulators on the scale of cells themselves offers significant potential ben-

efits beyond simply moving cells. Wirelessly controlled (i.e. untethered) cell-sized robots

are highly noninvasive. At this length scale, where viscous fluid forces dominate inertial

forces, motile microrobots cause very little mixing or agitation of the surrounding environ-

ment. This is a significant advantage over suction pipetting for life scientists, since pipettes

cause relatively large fluid disturbances. Traditionally, the focus of robotic manipulators

has been centered on applying mechanical forces. However, on the scale of individual cells,

the understanding of the word manipulation itself must be expanded to include chemical

manipulation of local microenvironments. To a great extent, research in single cell life sci-

ences is concerned with biochemistry. Due to this, a system for the delivery of chemicals in

the microenvironment would also greatly enhance the potential of a microrobotic system.

1.2 Approach

In the first part of this thesis (Chapters 3,4 and 5), we investigate a hybrid solution for the

controlled manipulation of microscale components with a biointegrated approach. Bacteria

attached to the surface of microfabricated parts, referred to as microbiorobots (MBRs), nat-

urally impart a predominantly rotational motion, largely due to the distribution of bacterial

cell body orientations and hence, flagellar thrusts. Here we show that the rate of rota-
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tion can be adjusted using optical stimuli. By harnessing both the collective work and the

electrostatic potential of bacteria, MBRs are actuated and their motion is controlled using

a combination of external stimuli. These robots are steered in a fully-automated fashion

using computer control, used to transport and manipulate micron-size objects. To take ad-

vantage of integrated live cells, they can be genetically modified and employed as sensing

elements. We describe the development of self-sustained mobile biohybrid microdevices

that harness bacterial cells for biosensors. We demonstrate two different approaches for

biosensing: motility-based sensing and fluorescent-based sensing.

In the second part of the thesis (Chapter 6), we develop a microrobotic manipulation

system using electromagnetic actuation supported with visual feedback to meet these chal-

lenges. The robot, which is only slightly larger than the rat hippocampal neurons which

we are interested in manipulating, has been designed to work on a scale appropriate for

the working space of a standard optical microscope. It is aligned by magnetic fields and

pulled by field gradients. An oscillating out-of-plane magnetic field induces a stick/slip

mechanism that enhances control of the robot [38]. This is useful not only for adjusting the

velocity of the robot [35], but also for traversing irregular microscale topographies such as

surfaces densely patterned with adherent cells. Composed of iron oxide nanoparticles em-

bedded in a polymer, the robot is fully biocompatible and is patterned using a single-mask

photolithographic process. The robot is similar in density to the working fluid. Thus, very

small magnetic forces are required for movement. Furthermore, due to the sub-micron res-

olution of the photolithographic micromachining process, the robot’s shape can be tailored

to and scaled appropriately for geometric compatibility with different cell types. Release

in the microenvironment is enabled by a biocompatible, water-soluble etch process.

A five-coiled magnetic controller was designed for rapid integration with existing mi-

croscopes. This is essential due to the fact that many features of single cells are nearly

indistinguishable without the aid of phase contrast or fluorescence microscopy. Visual ser-
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voing was incorporated for either teleoperation or fully automated manipulation, and was

demonstrated using latex microbeads, Tetrahymena cells and rat hippocampal neurons.

Finally, we present results on the integration of microscale hydrogels designed for the

localized delivery of chemicals using the microrobot. Hydrogels have been established as

an effective means of encapsulating and delivering drugs, and their design may be specifi-

cally tailored for customized time-based release [39] or even release in response to environ-

mental triggers such as pH and temperature [40]. The gels are capable of creating localized

complex gradients and transporting drugs or chemicals to specific positions of target cells.

1.3 Organization of this work

To understand microrobotics, we must begin with a discussion of how physical effects man-

ifest at the microscale. In the first part of the thesis, fabrication, mathematical modeling,

control and experimental characterization of MBRs is described. In Chapter 3, a stochas-

tic mathematical model for the system is constructed, based on the assumption that the

behavior of each bacterium is random and independent of that of its neighbors. In addi-

tion to developing the stochastic model, parameters of the model are identified, based on

experimental data. Then it is shown that that the model with the estimated parameters is

able to predict the behavior of the system very well. In Chapter 4, two-dimensional con-

trol of MBRs is demonstrated using DC electric fields. A novel electrotaxis chamber is

designed and fabricated to harness the electrical potential of the cells. Further, the system

is rigorously analyzed and a comprehensive understanding of the fundamental physics and

a complete model are developed. In Chapter 5, the control techniques are applied to orient

and steer bacterial microbiorobots as well as to transport target loads. We also integrate

genetically engineered bacterial cells with our robots and show the feasibility of develop-

ing the technology base for producing hybrid biosensors. In Chapter 6, the construction
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and operation of truly micron-sized, biocompatible ferromagnetic microtransporters driven

by external magnetic fields is described. We also describe the fabrication of microgels

to deliver drugs. We demonstrate that the microtransporters can be navigated to separate

single cells with micron-size precision and localize microgels without disturbing the local

environment.
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Chapter 2

Background

2.1 Life at Low Reynolds Number

The physics governing swimming at the micron scale is fundamentally different from the

physics of swimming at the macroscopic scale. The world of microrobots is the world of

low Reynolds number, a world where inertial forces are small compared to viscous drag

forces. The response of the fluid to the motion of boundaries is instantaneous and the rate

at which the momentum of a low Reynolds number swimmer changes is negligible when

compared with the typical magnitude of the forces from the surrounding viscous fluid. As a

result, Newtons law becomes a simple statement of instantaneous balance between external

and fluid forces and moments.

The Reynolds number Re is defined as Re = ρUL/η, where ρ is the fluid density,

η is the viscosity and U and L are characteristic velocity and length scales of the flow,

respectively. In water (ρ ≈ 103 kg m−3, η ≈ 10−3 Pa s), a swimming bacterium such as E.

coli with U ≈ 10 µm s−1 and L ≈ 1− 10 µm has a Reynolds number Re ≈ 10−5 − 10−4.

At these low Reynolds numbers, it is appropriate to study the limit Re = 0, for which

the Navier-Stokes equations simplify to the Stokes equations
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−∇p + η∇2u = 0, ∇ · u = 0. (2.1)

where u is the velocity of the swimmer, p is the pressure and η is the viscosity of the

fluid.

The Stokes equation (2.1) is linear and independent of time. When applied to low

Reynolds number locomotion, the linearity and time-independence of Stokes equation of

motion lead to two important properties. The first is rate independence: if a body undergoes

surface deformation, the distance travelled by the swimmer between two different surface

configurations does not depend on the rate at which the surface deformation occurs but

only on its geometry. The second important property of swimming without inertia is the

so-called scallop theorem: if the sequence of shapes displayed by a swimmer deforming in

a time periodic fashion is identical when viewed after a time-reversal transformation, then

the swimmer cannot move on average. As a result, locomotion results from non-reciprocal

deformations in order to break time-reversal symmetry [3].

2.2 The hydrodynamics of swimming microorganisms

Swimming strategies employed by larger organisms that operate at high Reynolds number,

such as fish, birds or insects, are ineffective at the small scale. For example, any attempt

to move by imparting momentum to the fluid, as is done in paddling, will be foiled by the

large viscous damping. Therefore microorganisms have evolved propulsion strategies that

successfully overcome and exploit drag [41].

Examples of lowRe swimmers include bacteria, sperm cells, and various kinds of proto-

zoa. Flagellated bacteria, such as Escherichia coli, swim by rotating thin helical filaments,

each driven at its base by a rotary motor. The filament has a diameter of≈ 20 nm and traces

out a helix with contour length ≈ 10 µm. In the absence of external forces and moments,
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the helix is left-handed with a pitch≈ 2.5 µm and a helical diameter≈ 0.5 µm [42]. There

are usually several flagella per cell. When the motor turns counter-clockwise (when viewed

from outside the cell body), the filaments wrap into a bundle that pushes the cell along at

speeds of 25-35 µm s−1 [43]. When one or more of the motors reverse, the corresponding

filaments leave the bundle and undergo polymorphic transformations in which the hand-

edness of the helix changes; these polymorphic transformations can change the swimming

direction of the cell.

2.2.1 Flagellar Dynamics in Viscous Fluids

Direct visualization of the flow patterns around individual flagellar filaments is quite chal-

lenging due to the filament small length scale (≈ 20 nm) and its high rotation rates (≈

100 Hz).

In our previous work, we investigated the flow behavior of a helical impeller rotating in

a viscous fluid at low Reynolds number, defined as Re = ρΩλ2/µ, using a macroscopic-

scale model system [44, 45]. Here, Ω is the angular velocity, λ is the helical pitch, and ρ

and µ are the fluid density and viscosity, respectively. Experiments were performed in a

transparent flat-bottom cylindrical vessel placed in a large cubic chamber made of acrylic

to correct for optical distortion. Both chamber and tank were filled with the same working

fluid in order to match the refraction index. The working fluid was pure glycerol (ρ = 1.2

g/cm3, µ = 800 cP). The tank height and diameter were 36 cm and 24 cm, respectively. A

rigid helical filament, which was attached to an electric motor, was immersed in the fluid.

The motor typically rotated at 1.2 Hz and the helical pitch is 6 cm. Under such conditions,

Re ≈ 0.8. The flow was visualized using ultra-violet(UV) fluorescence. The flow behavior

was assessed by the location of a neutrally buoyant dye as a function of time using a digital

camera (see Figure 2.1). The geometry of the cylindrical tank seems to be the main factor

determined the symmetrical bowl shape of the envelope. Over time these envelopes become
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Figure 2.1: (a) - (b) The gradual movement of the dye downwards while wrapping around
the filament and producing a fishscale-like pattern until it reaches an unstable point at the tip
of the helix. This instability forms due to the helical shape of the flagellum and continues
to be generated at the tip of the helix as shown in (c). (d) Fully developed flow pattern.
The flow in the far field falls of inversely with distance. (e) A close-up of the tip of the
flagellum revealing complex flow patterns.

cyclic.

Eukaryotic flagella and cilia are much larger than bacterial flagella, with a typical di-

ameter of ≈ 200 nm. There is a vast diversity in the beat pattern and length of eukaryotic

flagella. The cilia and flagella of sperm cells and protozoa are autonomously active struc-

tures that propagate bending waves from their base to the tip. The sperm of many organisms

consists of a head containing the genetic material together with enzymes that enable fer-

tilization to occur propelled by a filament with a planar sinusoidal or helical beat pattern,

depending on the species. The length of the flagellum is ≈ 40 µm for humans. In ciliate

protozoa, hundreds of cilia can coordinate and self-organize to produce a collective thrust.

Paramecium is one classic example of a ciliated microorganism. Its surface is covered by

thousands of cilia that beat in a coordinated manner [46], propelling the cell at speeds of
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≈ 500 µm s−1. Tetrahymena pyriformis (T. pyriformis) also swim using cilia and there are

approximately 600 cilia, both oral and locomotive, covering the cell body. Cilia closely

resemble the eukaryotic flagella in internal structure and mode of action. They are also

active organelles but their waveform is more complex consisting of a power stroke and a

recovery stroke. The cell rotates as swims due to a slight time lag between the beating of

successive rows of cilia and moves through water with a net rate of up to several millime-

ters per second. Chlamydomonas reinhardtii is an alga with two flagella that can exhibit

both ciliary and flagellar beat patterns. A cell swimming in the dark stochastically switches

between synchronous and asynchronous flagellar beating. These regimes lead to nearly

straight swimming and to abrupt large reorientations, which yield a eukaryotic version of

the ”run-and-tumble” motion of peritrichously flagellated bacteria [47].

Many cell types travel from one location to another throughout their life. The direction

of this movement is intricately linked to their local environment. This directed movement,

or taxis, may be an active signaling response such as chemotaxis, whereby the cells sense

and process the composition of their chemical environment. When a cell moves toward

higher concentrations of attractant or lower concentrations of repellent, clockwise flagellar

rotation and, hence, tumbling are suppressed. The randomwalk is thereby biased so that the

cell migrates up an attractant gradient or down a repellent gradient. Gradients are sensed as

temporal changes in concentration by comparing the instantaneous concentration with the

concentration the cell experienced a few seconds earlier [48].

The taxis may also be passive, where the stimuli impose a change on the motion. As an

example of such passive movement, the motion of magnetotactic bacteria such as MC-1 is

heavily influenced by weak magnetic fields. The cell bodies align with external magnetic

fields as they carry chains of iron-rich magnetosomes [49]. This kind of directed movement

is a form of adaptation enabling these cells to move to oxygen-rich environments. There

a rich repertoire of conditions that causes tactic behavior. For instance, different species
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of bacteria have been shown to have several mechanisms to move toward or away from

light. Multiple mechanisms for this movement have been discovered, and sensitivities to

various wavelengths have been reported. The unicellular algae Chlamydomonas reinhardtii

is phototactic and can be guided using visible light. Cells have been controlled by switching

light emitting diodes on or off at either end of a microfluidic channel. This mechanism has

been exploited to direct and transport microscale loads [23].

2.3 Controlling Biological Systems

Biological systems exhibit many features of complex engineering systems. The origin

of system complexity is generally the presence of multiple regulatory mechanisms such

as feedback. Among several possible control strategies, feedback seems to be favored in

biological systems [50]. Hierarchies of feedback loops result in system robustness, per-

formance, and noise rejection, which are the properties of almost every biological system.

Another key feature of biological systems is emergence, aggregate behaviors that may not

be predicted by only investigating the individual components or subsystems. The existence

of emergent properties can also be explained by the presence of control mechanisms [51].

2.3.1 Stochasticity and Single Cell Studies

Cellular function often involves small numbers of molecules like DNA. These molecules

give organisms their unique genetic identity. Even genetically identical organisms grown

in homogenous environments can be very different. One of the main sources of this vari-

ability is noise in gene expression - the random fluctuations in the expression of individual

genes. This is because the expression of a gene involves discrete and random biochemical

reactions involved in the production of mRNAs and proteins. The lox copy numbers further

exacerbate the noisiness of the system. In the past few years, it has been recognized that
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stochastic phenomena may have a crucial role in the fate of individual cells [52]. Stochastic

gene expression has important consequences for cellular function, being beneficial in some

contexts by producing adaptive phenotypes and harmful in others. As an example, stud-

ies have found that the decisions by E. coli to enter a quiescent state to survive antibiotic

exposure (persistence) are stochastically controlled [53]. The most prominent adaptive ex-

planation for this strategy is bet-hedging. In microorganisms, a population might enhance

its fitness in fluctuating environments by allowing individual cells to stochastically transi-

tion among multiple phenotypes, thus ensuring that some cells are always prepared [54].

Without the need to sense the environment, cells could blindly anticipate and survive en-

vironmental changes with this strategy assuming that each phenotype fit to a particular

environment. Persistence has a direct benefit to the population as it allows survival during

catastrophes. Furthermore, persistent cells can provide an indirect benefit to other individ-

uals, as the reduced growth rate can reduce competition for limiting resources.

Cells in the population can exist in a continuum of phetoypes too, as occurs in swim-

ming in E. coli. In complex habitats with a sparse distribution of nutrients, variability

among individual cells in the time periods between motility switches can be expected to

form the basis of an ideal search strategy. In addition, variable responsiveness to chemoat-

tractants could help individual bacterial cells avoid predators, where attractant release is a

mechanism for luring bacterial prey [55].

2.3.2 Performing Collective Tasks with Cells and Microorganisms

There is a recent interest in the scientific community to integrate microorganisms and liv-

ing cells with engineered systems to develop microrobots, novel biosensors and intelligent

microdevices. The overall system can be compact, fast and inexpensive. Furthermore, the

cellular propulsion or actuation component could be multifunctional, perhaps serving as a

biochemical sensor or navigation controller [56]. Such systems are, however, limited by the
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Figure 2.2: Controlling collective behavior of cells. (a) Using a global signal and/or phys-
ical limitations. (b) Using an agent and local communication through chemical and me-
chanical signals

often stochastic nature of cellular motion as described in the previous section. As a result,

novel strategies have to be employed to harness and control ensembles of cells. There are

two different methods control methodologies as shown in Figure 2.2. In the first approach,

the collective behavior of cells are controlled by applying a global signal: a mechanical

and/or chemical signal that affects all the cells in the environment.

In our previous work, we explored such a scenario which involves pure chemical con-

trol [57]. The architecture of the control system is illustrated in Figure 2.3. The plant to

be controlled is a large colony of E. coli bacteria. We constructed an abstraction of the

stochastic model that is simple enough to allow for fast computation. This is particularly

desirable, for example, when we want to simulate the behavior of a colony of bacteria.

Without the abstraction, we would have to run multiple copies of the stochastic simulation,

which can be computationally prohibitive.

The controller affects the plant by adjusting the external concentration of thio-methyl

galactosidase (TMG) in the environment. Feedback information is read from the plant in
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Figure 2.3: Control block diagram for the lactose regulation problem

the form of a global quantity, which we consider as the output of the control system. By

this, we mean the controller does not have any information about the individual cells in the

colony. Rather, the controller relies on sensing a global quantity, for example, the fraction

of induced cells in the population. The control goal is to make the output track a given

reference trajectory or attain a desired level. Similar control architecture, where feedback

control of a group of Markov chains by adjusting the transition rates has been studied,

for example in [58]. There, the plant is a group of artificial muscle cells that can switch

between contracting and non-contracting states.

In the second method, a wirelessly-controlled synthetic agent is introduced into a colony

of cells. The agent uses the same mechanical and chemical signals that the cells use and

communicate with the members of the community in its vicinity to initiate a series of inter-

connected interactions among other members. As a result, a collective task is performed

by all the members even tough the agent has limited manipulation capability. In one exper-

imental study, authors showed collective decision-making by mixed groups of cockroaches

and socially integrated autonomous robots. Individuals were perceived as equivalent due
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to pheromone treatment, and the collective decision emerged from local interactions [59].

19



Chapter 3

Experimental Characterization and

Stochastic Modeling of Bacterial

Actuation

The work in this chapter was first presented in [60] and was done in collaboration with

Edward Steager, Agung Julius, UKei Cheang and Min Jun Kim

3.1 Introduction

The main challenges that need to be addressed in realizing the idea of using bacterial power

to actuate microstructures are

1) how to fabricate the structures and integrate the bacteria to them, and

2) what is the behavior of the swarm of bacteria under certain environmental conditions

and how to regulate it.

We focus our attention to the chemotactic behavior of flagellated bacteria, such as Es-

cherichia coli and Serratia marcescens. The motile behavior of these bacteria has been
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Figure 3.1: Experimental approach. We integrate motile microorganisms with microfabri-
cated structures using a chemical treatment if needed to develop MBRs

extensively studied since the 1970’s (c.f. the seminal paper by Howard Berg [61], and a

more recent book [62]). It has been established that these bacteria use their flagella to gen-

erate propulsion by rotating them [63] and that the motile behavior of the bacteria is similar

to a biased random walk toward higher concentration of chemotactic attractant.

We build buoyancy-neutral plate-like microstructures, which we call microbarges. We

then blot flagellated bacteria on the surface of the microbarge, which is then released to the

medium (see Figure 3.1). The motion of the microbarge is carefully tracked and compared

with model prediction.

We construct a stochastic mathematical model for the system, based on the assumption

that the behavior of each bacterium is random and independent of that of its neighbors.

In a recent paper [64], the authors proposed an approximate stochastic model to study

the diffusion or random walk properties of microbeads with bacterial propulsion. In this

paper, we study smooth and regular propulsion that is potentially more beneficial than

random walk. The study of actuation by using a large number of random actuators has

also been reported elsewhere, e.g. [58]. In addition to developing the stochastic model, we

also perform parameter identification for the model, based on experimental data. We then

demonstrate that the model with the estimated parameters is able to predict the behavior of
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the system very well. One of the key findings in this paper is that although the system is

inherently distributed, in the sense that there are a large number of independent actuators,

we can construct an accurate model with only a few parameters representing the distribution

of the bacteria.

3.2 Experimental Methods

To accomplish effective actuation of custom designed microstructures several processes are

necessary. These processes include culturing bacteria S. marcescens using the swarm plate

technique, fabricating microstructures, blotting and manipulatingmicrostructures with bac-

teria into the working fluid, and finally tracking the microstructures using an algorithm to

quantify the magnitude and direction of motion.

3.2.1 Cell Culturing

Swarming S. marcescens were cultured on a 0.6% agar plate. To prepare agar plates for

swarming, 5 g Difco Bacto tryptone, 2.5 g yeast extract, 2.5 g NaCl and 3 g Difco Bacto

agar are dissolved into 500 ml of deionized water. After autoclaving the solution was

poured into smaller bottles for later redistribution to Petri dishes. Before pouring individual

agar plates, the agar solution was mixed with 25 % glucose solution by adding 1 ml glucose

solution for 100 ml of prepared agar solution. Then, 50 ml of this new agar solution was

pipetted into large 14 cm Petri dishes. The swarm plate was inoculated on one edge with

2 µl of S. marcescens saturated culture. Agar plates were incubated at 30 − 34 ◦C, and

swarming began within 8-16 hours.
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3.2.2 Mask design

Masks are an integral component in the photolithographic process of microstructure fabri-

cation. Using AutoCAD, the designed two-dimensional micro-geometry was drawn with

precision, and printed onto a transparency film (CAD/Art Service, Inc, Bandon, OR) with

high resolution (18,000 dpi). A dark field mask design for microstructures was generated

with 50 × 100µm2 rectangles placed in an array. The distance between each individual

pattern was approximately 40 µm to allow working space for extraction of individual mi-

crostructures.

3.2.3 Fabrication of Microstructures

The fabricated structures should be biocompatible, i.e. the structure material should pre-

serve and promote bacterial motility and provide a surface to which bacteria can attach

readily. Additionally, the composite specific gravity of the structure should be similar to

the working fluid and provide both chemical and thermal stability. It is additionally help-

ful if the fabricated structures are transparent and have a high refractive index to provide

clearly defined boundaries which can be readily discerned by a tracking algorithm.

SU8 Series 2 (MicroChem, Newton, MA) negative photoresist forms strong cross links

on exposure to ultraviolet (UV) light, and the unexposed regions are easily removed using

a developer solution. The SU8 microfabrication and development procedure is compatible

with a technique of release using a water-soluble sacrificial dextran layer (27). Traditional

techniques for release of structures using a sacrificial layer have required toxic chemicals.

Using dextran for the release layer, the motility medium in which the studies are performed

acted as an agent of release.

The chosen substrate for the patterning of SU8 microstructures is glass. The fabrication

sequence is shown in (Figure 3.2). The first spin-coating procedure was used to prepare
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Figure 3.2: Microfabrication of biocompatible SU8 microstructures: (a) The glass slide is
coated with Dextran. (b) SU8 layer is spin coated onto the sacrificial dextran layer. (c) UV
light is transmitted through a photomask to create an exposure pattern. (d) SU8 photoresist
is developed. (e) Sections of the glass slide each with many microstructures are inverted
along the swarm edge for bacterial attachment. (f) Individual microstructures are released
into motile buffer.

the water-soluble sacrificial dextran layer. An aqueous solution of 5% (w/v) dextran 50-70

kDa was prepared. The solution was dispensed onto the glass slide, spin-coated, and baked.

Next, a 5 µm layer of SU8-2 was spin-coated. The exposed substrate was post-baked and

developed in Propylene Glycol Monomethyl Ether Acetate (PGMEA). The wafer was then

blow dried with a jet of Nitrogen gas, and the SU8 pattern was ready for blotting and then

extraction.

3.2.4 Microstructure tracking

A tracking algorithm was designed to analyze the motion of the MBRs in motility buffer.

The current study analyzed two distinct motions of rigid bodies, translation and rotation.

To characterize the motion of the bacteria-driven microstructures, the geometric centroid

and orientation angle was traced. The algorithm was validated by testing the motion and

velocity of a theoretical test structure with predetermined shape and velocity.

Imaging was performed on a Leica DMIRB inverted microscope using phase contrast.
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Figure 3.3: Image processing procedure: (a) Phase contrast capture. (b) Binary image
tuned threshold. (c) Inverted image. (d) Closed region filling. (e) Size thresholding. (f)
Centroid identification

Video was captured using a Retiga 4000R digital camera. A tracking algorithm was de-

signed to analyze the motion of the geometric centroid. Frames of video were captured,

digitized and imported directly into MATLAB for analysis. The grayscale images were

converted to binary images using a threshold tuned to optimize the effect of edge contrast

of the SU8 microstructure. The binary images were then inverted and all closed regions

were filled. Closed structures of all sizes were next identified as individual elements, and

elements smaller and larger than a predetermined pixel count were deleted leaving the area

of the microstructure clearly defined and isolated. Finally, microstructure centroid location

and orientation for each frame were determined and written to a data file. This data file is

passed to the control algorithm for further analysis.
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Figure 3.4: A rectangular MBR (50µm x 100µm) that is used in this paper. The com-
puter vision tracking system marks the trajectory of the MBR and its computed interframe
velocity with the arrows.

3.3 Experimental Characterization

The swarmer cells of S. marcescens are hyperflagellated (10 to 100), elongated (5 to 30 µm)

and migrate cooperatively (25). The polysaccharide-rich pink slime produced by bacteria

enables them to stick to the surface of the microstructures (26). Bacteria were attached by

blotting directly along the active swarm edge and readily adhered to the SU8 microstruc-

tures, generally covering more than 90% of the surface. An analysis of the orientation of

the attached bacteria showed local correlation. With a fluorescent labeling technique, it

was observed that the flagella were free to move even though the cell bodies were fixed.

Using a water-soluble sacrificial dextran layer (27), hundreds of MBRs were released into

the fluidic chamber without causing structural damage.

MBRs were initially tested without external stimuli, that is, with no electric field or

ultraviolet (UV) light. The MBRs were free to move inside the fluid, and their movement

due to bacterial actuation was immediately observed. This collective response is due to

flagellar actuation of the adherent bacteria and results in translation of the center of mass
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combined with rotation (Figure 3.4). We call this self actuation.

3.4 Mathematical modeling and analysis

As the hydrodynamic interactions among flagella of neighboring cells are complex and very

difficult to model, the model begins with the naive assumption that the cells are independent

from each other. Remarkably, this model showed very good agreement with observed

results. The unknown parameters of the model are estimated from the experimental results

recorded in the beginning of each trial in the absence of external stimuli.

3.4.1 Stochastic kinematic model

The state of the microbarge is characterized by its position on the plane and its orientation.

See Figure 3.5 for an illustration. We define the vector r = (x, y) to be the planar position

of the microbarge’s center of mass. The orientation of the microbarge is characterized by

the angle α, which is formed by the main axis of the microbarge and the x-axis of the

inertial coordinate frame.

We assume that there are Nb bacteria attached to a microbarge. The position of the i-th

bacterium with respect to the center of mass of the microbarge is denoted by the vector

bi = (bi,x, bi,y) in the body-fixed coordinate frame, and its orientation is characterized by

the angle θi. We also define the amount of (time varying) propulsive force provided by the

i-th bacterium as pi(t).

The equation of translational motion of the microbarge is given by

M
d2r

dt2
=

Nb
∑

i=1

piψi − kT
dr

dt
, (3.1)

whereM is the total mass of the microbarge system (including the bacteria), ψi is the unit
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Figure 3.5: A schematic of a microbarge and a bacterium. The angle α is formed by the
main axis of the microbarge and the x axis. The vector r denotes the position of the mi-
crobarge’s center of mass. The vector bi denotes the position of the i-th bacterium w.r.t the
microbarge’s center of mass. The vector ψi is a unit vector that denotes the orientation of
the i-th bacterium. The angle θi is formed by the microbarges main axis and the orientation
of the i-th bacterium.

28



vector in the inertial coordinate frame that represents the orientation of the i-th bacterium,

and kT is the translational viscous drag coefficient. Similarly, the rotational motion can be

characterized by

I
d2α

dt2
=

Nb
∑

i=1

pi · (bi,x sin θi − bi,y cos θi)− kR
dα

dt
, (3.2)

where I is the total moment of inertia of the microbarge system and kR is the rotational

viscous drag coefficient. In an environment with very low Reynolds number, the inertia

effect is negligible, i.e. kT % M, kR % I .

Consequently, the translational and the rotational accelerations are negligible. There-

fore, (3.1) and (3.2) can be accurately replaced with

dr

dt
=

1

kT

Nb
∑

i=1

piψi, (3.3a)

ω :=
dα

dt
=

1

kR

Nb
∑

i=1

pi · (bi,x sin θi − bi,y cos θi) . (3.3b)

The propulsion forces, pi(t), are stochastic processes. Biological investigation by Berg

et al [43] reveals that in the absence of chemotactic chemical agents, the process can be ac-

curately modeled as a continuous-time Markov chain [65] with two states, run and tumble

(see Figure 3.6). We assume that during tumble, a bacterium does not provide any propul-

sion, while during run it delivers the maximal propulsive force of pmax = 0.45 pN reported

in the literature [66].

If we define φ(t) = (φ1(t),φ2(t))T as the probability of finding the system in the run

and tumbling state at time t, the evolution of φ(t) is given by

d

dt







φ1

φ2






=







−λ1 λ2

λ1 −λ2













φ1

φ2






. (3.4)

29



run tumble

!

!

1

2

Figure 3.6: A two-state continuous Markov chain model for the stochastic behavior of
the bacteria. The transition rates between the states are given as λ1 and λ2. In chemical
attractant free environment, measurements in biological experiments reveal that λ1 = 1 s−1

and λ2 = 10 s−1.

From here, it follows that any initial distribution φ(0) converges exponentially to a steady

state distribution given by






φ1(∞)

φ2(∞)






=







λ2
λ1+λ2

λ1
λ1+λ2






. (3.5)

3.4.2 Quantitative analysis of the microbarge rotation

If we denote the parameter

ci :=
bi,x sin θi − bi,y cos θi

kR
, (3.6)

then the orientation of the barge α satisfies the following relation

α(t) = a(0) +

t
∫

0

Nb
∑

i=1

ci · pi(τ) dτ. (3.7)
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From here, we can compute the expectation of α(t) as

E(α(t)) = α(0) + p̄
Nb
∑

i=1

cit. (3.8)

Here we use the assumption that at the beginning of the time interval of interest, t = 0, the

processes pi(t)i=1...Nb
have reached their steady state. In that case, their expectation is then

given by the steady state expected value, p̄, which can be computed as

p̄ =
λ2

λ1 + λ2
· pmax = 0.41 pN. (3.9)

Similarly, we can compute the variance of α(t) as follows.

Var(α(t)) = E





t
∫

0

Nb
∑

i=1

ci · (pi(τ)− p̄) dτ





2

,

= E





t
∫

0

t
∫

0

Nb
∑

i=1

ci · (pi(τ)− p̄)
Nb
∑

j=1

cj · (pj(η)− p̄) dτ dη



 ,

=

t
∫

0

t
∫

0

Nb
∑

i=1

Nb
∑

j=1

ci · cj ·
(

E (pi(τ)pj(η))− p̄2
)

dτ dη. (3.10)

Assuming that the random behavior of the bacteria are independent one from another, we

can simplify (3.10) into

Var(α(t)) = 2

t
∫

0

t
∫

η

Nb
∑

i=1

c2i ·
(

E (pi(τ)pi(η))− p̄2
)

dτ dη. (3.11)

Furthermore, using the above mentioned assumption that the processes have reached the

steady state at t = 0, we can compute E (pi(τ)pi(η)) through the Bayesian formula. The

values of P {(pi(τ) = A) , (pi(η) = B)} is given in the following table.
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A\B pmax 0

pmax
λ2
2+λ1λ2e(λ1+λ2)(η−τ)

(λ1+λ2)
2

λ1λ2−λ1λ2e(λ1+λ2)(η−τ)

(λ1+λ2)
2

0 λ1λ2−λ1λ2e
(λ1+λ2)(η−τ)

(λ1+λ2)
2

λ2
1+λ1λ2e(λ1+λ2)(η−τ)

(λ1+λ2)
2

We can compute that

E (pi(τ)pi(η)) =
λ2
2 + λ1λ2e(λ1+λ2)(η−τ)

(λ1 + λ2)
2 p2max, (3.12)

and

Var(α(t)) =
2λ1λ2p2max

(λ1 + λ2)
3

Nb
∑

i=1

c2i ·
(

t−
1− e−(λ1+λ2)t

λ1 + λ2

)

. (3.13)

From (3.13), we see that both the expectation and the variance of α(t) grow asymptoti-

cally linearly. The standard deviation of α(t) grows asymptotically with
√
t, which is half

an order slower than the expectation. Consequently, as t → ∞, the ratio of the standard

deviation to the expectation goes to 0. This means the expectation can be used as a good

estimate of the steady state behavior of the system. The expectation of α(t) predicts that

the microbarge undergoes a steady rotation as a steady state behavior. In the next section,

we will see that this is justified by the experimental results (see Figure 3.8(a)).

Notice that the assumption that the random behavior of the bacteria are independent

one from another is not essential in deriving this result. To see this, consider the extreme

case, where all the bacteria are perfectly correlated. In this case, the term
∑Nb

i=1 c
2
i in (3.13)

will be replaced by
∑∑Nb

i,j=1 cicj , which does not change the conclusion.
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Figure 3.7: The computed data for a rectangular microbarge (50 µm× 100 µm). (a) {ω̄i}
in rad/s, (b) {v̄x,i} in µm/s, (c) {v̄y,i} in µm/s. The solid lines show the averages of the
data, while the gaps between the solid lines and the dashed lines represent the standard
deviations.
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3.5 Parameter estimation and model validation

The components of the translational velocities on the axis of the body fixed coordinate

frame (see Figure 3.5) are

vx := ṙx =
1

kT

Nb
∑

i=1

pi cos θi, vy := ṙy =
1

kT

Nb
∑

i=1

pi sin θi. (3.14)

Their respective expectations are then given by

Evx =
p̄

kT

Nb
∑

i=1

cos θi, Evy =
p̄

kT

Nb
∑

i=1

sin θi. (3.15)

From (4.1), we can obtain the expectation of the angular velocity of the microbarge, which

is given by

Eω =
p̄

kR

Nb
∑

i=1

(bi,x sin θi − bi,y cos θi) . (3.16)

It is clear from (14-16) that the expected velocities only depend on three parameters:

β1 :=
1

kT

Nb
∑

i=1

cos θi, β2 :=
1

kT

Nb
∑

i=1

sin θi,

β3 :=
1

kR

Nb
∑

i=1

(bi,x sin θi − bi,y cos θi) .

3.5.1 Parameter estimation

We estimate the values of these parameters using experimental data. We extract frames

from the video taken during the experiment. In each frame, the position and orientation of

the barge are identified using digital image processing. As the results, we have three time

series {x̄i}, {ȳi}, and {ᾱi},with i = 1, . . . , N, consisting of the planar position of the barge

and its orientation inN frames. The body fixed coordinate components of the microbarge’s
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translational velocity at the i-th frame can be approximated by using the forward difference

method as follows.







v̄x,i

v̄y,i






=

1

δ







cos ᾱi sin ᾱi

− sin ᾱi cos ᾱi













x̄i+1 − x̄i

ȳi+1 − ȳi






, (3.17)

for i ∈ {1, . . . , N − 1}, where δ is the video sampling rate. Similarly, the angular velocity

of the microbarge can be extracted from the video data by ω̄i =
ᾱi+1−ᾱi

δ
.

By equating the averages and the expectations of the microbarge’s translational and

angular velocities, we can estimate the values of β1,2,3 as follows.

[

β1 β2 β3

]

≈
1

p̄ (N − 1)

N−1
∑

i=1

[

v̄x,i v̄y,i ω̄i

]

.

Figure 3.7 shows the computed {ω̄i}, {v̄x,i}, and {v̄y,i} for a rectangular microbarge

(50 µm × 100 µm) as shown in Figure 3.4. The video length is 10 seconds, sampled at

10 frames/second. Based on this data, the parameters for this microbarge are computed as

β1 = 13.03 µm
s pN , β2 = −43.64 µm

s pN , and β3 = 1.24 rad
s pN .

The three parameters β1,2,3 summarize the distribution of the bacteria on the micro-

barge. Subsequently, we will show that our mathematical model and the parameters β1,2,3

can predict the behavior of the system reasonably well.

3.5.2 Model validation

In this subsection, we show that the mathematical model developed in the previous section

and the parameters β1,2,3 can predict the behavior of the system reasonably well. We con-

struct a deterministic model by replacing the stochastic processes pi(t) in (4.1) with their

steady state expectations p̄. We therefore construct a reduced-order model for the system,

which is given by
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Figure 3.8: The comparison between the experimental data (x), the deterministic model
prediction (thick line), and stochastic simulations (solid lines) for a rectangular microbarge
(50 µm× 100 µm). (a) α in rad/s, (b) x in µm, (c) y in µm.

dx

dt
= p̄ (β1 cosα− β2 sinα) ,

dy

dt
= p̄ (β1 sinα + β2 cosα) ,

dα

dt
= p̄β3.

Figure 3.8 shows the comparison between the experimental data, the deterministic

model prediction and the stochastic simulations of the model (4.1) for the rectangular mi-

crobarge that is analyzed in the previous section. Note that for each simulation run, the

distribution of 300 bacteria on the microbarge is randomized while keeping the parameters

β1,2,3 constant.

We can see that the model with fitted parameter can explain the data very well, sug-
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gesting that the structure of the model is suitable for this experimental setup. Furthermore,

we can observe that the distributed parameter model that includes the description of the

distribution of the bacteria on the microbarge (ri and θi) can be replaced with a lumped

parameter model with the initial state of the system and three parameters of bacterial dis-

tribution (β1,2,3). Therefore, in order to describe the dynamics of the system accurately, it

is not necessary to know how the bacteria are distributed precisely. Rather, it is sufficient

to know a few high level parameters that describe the distribution.

3.5.3 The effect of orientation coherence on microbarge actuation

Due to the nature of the blotting process, the distribution of the bacteria on the microbarge

(both position and orientation) is inherently random. In this subsection, we analyze the

effect of coherence in the orientation distribution and the kinematic behavior of the micro-

barge.

Consider the expectation of the magnitude of the translational velocity of the micro-

barge, as given in (4.1a).

E

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

=
p̄

kT

∥

∥

∥

∥

∥

Nb
∑

i=1

ψi

∥

∥

∥

∥

∥

. (3.18)

Since this quantity does not depend on the choice of coordinate frame, we can conveniently

evaluate it in the body fixed coordinate frame. In this case, the right hand side becomes

p̄

kT

∥

∥

∥

∥

∥

Nb
∑

i=1

ψi

∥

∥

∥

∥

∥

=
p̄Nb

kT

(

1

N2
b

Nb
∑

i=1

Nb
∑

j=1

cos(θi − θj)

)

1
2

. (3.19)

The quantity between the brackets in (3.19) can be seen as a measure of the coherence of

the orientation of bacteria. If all of them have the same orientation, this quantity is 1. If

there is no correlation between the orientation, the expected value of the cosine function is

zero, and so is this quantity. We can therefore propose a measure of orientation coherence,
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Figure 3.9: Histograms of the orientation of the bacteria on Microbarge A (top) and Micro-
barge B(bottom).

based on experimental data, as γ := vavgkT/(p̄Nb). By comparing measurements from two

different microbarges, we can justify this idea.

From images, we can extract some information about the distribution of the bacteria on

their surface. Through digital image processing, we can extract the information about the

alignment of the major axis of the bacteria on both microbarges. The statistics of this data

is shown in Figure 3.9.

We can compute γ for both microbarges by using the recorded average velocities and

the number of identified bacteria on each microbarge. The γ values are γA = 0.157kT and

γB = 0.5154kT . Visual inspection on the histograms shown in Figure 3.9 does not reveal

too much information about the orientation coherence in both microbarges. However, we

can approximately1 compute the term between brackets in (3.19) for both barges, which are

0.37 and 0.49 for Microbarge A and B, respectively. Therefore, it is likely that the bacteria
1Not all bacteria can be successfully identified by the digital image processing algorithm. Moreover, the

identified orientation is that of the major axis of the bacteria, instead of the bacteria themselves.
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are more coherently oriented on Microbarge B than on Microbarge A.

3.6 Discussion

In this chapter, we developed a model of a microstructure blotted with bacteria moving

in a micro channel propelled by the flagella of the bacteria. The main contribution is the

reduction of the complex dynamics of the system of bacteria and the microstructure to a

system of three ordinary differential equations with only three parameters. The predictions

from the reduced-order model are consistent with the experimental data for the motion of

the microstructure. In the next chapter, we will extend the model to incorporate the effect

of dc electric fields on the motion of MBRs.
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Chapter 4

Electrokinetic and optical control of

bacterial microrobots

The work in this chapter was first presented in [67,68] and was done in collaboration with

Edward Steager, Dalhyung Kim and Min Jun Kim

4.1 Introduction

In the previous chapter, we constructed a stochastic mathematical model for the self ac-

tuation, based on the assumption that the behavior of each bacterium is random and inde-

pendent of that of its neighbors. In addition to developing the stochastic model, we also

performed parameter identification for the model, based on experimental data. We then

demonstrated that the model with the estimated parameters is able to predict the behavior

of the system very well. One of the key findings is that although the system is inherently

distributed, in the sense that there are a large number of independent actuators, we can

construct an accurate model with only a few parameters representing the distribution of the

bacteria.
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Figure 4.1: Photograph of the PDMS galvanotaxis chamber. All experimental observations
were performed in the central portion of the control chamber.

In this chapter, we demonstrate the control of MBRs using DC electric fields, and de-

velop an experimentally validated mathematical model for the MBRs. This model allows

us to steer the MBR to any position and orientation in a planar micro channel using visual

feedback from an inverted microscope. We demonstrate that our approach allows us to

steer MBRs along arbitrary trajectories in an autonomous fashion [67]. The control algo-

rithm steers the robots along their desired paths even if the properties of the robots (their

charge, size and shape) and the properties of the fluid (pH, the zeta potential, temperature)

are not known precisely. We also characterize the overall system performance by applying

sinusoidal control voltages to the system with varying frequencies. The method is wireless

and non-invasive, and the entire system can be miniaturized further.

4.2 Fabrication of experimental chamber

All experiments were conducted in a polydimethylsiloxane (PDMS) chamber on a 50×50

mm2 glass plate (see Figure 4.1). Direct current (d.c.) electric fields (EFs) were applied

to the MBRs via agar salt bridges, Steinberg’s solution (60 mM NaCl, 0.7 mM KCl, 0.8
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mM MgSO4·7H2O, 0.3 mM CaNO3·4H2O) and graphite electrodes. It has been shown

that salt bridges avoid contamination of possible electrode byproducts by successfully ap-

plying electric fields to a variety of cell types using similar devices [69]. They also keep

bubbles formed around electrodes outside the control chamber. The temperature, calcium

level and pH are normally very stable inside chamber within the 1-hour duration of exper-

iments [70]. This design was optimized to apply EFs efficiently in multiple directions. In

order to minimize the possible adverse effects of electrode byproducts, we used graphite

electrodes. The electrodes were fixed in parallel horizontal positions inside the compart-

ments filled with Steinberg’s solution to generate uniform EFs all over the control chamber.

The control chamber was filled with motility buffer (0.01 M potassium phosphate, 0.067 M

sodium chloride, 10−4 M ethylenediaminetetraacetic acid (EDTA), and 0.002% Tween-20,

pH 7.0). Observations were performed in the central portion of the control chamber where

dielectrophoretic effects due to field nonlinearities are minimized.

4.3 Data acquisition and analysis

Imaging was performed on a Leica DMIRB inverted microscope with automated stage us-

ing both phase contrast. Videos were captured using a high-speed camera (MotionPro X3,

Redlake) with a frame rate of 30 frames/s. A simple tracking algorithm was designed to

feedback the position and orientation of the MBR in the motility buffer. The control al-

gorithm and the serial port connection protocol to interface with the programmable power

supply for the electrodes were written in MATLAB 7.0. Voltages were applied to the con-

trol chamber through a National Instruments PCI-6713 analog output board. Two analog

output channels were routed to two single channel Ametek XTR 100-8.5 amplifiers using

analog programming mode in conjunction with isolated connectors. Two additional analog

output channels were used to control double pole, double throw (DPDT) switches, which
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functioned to reverse polarity of the system.

4.4 Electrophysiology of bacteria

Because bacteria are charged, an electric field exerts an electrostatic Coulomb force on

the particles. Thus the individual bacteria and therefore the MBR exhibit electrophoresis.

A series of experiments were performed to characterize the effect of electric fields on the

orientation of freely swimming S. marcescens. This study was performed to determine

which electrokinetic phenomena cause directed movement of the MBRs. Upon application

of electric fields in the range of 1-10 V/cm bacteria showed a uniform tendency to move

toward the positive electrode; however, it was difficult to observe if the cells were orienting

along electric field lines, as would be expected in the case of bacterial galvanotaxis. Due

to the fact that preferential orientation may take several seconds to develop, 20 s were

allowed to pass after electric fields were applied, but before images were taken. Between

image acquisitions at discrete voltages, several seconds were allowed to pass to account

for potential charging/discharging of the agar electrodes. Images were processed using

MATLAB, and orientation was evaluated on a basis of 180 since the polarity of the flagellar

bundle cannot be resolved using phase contrast microscopy.

Experiments with individual bacteria showed that the movement is electrophoresis caused

by the inherent charge of the bacterial cells rather than galvanotaxis, a directed response

arising from the thrust of the bacterial flagella. Galvanotaxis in bacteria is caused by a dif-

ference in electrophoretic mobility between the cell body and flagellum (29). Unlike previ-

ous observations made on swimming cells of Escherichia coli and Salmonella typhimurium,

swarmer cells of S. marcescens did not align themselves along the applied electric fields

(see Figure 4.2). The results of experiments designed to study the fundamental electrokinet-

ics of individual bacteria indicated that there was not a significant effect of electric fields on
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Figure 4.2: Histograms of the cell body orientation of S. marcescens at electrics fields of
4.3 and 8.9 V/cm. Electric fields were coincident with zero degrees. The individual cells
do not exhibit galvanotaxis as might be expected, and distributions are relatively uniform
across the range of angles.

the orientation of S. marcescens for the experimental conditions of this research, with a uni-

form distribution of orientations across the range of angles and applied electric fields. This

would imply that there is not a significant difference in electrophoretic mobility between

the flagella and the cell body. Despite the uncorrelated orientations between cells, with

the increased strength of EFs cells were pulled towards the positive electrode involuntarily

while trying to swim in random directions. Thus, the bulk cell movement is electrophoretic

in nature due to negative surface charge. It should be emphasized that the cells in this study

were swarm cells taken directly from the agar plate to reflect the morphology of the cells

blotted on the MBRs.

4.5 Model for electrokinetic actuation

In order to develop a model for electrophoresis, two sets of experiments were performed.

First, the SU8 microstructures were tested in the experimental chamber without bacteria

attached using DC electric fields ranging from 1-10 V/cm. For the electric fields applied
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during these experiments, the structures demonstrated no movement that might be expected

due to electrokinetic effects. In the next set of experiments, electric fields ranging from 1-

10 V/cm were applied to the MBRs. They responded by immediately seeking the positive

electrode with a directed movement that was primarily translational, but also includes some

rotation because of self actuation. Upon switching the polarity of the field, the motion

immediately reversed direction. This investigation yielded a linear relationship between

the two parameters reflective of electrophoretic movement (Figure 4.3). Thus, the detailed

motion of the MBR could be accurately modeled by a sum of the movement due to the

self-coordinating, unstimulated movement and electrophoretic movement. Indeed, surface

patterning of bacteria imparts a charge that leads to a direct mechanism of translational

control of the MBR.

We now extend the model developed in the previous section to incorporate electroki-

netic actuation (See Figure 4.4). If each of the Nb bacteria in the MBR is subject to the

same electric field, we arrive at the stochastic kinematic model:

dr

dt
=

1

kT
{

Nb
∑

i=1

pini +Nb(εC |E|)u}, (4.1a)

dα

dt
=

1

kR
{

Nb
∑

i=1

pi · (bi,x sin θi − bi,y cos θi) +

(εC |E|)
Nb
∑

i=1

(bi,x sin(Ψ− α)− bi,y cos(Ψ− α))}. (4.1b)

where the strength of the electric field is denoted by |E| and u is the unit vector that repre-

sents the direction of the electrophoretic force exerted on each bacterium. The strength of

the electrophoretic force is given by εC |E| where εC is a constant related to the charge of

the cell body.

Experimental observations suggest that the angular velocity of the MBR is not modu-
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Figure 4.3: MBR speed is directly proportional to applied electric field which shows elec-
trophoresis is the dominant electrokinetic phenomenon. The component of speed due to
self actuation appears as an offset along the vertical axis.
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Figure 4.4: A schematic of an MBR. The angle α is formed by the main axis of the MBR
and the x axis. The vector r denotes the position of the MBR’s center of mass. The vector
bi denotes the position of the i-th bacterium w.r.t the MBR’s center of mass. The vector ni

is a unit vector that denotes the orientation of the i-th bacterium. The angle θi is formed by
the MBR’s main axis and the orientation of the i-th bacterium. The angle Ψ is the angle
between the direction of electrophoretic force u and the x axis.
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lated by the application of the electrical fields. In other words, the observed angular veloc-

ity with the application of electrical fields was indistinguishable from the angular velocity

under self actuation. We conclude that if the whole surface of the MBR is coated with a

monolayer of bacteria, the moments due to the applied electric field must be zero. In other

words,
Nb
∑

i=1

(bi,x sin(Ψ− α)− bi,y cos(Ψ− α)) = 0 (4.2)

This simplifies the model. The expected velocities can be derived from the stochastic

kinematic model:

Evx = β1p̄+ β4ux (4.3)

Evy = β2p̄+ β4uy (4.4)

Eω = β3p̄ (4.5)

where β4 = (1/kT )NbεC is experimentally determined via linear regression from experi-

mental data (Figure 4.3).

The comparison of the experimental observations with theoretical predictions is shown

for a representative experiment in Figure 4.5 and Figure 4.6 with a 40×45 µm2 rectangular

MBR with the parameters β1 = −6 × 1012 µm · s−1N−1, β2 = −5 × 1012 µm · s−1N−1,

β3 = −0.43 × 1012 rad · s−1N−1, and β4 = 0.56 × 104 µm2 · s−1V −1. In the first part of

the experiment, we recorded a video of the motion of the MBR in the absence of external

stimuli showing motility due to self actuation. We estimated the values of β1,2,3 using the

processed data as described in the previous section. Compared to the match we obtained

in the previous chapter for the larger rectangular MBR, there is more discrepancy between

experimental data and simulation results. As the number of random actuators decreases,

the motion of the MBR becomes more unpredictable. A small change in the orientation

of one of the bacterium would cause an observable change in the overall MBR motion
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Figure 4.5: The comparison between the experimental data (blue line) and the model pre-
diction (red line) for a rectangular MBR (40 µm× 45 µm) showing self actuation. (a) α in
rad, (b) x in µm, (c) y in µm
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Figure 4.6: The comparison between the experimental data (blue line) and the model pre-
diction (red line) for a rectangular MBR (40 µm × 45 µm). 10V/cm was applied to the
MBR in +y direction. (a) α in rad, (b) x in µm, (c) y in µm
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if the applied force by this bacterium is comparable to the net force acting on the robot.

This change could be due to loose attachment of the bacterium. We fabricated smaller

microstructures with sizes less than 10 µm and they showed even more erratic behavior.

During the second part of the experiment, 10 V · cm−1 was applied to the MBR in +y

direction. There was no significant variation in the angular velocity or the translational

velocity in x direction as expected. The observed difference could be initiated by galvan-

otaxis, a directed response arising from the thrust of the bacterial flagella. Galvanotaxis

in bacteria is caused by a difference in electrophoretic mobility between the cell body and

flagellum [71]. The MBR moved with a constant velocity of 7 µm · s−1 in +y direction.

The electrokinetic model with the fitted parameters can explain the data well, suggesting

that the overall structure of the model is suitable for this system.

One shortcoming of the model that may explain the slight deviation in terms of linear

velocities between predictions and experiments is our implicit assumption of symmetry

when calculating the drag force. Our drag coefficients kT and kR are independent of the

orientation of the MBR. We are currently developing a numerical analysis of the drag force

acting on a rectangular plate moving parallel to a surface in a low Reynolds number regime

and this may yield an even better match with the data. This analysis would also lead us to

estimate the force required to move the microstructures with certain speeds. An alternative

method for quantifying the drag coefficients is to apply a known force using an Atomic

Force Microscope (AFM) and then measure the corresponding speed of the microstructure.

A force sensor could also be used however the sensor needs to be extremely sensitive as

the total force applied is in the order of piconewtons.
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Figure 4.7: The velocity of 20×22 µm2 rectangular MBR as a response to a sinusoidal
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4.6 System Characterization

The entire MBR system incorporates several elements that have not been previously char-

acterized in great detail. These elements include the electrokinetic response of groups

of cells attached to microfabricated structures, the movement of microscale plates along

substrates in fluidic environments, and the electronic response of agar-based galvanotactic

control chambers at relatively high switching frequencies.

As such, a system characterization was performed to accomplish several objectives. Pri-

marily, the characterization was performed to understand the overall dynamic response, and

in turn, the degree of controllability of the MBR system. Additionally, the characterization
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results lend insight to future experimental design. In particular, knowledge of the dynamic

response is useful for determining video sampling rates and computational requirements.

The characterization is also necessary to test the feasibility of using electrokinetic actu-

ation for applications like microassembly, and to lay groundwork for the optimization of

controller design.

To characterize the electrokinetic response of the system, a series of trials were run with

a sinusoidal control voltage with amplitude of 30 V. The frequency was varied from 0.05

to 5 Hz in one direction. The MBRs were tracked with subpixel resolution to determine

velocity, which is directly related to voltage through the relation for electrophoresis given

in (18). As such, the response of the system was determined by using the amplitude of the

sinusoidal velocity. Since the self-actuation component of MBR motion causes deviation

from the purely electrokinetic component, a least squares minimization was used to fit the

sine curves at each frequency (Figure 4.7). The curve fit was applied only after steady state

was achieved. The least squares fit routine additionally smooths the noise that is introduced

in the tracking algorithm. The tracking noise arises due to fluctuations in light intensity

and movements of individual bacteria along the edges of MBRs. The MBR follows the

input signal quite well up to a cutoff frequency near 3 Hz, where the magnitude drops off

considerably (Figure 4.8). At 3 Hz, the phase lag increases to 2.73 radians.

Due to the dominance of viscous forces at such small length scales, inertial effects

would typically be expected to be negligible at the tested frequencies. Thus, other sources

for the loss of phase coherence and drop in magnitude should be considered. The elec-

trochemical circuitry of the experimental chamber includes buffer solutions and agar elec-

trodes, and charging effects may play a role in the observed changes in response around 3

Hz.

We do not measure the electrophoretic mobility of the bacteria or the individual robots.

Yet, the estimated value of β4 is good enough to predict the average effect of electric fields
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Figure 4.8: Bode plot of the system. The MBR follows the input signal quite well up to a
cutoff frequency near 3 Hz, where the magnitude drops off considerably
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on the motion of MBRs. By making an on-line measurement of β4 for each MBR during

the steering experiments, a better controller for the electrokinetic actuation can be obtained.

The mathematical model can also be incorporated into the control algorithm as a predictive

tool to improve the overall accuracy. The current experimental setup does not allow us to

control the distribution of the attached bacteria. However, in our future work, we plan to

explore different techniques to control the position and orientation of the cells before, dur-

ing and after attachment. It has been shown that motility of microrobots could be enhanced

by selectively patterning cells on specific sites [64].

The control capabilities of the MBRs can be extended by patterning cells on different

parts of microstructures. In order to enrich our understanding of electrokinetic and viscous

forces acting on our robots, we patterned bacteria on specific parts of the microstructures.

By this way, we can further test the accuracy of the predictions of our model. Besides,

due to nonuniform distribution of charges, the angular velocity of the MBR will become

controllable using electric fields. Here, we present a method of creating motile bacterial

carpets of S. marcescens on predetermined regions of SU8 microstructures using PDMS

sieves and flow deposition. We modified a technique originally used for patterning active

proteins on glass substrates [72].

The general concept of patterning S. marcescens is illustrated in Figure 4.9. A suspen-

sion of bacteria that are collected from the swarm plate is introduced inside microchannels

by degassing in a vacuum chamber. PDMS adheres reversibly to SU8 microstructures and

the regions covered are protected from cell attachment. The holes were filled with the so-

lution after 2 min. and the bacteria adhere to uncovered parts of microstructures by natural

accretion.

In a previous study [73], the authors reported the density of bacterial carpet during a

carpet-deposition process on the walls of a PDMS microfluidic channel. According to their

results, the flow-deposited carpet asymptotes very slowly towards 100% coverage and af-
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Figure 4.9: Sequence of cell patterning using a PDMS sieve. (a) PDMS sieve is attached
to the SU8 microstructures (b) Cell suspension is poured and the solution is degassed in a
vacuum chamber. (c)10X phase contrast image of PDMS sieve in contact with microstruc-
tures (d) 63X phase contrast image of microchannels filled with bacteria suspension (e)-(g)
Bacteria were patterned on different parts of microstructures.
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ter approximately 20 min. more than 80% of the surface would be covered by bacteria.

After 20 min. we washed out excess bacteria solution with motility buffer and the sieve

was peeled off subsequently. Using this method, we successfully patterned bacteria on

different parts of microstructures, while the selection of patterned regions can be adjusted

by changing the initial design and placement of the sieve (Figure 4.9(e-g)). MBRs with

different bacteria patterns were transferred to the electrotaxis chamber for further exper-

imentation. Their movement due to self-coordination of bacteria was observed. We are

currently analyzing their movement under various strengths of electric fields.

4.7 Optical Control

Exposure to UV light has been established as a mechanism which affects the motility of

bacteria [74]. Since MBRs generally exhibit rotational motion in the absence of external

stimuli, use of UV light exposure is an effective means of adjusting angular velocity or

completely stopping rotational motion [32]. Several trials were performed by recording

the motion of the MBRs upon exposure to UV light until motion ceased. The optical

path included a 100 W Hg light source and a 63X PL Fluorotar objective. To capture

the unstimulated motion, video was recorded for 10 s before exposing the MBRs to UV

light. The orientation of the MBRs was tracked and evaluated in MATLAB using a feature-

based tracking algorithm [75]. It was discovered that the general behavior was quite similar

between trials, and three distinct regions could summarize motion. Between 0-10 s angular

velocity was relatively constant as expected since no stimulus had been applied. After

exposing UV light, the rotational motion nearly ceased for 1-2 s before resuming at a

somewhat lower angular velocity. It is hypothesized that this temporary cessation may be

related to the brief induction of tumbling in the bacteria as the cells adjust to the stimulus

[74]. Between 5-45 s after UV exposure, the biomolecular motors driving the flagella
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Figure 4.10: Photoexposure characterization. (a) Shown is a representative selection of
results from several trials of exposure of MBRs to UV light, as well as a trend lines before
and after UV exposure. White regions represent UV exposure. The results of the angular
orientation (position) were normalized and averaged to reveal characteristic trends. The
final, motionless orientation of the MBRs were normalized as zero radians. Angular rota-
tion is constant before exposure, varies near zero during the few seconds immediately after
exposure, and decreases exponentially afterward. (b) When exposing repeatedly, angular
speed may be adjusted lower, as reflected by slope of the curve. Angular velocity remains
constant when there is no UV exposure, even after several repetitions.

58



gradually de-energized and the magnitude of the angular velocity of the MBRs decreased

exponentially (Figure 4.10). This characterization was used to adjust angular orientation of

MBRs for experiments.

Using this initial characterization, MBRs were repeatedly exposed to UV wavelengths

to test on/off repeatability (Figure 4.10(b)). Results consistently showed that the cessation

of rotation is a phenomenon that occurs during the initial few seconds of the first exposure.

Subsequent 5 s exposures after 15 s intervals show a decrease in angular velocity without

complete cessation [68].

To determine if photoexposure affects the electrokinetic response of MBRs, we re-

peated our characterization procedure by applying electric fields (ranging from 1-10 V/cm)

to MBRs after deactivating them using UV light. The MBRs demonstrated the same elec-

trophoretic movement as before the exposure, and as expected, the movement due to self-

coordination of the bacterial carpet was completely missing. In terms of modeling, the

effect of the application of UV light can be simulated by removing the self-actuation por-

tion without changing the electrophoretic forces.

4.8 Discussion

Most of the movement arises from the applied electric field so the motivation for having

living cells may seem unclear. As an alternative approach, we coated the surface of SU8

microstructures with a silane that is positively charged due to the linked carboxly groups.

However, the microstructures stopped moving as if they lost their charges soon after we

started applying electric fields. This could be due to the changes caused by ionic exchange

inside the fluidic chamber, which should be investigated further. On the other hand, the

bacteria cells preserve their charge throughout the experiment at different electric field

strengths, an essential property needed to model and control their motion. Another advan-

59



tage is that bacteria can be used as on-board biosensors. This option will be explored in the

next chapter. Here we showed that our techniques can be used to fabricate, calibrate and

transport MBRs in microfluidic channels in a controllable fashion. In the following chap-

ter, we demonstrate micromanipulation and microassembly tasks using our MBRs. We also

address the integration of biosensing and bio-actuation onto MBRs.

One shortcoming of the model that may explain the slight deviation in terms of linear

velocities between predictions and experiments is our implicit assumption of symmetry

when calculating the drag force. Our drag coefficients kT and kR are independent of the

orientation of theMBR. We are currently developing a detailed analytical model of the drag

force acting on a square plate moving parallel to a surface in a low Reynolds number regime

and this may yield an even better match with the data. We also do not rigorously control

pH, temperature, and impurities in our control chamber and this makes it impossible to

measure electrophoretic mobilities precisely. Yet, the estimated value of β4 is good enough

to predict the average effect of electric fields on the motion of MBRs. By making an on-line

measurement of β4 for each MBR during the steering experiments, a more accurate model

for the electrokinetic actuation could be obtained. The model can be incorporated into the

control algorithm as a predictive tool to improve the overall accuracy.
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Chapter 5

Microscale Manipulation, Transport and

Biosensing using MBRs

The work in this chapter was first presented in [67, 68, 76] and was done in collaboration

with Edward Steager, Agung Julius, Alex van Oudenaarden, Mark Goulian, Albert Sirya-

porn, Dalhyung Kim and Min Jun Kim

In the previous chapters, several important experimental techniques for building Mi-

croBioRobots (MBRs) are proposed and a theoretical framework for modeling and control

of MBRs is presented. In particular, we proposed a method of controlling MBRs using

self actuation and DC electric fields, and developed experimentally validated mathematical

model for MBRs.

Here we demonstrate experimentally that vision-based feedback control allows a four-

electrode experimental device to steer MBRs along arbitrary paths with micrometer preci-

sion. At each time instant, the system identifies the current location of the robot, a control

algorithm determines the power supply voltages that will move the charged robot from its

current location toward its next desired position, and the necessary electric field is then

created. Previously described control techniques are applied to orient and steer bacterial
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Figure 5.1: Block diagram for vision-based computer control of MBRs. The vision system
informs the control algorithm of the current position of the robot. The control algorithm
calculates the distance between the current and the desired position and finds the power
supply voltages that will create the electric field required to steer the robot towards its next
destination.

microbiorobots as well as to transport target loads. Specifically, ultraviolet light is used

to control the on/off motion and direct current electric fields are used to control the two-

dimensional movement of MBRs.

5.1 Control of MBRs

We employ a vision-based electrokinetic control strategy to steer robots by adjusting the

applied voltage at each time step according to where they are and where they should be.

5.1.1 Control Law and Feedback

The basic feedback control steering concept is described in Figure 5.1. Even a simple

control algorithm is sufficient to steer our MBRs. The desired goal can be accomplished

using one of two approaches.

If the desired trajectory rdes(t) is given, then the applied electric field can be adjusted

with a simple proportional control law:
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U = K(rdes − r) + ṙdes (5.1)

where K is a suitable positive constant and ṙdes is the feed-forward term. In the presence

of self actuation, the error e = rdes − r cannot be driven to zero. However, the error can be

predicted accurately using the mathematical model in (7-11).

We employed an alternative solution in which we fixed the speed of the MBR and only

controlled the direction of motion. This time, instead of having the desired trajectory, we

define a series of target points. The control law is given by:

U =
K(rdes − r)

‖rdes − r‖
(5.2)

5.1.2 Results

As a demonstration, a star-shaped trajectory was defined by choosing five destination points

corresponding to the corners of the star (Figure 5.2). These target locations were fed to the

feedback control algorithm that uses the current location of the MBR and the position of the

next destination to control the applied voltage. The real-time image processing algorithm

processes the captured frames and the control algorithm updates the applied voltages with

a frequency of 8 Hz.

The star-shaped trajectory experiment demonstrates a number of capabilities of the

MBR system. Firstly, the experiment demonstrates the ability to locate the centroid of the

MBR to single pixel resolution (0.5 µm). Additionally, the experiment demonstrates the

ability to quickly switch directions and to follow arbitrary slopes with only four electrodes

and two amplifiers.

The overall trajectory followed by a a 20×22 µm rectangular MBR is given in Fig-

ure 5.2. MBR successfully passed through all the predetermined destination points. The
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Figure 5.2: Steering of a 20×22 µm rectangular MBR along a star-shaped path. The MBR
passes through destinations 1-4 before stopping at its initial position.The scale bar repre-
sents 50µm
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robot immediately responded to the changes in the applied voltage thanks to the absence of

inertia at low Reynolds number and its velocity followed a similar trend with the applied

voltage as expected (Figure 5.3).

Before running the control algorithm, β1,2,3 were estimated as described in Section IV.

The values of the parameters were found as β1 = - 0.2 µm/s/pN , β2 = 0.65 µm/s/pN ,

β3 = -0.28 rad/s/pN , and β4 = 0.56 µm/s/V/cm. We imported the voltage input ap-

plied during the experiment (see Figure 5.3) to the mathematical model and simulated the

response of the MBR described by the estimated parameters. The comparison of the exper-

imental observations with theoretical predictions is shown in Figure 5.4. Even though the

control input changes continuously, the predicted trajectory closely resembles the observed

one with an average deviation less than 20 µm.

By increasing the number of destinations points, we could be able to decrease the track-

ing error. A 20×22 µm rectangular MBR successfully followed first a circular and then a

diamond shaped trajectory (Figure 5.5).

5.2 Microassembly and Micromanipulation

As a demonstration of the ability to steer MBRs, microscale C-shaped parts that we call

goals were fabricated using standard lithography and SU8 photoresist. The goals were

released in the control chamber along with square-shaped MBRs measuring 40 µm on each

side. By varying the direction of the electric field, the MBRs were easily steered through

the entrance of the goals even while continually rotating (Figure 5.6).

It is important to note that the thickness of the C-shaped goal is an important parameter

in these experiments. If the structure is much thicker than the MBR, electric field lines will

diverge around the goal. The consequence of this divergence is that MBRs in the immediate

vicinity of the goal will lose controllability.
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Figure 5.3: The voltage applied to the system and the corresponding velocity of theMBR in
x (top) and y (bottom) direction during the experiment. The robot responds to the changes
in voltage immediately as expected.
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Figure 5.4: The comparison between the experimental data (blue line) and the model pre-
diction (red line) for the star experiment. (a) x in µm, (b) y in µm
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Figure 5.5: Steering of a 20×22 µm rectangular MBR along a circular and a diamond
shaped path. The MBR passes through destinations and returns to its original position. The
scale bar represents 50µm.

Figure 5.6: An MBR is directed through the entrance of a C-shaped microfabricated goal
using tele-operation. Scale bar represents time (2 min) as well as length (100 µm).
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Coupling the light and electric field mechanisms together enables control over the an-

gular orientation as well as two-dimensional positioning of the MBR. To demonstrate the

combination of control techniques (UV light and EFs), MBRs were used to engage and

transport a 10µm cube composed of SU8 epoxy, referred to here as the target. Based on the

water-soluble sacrificial release method, several targets were released into the experimental

cell. MBR transporters were also released and actively moving in the experimental cell due

to self actuation.

An MBR/target pair was selected and a path was planned for the translational and ro-

tational motion. First, the transporter was moved to the vicinity of the target by adjusting

the electric field along the two major axes (Figure 5.7). The field employed was roughly

10 V/cm. When the transporter was within 100 µm of the target cube, a dose of UV light

was applied to stop the rotational motion of the structure. When the target was engaged,

changes in orientation were caused not by propulsion from the flagellar motors, but from

reaction forces between the transporter and the target.

Targets were moved several hundred microns by further applying electric fields. Despite

the fact that the flagellar motors of the bacteria were disabled, the electric field still moves

the transporter and in turn, the target.

Another task was assigned of transporting a cube-shaped target load measuring 10 µm

on each side using a U-shaped MBR referred to as a transporter, which was positioned and

oriented using a combination of bacterial self actuation, electrokinetics, and phototaxis. A

self-rotating transporter was first positioned near the object by varying the direction of the

electric field. Next, the transporter was stopped at an appropriate orientation to engage

the target using localized UV light exposure. Once the rotational motion was stopped, the

transporter was positioned to engage and move the load. The transporter was disengaged

and reengaged by switching the polarity of the electric field (Figure 5.8).

These results suggest several potential applications for biological robotic systems. As
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Figure 5.7: Micromanipulation experiment (a) Initial position of U-shaped MBR trans-
porter and target. (b) Transporter is moved to the right and down while rotation continues.
(c) Rotation is stopped in proper orientation upon exposure to UV light. (d) Transporter
engages the target object.
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Figure 5.8: At left is shown a summary of the complete path of an MBR transporter moving
a target load described in detail in parts A-D. Total time is 2 min, and scale bar is 25 µm.
(A) The transporter initially rotates clockwise due to the self-coordination of the bacterial
carpet. Electric fields are applied to move the transporter to the left, then up. (B) With
the application of UV light, the transporter stops rotating in 6 s. As rotation is stopped,
electric fields are applied to position the transporter close to the target. (C) The target is
engaged and transported to the right. (D) The target is disengaged/reengaged by switching
field polarity.
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demonstrated here, transport of microscale or even nanoscale objects is one application

area. The dimensions of objects transported in these experiments are similar in scale to

many types of living cells. These systems could also be employed for assembly of small

microparts.

5.3 Biosensing

Beyond purely mechanical tasks, MBRs may also be employed as mobile biosensors. Au-

tonomous smart microdevices with sensing and information processing capabilities that act

as swarms of intelligent sensors have great potential use in drug delivery and single cell

analysis. Recent developments in microfabrication techniques and surface chemistry have

provided various ways to interface biological and synthetic components and develop a wide

variety of biologically integrated engineering systems. The ability to monitor the behavior

of these systems in response to biologically relevant chemicals is an important requirement

for further development. To take advantage of integrated live cells, they can be genetically

modified and employed as sensing elements.

We employed two different approaches for biosensing: motility-based sensing and

fluorescent-based sensing. The first method is based on harnessing bacterial power and

monitoring their collectivemotion, and in the second method we use genetically engineered

bacteria. Bacteria are easy to culture, relatively insensitive to the details of their environ-

ment and can be genetically engineered in order to produce specific marker proteins upon

recognition of the target chemicals.

5.3.1 Motility-based sensing

In this approach, we project the 3-dimensional random motility of bacteria into a pre-

dictable planar motion of microdevices. We monitor the changes in the motion of the
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Figure 5.9: Fabrication process of the microdevices for motility-based and fluorescence-
based sensing.

73



devices to detect the presence of target chemicals. In the previous chapters, we blotted

plate-like SU8 microstructures with swarmer cells of Serratia marcescens and studied their

motion. We demonstrated the control of their motion using DC electric fields, and devel-

oped a computer control algorithm to steer the microstructures to any position in a planar

micro channel using visual feedback from an inverted microscope. In this chapter, we

build on these previously developed techniques and demonstrate how changes in motility

of bacteria-powered microstructures in the presence of analytes can be used for biosensing

using copper ions as an example. It has been shown that copper ions paralyze S. marcescens

temporarily and in a reversible fashion [64]. Heavy metal ions directly bond to the rotor of

the flagellar motor and impair its motion instantaneously. Adding chelating agents elimi-

nates this effect as they form chemical bonds with metal ions.

The synthetic component of the device is fabricated out of SU8, which is biocompatible,

patternable in a wide range of shapes and thicknesses, and is only slightly denser than

the working fluid. The microfabrication and development procedure is compatible with a

technique of release using a water-soluble sacrificial dextran layer. Traditional techniques

for release of structures using a sacrificial layer have required toxic chemicals. Using

dextran for the release layer, the motility medium in which the studies are performed acted

as an agent of release. The fabrication sequence is shown in Figure 5.9.

The bacteria Serratia marcescens were cultured using a swarm plate technique (Luria-

Bertani medium (Sigma) containing 0.6% Difco Bacto-agar (Sigma) and 5 g/l glucose).

Cells were attached by blotting microstructures directly along the active swarm edge, gen-

erally covering more than 90% of the surface. The swarmer cells of S. marcescens stick to

the surface of the microstructures naturally. Thanks to the water-soluble sacrificial dextran

layer, hundreds of sensors were released into the observation chamber filled with motility

buffer (0.067 M sodium chloride, 10−4 M ethylenediaminetetraacetic acid (EDTA), and

0.002% Tween-20, pH 7.0) without causing any structural damage. The sensors were free
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to move inside the fluid, and their movement due to bacterial actuation was immediately

observed.

We ran several experiments where we added different concentrations of CuSO4 into the

solution and the lowest copper ion concentration that our devices can detect was found as

10 µM. The steady-state angular velocity of the devices decreases as the concentration of

copper ions is increased from 10 µM to 100 µM. For concentration values higher than 100

µM, all the devices stop rotating. The sensors stopped moving immediately as expected9

and they started moving again with the addition of the chelating agent. For the given

concentration levels, exposure to copper does not damage the bacteria and the process can

be repeated multiple times. As the sensors stay on the same focal plane throughout the

experiment, their motion can be recorded at all times.

Next, to demonstrate the ability to sense chemicals while scanning the whole observa-

tion chamber with the devices, we designed a simple setup where we apply electric fields

in one dimension using a copper and a platinum electrode (Fig. 2a). We previously showed

that12 the expected velocity of the sensor is given by

Evx = β1p̄+ β4Ux (5.3)

Evy = β2p̄+ β4Uy (5.4)

Eω = β3p̄ (5.5)

where E(·) denotes expectation, vx and vy are the components of the translational ve-

locities, ω is the angular velocity, p̄ is the expected value of the force applied by each

bacterium and U is the electric field with components Ux and Uy. The parameters β1,2,3

summarize the distribution of the bacteria on the sensor, and β4 is a parameter related to

the charge of the bacteria. Because the whole surface of the device is coated with a mono-

layer of bacteria that is approximately uniformly random, the moments due to the applied
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electric field is close to zero (Figure 5.10(a)). The equations (1)-(3) summarize the funda-

mental physics of the system and show that the motion of the devices is predictable and the

angular velocity of the devices is fully dependent on bacterial actuation. As a result, any

significant change in the angular velocity will be understood as a change in the motility of

attached bacteria, which points to the existence of the inducer.

Positively charged copper ions released from the anode migrated towards the negative

electrode while negatively charged sensors were moving in the opposite direction. Anode

can be taken as an infinite source of copper for our experiments so charged copper ions are

transported by both diffusion and electrophoresis. When sensors encountered the copper

ions, their motion due to bacterial actuation stopped immediately as the attached bacteria

were paralyzed (Figure 5.10(b)). The angular velocity became almost zero accordingly, as

the main source of rotational motion of the sensors is flagellar propulsion (Figure 5.10(c)).

The translational motion of the devices was slightly affected from copper. The contribution

of the bacterial actuation to the translational velocity of the devices is small compared to

their electrokinetic mobility. Starting from the sensor closest to the positive electrode, all

the sensors inside the observation chamber stopped rotating one by one. We verified once

again that the observed phenomenon was due to the released copper ions, by adding 0.01M

potassium phosphate into the solution. Potassium phosphate precipitates with copper and

forms a visible compound. Heavy metal ions directly bond to the flagellar motor without

initiating biochemical signals, but the method applied here can be extended to scenarios

where chemical agents interact with chemoreceptors. Sensing capabilities of attached bac-

teria can also be extended by genetically engineering motility as a phenotypic response to

other external stimuli.
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Figure 5.10: Motility-based sensing. (a) Schematic of the setup used for the copper sensing
experiment. (b) Sensing of copper ions is observed as a loss of rotation. The translational
movement due to applied electric field persists. (c) Angular position and velocity vs time.
Fluctuations in angular velocity are caused by the torque applied by the electric field. Scale
bar represents time (100 sec) as well as length (50 µm).
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5.3.2 Fluorescence-based sensing

Geneticallt engineered strains are kindly supported by Alex van Oudenaarden and Mark

Goulian

In this approach, we use a fluorescent reporter system to monitor the state of signaling

networks in single cells to infer the presence of analytes like copper. The use of laminar

flow of liquids in microfluidic channels to perform patterned cell deposition was described

before [77]. We combined this method with our procedure of fabricating microstructures

and a surface treatment to pattern genetically engineered Escherichia coli cells on SU8

microstructures. The planar geometry and transparentness of the SU8microstructures make

them suitable for fluorescence imaging and bioluminescence measurements.

We chose E. coli for our sensor as numerous studies have described genetically modified

E. coli strains in which an input signal elicits an output response linked to a change in gene

expression. Previous work showed that copper induces transcription of cpxP, which is under

the control of CpxA/CpxR system18, 19. CpxA/CpxR is a typical two-component signal

transduction system that responds to envelope stress. CpxA, the inner-membrane protein,

phosphorylates its conserved histidine residue in response to signals and then transphos-

phorylates the conserved asparate residue in CpxR. Activated CpxR, the phosphorylated

form (pCpxR), activates transcription of a set of genes including cpxP. The gene encoding

for the fluorescent protein GFP under the control of the cpxP promoter was integrated in

the chromosome at the α phage attachment site to produce the strain AFS267.120.

Unlike S. marcescens, a special surface treatment is needed order to attach E. coli cells

to SU8 microstructures. Microstructures were coated with poly-L-lysine by immersion of

the glass substrate into a freshly prepared solution containing 5.6 ml DI water, 0.7ml poly-

L-lysine (Sigma P-8920, 0.1% solution) and 0.7ml PBS for 1 hour. Microfluidic devices

were manufactured in polydimethylsiloxane (PDMS) by using soft lithographic techniques.

The microchannel was 5 mm long, 1 mm wide, and 50 µm deep. The fabricated PDMS
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mold was brought into conformal contact with a 43 ×50 mm glass slide on which the

microstructures were patterned and the assembly was heated on top of a hot plate at 80 ◦C

for 2 hours to form a reversible bond. Microstructures were fabricated in such a way that

they could be trapped inside the microfluidic channel (Figure 5.11(a)). E. coli cells were

grown at 37 ◦C with aeration in LB broth. Bacterial cultures were centrifuged and cells

were resuspended in LB medium at a final concentration around 1010 cells per mL before

they were injected into microfluidic channels.

The channel was filled with a suspension of cells by a passive pumping method [78].

Briefly, a large drop of fluid is placed over the outlet or the reservoir port of the microchan-

nel. A much smaller drop of cell suspension is placed on the inlet or the pumping port.

Due to the difference in pressure, the solution flows towards the outlet and fills the channel.

In this method, there is no need for expensive or complicated external equipments such as

mechanical or electroosmotic pumps. Cells adsorbed nonspecifically to the regions of the

surface over which the solutions containing them flowed. Cells that did not adhere strongly

were washed away with phosphate buffered saline (PBS). PDMS mold was peeled off and

microdevices were transferred to an observation chamber.

To get a measure of background fluorescence for our assembly, fluorescent images of

devices were acquired. We could not detect a significant level of induction in the absence

of copper compared to the copper-induced state. It has been shown that the transcription

of Cpx-regulated genes in E.coli reaches its maximum level under CuSO4 induction at a

concentration of 0.5 mM. We added 0.5mM CuSO4 to our observation chamber and waited

for 30 min to give enough time for the translation of GFP. Finally, fluorescent microscopy

was used to visualize induced E.coli cells (Figure 5.11(b)).
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Figure 5.11: Fluorescence-based sensing. (a) Schematic description of the setup. Mi-
crostructures were patterned in the center of the glass slide so that they could be trapped
inside the PDMSmicrochannel. (b) Fluorescence image visualizing GFP proteins produced
by induced E.coli cells. The scale bar is 100 µm.

5.3.3 Stochastic Modeling of Lactose Sensing with Bacteria

In this section, we describe a novel approach to use ”on-board” sensing to steer the MBRs

to chemically or biologically relevant goals. In order to do this, we employ two different

sets of bacterial cells. The first set of bacteria are S. marcescens that control the motion of

the MBR as before. The second set of bacteria are genetically engineered E. coli that act

as biosensors. In other words, we combined motility-based sensing and fluorescent-based

sensing by attaching both S. marcescens and E. coli cells on the same microstructure [76].

Lactose metabolism is controlled by the lac operon, which consists of the lacZ, lacY,

and lacA genes encoding b-galactosidase, lactose permease (lacY), and acetyltransferase,

respectively (Figure 5.12). Acetyltransferase is involved in sugar metabolism. Permease

facilitates the influx of lactose and nonmetabolizable lactose analog TMG from the exterior

which results in positive feedback on the permease expression level. The bistability arises

from this positive feedback. The lac genes are fully expressed for every cell in a population

under high extracellular concentrations of TMG while at moderate inducer concentrations,
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Figure 5.12: Diagram of the lactose utilization network. The fluorescent reporter GFP in-
tegrated in the genome is expressed in parallel with LacY under control of the lac promoter
and reports the induction level of the cell [1].

the lac genes are highly expressed in only a fraction of a population (Figure 5.13). The

population heterogeneity was interpreted by Novick andWeiner as a result of the bistability

of the gene expression mechanism of individual cells combined with stochastic fluctuations

inherent to biomolecular processes involving few molecules [79]. A recent study showed

that a stochastic single-molecule event triggers this phenotype switching [80].

Oudenaarden and his colleagues incorporated a single copy of the green fluorescent

protein gene (gfp) under the control of the lac promoter into the chromosome of E. coli

(Figure refch5:lac). The details of the construction of this strain is given in [81]. In this

study, we employed the same strain as biosensors carried by our MBRs and show that GFP

expression can be used as a readout of bacterial activity.

In our previous work, we developed a hybrid stochastic model for the system [57]. The

model was based on the idea that the messenger RNA (M) and the β-galactosidase (B)

are expressed as molecule counts that evolve following some Poisson processes, while the

other substances, internal TMG (Tt) and permease (P), are expressed as chemical concen-

trations that evolve following deterministic ODE. The reason behind this idea is that a fully

stochastic model is computationally expensive, while a hybrid model already demonstrates

the stochastic noise that is lacking in the deterministic model.

81



Figure 5.13: Overlayed green fluorescence and inverted phase-contrast images of cells that
are initially uninduced for lac expression, then grown for 20 h in a solution with (a) no
TMG (b) 10 µM TMG (c) 100 µM TMG (d) Steady-state solutions of the system. The
induced state is shown as the upper dark line whereas the uninduced state is shown as the
lower dark line. The intermediate unstable steady state is shown as a dashed line.

Here, we describe our fabrication technique and the culturing method that allows us to

create monolayers with two different type of bacterial cells on our MBRs.

Bacterial strains, growth conditions and media

The Green Fluorescent Protein (GFP) gene under the control of the wild-type lac promoter

was inserted into the chromosome of E. coli by van Oudenaarden and co-workers to pro-

duce the strain we used in our experiments. The details of the transformation is explained

in [81]. E.coli cells were grown at 37◦C in M9 minimal medium with succinate as the

main carbon source. To obtain the fluorescence images of bacteria (Figure 5.13 a-c), cells

were grown overnight in the absence of TMG. Afterwards, cells were transferred from this

initial culture into media containing specified amounts of TMG (0 µM, 10 µM and 100
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µM). The microscope slides with agarose pads were prepared using the protocol described

in [82]. These pads press the cells against the surface of a cover glass and force the cells

onto a single plane. Immobilization ensures that the cells do not move between subsequent

measurements of the same group of cells.

The bacteria Serratia marcescens are cultured using a swarm plate technique as de-

scribed in [22]. Cells were transferred into microfluidic channels by pipetting 500 µl of

motility buffer (0.01 M potassium phosphate, 0.067 M sodium chloride, 10-4 M ethylene-

diaminetetraacetic acid, and 0.002% Tween-20, pH 7.0) onto the leading edge of the swarm

plate and pipetting back. For the experiments in which electric fields were applied to

MBRs, bacteria were attached by blotting microstructures directly along the active swarm

edge.

Cell Patterning

The use of laminar flow of liquids in capillary systems to perform patterned cell deposition

was described before [77]. We combined their method with our procedure of fabricating

microstructures and a surface treatment described elsewhere [83] to pattern two different

types of bacteria on SU8 microstructures. These constructs are employed as mobile biosen-

sors.

Microstructures were fabricated in such a way that they could be trapped inside our

PDMS microchannel. They were silanized as described in Materials and Methods. After

sealing the PDMS mold against the glass slide, the microchannel was initially filled with

a suspension of E.coli cells for 10 min. Cells adsorbed nonspecifically to the regions of

the surface over which the solutions containing them flowed. Cells that did not adhere

strongly were washed away with PBS (3-min wash) and the remaining adherent cells were

visualized using phase contrast microscopy (Figure 5.14a). The microchannel was then

filled with a suspension of S. marcescens harvested from the swarm plate (see Materials
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Figure 5.14: (a) Phase contrast image of the microstructure showing the attached E.coli
cells (b) Phase contrast image of a monolayer of the mixed population. S. Marcescens cells
fill all the gaps on the microstructure. (c) Fluorescence image visualized only E.coli cells
as they express GFP while Serratia cells do not.

and Methods) for 5 min followed by a 3-min PBS wash. Once again cells were visualized

using phase contrast imaging (Figure 5.14b). With the attachment of S. marcescens, the

microstructures started to move immediately due to self-coordination of bacterial flagella.

Finally, fluorescent microscopy is used to visualize induced E.coli cells (Figure 5.14c).

In summary, as shown in Figure 5.14, we are able to pattern two distinct monolayers

of bacteria. One set of bacteria are responsible for actuation. The other set of bacteria

can sense chemicals in the environment and fluorescent microscopy is used to estimate

the chemical concentration in the environment. This immediately points to the feasibility

of using estimates of GFP activity combined with electrokinetic actuation and ultraviolet

radiation to steer MBRs toward biochemical sources.

5.3.4 Discussion

The experimental framework that we develop in this paper is meant as a model system for

other biological systems. We can extend our approach to use on-board sensing combined

with electrokinetic actuation to steer the MBRs to chemically or biologically relevant goals.
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With minimal fluid disturbance, using MBR biosensors in this fashion we can monitor sig-

nals in close proximity to target cells. However, the relation between external concentration

of analyte and the number of induced cells attached to the MBR should be experimentally

quantified. This calibration step is essential to be able to use our biosensor in real-time ap-

plications. It is possible to generate spatially and temporally constant gradients extending

over millimeters and to maintain their shapes over long periods of time using microflu-

idics [84].

While monitoring the local environment of target cells, we can simultaneously apply

forces with the same microrobots. With appropriate genetic engineering, chemical sig-

nals could be generated to influence target cells. This technique may enable MBR-MBR

communication by using genetically programmed sender and receiver cells [85].
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Chapter 6

Single Cell Manipulation using Magnetic

micro transporters and Microgels

The work in this chapter was first presented in [35, 86] and was done in collaboration

with Edward Steager, Dalhyung Kim, Min Jun Kim, Sean Kim and Anthony Cowley; see

individual sections for the division of work.

6.1 Introduction

As the length scales of robotic systems continue to decrease, one of the clear emerging ap-

plications is the manipulation of single biological cells in fluid environments. Single-cell

manipulation has traditionally been achieved with pipettes, optical tweezers, or specialized

microfluidic channel designs [34]. Recently, a variety of techniques have been explored for

the wireless control of microrobots. While some of these methods directly integrate motile

microorganisms into the design [30–32], other bioinspired methods rely on controlling ap-

plied magnetic forces [7, 87]. Magnetic control of microrobots and microgrippers has also

been established as an effective means of microobject manipulation [15, 35–37]. However,
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significant challenges remain for applications relating to single cell manipulation mainly

due to appropriate scaling of robot size and geometry of existing designs.

To define the appropriate design constraints for robotic single cell manipulation, it is

assumed that the most appropriate workspace is on the stage of existing inverted or up-

right light microscopes. Such microscopes are ubiquitous in life science research laborato-

ries, and include essential capabilities such as phase contrast and fluorescence microscopy.

Therefore, the integration of the full design necessarily includes not only an appropriate

robot design, but also a compact controller that is compatible with the stage of existing

microscopes. By integrating the design into existing microscopes, imaging capture capa-

bilities of the microscopes may also be harnessed.

One of the most important length scales to consider for the system is the workspace for

the robot. When working with single cells, fine details of individual cells must be resolved.

It is essential to have microstructures with sizes in the same order of target cells in order

to transport and position them with some precision. The mammalian cell is an entity with

typical dimensions of tens of microns. This requires a magnification of at least 40X. The

workspace is then 150 µm × 150 µm. Based on this, it becomes clear that the robot must

not only be small relative to the workspace, but also that precise control of movement is

much more important than high speed. In fact, rapid movements may cause significant

disturbances to the microenvironment.

Biocompatibility is another essential consideration for the design of a microrobotic cell

manipulator. For experiments with living cells, the idea of biocompatibility must be ex-

tended from the basic concept of not causing injury to cells to not influencing the behavior

of cells due to the chemical composition of the robot. Furthermore, the biocompatibility of

the overall design should include any chemicals released in the process of introducing the

robot to the cellular microenvironment.

Robotic manipulators on the scale of cells themselves offers significant potential ben-
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efits beyond simply moving cells. Wirelessly controlled (i.e. untethered) cell-sized robots

are highly noninvasive. At this length scale, where viscous fluid forces dominate inertial

forces, motile microrobots cause very little mixing or agitation of the surrounding environ-

ment. This is a significant advantage over suction pipetting for life scientists, since pipettes

cause relatively large fluid disturbances. Traditionally, the focus of robotic manipulators

has been centered on applying mechanical forces. However, on the scale of individual cells,

the understanding of the word manipulation itself must be expanded to include chemical

manipulation of local microenvironments. To a great extent, research in single cell life sci-

ences is concerned with biochemistry. Due to this, a system for the delivery of chemicals in

the microenvironment would also greatly enhance the potential of a microrobotic system.

In this work, we develop a microrobot using microfabrication technologies using elec-

tromagnetic actuation with visual feedback to meet these challenges. The robot, which

is only slightly larger than the rat hippocampal neurons which we are interested in ma-

nipulating, has been designed to work on a scale appropriate for the working space of a

standard optical microscope. It is aligned by magnetic fields and pulled by field gradients.

An oscillating out-of-plane magnetic field induces a stick/slip mechanism that enhances

control of the robot [38]. This is useful not only for adjusting the velocity of the robot [35],

but also for traversing irregular microscale topographies such as surfaces densely patterned

with adherent cells. Composed of iron oxide nanoparticles embedded in a polymer, the

robot is fully biocompatible and is patterned using a single-mask photolithographic pro-

cess. The robot is similar in density to the working fluid. Thus, very small magnetic

forces are required for movement. Furthermore, due to the sub-micron resolution of the

photolithographic micromachining process, the robot’s shape can be tailored to and scaled

appropriately for geometric compatibility with different cell types. Release in the microen-

vironment is enabled by a biocompatible, water-soluble etch process.

A five-coiled magnetic controller was designed for rapid integration with existing mi-
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Figure 6.1: Electromagnetic coils mounted on an optical microscope to actuate the micro
transporters.

croscopes. This is essential due to the fact that many features of single cells are nearly

indistinguishable without the aid of phase contrast or fluorescence microscopy. Visual ser-

voing was incorporated for either teleoperation or fully automated manipulation, and was

demonstrated using latex microbeads and rat hippocampal neurons.

Finally, we present results on the integration of microscale hydrogels designed for the

localized delivery of chemicals using the microrobot. Hydrogels have been established as

an effective means of encapsulating and delivering drugs, and their design may be specifi-

cally tailored for customized time-based release [39] or even release in response to environ-

mental triggers such as pH and temperature [40]. The gels are capable of creating localized

complex gradients and transporting drugs or chemicals to specific positions of target cells.
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6.2 Experimental Setup and Fabrication of Magnetic mi-

cro transporters

The experimental setup consists of four identical in-plane electromagnetic coils with diam-

eter 3.5 cm placed 3.5 cm away from each other and one out-of-plane electromagnetic coil

with diameter 8 cm. The coils are integrated with an aluminum frame that allows experi-

mentation with both inverted and upright microscopes. The coils are independently driven

with H-bridge motor drivers and current control electronics. Imaging is performed on a

Nikon inverted microscope using phase contrast. Videos are captured using a ccd camera.

Fluorescent images of microgels were taken under a Zeiss microscope supported with a

100 W mercury lamp and filter sets.

In our previous work, we developed a single step fabrication process for biocompatible

magnetic micro transporters that did not require subsequent lithography or etching pro-

cesses [35]. We fabricated the microstructures on glass slides using a ferromagnetic pho-

toresist. The composite photoresist was prepared by mixing iron oxide powder (spherical,

50 nm in diameter, Alfa Aesar, IL, USA) with SU8-10 photoresist (MicroChem, MA, USA)

in a glass Petri dish until it yielded a homogenous suspension. Althoughmagnetite nanopar-

ticles are opaque, standard lithography still works as reflection, scattering and diffraction

of light from the particles assist in the proper exposure of the photoresist [88].

In this work, we build on our previous work [35] making several improvements. First,

we describe changes to the fabrication process that enables a reduction in the size of the

microrobots. Second, we are able to increase throughput of the microfabrication process.

Third, our process enables robots that are free of excess iron oxide particles that can be seen

in the micrographs in [35]. The fabrication sequence is shown in Figure 6.2. The first spin-

coating procedure is used to prepare the non-toxic water-soluble sacrificial dextran layer

[89]. We need this layer to release microstructures into the fluidic chamber without causing
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Figure 6.2: Single step microfabrication of large numbers of biocompatible microrobots.
(a) The glass slide is fcoated with Dextran. (b) First pure SU8 layer and then ferromagnetic
composite SU8 layer are spin coated onto the sacrificial dextran layer. Microrotransporters
are magnetized with a permanent magnet. (c) Photoresist is developed and micro trans-
porters are released into experimental chamber. (d) Phase-contrast image of 30 × 30 × 10
µm3 U-shaped micro transporters. Scale bar is 30 µm

any structural damage. Compared to our previous protocol, we increase the concentration

of dextran 50-70 kDa from 5% (w/v) to 10% (w/v) and decrease the spin coating speed

from 2000 rpm to 1000 rpm to obtain a thicker and more resistant sacrificial layer. Next,

a thin layer (2 µm) of pure SU8-2 is spin coated. This extra layer ensures better release

of micro transporters and helps to obtain a more uniform coating of composite polymer

in the following step. Finally, the composite ferromagnetic photoresist is spin coated and

the exposed substrate is post-baked and developed in Propylene Glycol Monomethyl Ether

Acetate (PGMEA). We optimize our fabrication procedure for a specific weight ratio (5%

by weight) and photoresist thickness (10 µm) and fabricate 30 × 30 × 10 µm3 U-shaped

micro transporters.

We magnetize our microtransorters using a rectangular neodymium-iron-boron (Nd-

FeB) magnet with a surface field of 6450 Gauss (K&J Magnetics, Jamison, PA) in the

direction of the opening of the U shape so that the magnetization vector points towards that

direction.They are released on a glass slide by bringing the chip with patterned microstruc-
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Figure 6.3: Micro transporter velocity as a function of pulsing frequency. Each data point
represents five measurements and error bars indicate one standard error.

tures into contact with DI water. They can also be trapped under a closed microfluidic

channel and released by filling the channel with water [76].

6.3 Motion Control and Visual Tracking

6.3.1 Motion Control

The robot motion is a stick-slip motion similar to the phenomenon reported in [13]. By

applying a time-varying magnetic field using electromagnetic coils we can control the

stick-slip motion. An in-plane field is applied to orient the micro transporters but the

force exerted is not high enough to overcome the frictional forces to translate them. A

sinusoidal out-of-plane field with an amplitude of 1 mT is applied using the electromag-

netic coil placed above the surface which induces a rocking motion. The main difference
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with [13] lies in the scale of the robots and their magnetization. In contrast to this previous

work which relies on hard magnets, our robots are based on ferromagnetic particles which

are magnetized as needed. More importantly our robots are at same scale with the target

mammalian cells in contrast to the robots in [13].

We first characterize the velocity of the transporters with respect to the pulsing fre-

quency. Several trials were performed by varying the pulsing frequency (1-100 Hz). The

velocity increases monotonically with increasing frequency (see Figure 6.3).

We then fix the pulsing frequency at 30 Hz and adjust the in-plane magnetic field

strength to control the velocity of the transporters. We performed several trials with dif-

ferent microrobots by varying the current passing through the in-plane coils. Velocity in-

creases linearly with increasing magnetic field strength (see Figure 6.4). If we assume that

the robots have uniform magnetization M, the magnetic force exerted on the robots is given

by

F = V (M ·∇)B (6.1)

where V is the volume of the micro transporter and B is the applied magnetic field.

According to this equation, a linear trend between velocity and magnetic field strength is

expected. Furthermore, the small values of the velocity can be explained by the size of the

robots as exerted force is a function of size.

6.3.2 Visual Tracking

Anthony Cowley developed the material in this section.

The visual tracking system developed fuses several individually unreliable detectors

and estimators to establish a stable estimate of microtransporter pose. In order to alleviate

the burden on experimental procedure, very few constraints are placed on expected image
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Figure 6.4: Micro transporter velocity as a function of magnetic field strength. Error bars
indicate one standard error.

Figure 6.5: Microtransporter visual tracking output. The tracker estimates the position
and orientation of the manipulator in 2D, as well as the positions of polystyrene beads.
Several stages of processing are used to refine the estimate, resulting in a tracker capable
of providing stable pose estimates at 30Hz. Figure by Anthony Cowley.

94



backgrounds or absolute image characteristics. Instead, relative measures are preferred

wherever possible, while each processing stage refines the region of interest fed into sub-

sequent stages. The output of the entire tracking scheme running at 30Hz is highlighted in

Figure 6.5.

The first winnowing of the field of view is a block matching optical flow estimation that

tends to disregard smaller, out of focus moving particles present in the field of view. The

centroid of the largest region of moving blocks is used to identify the center of interest for

subsequent processing stages, and is shown as a blue rectangle in Figure 6.5.

The image of the manipulator is primarily characterized by a dark outline, a light inte-

rior, and a cup-like (+) shape. None of these features can be treated too literally however, as

the outlines of the manipulators used in different experiments will be corrupted by particles

in the environment adhering to the manipulator itself, while the lighter interior of the image

is often broken up by particles sticking to the top of the manipulator. Rather than attempt

to extract a closed contour for the manipulator’s perimeter, we find an oriented rectangular

structure by considering projections of dark pixels. Locally dark pixels are projected into

a histogram associated with each orientation, and the pair of histograms associated with

orthogonal projections with the lowest entropy bimodal distributions along the axes of pro-

jection are used to identify an orientation, localization, and scale of the likely outline of the

manipulator. The resulting rectangle is shown in yellow in Figure 6.5.

The identified rectangle is used to guide a procedure that fits a model of the manipu-

lator structure with the light interior region of the manipulator image. To this end, a fixed

range flood fill is initiated at the brightest component inside the estimated perimeter. The

topological skeleton of the resulting connected component is then fed into a shape detector

that searches for a minimal entropy bimodal projection perpendicular to a unimodal pro-

jection. These projections correspond to the parallel uprights and the base of the idealized

cup shape, respectively, and are shown in violet in Figure 6.5. The manipulator can rotate
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instantaneously, but tends to translate at a more measured pace. A motion model consistent

with this observation is used to guide a particle filter on the structure’s pose, shown by the

green line segment in the figure.

Finally, beads are tracked by feeding the output of a Hough transform-based circle

detector into a simple particle filter. An example bead detection is show by a cyan +

symbol in Figure 6.5.

6.4 Fabrication of Microgels

By engineering the size, shape, and network density of the hydrogel particles, the release

kinetics of the encapsulated molecules can be controlled. As the sizes of target cells varies

depending on biomedical application, having control over the size of the gel is essential.

For these reasons, and also to be able to integrate microgels with our magnetic micro trans-

porters, we fabricate gels using photolithography and replica molding [90]. Photolitho-

graphic techniques were previously used to produce monodisperse hydrogel microstruc-

tures of controlled shape and size. Similar protocols were followed to prepare collagen [91]

and alginate hydrogels [92].

A schematic of the complete fabrication process is given in Figure 6.6. SU8 master

posts are fabricated on a silicon wafer using photolithography. We form poly(dimethyl

siloxane) (PDMS) molds to serve as templates for microgel structures using replica mold-

ing. To prepare the PDMS molds for treatment with the gel, we oxidize them in air plasma

to render their surfaces hydrophilic. They can also be placed in jars filled with water and de-

gassed under house vacuum to remove air bubbles as suggested in [91] to increase through-

put.

Agarose gel is prepared by mixing 6% agarose with DI water and heating the mixture

in a microwave oven until the agar is completely dissolved. Molten solution is immediately
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Figure 6.6: (a)-(c) Microfabricated hydrogels in different shape and sizes. (d) Phase-
contrast and (e) fluorescent images of a fluorescein doped microgel. (f) Diffusion of fluo-
rescein molecules from the microgel in water. )

poured onto the PDMS mold while it is hot and excess solution is scraped off the surface

of the mold with a clean razor blade. Microgels are then removed from the mold and

transferred to the experimental chamber by agitating gels with tweezers.

Hundreds of microgels can be conveniently formed at one time in one mold. Both

the PDMS molds and the master posts can be reused at least dozens of times. Microgels

can be stored for months in a refrigerator. We fabricate microgels in different shapes and

with sizes ranging from 10 to 100 µm (see Figure 6a-c). In order demonstrate the ability to

deliver chemicals with microgels, we visualize the diffusion profile around the gel using ul-

traviolet fluorescence. Microgels are doped with fluorescein by mixing the molten agarose

solution with 0.1% fluorescein powder throughly before filling the PDMS molds. Figure

6d displays phase contrast images of one of the fabricated microgels. With the addition of

fluid, fluorescein molecules start to diffuse and fluorescent microscopy is used to visualize

the diffusion (Figure 6e-f). Figure 6f shows a snapshot of the concentration profile forming

around the microgel after one minute.
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6.5 Results

In all experiments, an in-plane constant field of 3 mT and a sinusoidal out-of-plane field

with amplitude of 1 mT at 30 Hz is applied to actuate micro transporters that have a char-

acteristic length of 30µm. Supporting online video shows the micro transporter performing

the tasks presented in this section.

6.5.1 Automated transport of Latex Microbeads

A demonstration of automated transport of a latex microbead is performed using the pose

estimate from the tracking algorithm (see Figure 7). The tracking algorithm identifies the

position and orientation of the robot as well as a target microbead. A two-step trajectory

is planned with movement confined along major axes. The robot is first adjusted along

the vertical axis at a speed of 6 µm/s until aligned with the microbead. Once aligned

horizontally with the microbead, the robot is reoriented for engagement. The bead moves

approximately 40 µm in the direction of motion of the robot before contact, as would be

expected due to strong fluid coupling. It should be noted that the moment of contact is

approximate due to the refraction of light by the bead and robot. The bead is released by

reversing the direction of motion of the robot while keeping the orientation constant. Again,

the bead follows the motion of the robot due to viscous coupling and surface adhesion

before coming to rest at a position approximately 40 µm from its location at the moment of

robot reversal.

6.5.2 Transport of Agarose Microbeads

The size and shape of the target object determines the drag coefficient and changes the

overall velocity of transport. To characterize the effect of size and estimate the force ap-

plied by our micro transporters, we move several different agarose microbeads with sizes
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Figure 6.7: Automated transport of a 10µm latex microbead. (a) The position of target
bead and the micro transporter is detected and used to plan a two-step trajectory. (b) The
transporter successfully follows the pre-planned path and engages the target. (c) When the
transporter approaches the target, non-contact manipulation is observed. The target bead
moves slower than the transport until the transporters comes into contact. (d) The bead is
released by moving the transporter back in the same orientation. Again, target moves with
the transporter for a while due to fluid coupling. Scale bar is 20 µm.
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Figure 6.8: The velocity of the transporter plus microbead as a function of the size of the
microbead. Agorose microbeads in different size and the microrobot are shown in the inset
figure. Scale bar is 30 µm

changing from 10µm to 120µm (see Figure 6.8). We are able to transport beads four times

larger and three times smaller in characteristic length than the size of the transporter which

shows the scalability of our approach.

The viscous drag force of the fluid acting on a microbead at low Reynolds number

regime is given by

Fdrag = 6πµRV (6.2)

where µ is the viscosity of the fluid, R is the radius and V is the velocity of the mi-

crobead. As the size of the transported bead increases, the drag force acting on the bead

becomes the dominant viscous force for the transporter/microbead pair as the transporter is

shadowed by the bead. For beads larger than the size of the transporter (30 µm) the velocity

is expected to decrease linearly with increasing bead size. Experimental results showed that

this is indeed the case (Figure 6.8). From equation (1), the force applied by the transporter
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can be estimated. Microbeads with a radius of 60 µm are moved with an average velocity

of 1 µm/s which gives a force around 1 pN in water at room temperature. We are capable

of applying forces in the order of pico Newtons which makes our system safe for manipu-

lation tasks. Mammalian cells can be transported at this force rating without causing any

structural damage.

6.5.3 Manipulation of Tetrahymena cells

The experiments in this section are conducted with Dalhyung Kim.

Manipulating cells is fundamental to much of biology and biotechnology. Integral to

these assays is the need to manipulate the physical location of cells, either to separate

them from phenotypically different cells or to organize them in vitro. Owing to the small

size and typically large numbers of cells, we need surrogate hands to provide efficient

physical access to cells that our fingers cannot grasp. As a demonstration of the ability to

seperate single cells, we separated dead T. pyriformis cells from living ones using the micro

transporters. T. pyriformis is a protozoon that swims using cilia, a common locomotive

appendage in eukaryotes. It is frequently used as a model cell in biochemistry and cell

biology due to its complex genetic and structural makeup [93].

Cells are cultured using standard medium containing 0.1% yeast extract and 1% tryp-

tone (Difco, Michigan, USA) solved in distilled water [94]. The cells were deciliated with

a local anesthetic called dibucaine resulting in a suspension of non-motile cells that do not

adhere to the surface [95]. Exposing the cells to the anesthetic for 3-5 min is long enough

to completely detach cilia without killing them. We extended this period in order to have

a heterogeneous population of deciliated dead and live T. pyriformis cells. Cultures to be

deciliated (cell density 105 cells ml−1) were suspended in 1.8 ml of standard medium and

0.2 ml 0.5 mM dibucaine HCl (Sigma-Aldrich, USA). After 6 min of exposure, the cells

were transferred to the standard medium. We verified that all cell motility was lost using
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Figure 6.9: Transport of target cells. (a) The orientation of the transporter is adjusted
according to the position of the target cell. (b) With the application of an out-of-plane time-
varying magnetic field, the transporter starts translating towards the target. The pulsing
frequency is 100 Hz. (c) The target is engaged and transported out of the field of view. The
average velocity of the transporter is 350 µm/s. The scale bar is 100 µm.
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phase-contrast microscopy.

Cells and micro transporters were released into the same open channel. First, a micro

transporters/target pair was selected and the center of mass of the target dead cell was cal-

culated using our tracking algorithm. These cells can easily be detected due to their distinct

morphological appearance. They have a spherical shape while live cells look like ellipsoids.

Next, the orientation of the transporter was adjusted according to the position of the target

cell (Figure 6.9(a)). In the absence of an out-of-plane magnetic field, the transporter was

kept in position while the orientation was changed. By applying a time-varying field with

a pulsing frequency of 100 Hz, we were able to induce a smooth motion and translate the

transporter towards the target cell and accomplish the engagement (Figure 6.9(b)). Finally,

the cell was cleared out of the field of view (Figure 6.9(c)). In our experiments, while the

manipulation of target cells was performed, the position of other cells kept unchanged un-

less they were in close proximity (less than 100 µm). This is expected since the flow in the

far field falls of inversely with the square of the distance in the low Reynolds regime. We

were able to release transported cells and use the same micro transporter multiple times.

However, this result cannot be generalized for other cell types.

For applications in which target cells look physically similar to the rest of the cells,

fluorescence microscopy can be employed. Target cells can be labeled using fluorescent

dyes, fluorescent proteins (i.e. GFP) or quantum dots.

6.5.4 Manipulation of Hippocampal Neurons

The experiments in this section are conducted with Sean Kim.

We perform two different experiments with rat hippocampal neurons. In the first ex-

periment, we demonstrate that cells can be transported and released with micron precision.

Positioning cells in open and closed microchannels is an important step toward studying

cell-cell communication and cell differentiation. In the second experiment, we show the
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Figure 6.10: Phase-contrast images of rat hippocampal neurons. (a) After 10 days in cul-
ture, an extensive, intertwined network of neurons develops on glass slides. (b) Trypsinized
neurons. Scale bars, 25 µm

feasibility of delivering drugs to immobilized cells by placing microgels close to neurons

patterned on glass slides.

Neuron-enriched primary rat hippocampal cultures are plated at 100,000 per ml in Neu-

robasal medium (Invitrogen) with B-27 supplement (Sigma) on poly-L-lysine coated 12-

mm round coverslips [96]. Upon attachment to the substrate, a continuous lamella extends

around the cell body. This is followed by the emergence of axon. The axon extends for

many hundreds of micrometers. After two days, the dendrites begin to grow and with time

the dendrites become more highly branched [97]. After a week, an extensive, intertwined

network of axons and dendrites is observed (see Figure 6.10a).

Transport of cells

We detach cultured neurons from the surface by trypsinizing them in a solution (CMF-

HBSS containing 0.5 mM EDTA and 0.05 % trypsin) for 10 min at room temperature.

Trypsin cleaves axons and dendrites and harvested cells change their morphology by taking

a ball shape as shown in Figure 6.10b. Their dimensions vary from 10µm to 30µm . Cells

are transferred onto another cover slip using a micropipette and micro transporters are

released into the same fluid.
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Figure 6.11: Transport of trypsinized neurons. (a) A cell is detected and targeted for ma-
nipulation. (b) The target is engaged and transported. (c) Transported cell is released by
moving the micro transporter to the left with the same orientation. The scale bar is 30µm.
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Amicro transporter/target cell pair is selected and a path is planned for the manipulation

task (Figure 6.11a). When the transporter is in close proximity, the cell starts to move

due to fluidic effects (Figure 6.11b). We successfully release the target cell by moving

the transporter in the opposite direction without changing its orientation (Figure 6.11c).

Adhesion between cells and transporters is observer but this doesn’t prevent release due to

the shape of the robot and surface properties of trypsinized neurons.

Delivering microgels to patterned cells

Bioassays using cultured cells have been conventionally carried out for drug screening.

Cellular assays have focused on the activity of individual cells as well as the function of

cellcell networks in interconnected systems. These are both important measures for drug

analysis [98]. A bioassay based on cellular networks would benefit from the techniques of

the precise patterning of cells and the local dosing to the cellular patterns.

Here, a non-invasive technique for delivering small doses of chemicals locally to a

specific area of the patterned rat hippocampal neurons is introduced by using microgels

and micro transporters together. Unlike microfluidic solutions, we do not disturb the local

chemical environment. Only the individual target cell is manipulated by the presence of

gels and robots. micro transporters can be actuated on rough surfaces such as glass slides

patterned with neurons thanks to its low density and induced rocking motion. Microfab-

ricated 8µm circular microgels and micro transporters are released on 10-day old cultured

neurons. Microgels are successfully transported, positioned and released on predetermined

spots (Figure 6.12).
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Figure 6.12: Delivery of microgels to the hippocampal cultures. (a)-(c) A microgel is trans-
ported from its initial position to its target location. micro transporters can be teleoperated
on the neuron-coated surface without causing structural damage to cells. (d) After releasing
the microgel, another target is detected and transported. The scale bar is 30µm.
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6.6 Discussion

The effect of fluid, physical forces and the concentration of chemicals on cell behavior

must be taken into account when designing microenvironments [99]. Our approach is non-

invasive and requires minimum fluidic disturbance to accomplish manipulation tasks. By

integrating microfabricated microgels with magnetic micro transporters, we showed the

feasibility of delivering chemicals locally and engineering more in vivo-like microenviron-

ments in vitro. The effect of multiple growth factors and therapeutic agents on cells can be

analyzed by combining mechanical and chemical manipulation in vitro.

We are currently developing an experimentally validated mathematical model describ-

ing the dynamics of the system. The behavior of the micro transporters depends on their

shape, the weight ratio of the suspended magnetite particles, the strength of the applied

magnetic fields and the excitation waveform driving the electromagnets. The effect of each

factor needs to be characterized to optimize the overall performance. The microfabrica-

tion process can also be improved by measuring the optical properties of the ferromagnetic

photoresist and accordingly optimizing the exposure time.

The current size of the robots is ideal for the manipulation of mammalian cells. How-

ever, we are planning to use micro transporters with yeast cells for aging studies which

requires further reduction in size. In addition, the shape of the robot is optimized for trans-

port tasks. However, for performing other tasks such as separation, injection, dissection

of living cells and applying forces to cultured neurons and fibroblasts, we would like to

employ robots with different shapes. In our future studies, we will expand our work and

apply these criteria in our designs.

The diffusion kinetics of the delivered chemical needs to be tuned. Drugs should be

delivered at pre-determined times and with specific doses. These factors can be adjusted

by changing the shape and the size of the microgels and our fabrication technique allows
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such changes. The amount of agarose is another important factor determining the diffusion

rate. The size of the pores inside the microgel decreases as the concentration of agarose

is increased. Our future work will address the characterization of the temporal and spatial

dynamics of diffusion of chemicals from microgels.
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Chapter 7

Conclusions

7.1 Summary of Contributions

In the first part, we first investigate and characterize the fundamental phenomena for con-

trolling rotation and translation of engineered microscale structures using bacteria stimu-

lated by UV light and electric fields. Several important experimental techniques for build-

ing MicroBioRobots (MBRs) are proposed and a theoretical framework for modeling and

control of MBRs is presented. In particular, we propose a method of controlling MBRs

using self actuation and DC electric fields, and develop experimentally validated math-

ematical model for MBRs.The electrokinetic phenomena are found to be primarily elec-

trophoretic, with the primary of component of MBR velocity related directly to the strength

of the electric field. A custom-designed chamber is created to apply direct current electric

fields in two-dimensions, while also enabling continuous tracking and application of UV

light. The photoresponsiveness of the cells is used to temporarily halt rotation of MBRs,

downwardly adjust angular velocity, or permanently stop rotational motion, which was vi-

tal for the positioning of U-shaped microtransporters. A stochastic model of the dynamic

motion is additionally developed to understand and predict the motion of microstructures
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propelled by large populations of cells.

We demonstrate experimentally that vision-based feedback control allows a four- elec-

trode experimental device to steer MBRs along arbitrary paths with micrometer precision.

At each time instant, the system identifies the current location of the robot, a control al-

gorithm determines the power supply voltages that will move the charged robot from its

current location toward its next desired position, and the necessary electric field is then

created. Examples of microscale transport and assembly as well as computer-based control

of MBRs are presented. We also describe the development of biosensors for the MBRs by

combining synthetic biology with microrobotics research.

In the second part, we describe the construction and operation of truly micron-sized,

biocompatible ferromagnetic micro transporters driven by external magnetic fields. Our

five-coiled, compact actuation system is designed for rapid integration with existing micro-

scopes. We use a real-time visual tracking algorithm for tracking transporters and target

objects. This information is used to implement fully automated manipulation of latex mi-

crobeads. We also demonstrate the transport of rat hippocampal neurons and fabricated

microgels with teleoperation. Microgels are positioned at target locations on cell-patterned

surfaces as a first step for delivering drugs to cultured neurons.

7.2 Future Work

MBRs can be used as building blocks for more sophisticated functional microdevices. Fur-

thermore, the paradigm introduced here can be integrated with other microelectromechan-

ical systems (MEMS) technologies. Our techniques can be used to fabricate, calibrate and

transport MBRs in microfluidic channels in a controllable fashion. Our future work will

also address the integration of biosensing and bio-actuation onboard the MBR.

We envision that, in near future, magnetic micro transporter systems can be employed
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as standard tools for single cell studies in bioengineering laboratories. Currently, microma-

nipulators and Fluorescence Activated Cell Sorting (FACS) devices are used for separating

fluorescently-labeled cells. However, mammalian cells such as neurons like to grow in

close proximity with other cells and analysis of such cells in isolation for extended period

of times results in necrosis. Using micropipettes and aspiration limits the number of cells

that can be analyzed simultaneously. Microrobots can solve these problems by introducing

the capability of automated non-invasive transport and positioning of single cells as well

as localized delivery of drugs. In our future work, we will explore lipid and photo trans-

fection of rat hippocampal neurons and fibroblasts using magnetic micro transporters and

microsources (drug-loaded microgels and mircobeads).
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