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Posterior Regularization for Learning with Side Information and Weak
Supervision

Abstract
Supervised machine learning techniques have been very successful for a variety of tasks and domains
including natural language processing, computer vision, and computational biology. Unfortunately, their use
often requires creation of large problem-specific training corpora that can make these methods prohibitively
expensive. At the same time, we often have access to external problem-specific information that we cannot
alway easily incorporate. We might know how to solve the problem in another domain (e.g. for a different
language); we might have access to cheap but noisy training data; or a domain expert might be available who
would be able to guide a human learner much more efficiently than by simply creating an IID training corpus.
A key challenge for weakly supervised learning is then how to incorporate such kinds of auxiliary information
arising from indirect supervision.

In this thesis, we present Posterior Regularization, a probabilistic framework for structured, weakly supervised
learning. Posterior Regularization is applicable to probabilistic models with latent variables and exports a
language for specifying constraints or preferences about posterior distributions of latent variables. We show
that this language is powerful enough to specify realistic prior knowledge for a variety applications in natural
language processing. Additionally, because Posterior Regularization separates model complexity from the
complexity of structural constraints, it can be used for structured problems with relatively little computational
overhead. We apply Posterior Regularization to several problems in natural language processing including
word alignment for machine translation, transfer of linguistic resources across languages and grammar
induction. Additionally, we find that we can apply Posterior Regularization to the problem of multi-view
learning, achieving particularly good results for transfer learning. We also explore the theoretical relationship
between Posterior Regularization and other proposed frameworks for encoding this kind of prior knowledge,
and show a close relationship to Constraint Driven Learning as well as to Generalized Expectation
Constraints.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Fernando Pereira

Second Advisor
Ben Taskar

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/265

http://repository.upenn.edu/edissertations/265?utm_source=repository.upenn.edu%2Fedissertations%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages


Keywords
Posterior Regularization Framework, Unsupervised Learning, Latent Variable Models, Prior Knowledge,
Natural Language Processing, Machine Learning, Partial Supervision

Subject Categories
Artificial Intelligence and Robotics | Computer Sciences | Statistical Models

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/265

http://repository.upenn.edu/edissertations/265?utm_source=repository.upenn.edu%2Fedissertations%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages


POSTERIOR REGULARIZATION FOR
LEARNING WITH SIDE INFORMATION AND

WEAK SUPERVISION

Kuzman Ganchev

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2010

Fernando Pereira, Professor of Computer and Information Science
Supervisor of Dissertation

Ben Taskar, Assistant Professor of Computer and Information Science
Supervisor of Dissertation

Jianbo Shi, Associate Professor of Computer and Information Science
Graduate Group Chairperson

Dissertation Committee

Michael Collins, Associate Professor of Computer Science, MIT

Mark Liberman, Professor of Phonetics Department of Linguistics

Mitch Marcus, Professor of Computer and Information Science

Lyle Ungar, Associate Professor of Computer and Information Science



Posterior Regularization for Learning with Side Information and Weak Supervision

COPYRIGHT

2010

Kuzman Ganchev



This thesis is dedicated to my parents, who have given me everything.

Anything I achieve, you have achieved.

iii



Acknowledgements

Thanks . . .

To my advisors Fernando Pereira and Ben Taskar. Fernando was my first advisor at

Penn and has been a source of inspiration from the start. It seems that no matter how well

I think I understand a problem, Fernando can shed new light on it. His advice is always

invaluable, and more often than not surprising. He seems to know relevant literature in

areas I would never have believed to be related, and to find bugs, as if by magic, in code he

has never seen. Ben was my advisor since shortly after he joined Penn. None of the work

presented here would have been conceived, implemented, tested, or described were it not

for him. “Ask Ben” seems to be a universal solution, and one of the hardest things about

leaving will be losing the ability to drop by his office to find out how to formalize, optimize

and visualize my ideas. Both Ben and Fernando are amazing people that have created a

friendly, warm, stress-free atmosphere that has made my years at Penn so enjoyable, and I

might never be able to repay them fully for all they have done for me.

To my committee: Mitch Marcus, Mike Collins, Mark Liberman, and Lyle Ungar for

their feedback, and support. Thanks to Mitch for agreeing to chair my committee and for

telling me what isn’t obvious – Chapter 5 was largely his idea. Mitch was never formally

my advisor, but he often played the part and I always felt welcome to ask for his advice and

support. Thanks to Mike for the very helpful, detailed comments and suggestions on both

the proposal and the thesis documents, and for agreeing to come in person both times. Mark

provided much needed linguistic perspective and suggested new applications and avenues,

that I would never have thought of. Thanks to Lyle for the very helpful comments both at

the proposal and at the defense. Without your direction this dissertation would have been

much less than it has become.

iv



To Michael Kearns for showing me the world of finance, what it means to be clear,

and that it is possible to finish before the deadline. To Kiril Simov for giving me the

opportunity to do research in my native Bulgaria, where the work on Chapter 10 took place.

To Tia Newhall, who introduced me to research when I was an undergraduate, and who is

my first co-author. And to Richard Wicentowski, who introduced me to natural language

processing.

To the co-authors of the work in this dissertation. To João Graça, who is a partner for

the work in almost every chapter of this thesis, and who is usually responsible for more than

half of the energy in every project. To Jennifer Gillenwater who is a partner on all the pars-

ing chapters, and who writes the neatest, prettiest code I have ever seen. To John Blitzer,

who is a partner on the multi-view chapter (John – gl, hf). To my other collaborators, and

especially to Kedar Bellare, Steven Carroll, Koby Crammer, Mark Dredze, Ryan Gabbard,

Georgi Georgiev, Yang Jin, Alex Kulesza, Qian Liu, Mark Mandel, Gideon Mann, Andrew

McCallum, Ryan McDonald, Vassil Momchev, Preslav Nakov, Yuriy Nevmyvaka, Deyan

Peychev, Angus Roberts, Partha Pratim Talukdar, Jinsong Tan, Jennifer Wortman Vaughan,

and Peter White.

To the administrative staff, who are truly remarkable and especially to Mike Felker,

who has been voted “most useful person” in every informal poll. Thank you for running

the place so smoothly, keeping our lives simple, and always finding a way to resolve our

crises.

To Aaron, Alex, Alex, Alex, Axel, Brian, Cheryl, David, Dimo, Drew, Emily, Gabe,

Galia, Hannah, Iliana, Irena, Jeff, Jenn, Jenny, João, Julie, Karl, Lauren, Mike, Nick,

Partha, Qian, Rachel, Sophie, Wynn, for all the love, laughter, hugs, parties, dinners, drinks,

mafia games, D&D&D, zip-boing. Thank you for making these past six years so great.

Finally, to my mother, who nurtured my creativity and always cleaned up after my

early “science experiments”; to my father who taught me that everything is possible and to

strive for the best; to my brother without whose help I would never have gotten into any

university and who was always kind even when I was a brat; and to my love who makes

struggles bearable and triumphs sweeter every single day.

v



ABSTRACT

Posterior Regularization for Learning with Side Information and Weak Supervision

Kuzman Ganchev

Supervisors: Fernando Pereira and Ben Taskar

Supervised machine learning techniques have been very successful for a variety of tasks

and domains including natural language processing, computer vision, and computational

biology. Unfortunately, their use often requires creation of large problem-specific training

corpora that can make these methods prohibitively expensive. At the same time, we often

have access to external problem-specific information that we cannot alway easily incorpo-

rate. We might know how to solve the problem in another domain (e.g. for a different

language); we might have access to cheap but noisy training data; or a domain expert might

be available who would be able to guide a human learner much more efficiently than by

simply creating an IID training corpus. A key challenge for weakly supervised learning is

then how to incorporate such kinds of auxiliary information arising from indirect supervi-

sion.

In this thesis, we present Posterior Regularization, a probabilistic framework for struc-

tured, weakly supervised learning. Posterior Regularization is applicable to probabilistic

models with latent variables and exports a language for specifying constraints or pref-

erences about posterior distributions of latent variables. We show that this language is

powerful enough to specify realistic prior knowledge for a variety applications in natural

language processing. Additionally, because Posterior Regularization separates model com-

plexity from the complexity of structural constraints, it can be used for structured problems

with relatively little computational overhead. We apply Posterior Regularization to several

problems in natural language processing including word alignment for machine translation,

transfer of linguistic resources across languages and grammar induction. Additionally, we

find that we can apply Posterior Regularization to the problem of multi-view learning,

achieving particularly good results for transfer learning. We also explore the theoretical re-
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lationship between Posterior Regularization and other proposed frameworks for encoding

this kind of prior knowledge, and show a close relationship to Constraint Driven Learning

as well as to Generalized Expectation Constraints.
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Chapter 1

Introduction

Machine learning in general and statistical models in particular have found applications in

a wide variety of domains, across a range of disciplines including natural language process-

ing, computer vision, signal processing, computational finance medical image analysis and

computational biology to name just a few. For many of these application domains the most

successful models use supervised machine learning approaches that require large quantities

of annotated data in order to build models able to perform well. 1

In some situations, the annotations necessary for applying supervised learning algo-

rithms occur naturally or can be obtained relatively inexpensively. For example, if we

would like to predict the price and volatility of stocks, bonds or futures contracts, we can

obtain historical data relatively inexpensively. This data can then be used to train predic-

tors for use in the future. Similarly, machine translation systems are typically trained using

already available corpora such as parliamentary proceedings that have to be available in

multiple languages by law. In contrast to these relatively data-abundant applications, for

the vast majority of applications the successful application of machine learning techniques

requires expensive manual annotation. For example, in order to train a state of the art

named entity recognition system thousands of sentences must be annotated for the enti-

ties of interest. A similar situation exists for other machine learning applications such as

syntactic analysis of natural language, coreference resolution, relation extraction, object

recognition, gene finding, handwriting recognition and speech recognition.

1 Appendix A provides some background on probabilistic models.
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Figure 1.1: Two examples of structured models we will use in this work. Left: a depen-
dency tree representation of syntax. The hidden variables are the identities of the edges that
compose the tree. Right: a hidden Markov model used for word alignment. The hidden
variables are the identities of the source language words that are translations of the target
language words.

This annotation process is often the most time-consuming and expensive part of the

construction of usable model. For example, 400 hours were needed to label a single hour

of speech at the phonetic level [Greenberg, 1996]. The Penn Chinese Treebank project

released the first version of its 4,000 sentences two years after the project began [Hwa

et al., 2005]. Furthermore, to achieve optimal performance, we need a separate corpus for

each domain of interest. For example, syntactic parsers trained on news perform poorly on

biomedical test [Dredze et al., 2007]. As the number of tasks, languages and target domains

of interest increases hand-labeling quickly becomes prohibitively slow and expensive.

For many problems where it is expensive to create annotations, unannotated data are

abundant. For example, natural language text in many domains is widely available, se-

quenced genomes for many organisms can be downloaded from public databases, and large

collections of images are much easier to obtain than annotated images. In order to ex-

ploit this inexpensive data, a variety of unsupervised machine learning approaches have

been devised. In unsupervised problems where data has sequential, recursive, spatial, re-

lational, and other kinds of structure, we often employ structured statistical models with

latent variables to tease apart the underlying dependencies and induce meaningful seman-

tic categories. Unsupervised part-of-speech and grammar induction, and word and phrase

alignment for statistical machine translation in natural language processing are examples

of such aims. Generative models (probabilistic grammars, graphical models, etc.) are usu-

ally estimated by maximizing the likelihood of the observed data by marginalizing over the

2



hidden variables, typically via the Expectation Maximization (EM) algorithm. Figure 1.1

shows a couple of examples of the model structures that we deal with in this dissertation.

Because of computational and statistical concerns, generative models used in practice

are very simplistic models of the underlying phenomena; for example, the syntactic struc-

ture of language or the language translation process. A pernicious problem with such mod-

els is that marginal likelihood may not guide the model towards the intended role for the

latent variables, instead focusing on explaining irrelevant but common correlations in the

data. Since we are mostly interested in the distribution of the latent variables in the hope

that they capture intended regularities without direct supervision, controlling this latent

distribution is critical. Less direct methods such as clever initialization, ad hoc procedural

modifications, and complex data transformations are often used to affect the posteriors of

latent variables in a desired manner. As an example, in the problem of part of speech in-

duction, the goal is to derive a set of syntactic categories from unannotated text. Because

of computational complexity and our limited understanding of how children learn syntac-

tic categories, this problem is typically solved using maximum likelihood training and a

hidden Markov model. As we see in Figure 1.2 (left panel), maximum likelihood training

results in very high ambiguity for each word. Depending on context, the hidden Markov

model might label the word “China” as a “noun”, “verb”, or “preposition.”

A key challenge for structured, weakly supervised learning is developing a flexible,

declarative framework for expressing structural constraints on latent variables arising from

prior knowledge and indirect supervision. Structured models have the ability to capture a

very rich array of possible relationships, but adding complexity to the model often leads

to intractable inference. In this dissertation, we present the posterior regularization (PR)

framework, which separates model complexity from the complexity of structural con-

straints it is desired to satisfy. Unlike parametric regularization in a Bayesian framework,

our approach incorporates data-dependent constraints that are easy to encode as informa-

tion about model posteriors on the observed data, but may be difficult to encode as infor-

mation about model parameters through Bayesian priors. In the right panel of Figure 1.2

we see that by imposing an appropriate penalty for the ambiguity of each word, we ef-

fectively mitigate the high-ambiguity problem, and produce a cleaner set of grammatical

3
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Figure 1.2: Example part of speech induction application. In each panel words are on the
right and parts of speech on the left. A link mean that the word was automatically tagged
with that part of speech in some context. The numbers in parentheses indicate a measure of
the tag-ambiguity of each word (see Chapter 9 for details). Left: conventional maximum
likelihood training. Right: the method proposed in this work. See text for explanation.

categories. The experiments that produced Figure 1.2 are described in Chapter 9. Chap-

ters 5 and 6-10 describe a variety of such useful prior knowledge constraints in several

application domains.

1.1 Contributions

This thesis deals with the problem of incorporating prior knowledge into unsupervised

and semi-supervised learning for structured and unstructured models. We focus on mod-

els where exact efficient inference is possible, and describe a framework for efficiently

incorporating prior knowledge into both generative and discriminative models, both for

structured and unstructured data. Specifically, we present:

• A flexible, declarative framework for structured, weakly supervised learning via pos-

terior regularization.

• An efficient algorithm for model estimation with posterior regularization.

• An extensive evaluation of different types of constraints in several domains: multi-

view learning, cross-lingual dependency grammar induction, unsupervised part-of-
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speech induction, unsupervised grammar induction and bitext word alignment.

• A detailed explanation of the connections between several other recent propos-

als for weak supervision, including structured constraint-driven learning [Chang

et al., 2007], generalized expectation criteria [Mann and McCallum, 2008, 2007]

and Bayesian measurements [Liang et al., 2009].

1.2 Thesis Overview

This section describes the general organization of the thesis. Part I of the document de-

scribes the mathematical formulation of the posterior regularization framework, tries to

give some intuitions about the kinds of knowledge that can efficiently be incorporated into

the framework for a variety of models, and describes how posterior regularization is related

to a few recently proposed frameworks that try to encode similar kinds of prior knowl-

edge. Part II of the document describes applications of posterior regularization for with

associated experimental results. Chapter 11 concludes the dissertation.

1.2.1 Mathematical Formulation, Intuitions and Related Methods

Chapter 2 describes the posterior regularization (PR) framework as a mathematical formu-

lation. Section 2.2 describes the objective we optimize and Sections 2.5 and 2.7 describe

a simple algorithm to perform the optimization for generative and discriminative models.

Chapter 3 previews the applications described in Part II. Chapter 4 relates the PR frame-

work to several related methods: Constraint Driven Learning [Chang et al., 2007, 2008]

in Section 4.1, Generalized Expectation Criteria [Mann and McCallum, 2007, 2008, 2010]

in Section 4.2 and Bayesian Measurements [Liang et al., 2009] in Section 4.3. Figure 4.2

summarizes the relationship between these frameworks. Chapter 5 attempts to give an intu-

ition for the kinds of prior knowledge that can be efficiently encoded in the PR framework,

as well as how to encode them.
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1.2.2 Applications and Experimental Results

In Part II of the thesis, we present a series of experiments using the PR framework in a

variety of natural language application domains. Chapter 6 focuses on the problem of un-

supervised statistical word alignment, and trying to enforce that alignments should usually

be bijective and symmetric. Chapter 7 describes how the PR framework can be used for

multi-view learning, resulting in a closed-form projection and a Bhattacharyya distance

co-regularizer in two view learning. Chapter 8 describes experiments in projecting a de-

pendency grammar from one language to another by using a bilingual text. Chapters 9

and 10 describe how PR can be used to induce a sparsity structure for the induction of syn-

tactic analyses: part-of-speech induction in Chapter 9 and dependency grammar induction

in Chapter 10.
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Chapter 2

Posterior Regularization Framework

In this chapter we describe the posterior regularization framework, which incorporates side-

information into parameter estimation in the form of linear constraints on posterior expec-

tations. 1 As we will show, this allows tractable learning and inference even when the

constraints would be intractable to encode directly in the model parameters. By defining

a flexible language for specifying diverse types of problem-specific prior knowledge, we

make the framework applicable to a wide variety of probabilistic models, both generative

and discriminative. In Sections 2.1-2.6 we will focus on generative models, and describe

the case of discriminative models in Section 2.7. We will use a problem from natural lan-

guage processing as a running example in the exposition:

Running Example The task is part-of-speech (POS) tagging with limited or no

training data. Suppose we know that each sentence should have at least one verb

and at least one noun, and would like our model to capture this constraint on the un-

labeled sentences. The model we will be using is a first-order hidden Markov model

(HMM).

We describe four other applications with empirical results in Chapters 6-10, but it will

be easier to illustrate key concepts using this simple example.

1This chapter is based on Graça et al. [2007], Ganchev et al. [2010].

8



2.1 Preliminaries and Notation

We assume that there is a natural division of variables into “input” variables x and “target”

variables y for each data instance, where x’s are always observed. We denote the set

of all instances of unlabeled data as X. In case of semi-supervised learning, we have

some labeled data as well, and we will use the notation (XL,YL) to denote all the labeled

instances.

The starting point for using the PR framework is a probabilistic model. Let θ be the

parameters of the model. For now we assume a generative model pθ(x,y), and we use

L(θ) = log pθ(XL,YL)+log
∑

Y pθ(X,Y)+log p(θ) to denote the parameter-regularized

log-likelihood of the data.

Running Example In the POS tagging example from above, we would use

x = {x1, x2, . . . x|x|} to denote a sentence (i.e. a sequence of words) and y =

{y1, y2, . . . y|x|} to denote a possible POS assignment. Using an HMM, it is defined

in the normal way as:

pθ(x,y) =

|x|∏
i=1

pθ(yi|yi−1) pθ(xi|yi)

with θ representing the multinomial distributions directly, and where pθ(y1|y0) =

pθ(y1) represents a set of initial probabilities. Suppose we have a small labeled

corpus and a larger unlabeled corpus. For a generative model such as an HMM, the

log-likelihood (+ log-prior) is:

L(θ) = log pθ(XL,YL) + log
∑
Y

pθ(X,Y) + log p(θ),

where corpus probabilities are products over instances: pθ(XL,YL) =
∏
pθ(x,y)

and analogously for XL,YL; and where p(θ) is a prior distribution over the param-

eters θ.
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Symbol Meaning
x (observed) input variables for a particular example
y (usually hidden) output variables for a particular example

X,Y x and y for the entire unlabeled portion of the corpus
XL,YL x and y for the entire labeled portion of the corpus (possibly empty)
pθ(x,y) a generative, joint model with parameters θ
L(θ) data log-likelihood and parameter prior:

log pθ(XL,YL) + log
∑

Y pθ(X,Y) + log p(θ)
Qx,Q posterior regularization set: constrained set of desired data-conditional

distributions
φ(x,y) constraint features: used to encode posterior regularization

b bounds on the desired expected values of constraint features
ξ slack variables used to allow small violations of constraints

JQ(θ) posterior regularized likelihood: L(θ)−KL(Q ‖ pθ(Y|X))

Table 2.1: Summary of notation used.

2.2 Regularization via Posterior Constraints

The goal of the posterior regularization framework is to restrict the space of the model

posteriors on unlabeled data as a way to guide the model towards desired behavior. In

this section we describe a version of PR specified with respect to a set of constraints. In

this case, posterior information is specified with sets Q of allowed distributions over the

hidden variables y. We will define Q in terms of constraint features φ(X,Y) and their

expectations. 2

Running Example Recall that in our running example, we want to bias learn-

ing so that each sentence is labeled to contain at least one verb. To encode this

formally, we define a feature φ(x,y) = “number of verbs in y”, and require that

this feature has expectation at least 1. For consistency with the rest of the expo-

sition and standard optimization literature, we will use the equivalent φ(x,y) =

2Note: the constraint features do not appear anywhere in the model. If the model has a log-linear form,
then it would be defined with respect to a different set of model features, not related to the constraint features
we consider here.
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“negative number of verbs in y” and require this has expectation at most -1:3

Qx = {qx(y) : Eq[φ(x,y)] ≤ −1}

Note that we enforce the constraint only in expectation, so there might be a labeling

with non-zero probability that does not contain a verb. To actually enforce this con-

straint in the model would break the first-order Markov property of the distribution.
4 In order to also require at least one noun per sentence in expectation, we would

add another constraint feature, so that φ would be a function from x,y pairs to R2.

We defineQ, the set of valid distributions, with respect to the expectations of constraint

features, rather than their probabilities, so that our objective leads to an efficient algorithm.

As we will see later in this section, we also require that the constraint features decompose

as a sum in order to ensure an efficient algorithm. More generally than in the running

example, we will define constraints over an entire corpus:

Constrained Posterior Set : Q = {q(Y) : Eq[φ(X,Y)] ≤ b}. (2.1)

In words,Q denotes the region where constraint feature expectations are bounded by b.

Additionally, it is often useful to allow small violations whose norm is bounded by ε ≥ 0:

Constrained Set (with slack) : Q = {q(Y) : ∃ξ, Eq[φ(X,Y)]−b ≤ ξ; ||ξ||β ≤ ε}.
(2.2)

Here ξ is a vector of slack variables and ||·||β denotes some norm. Note that the PR method

we describe will only be useful if Q is non-empty:

Assumption 2.1. Q is non-empty.

We explore several types of constraints in Chapters 6-10, including: constraints similar

to the running example, where each hidden state is constrained to appear at most once in

expectation; constraints that bias two models to agree on latent variables in expectation;

3Note that the distribution qx(y) and Qx depend on x because the features φ(x,y) might depend on the
particular example x. In order to recover constraints for the entire corpus X we can stack the φ(x,y) for
each sentence x into a long vector φ(X,Y). This corresponds to computing the intersection of the constraints
Q =

⋂
xQx.

4At every position in the sentence, we would need to know whether a verb was used at any other position.

11



constraints that enforce a particular group-sparsity of the posterior moments. The con-

straint set defined in Equation 2.2 is usually referred to as inequality constraints with slack,

since setting ε = 0 enforces inequality constraints strictly. The derivations for equality

constraints are very similar to the derivations for inequality so we leave them out in the

interest of space. Note also that we can encode equality constraints by adding two inequal-

ity constraints, although this will leave us with twice as many variables in the dual. The

assumption of linearity of the constraints is computationally important, as we will show

below. For now, we do not make any assumptions about the features φ(x,y), but if they

factor in the same way as the model, then we can use the same inference algorithms in PR

training as we use for the original model (see Proposition 2.2). In PR, the log-likelihood of

a model is penalized with the KL-divergence between the desired distribution spaceQ and

the model posteriors,

KL(Q ‖ pθ(Y|X)) = min
q∈Q

KL(q(Y) ‖ pθ(Y|X)). (2.3)

The posterior-regularized objective is:

Posterior Regularized Likelihood : JQ(θ) = L(θ)−KL(Q ‖ pθ(Y|X)). (2.4)

The objective trades off likelihood and distance to the desired posterior subspace (modulo

getting stuck in local maxima) and provides an effective means of controlling the posteriors.

In many cases, prior knowledge is easy to specify in terms of posteriors, and much more

difficult to specify as priors on model parameters or by explicitly adding constraints to

the model. A key advantage of using regularization on posteriors is that the learned model

itself remains simple and tractable, while during learning it is driven to obey the constraints

through setting appropriate parameters θ. The advantage of imposing the constraints via

KL-divergence from the posteriors is that the objective above can be optimized using a

simple EM scheme described in Section 2.5. It is also possible to use a similar algorithm

to maximize L(θ) − αKL(Q ‖ pθ(Y | X)), for α ∈ [0, 1]. See Appendix B for details

of the case when α 6= 1. Note that the algorithm we will present in Section 2.5 will

not allow us to optimize an objective with α > 1, and this leads us to have both a KL-

penalty term in Equation 2.4 and also to potentially have slack in the definition of the
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Figure 2.1: An illustration of the PR objective for generative models, as a sum of two
KL terms. The symbol Θ represents the set of possible model parameters, δ(X) is a
distribution that puts probability 1 on X and 0 on all other assignments. Consequently
KL(δ(X)||pθ(X)) = L(θ). (We ignore the parameter prior and additional labeled data in
this figure for clarity.)

constraint setQ. We do not need to allow slack in the objective, as long as we are sure that

the constraint set Q is non-empty. At increased computational cost, it is also possible to

eliminate the KL-penalty portion of the objective, instead directly constraining the model’s

posterior distribution to be inside the constraint set pθ(Y|X) ∈ Q. See Section 4 for

details. Figure 2.1 illustrates the objective in Equation 2.4. Normal maximum likelihood

training is equivalent to minimizing the KL distance between the distribution concentrated

on X and the set of distributions representable by the model. Any particular setting of the

model parameters results in the posterior distribution pθ(Y|X). PR adds to the maximum

likelihood objective a corresponding KL distance for this distribution. If Q has only one

distribution, then we recover labeled maximum likelihood training. This is one of the

justifications for the use and the particular direction of the KL distance in the penalty term.

Running Example In order to represent a corpus-wide constraint setQ for our POS

problem, we stack the constraint features into a function from X,Y pairs (sentences,

part-of-speech sequences) to R2|X|, where |X| is the number of sentences in our un-

labeled corpus. For the POS tagging example, the PR objective penalizes parameters

that do not assign each sentence a verb and a noun in expectation.

For PR to be successful, the model pθ(Y|X) has to be expressive enough to ensure that

the learned model has posteriors pθ(Y|X) in or nearly in Q. However, we could also use
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q(Y) = arg minq′∈QKL(q′(Y) ‖ pθ(Y|X)) for prediction instead of pθ(Y|X). We will

see in Sections 6 and 8 that this sometimes results in improved performance. Chang et al.

[2007] report similar results for their constraint-driven learning framework.

2.3 Slack Constraints vs. Penalty

In order for our objective to be well defined,Q must be non-empty. When there are a large

number of constraints, or when the constraint features φ are defined by some instance-

specific process, it might not be easy to choose constraint values b and slack ε that lead to

satisfiable constraints. It is sometimes easier to penalize slack variables instead of setting a

bound ε on their norm. In these cases, we add a slack penalty to the regularized likelihood

objective in Equation 2.4:

L(θ) − min
q,ξ

KL (q(Y) || pθ(Y|X)) + σ ||ξ||β

s. t. Eq[φ(X,Y)]− b ≤ ξ.

(2.5)

The slack-constrained and slack-penalized versions of the objectives are equivalent in

the sense that they follow the same regularization path: for every ε there exists some σ

that results in identical parameters θ. Note that while we have used a norm ||·||β to impose

a cost on violations of the constraints, we could have used any arbitrary convex penalty

function, for which the minimal q is easily computable. We use norms throughout the

thesis because of mathematical convenience, but in general we could replace ||·||β with any

convex function, subject to its efficient computability.

2.3.1 Computing the Posterior Regularizer

In this section, we describe how to compute the objective we have introduced for fixed

parameters θ. The regularization term is stated in Equations 2.4 and 2.5 in terms of an

optimization problem. We assume that we have algorithms to do inference5 in the statis-

tical model of interest, pθ. We describe the computation of the regularization term for the

5Specifically, we need to be able to compute marginal distributions efficiently.
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inequality constraints: 6

min
q,ξ

KL(q(Y) ‖ pθ(Y|X)) s. t.
Eq[φ(X,Y)]− b ≤ ξ; ||ξ||β ≤ ε;

q(Y) ≥ 0;
∑

Y q(Y) = 1

(2.6)

Proposition 2.1. For appropriately decomposable constraint features φ, the regularization

problems for PR with inequality constraints in Equation 2.6 can be solved efficiently in its

dual form. The primal solution q∗ is unique since KL divergence is strictly convex and is

given in terms of the dual solution λ∗ by:

q∗(Y) =
pθ(Y|X) exp{−λ∗ · φ(X,Y)}

Z(λ∗)
(2.7)

where Z(λ∗) =
∑

Y pθ(Y|X) exp{−λ∗ · φ(X,Y)}. Define ||·||β∗ as the dual norm of

||·||β .7 The dual of the problem in Equation 2.6 is:

max
λ≥0

−b · λ− logZ(λ) − ε ||λ||β∗ . (2.8)

The proof is included in Appendix C using standard Lagrangian duality results and

strict convexity of KL (e.g., Bertsekas [1999]). The dual form in Equation 2.8 is typically

computationally more tractable than the primal form (Equation 2.6) because there is one

dual variable per expectation constraint, while there is one primal variable per labeling Y.

For structured models, this is typically intractable. An analogous proposition can be proven

for the objective with penalties (Equation 2.5), with almost identical proof. We omit this

for brevity.

2.4 Factored q(Y) for Factored Constraints

The form of the optimal q with respect to pθ(Y|X) and φ has important computational

implications.

6For simplicity of notation we will implicitly assume the constraint that q is a distribution in the sequel.
7The dual of a norm ||·||β is defined as ||ξ||β∗ = max

α
ξ · α s. t. ||α||β ≤ 1.
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Proposition 2.2. If pθ(Y|X) factors as a product of clique potentials over a set of cliques

C, and φ(X,Y) factors as a sum over some subset of those cliques, then the optimizer

q∗(Y) of Equation 2.7 will also factor as a product of potentials of cliques in C.

This is easy to show. Our assumptions are a factorization for pθ:

Factored Posteriors : p(Y | X) =
1

Z(X)

∏
c∈C

ψ(X,Yc) (2.9)

and the same factorization for φ:

Factored Features : φ(X,Y) =
∑
c∈C

φ(X,Yc) (2.10)

which imply that q∗(Y) will also factor as a product over the cliques C:

Factored Solution : q∗(Y) =
1

Z(X)Z(λ∗)

∏
c∈C

ψ(X,Yc) exp{−λ∗ · φ(X,Yc)}

=
1

Z ′(X)

∏
c∈C

ψ′(X,Yc),

(2.11)

where ψ′(X,Yc) = ψ(X,Yc) exp{−λ∗ · φ(X,Yc)} and Z ′(X) = Z(X)Z(λ∗).

2.5 Generative Posterior Regularization via Expectation

Maximization

This section presents an optimization algorithm for the PR objective. The algorithm we

present is a minorization-maximization algorithm akin to EM, and both slack-constrained

and slack-penalized formulations can be optimized using it. To simplify the exposition,

we focus first on slack-constrained version, and leave a treatment of optimization of the

slack-penalized version to Section 2.6.

Recall the standard expectation maximization (EM) algorithm used to optimize

marginal likelihood L(θ) = log
∑

Y pθ(X,Y). Again, for clarity of exposition, we ig-

nore log p(θ), the prior on θ, as well as log pθ(XL,YL), the labeled data term, as they are
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M− Step :
max
θ
F (q, θ)

E′ − Step :
max
q∈Q

F (q, θ)

θ

q(Y)
Q

pθ(Y|X)

q(Y)

min KL

Figure 2.2: Modified EM for optimizing generative PR objective L(θ) − KL(Q ‖
pθ(Y|X)).

simple to incorporate, just as in regular EM. Neal and Hinton [1998] describe an interpreta-

tion of the EM algorithm as block coordinate ascent on a function that lower-bounds L(θ),

which we also use below. By Jensen’s inequality, we define a lower-bound F (q, θ) as

L(θ) = log
∑
Y

q(Y)
pθ(X,Y)

q(Y)
≥
∑
Y

q(Y) log
pθ(X,Y)

q(Y)
= F (q, θ). (2.12)

we can re-write F (q, θ) as

F (q, θ) =
∑
Y

q(Y) log(pθ(X)pθ(Y|X))−
∑
Y

q(Y) log q(Y)

= L(θ)−
∑
Y

q(Y) log
q(Y)

pθ(Y|X)

= L(θ)−KL(q(Y)||pθ(Y|X))

(2.13)

Using this interpretation, we can view EM as performing coordinate ascent on F (q, θ).

Starting from an initial parameter estimate θ0, the algorithm iterates two block-coordinate

ascent steps until a convergence criterion is reached:

E : qt+1 = arg max
q

F (q, θt) = arg min
q

KL(q(Y) ‖ pθt(Y | X)) (2.14)

M : θt+1 = arg max
θ

F (qt+1, θ) = arg max
θ

Eqt+1 [log pθ(X,Y)] (2.15)

where the minimization in Equation 2.14 is over the full set of distributions of hidden

variables Y. It is easy to see that the E-step sets qt+1(Y) = pθt(Y|X).
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The PR objective (Equation 2.4) is

JQ(θ) = max
q∈Q

F (q, θ) = L(θ)−min
q∈Q

KL(q(Y)||pθ(Y|X)), (2.16)

where Q = {q(Y) : ∃ξ, Eq[φ(X,Y)] − b ≤ ξ; ||ξ||β ≤ ε}. In order to optimize this

objective, it suffices to modify the E-step to include the constraints:

E′ : qt+1 = arg max
q∈Q

F (q, θt) = arg min
q∈Q

KL(q(Y) ‖ pθt(Y|X)) (2.17)

The projected posteriors qt+1(Y) are then used to compute sufficient statistics and update

the model’s parameters in the M-step, which remains unchanged, as in Equation 2.15. This

scheme is illustrated in Figure 2.2.

Proposition 2.3. The modified EM algorithm illustrated in Figure 2.2, which iterates the

modified E-step (Equation 2.17) with the normal M-step (Equation 2.15), monotonically

increases the PR objective: JQ(θt+1) ≥ JQ(θt).

Proof: The proof is analogous to the proof of monotonic increase of the standard EM

objective. Essentially,

JQ(θt+1) = F (qt+2, θt+1) ≥ F (qt+1, θt+1) ≥ F (qt+1, θt) = JQ(θt).

The two inequalities are ensured by the E′-step and M-step. E′-step sets qt+1 =

arg maxq∈Q F (q, θt), hence JQ(θt) = F (qt+1, θt). The M-step sets θt+1 =

arg maxθ F (qt+1, θ), hence F (qt+1, θt+1) ≥ F (qt+1, θt). Finally, JQ(θt+1) =

maxq∈Q F (q, θt+1) ≥ F (qt+1, θt+1) �

Note that the proposition is only meaningful when Q is non-empty and JQ is well-

defined. As for standard EM, to prove that coordinate ascent on F (q, θ) converges to

stationary points of JQ(θ), we need to make additional assumptions on the regularity of

the likelihood function and boundedness of the parameter space as in Tseng [2004]. This

analysis can be easily extended to our setting, but is beyond the scope of the current disser-

tation.

We can use the dual formulation of Proposition 2.1 to perform the projection. Proposi-

tion 2.2 implies that we can use the same algorithms to perform inference in our projected

model q as we did in our original model pθ. We illustrate this with the running example.
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Running Example For the POS tagging example with zero slack, the optimization

problem we need to solve is:

arg min
q

KL(q(Y) ‖ pθ(Y|X)) s. t. Eq[φ(X,Y)] ≤ −1

where 1 is a vector of with 1 in each entry. The dual formulation is given by

arg max
λ≥0

1·λ−logZ(λ) with q∗(Y) =
pθ(Y|X) exp{−λ∗ · φ(X,Y)}

Z(λ∗)
. (2.18)

We can solve the dual optimization problem by projected gradient ascent. The HMM

model can be factored as products over sentences, and each sentence as a product of

emission probabilities and transition probabilities.

pθ(y | x) =

∏|x|
i=1 pθ(yi|yi−1)pθ(xi|yi)

pθ(x)
(2.19)

where pθ(y1|y0) = pθ(y1) are the initial probabilities of our HMM. The constraint

features φ can be represented as a sum over sentences and further as a sum over

positions in the sentence:

φ(x,y) =

|x|∑
i=1

φi(x, yi) =

|x|∑
i=1


(−1, 0)> if yi is a verb in sentence x

(0,−1)> if yi is a noun in sentence x

(0, 0)> otherwise
(2.20)

combining the factored Equations 2.19 and 2.20 with the definition of q(Y) we see

that q(Y) must also factor as a first-order Markov model for each sentence.

q∗(Y) ∝
∏
x∈X

|x|∏
i=1

pθ(yi|yi−1)pθ(xi|yi)e−λ∗·φi(x,yi) (2.21)

Hence q∗(Y) is just a first-order Markov model for each sentence, and we can com-

pute the normalizer Z(λ∗) and marginals q(yi) for each example using forward-

backward. This allows computation of the dual objective in Equation 2.18 as well

as its gradient efficiently. The gradient of the dual objective is 1 − Eq[φ(X,Y)].

We can use projected gradient [Bertsekas, 1999] to perform the optimization, and

the projection can be done sentence-by-sentence allowing for online optimization
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such as stochastic gradient. Optimization for non-zero slack case can be done using

projected subgradient (since the norm is not smooth).

Note that on unseen unlabeled data, the learned parameters θ might not satisfy the

constraints on posteriors exactly, although typically they are fairly close if the model has

enough capacity.

2.6 Penalized Slack via Expectation Maximization

If our objective is specified using slack-penalty such as in Equation 2.5, then we need a

slightly different E-step. Instead of restricting q ∈ Q, the modified E′-step adds a cost for

violating the constraints

E′ : min
q,ξ

KL (q(Y) || pθ(Y|X)) + σ ||ξ||β

s. t. Eq[φ(X,Y)]− b ≤ ξ

. (2.22)

An analogous monotonic improvement of modified EM can be shown for the slack-

penalized objective. The dual of Equation 2.22 is

max
λ≥0

−b · λ− logZ(λ) s. t. ||λ||β∗ ≤ σ. (2.23)

2.7 PR for Discriminative Models

The PR framework can be used to guide learning in discriminative models as well as gen-

erative models. In the case of a discriminative model, we only have pθ(y|x), and the

likelihood does not depend on unlabeled data. Specifically,

LD(θ) = log pθ(YL|XL) + log p(θ), (2.24)

where (YL,XL) are any available labeled data and log p(θ) is a prior on the model param-

eters. With this definition of L(θ) for discriminative models we will optimize the discrimi-

native PR objective (zero-slack case):

Discriminative PR Likelihood : JDQ (θ) = LD(θ)−KL(Q ‖ pθ(Y|X)). (2.25)
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In the absence of both labeled data and a prior on parameters p(θ), the objective in Equa-

tion 2.4 is optimized (equal to zero) for any pθ(Y | X) ∈ Q. If we employ a parametric

prior on θ, then we will prefer parameters that come close to satisfying the constraints,

where proximity is measured by KL-divergence.

Running Example For the POS tagging example, our discriminative model might

be a first order conditional random field. In this case we model:

pθ(y|x) =
exp{θ · f(x,y)}

Zθ(x)
(2.26)

where Zθ(x) =
∑

y exp{θ · f(x,y)} is a normalization constant and f(x,y) are the

model features. We will use the same constraint features as in the generative case:

φ(x,y) = “negative number of verbs in y”, and define Qx and qx also as before.

Note that f are features used to define the model and do not appear anywhere in the

constraints while φ are constraint features that do not appear anywhere in the model.

Traditionally, the EM algorithm is used for learning generative models (the model can

condition on a subset of observed variables, but it must define a distribution over some

observed variables). The reason for this is that EM optimizes marginal log-likelihood (L in

our notation) of the observed data X according to the model. In the case of a discriminative

model, pθ(Y|X), we do not model the distribution of the observed data, the value of LD as

a function of θ depends only on the parametric prior p(θ) and the labeled data. By contrast,

the PR objective uses the KL term and the corresponding constraints to bias the model

parameters. These constraints depend on the observed data X and if they are sufficiently

rich and informative, they can be used to train a discriminative model. In the extreme case,

consider a constraint setQ that contains only a single distribution q, with q(Y∗) = 1. So, q

is concentrated on a particular labeling Y∗. In this case, the PR objective in Equation 2.25

reduces to

JDQ (θ) = LD(θ) + log pθ(Y
∗|X) = log p(θ) + log pθ(YL|XL) + log pθ(Y

∗|X) (2.27)

Thus, if Q is informative enough to uniquely specify a labeling of the unlabeled data, the

PR objective reduces to the supervised likelihood objective. When Q specifies a range of
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distributions, such as the one for multi view learning (Section 7), PR biases the discrimina-

tive model to have pθ(Y|X) close to Q.

Equation 2.25 can also be optimized with a block-coordinate ascent, leading to an EM

style algorithm very similar to the one presented in Section 2.5. We define a lower bounding

function:

F ′(q, θ) = −KL(q(Y) ‖ pθ(Y|X)) =
∑
Y

q(Y) log
pθ(Y|X)

q(Y)
. (2.28)

Clearly, maxq∈Q F
′(q, θ) = −KL(Q ‖ pθ(Y|X)) so F ′(q, θ) ≤ −KL(Q ‖ pθ(Y|X)) for

q ∈ Q.

The modified E′ and M′ steps are: 8

E′ : qt+1 = arg max
q∈Q

F ′(q, θt) = arg min
q∈Q

KL(q(Y) ‖ pθt(Y|X)) (2.29)

M′ : θt+1 = arg max
θ

F ′(qt+1, θ) = arg max
θ

Eqt+1 [log pθ(Y|X)] . (2.30)

Here the difference between Equation 2.15 and Equation 2.30 is that now there is no gen-

erative component in the lower-bound F ′(q, θ) and hence we have a discriminative update

to the model parameters in Equation 2.30.

8As with the M-step in Equation 2.15 we have ignored the prior p(θ) on model parameters and the
labeled data terms, which can be easily incorporated in the M′ step.

22



Chapter 3

Summary of Applications

Because the PR framework allows very diverse prior information to be specified in a single

formalism, the application Chapters (§6-§10) are very diverse in nature. This section at-

tempts to summarize their similarities and differences without getting into the details of the

problem applications and intuition behind the constraints. Table 3.1 summarizes the appli-

cations and constraints described in the rest of the document while Table 3.2 summarizes

the meanings of the variables x, y and φ(X,Y) as well as the optimization procedures used

for the applications presented in the sequel.

In the statistical word alignment application described in Chapter 6, the goal is to iden-

tify pairs or sets of words that are direct translations of each other. The statistical models

§# Problem Gen/Disc p/q Summary of Structural Constraints
§6 Word Alignment G q Translation process is symmetric and bijective
§7 Multi-view learn-

ing
D q Multiple views should agree on label distribution

§8 Dependency Pars-
ing

G+D p Noisy, partially observed labels encoded in φ and b

§9 Part-of-speech in-
duction

G p Sparsity structure independent of model parame-
ters: each word should be generated by a small
number of POS tags

§10 Grammar induc-
tion

p G Sparsity structure independent of model parame-
ters: the number parse edge types (grammar rules)
should be small

Table 3.1: Summary of applications of Posterior Regularization described in this disser-
tation. Gen/Disc refers to generative or discriminative models. The p/q column shows
whether we use the original model p or the projected distribution q at decode time.
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Application Symbol Meaning
Word x Pair of sentences that are translations of each other.
Alignment y Set of alignment links between words in the sentences (ex-

ponentially many possibilities).
φ(x,y) Bijective: number of times each source word is used in the

alignment y.
Symmetric: expected difference in number of times each
link is used by source→target model and target →source
model.

OPT Bijective: projected gradient. Symmetric: L-BFGS.
Multi-view x Varies by application.
learning y Varies by application.

φ(x,y) Indexed by label; ±1 if only one model predicts the label,
and 0 if both or none predict the label.

OPT Closed form.
Dependency x Natural language sentence as a sequence of words.
Parsing y Dependency parse tree (set of edges from one word to an-

other, forming a tree).
φ(x,y) Number of edges in y that are in the set of translated edges.

OPT Line search.
Part-of-speech x Natural language sentence as a sequence of words.
induction y Sequence of syntactic categories, one for each word.

φ(X,Y) Indexed by w, i, s; 1 if the ith occurrence of word w in the
corpus is tagged with syntactic category s, and 0 otherwise.

OPT Projected gradient.

Table 3.2: Summary of input and output variable meanings as well as meanings of con-
straint features and optimization methods used (OPT) for the applications summarized in
Table 3.1.

used suffer from what is known as a garbage collector effect: the likelihood function of

the simplistic translation models used prefers to align sections that are not literal transla-

tions to rare words, rather than leaving them unaligned [Moore, 2004]. This results in each

rare word in a source language being aligned to 4 or 5 words in the target language. To

alleviate this problem, we introduce constraint features that count how many target words

are aligned to each source word, and use PR to encourage models where this number is

small in expectation. Modifying the model itself to include such a preference would break

independence and make it intractable.

The multi-view learning application described in Chapter 7 leverages two or more

sources of input (“views”) along with unlabeled data. The requirement is to train two
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models, one for each view, such that they usually agree on the labeling of the unlabeled

data. We can do this using PR, and we recover the Bhattacharyya distance as a regularizer.

The PR approach also extends naturally to structured problems, and cases where we only

want partial agreement.

The grammar induction application of Chapter 8 takes advantage of an existing parser

for a resource-rich language to train a comparable resource for a resource-poor language.

Because the two languages have different syntactic structures, and errors in word alignment

abound, using such out-of-language information requires the ability to train with missing

and noisy labeling. This is achieved using PR constraints that guide learning to prefer

models that tend to agree with the noisy labeling wherever it is provided, while standard

regularization guides learning to be self-consistent.

Finally, Chapters 9 and 10 describes an application of PR to ensure a particular sparsity

structure, which can be independent of the structure of the model. Chapter 9 focuses on

the problem of unsupervised part-of-speech induction, where we are given a sample of text

and are required to specify a syntactic category for each token in the text. A well-known

but difficult to capture piece of prior knowledge for this problem is that each word type

should only occur with a small number of syntactic categories, even though there are some

syntactic categories that occur with many different word types. By using an `1/`∞ norm on

constraint features we are able to encourage the model to have precisely this kind of spar-

sity structure, and greatly increase agreement with human-generated syntactic categories.

Chapter 10 extends the application of the `1/`∞ norm to the problem of grammar induction.

In the case of grammar induction, we view edges as belonging to different types, based on

the parent part-of-speech and child part-of-speech. The idea we want to encode is that only

a small number of the possible types should occur in the language. In the setting of hard

grammars, this amounts to saying that the grammar should be small.

Table 3.1 also shows for each application whether we use the distribution over hidden

variables given by the model parameters pθ(Y|X) to decode, or whether we first project

the distribution to the constraint set and use q(Y) to decode. In general we found that when

applying the constraints on the labeled data is sensible, performing the projection before

decoding tends to improve performance. For the word alignment application and the multi-

25



view learning application we found decoding with the projected distribution improved per-

formance. By contrast, for dependency parsing, we do not have the English translations

at test time and so we cannot perform a projection. For part-of-speech induction the con-

straints are over the entire corpus, and different regularization strengths might be needed

for the training and test sets. Since we did not want to tune a second hyperparameter, we

instead decoded with p.
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Chapter 4

Related Frameworks

This chapter is largely based on Ganchev et al. [2010]. The work related to learning with

constraints on posterior distributions is described in chronological order in the following

three sections. An overall summary is most easily understood in reverse chronological

order though, so we begin with a few sentences detailing the connections to it in that or-

der. Liang et al. [2009] describe how we can view constraints on posterior distributions

as measurements in a Bayesian setting, and note that inference using such information is

intractable. By approximating this problem, we recover either the generalized expectation

constraints framework of Mann and McCallum [2007], or with a further approximation we

recover a special case of the posterior regularization framework presented in Chapter 2.

Finally, a different approximation recovers the constraint driven learning framework of

Chang et al. [2007]. To the best of our knowledge, we are the first to describe all these

connections.

4.1 Constraint Driven Learning

Chang et al. [2007, 2008] describe a framework called constraint driven learning (CODL)

that can be viewed as an approximation to optimizing the slack-penalized version of the

PR objective (Equation 2.5). Chang et al. [2007] are motivated by hard-EM, where the

distribution q is approximated by a single sample at the mode of log pθ(Y|X). Chang

et al. [2007] propose to augment log pθ(Y|X) by adding to it a penalty term based on
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some domain knowledge. When the penalty terms are well-behaved, we can view them as

adding a cost for violating expectations of constraint features φ. In such a case, CODL can

be viewed as a “hard” approximation to the PR objective:

arg max
θ

L(θ) −min
q∈M

(
KL(q(Y)||pθ(Y|X)) + σ ||Eq[φ(X,Y)]− b||β

)
(4.1)

where M is the set of distributions concentrated on a single Y. The modified E-Step

becomes:

CODL E′-step : max
Y

log pθ(Y|X) − σ ||φ(X,Y)− b||β (4.2)

Because the constraints used by Chang et al. [2007] do not allow tractable inference, they

use a beam search procedure to optimize the min-KL problem. Additionally they consider

a K-best variant where instead of restricting themselves to a single point estimate for q,

they use a uniform distribution over the top K samples.

Carlson et al. [2010] train several named entity and relation extractors concurrently in

order to satisfy type constraints and mutual exclusion constraints. Their algorithm is related

to CODL in that hard assignments are made in a way that guarantees the constraints are

satisfied. However, their algorithm is motivated by adding these constraints to algorithms

that learn pattern extractors: at each iteration, they make assignments only to the high-

est confidence entities, which are then used to extract high confidence patterns for use in

subsequent iterations. By contrast hard EM and CODL would make assignments to every

instance and change these assignments over time. Daumé III [2008] also use constraints to

filter out examples for self-training and also do not change the labels.

4.2 Generalized Expectation Criteria

Generalized expectation criteria (GE) allow a user to specify preferences about model ex-

pectations in the form of linear constraints on some feature expectations [Mann and Mc-

Callum, 2007, 2008, 2010]. As with PR, a set of constraint features φ are introduced, and

a penalty term is added to the log-likelihood objective. The GE objective is

max
θ
L(θ)− σ ||Epθ [φ(X,Y)]− b||β . (4.3)
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where ||·||β is typically the l2 norm (Druck et al. [2009] use l22) or a distance based on

KL divergence [Mann and McCallum, 2008], and the model is a log-linear model such as

maximum entropy or a CRF.

The idea leading to this objective is the following: Suppose that we only had enough

resources to make a very small number of measurements when collecting statistics about

the true distribution p∗(y|x). If we try to create a maximum entropy model using these

statistics we will end up with a very impoverished model. It will only use a small number

of features and consequently will fail to generalize to instances where these features cannot

occur. In order to train a more feature-rich model, GE defines a wider set of model features

f and uses the small number of estimates based on constraint features φ to guide learning.

By using l2 regularization on model parameters, we can ensure that a richer set of model

features are used to explain the desired expectations.

Druck et al. [2009] use a gradient ascent method to optimize the objective. Unfortu-

nately, because the second term in the GE objective (Equation 4.3) couples the constraint

features φ and the model parameters θ, the gradient requires computing the covariance be-

tween model features f and the constraint features φ under pθ. Specifically, for log-linear

models, this derivative is the covariance of the constraint features with the model features:

∂Epθ [φ(X,Y)]

∂θ
= Epθ [f(X,Y)φ(X,Y)]− Epθ [φ(X,Y)]Epθ [f(X,Y)] (4.4)

Because of this coupling, the complexity of the dynamic program needed to compute the

gradient is higher than the complexity of the dynamic program for the model. In the case

of graphical models where f and φ have the same Markov dependencies, computing this

gradient usually squares the running time of the dynamic program. A more efficient dy-

namic program might be possible [Li and Eisner, 2009, Pauls et al., 2009], however current

implementations are prohibitively slower than PR when there are many constraint features.

In order to avoid the costly optimization procedure described above, Bellare et al.

[2009] propose a variational approximation. Recall that at a high level, the difficulty in

optimizing Equation 4.3 is because the last term couples the constraint features φ with the

model parameters θ. In order to separate out these quantities, Bellare et al. [2009] introduce

an auxiliary distribution q(Y) ≈ pθ(Y|X), which is used to approximate the last term in
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Equation 4.3. The variational objective contains three terms instead of two:

arg max
θ

L(θ) −min
q

(
KL(q(Y)||pθ(Y|X)) + σ ||Eq[φ(X,Y)]− b||β

)
. (4.5)

This formulation is identical to the slack-penalized version of PR, and Bellare et al. [2009]

use the same optimization procedure (described in Chapter 2). Because both the minoriza-

tion and the maximization steps implement minimum Kullback-Leibler projections, Bel-

lare et al. [2009] refer to this algorithm as alternating projections. Note that PR can also be

trained in an online fashion, and Ganchev et al. [2009a] use an online optimization for this

objective to train a dependency parser. These experiments are described in Chapter 8.

Closely related to GE, is the work of Quadrianto et al. [2009]. The authors describe

a setting where the constraint values, b, are chosen as the empirical estimates on some

labeled data. They then train a model to have high likelihood on the labeled data, but also

match the constraint features on unlabeled data. They show that for appropriately chosen

constraint features, the estimated constraint values should be close to the true means, and

show good experimental improvements on an image retrieval task.

4.3 Measurements in a Bayesian Framework

Liang et al. [2009] approach the problem of incorporating prior information about model

posteriors from a Bayesian point of view. They motivate their approach using the following

caricature. Suppose we have log-linear model pθ(y|x) ∝ exp(θ · f(y,x)). In addition to

any labeled data (XL,YL), we also have performed some additional experiments1. In

particular, we have observed the expected values of some constraint features φ(X,Y) on

some unlabeled data X. Because there is error in measurement, they observe b ≈ φ(X,Y).

Figure 4.1 illustrates this setting. The leftmost nodes represent (x,y) pairs from the labeled

data (XL,YL). The nodes directly to the right of θ represent unlabeled (x,y) pairs from the

unlabeled data X. All the data are tied together by the dependence on the model parameters

θ. The constraint features take as input the unlabeled data set X as well as a full labeling Y,

1In their exposition, Liang et al. [2009] incorporate labeled data by including the labels among exper-
iments. We prefer to separate these types of observations because full label observations do not require
approximations.

30



XL θ X

YL Y

φ(X,Y)

b

Figure 4.1: The model used by Liang et al. [2009], using our notation. We have separated
treatment of the labeled data (XL,YL) from treatment of the unlabeled data X.

and produce some value φ(X,Y), which is never observed directly. Instead, we observe

some noisy version b ≈ φ(X,Y). The measured values b are distributed according to

some noise model pN(b|φ(X,Y)). Liang et al. [2009] note that the optimization is convex

for log-concave noise and use box noise in their experiments, giving b uniform probability

in some range near φ(X,Y).

In the Bayesian setting, the model parameters θ as well as the observed measurement

values b are random variables. Liang et al. [2009] use the mode of p(θ|XL,YL,X,b) as a

point estimate for θ:

arg max
θ

p(θ|XL,YL,X,b) = arg max
θ

∑
Y

p(θ,Y,b|X,XL,YL), (4.6)

with equality because p(θ|XL,YL,X,b) ∝ p(θ,b|XL,YL,X) =∑
Y p(θ,Y,b|X,XL,YL). Liang et al. [2009] focus on computing p(θ,Y,b|X,XL,YL).

They define their model for this quantity as follows:

p(θ,Y,b|X,XL,YL) = p(θ|XL,YL) pθ(Y|X) pN(b|φ(X,Y)) (4.7)

where the Y and X are particular instantiations of the random variables in the entire unla-

beled corpus X. Equation 4.7 is a product of three terms: a prior on θ, the model probability

pθ(Y|X), and a noise model pN(b|φ). The noise model is the probability that we observe

a value, b, of the measurement features φ, given that its actual value was φ(X,Y). The

idea is that we model errors in the estimation of the posterior probabilities as noise in the

measurement process. Liang et al. [2009] use a uniform distribution over φ(X,Y) ± ε,

which they call “box noise”. Under this model, observing b farther than ε from φ(X,Y)

has zero probability. In log space, the exact MAP objective, becomes:

max
θ

L(θ) + log Epθ(Y|X)

[
pN(b|φ(X,Y))

]
. (4.8)
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Unfortunately with almost all noise models (including no noise), and box noise in particu-

lar, the second term in Equation 4.8 makes the optimization problem intractable. 2 Liang

et al. [2009] use a variational approximation as well as a further approximation based on

Jensen’s inequality to reach the PR objective, which they ultimately optimize for their ex-

periments. We also relate their framework to GE and CODL. If we approximate the last

term in Equation 4.8 by moving the expectation inside the probability:

Epθ(Y|X)

[
pN(b | φ(X,Y))

]
≈ pN

(
b | Epθ(Y|X)[φ(X,Y)]

)
, (4.9)

we end up with an objective equivalent to GE for appropriate noise models. In particular

Gaussian noise corresponds to l22 regularization in GE, since the log of a Gaussian is squared

Euclidean distance (up to scaling). This approximation can be motivated by the case when

pθ(Y|X) is concentrated on a particular labeling Y∗: pθ(Y|X) = δ(Y∗). In this special

case the ≈ is an equality. This approximation is also used in Liang et al. [2009]. This

provides an interpretation of GE as an approximation to the Bayesian framework proposed

by Liang et al. [2009]:

max
θ

L(θ) + log pN

(
b Epθ(Y|X)[φ(X,Y)]

)
. (4.10)

Note that the objective in Equation 4.10 is a reasonable objective in and of itself, essen-

tially stating that the measured values b are not dependent on any particular instantiation

of the hidden variables, but rather represent the integral over all their possible assignments.

Liang et al. [2009] also use a variational approximation similar to the one of Bellare et al.

[2009] so that the objective they optimize is exactly the PR objective, although their opti-

mization algorithm is slightly different from the one presented in Chapter 2. Finally, if we

restrict the set of allowable distributions further to be concentrated on a single labeling Y,

we recover the CODL algorithm. Figure 4.2 summarizes the relationships.

2For very special noise, such as noise that completely obscures the signal, we can compute the second
term in Equation 4.8.
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Measurements
Posterior

Regularization
Generalized
Expectation

Constraint
Driven

Learning

variational
approximation;

Jensen’s inequality

variational
approximation

MAP
approximation

MAP
approximation

log E[pN (b|φ)]
≈

log pN (b|E[φ])

Model maxθ L(θ) + . . .
PR minq log pN

(
b|Eq(Y)[φ(X,Y)]

)−KL(q||pθ)
M log Epθ(Y|X) [pN(b|φ(X,Y))]
GE log pN

(
b|Epθ(Y|X)[φ(X,Y)]

)
CODL minY log pN (b|φ(X,Y))−KL(δ(Y)||pθ)

Figure 4.2: A summary of the different models. We use pθ(Y|X) to denote the model
probability, q(Y) to denote a proposal distribution, and pN for the noise model. The symbol
δ(Y) denotes a distribution concentrated on Y. The approximations are described in the
text: M→GE near Equation 4.10, GE→PR near Equation 4.5, PR→CODL at the end of
Section 4.3.
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Chapter 5

Expressivity of the Language

Chapter 2 described the general form of the constraints that we are able to encode using

the PR framework, and Part II is devoted to experiments with PR training of a variety of

applications and models. Chapter 2 is general, but it is too abstract to achieve an intuition

about what PR-style constraints are capable of expressing, while the chapters in Part II

have too much details about the models, particular datasets and experimental settings to

allow a reader to generalize an intuition about the expressivity of the linear constraints and

penalties supported by PR. The goal of this chapter is to bridge this gap by providing a list

of examples of the kinds of constraints that can and that cannot be encoded in PR for a few

types of models and applications, as well as rules of thumb to help guide intuition. Since

GE also uses the same kinds of constraints, it should be possible to implement the con-

straints we describe here efficiently in GE, and the constraints we cannot encode efficiently

in PR should also not be efficiently encodable for GE.

For a more detailed treatment of the constraints we have used for specific applications,

as well as more detailed descriptions of the models, experiments and result, see Chapters 6–

10 in Part II.

The rest of this chapter is organized as follows: Section 5.1 describes some prelimi-

naries and notational simplifications, and specifically defines a concept of decomposable

constraints that we will use as a subset of efficiently computable constraints throughout the

chapter.

Sections 5.2-5.4 describe a few constraints that can be encoded in a decomposable way
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for a variety of models. For these constraints, we also provide variants that cannot be en-

coded in a decomposable way in order to give an intuition of the limitations of decompos-

able constraints. Section 5.2 focuses on labeled features which have been used extensively

with GE; Section 5.3 describes agreement constraints such as the ones we use in Chapters 6

and 7; and Section 5.4 describes constraints that encode a sparsity structure, similar to the

ones we use in Chapters 9 and 10.

Sections 5.5-5.6 focus on particular model structures rather than on particular con-

straints. Section 5.5 focuses on sequence models, while Section 5.6 focuses on dependency

trees. For the two types of structures, they describe some example constraints that are de-

composable and some that are not decomposable with respect to those model structures. In

all cases, we only present a few examples rather than a complete characterization with the

hope of giving the reader an intuition of what kinds of constraints might be decomposable

for their application.

5.1 Preliminaries

Chapter 2 defines a constraint set with respect to expectations of constraint features. While

Equation 2.2 is very general, it is worth considering simplifications which are more concise

and hence easier to think about. Figure 5.1 shows a few simplifications of Equation 2.2.

The constraint sets in Figure 5.1 are written in terms of distributions q(Y) over the entire

corpus. This allows the formulation to be more general, but might be a disservice to in-

tuition. Often, we would like to make statements about distributions within each instance.

The running example in Chapter 2 is one such case. In these cases, we can create corpus

constraints by simply stacking vectors of instance constraints on top of each other to create

a high-dimensional vector of constraint features and feature expectations. This means that:
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Equality Q = {q(Y) : Eq[φ(X,Y)] = b}.
Inequalities Q = {q(Y) : Eq[φ(X,Y)] ≤ b}.

Equality with slack Q = {q(Y) : ||Eq[φ(X,Y)]− b||β ≤ ε}.
Inequalities with slack Q = {q(Y) : ∃ ξ, Eq[φ(X,Y)]− b ≤ ξ; ||ξ||β ≤ ε}.

Figure 5.1: Summary of the simplified constraints. The last row is the most general (and
hence most powerful) but also hardest to read. Many interesting constraints can be encoded
with simple equality.

φ(X,Y) =



φ1(y1,x1)
...

φi(yi,xi)
...

φn(yn,xn)


and b =



bx1

...

bxi

...

bxn


(5.1)

where n = |X| is the number of instances in our corpus. If the constraints have this special

form and the model factors as a product distribution over instances, then we can perform the

KL-projection for each instance independently of all the other instances and the resulting

solution to the projection will be just the product distribution of the instance-specific ones:

q∗(Y) =
∏
i

q∗xi(yi), (5.2)

where yi is the portion of Y corresponding to the ith instance in the corpus, q∗(Y) is the

solution to the minimization of KL(q(Y)||pθ(Y|X)) subject to the constraints and q∗xi(yi)

is the solution of the minimization KL(q(y)||pθ(y|xi)). In cases where it is natural to

define constraints on an instance-by-instance basis, we will do so. In order to simplify

notation, we will sometimes drop the i and xi subscripts when it is clear what they should

be.

Note that we use the norm notation throughout the thesis even though any convex func-

tion whose dual can be efficiently evaluated and optimized will also work. In this chapter

we mostly focus on the constraint features φ(X,Y). If a constraint set is efficiently en-

codable with respect to a model pθ(Y|X) then by Proposition 2.2 we can use the same

inference algorithms to compute feature expectations for q(Y) as we do for pθ(Y|X). The

following subsection makes this more precise.
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5.1.1 Decomposable constraints

While the most general form of Equation 2.2 is very powerful, having general constraint

features φ(Y) might not always result in a tractable optimization problem. In fact, as we

will see it will sometimes be NP-hard or ]P-hard to compute the optimal q∗(Y) subject to

Eq[φ(X,Y)] = b, or the optimal q∗(Y) will not be representable efficiently. Even when

the exact projection is not tractable it might be possible to approximate it, for example by

using Monte-Carlo samples as was done by Bellare et al. [2009].

Rather than attempting to characterize the full range of possibilities (and failing), in

this chapter we will focus on using Proposition 2.2 to guarantee that it is possible to use the

same machinery we have for computing sufficient statistics in pθ(Y|X) to compute them

in q(Y).

Definition 5.1 (decomposable constraint). Suppose that our model’s conditional distribu-

tion over labels pθ(Y|X) can be represented as a product over some clique potentials

pθ(Y|X) ∝ ∏c∈C ψc(Yc|X). Then we say that a constraint set Q is decomposable with

respect to the model if it can be encoded as Equation 2.2 (Constraint set with slack) where

the constraint features decompose as:

φ(X,Y) =
∑
c

φc(X,Yc). (5.3)

Note that if the model distribution pθ(Y|X) decomposes as a product over instances, an

instance-specific version of Definition 5.1 is strictly stronger than the corpus-wide version

in Definition 5.1. For simplicity, it will sometimes be easier to use an instance specific

notation: if pθ(y|x) ∝∏c∈C ψc(yc|x) and φ(x,y) =
∑

c φc(x,yc), we can define φ(X,Y)

as in Equation 5.2 and Q will be decomposable with respect to pθ(Y|X).

Note also that for efficiency of computing the projection in its dual formulation, it is

important for us to be able to efficiently project onto or optimize with respect to the dual

norm ||·||β∗ . We do not consider very complicated norms in this chapter, so a precise

definition of this will not be necessary for the purpose of developing an intuition.
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5.2 Feature labeling

The form of Equation 5.3 suggests one very versatile type of constraint, sometimes called

feature labeling [Druck et al., 2008]. This is most easily viewed from the point of view

of a log-linear model, such as a maximum entropy model [Jaynes, 1957, Good, 1963] or

conditional random field [Lafferty et al., 2001]. Recall that the form of the model for a

conditional random field (CRF) is given by:

p(y) ∝ exp(f(x,y) · θ) (5.4)

where in order for the normalizer of p(y) to be efficiently computable, f(x,y) must de-

compose as a sum across the cliques of the model, and the model must have low treewidth.

Consequently, any feature function that we would be able to use for a CRF or maximum

entropy model would be a decomposable constraint feature φ(x,y).

For example, Druck et al. [2009] train a dependency parser where they ask a user to

label some features of the form “given that a sentence has a verb and a noun, what is the

probability that the verb dominates the noun?” The user then states a constraint in the form

of an approximate probability for that event. In earlier work Druck et al. [2008] give the

following example of a feature labeling constraint. Suppose we are interested in classifying

documents into the categories “baseball” vs. “hockey.” The word “puck” appearing in the

document should give us a fairly strong signal that the correct label is “hockey.” We can

encode this knowledge as the constraint that for the collection of articles where the word

“puck” appears the probability of a label of “hockey” should be at least α, where α is a

confidence value – e.g. 95%. Specifically to encode this using our notation we would have:

φ(X,Y) =

|X|∑
i=1

1 if article xi contains the word “puck” and yi =“hockey”

0 otherwise,
(5.5)

and require that the expectation of this feature to be at least an α fraction of the articles that

contain the word “puck”:

Eq [φ(X,Y)] ≥
|X|∑
i=1

1 if article xi contains the word “puck”

0 otherwise.
(5.6)
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It is worth noting that even though there might be a large number of articles, we have

chosen to encode the information as a single constraint. The alternative would have been

to include a constraint for each article that contains the word “puck” and require that the

expectation of each of these constraints is at least α. However, this would have required

that each article has a label of “hockey” with probability at least α, rather than requiring

that an α fraction of the articles are labeled as “hockey” in expectation. In the multiple

constraint case, we have to prefer “hockey” over “baseball” for each article, while in the

single constraint case, we can prefer “baseball” over “hockey” in a few articles as long as

there are a sufficient number where we strongly prefer “hockey” over “baseball.” For this

particular piece of prior knowledge, a single corpus-wide constraint is more appropriate.

These kinds of feature-labeling constraints have been used extensively by a number

of researchers [Liang et al., 2009, Druck et al., 2008, 2009, Mann and McCallum, 2007,

Bellare et al., 2009, Mann and McCallum, 2008]. The difficulty in creating them is that in

choosing α for a number of features might be difficult. In the dependency parsing verb-

noun example above it might not be immediately clear what the probability that a verb

dominates a noun should be. If there is only one noun and one verb, then probably it

should be close to one. In a sentence with only one noun and several verbs, it is not clear

which of the noun-verb links should be active. One method for gathering the constraint

feature expectations is in a semi-supervised setting where in addition to unlabeled data, we

are given a labeled corpus. Liang et al. [2009] generate feature expectations in this way

and report significant improvements in performance. Quadrianto et al. [2009] use a similar

type of constraint, although in a slightly different framework and also report state of the art

results.

An alternative source of feature labeling constraints would be a rule-based system for

solving the problem. For example, suppose that we have available a rule-based part-of-

speech tagger, that we are confident has an accuracy of at least 95%. Additionally, we

might have a small labeled corpus. If we want to combine these two resources, we could

use the PR framework to train a tagger on the labeled data, but use the constraint that on

unlabeled data, our learned tagger should agree with the rule-based tagger at on at least

95% of the part-of-speech tags, in expectation. We could use other sources of noisy la-
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bels: Chapter 8 describes our experiments with training both discriminative and generative

dependency parsers using parallel text and a foreign language parser as a source of noisy la-

bels. Other possibilities include labels obtained from untrained annotators, or game-based

data collection methods. It is also possible to get similar feature labels from related tasks.

For example, if we want to train a part-of-speech tagger, but have a corpus annotated with

named entities, we could add a constraint that the tokens corresponding to named enti-

ties should have proper noun, noun or adjective tags 95% of the time. If instead we want

to induce both a part-of-speech tagger and a named entity recognizer, we could include

agreement constraints as described in the next section.

5.3 Agreement and Disagreement

The second category of constraints we will discuss are what we call agreement constraints,

and related disagreement constraints. Chapter 7 describes an application of agreement con-

straints where we have two views of the data, and we would like the predictions of two

models to agree on the label probabilities for each label. Chapter 6 presents another type of

agreement constraint which joins alignment models that have different structure (one mod-

els a source language as observations while another as hidden states), but requires the two

models to agree on the probability that a particular alignment link exists. In this section we

compare a few agreement constraints that can be encoded using decomposable constraint

features to some similar constraints that cannot. Table 5.1 summarizes the conclusions of

this section.

5.3.1 Two Views

Chapter 7 describes a setting where we have two models over the same output variables and

we would like to prefer that the two models agree on the probabilities of different labels.

Chapter 7 describes the closed form solution, as well as the relation to the Bhattacharyya

distance as a regularizer and also shows how the agreement between two views can be en-

forced in more complicated situations. For simplicity, in this section we will focus on a

binary classification problem. Suppose for a particular instance, we have two models of
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Name Setting What we can say What we can’t say
Two views We have two models

over the same set of
labels, as in Chap-
ter 7.

The probability of
each label should be
similar for the two
models.

The models should
produce the same la-
bel with high proba-
bility. (See text).

Graph structure Clustering or doc-
ument classification
where instances are
nodes in a graph.

Prefer to label in-
stances in the same
cluster/class if they
are connected by an
edge. More weakly
prefer to label them
differently.

Prefer to label in-
stances in different
clusters/classes so
that the most likely
labels disagree.

Symmetry As in Chapter 6:
Two word align-
ment models differ
according to which
language they treat
as hidden states
and which lan-
guage they treat as
observations.

Two different models
should agree on the
probability of align-
ment links.

Two different models
should agree on the
probability of entire
alignments.

Table 5.1: Summary of some agreement constraints that are efficiently encodable in the
PR framework along with some similar agreement constraints that cannot be encoded effi-
ciently.

what the output should be: p1(y1) and p2(y2). The constraint described in Chapter 7 is

equivalent to: Find a joint distribution q(y1, y2) such that KL(q||p1p2) is small, subject to

the constraint that q(y, ·) = q(·, y) for all y, where q(y, ·) represents the marginal distri-

bution of y in the first position q(y, ·) =
∑

y′ q(y, y
′) and analogously for q(·, y). More

concisely:

min
q

KL(q(y1, y2)||p1(y1)p2(y2)) s. t.
∑
y′

q(y, y′) =
∑
y′

q(y′, y) ∀y, (5.7)

where p1(y1)p2(y2) is a product distribution, and the y, y1 and y2 range over the same

possible values. There are several equivalent ways to write this problem, and a closed form

solution exists. See Chapter 7 for some details. It is also easy to solve the problem with

slack:

min
q

KL(q(y1, y2)||p1(y1)p2(y2)) s. t.

∣∣∣∣∣∑
y′

q(y, y′)− q(y′, y)

∣∣∣∣∣ ≤ ε ∀y. (5.8)
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Note that here, the form of the model pθ is a product distribution over the two labels

pθ(y1, y2) = p1(y1)p2(y2). Consequently, we need to be able to write the constraint features

in a way that they factor as a sum over the two labels. Luckily, the constraint can be written

as |Eq[φ1(y1)− φ2(y2)]| ≤ ε, where φ1(y1) returns a vector with 1 at position y1 and zeros

everywhere else, and φ2(y2) returns a vector with a 1 at position y2 and zeros elsewhere.

Chapter 7 shows that this can be extended to structured models (when ε = 0), so that even

if there are exponentially many possible labels y, the optimization problem in Equation 5.7

still has a closed form solution. In Section 5.3.3, we will see that if the models do not share

the same structure computing the projection can be hard. A formulation related to that in

Equation 5.8, but not encodable with decomposable constraints is given by:

min
q

KL(q(y1, y2)||p1(y1)p2(y2)) s. t.
∑
y1

∑
y2 6=y1

q(y1, y2) ≤ ε. (5.9)

Stating the two constraints in English might make the distinction clearer: The constraint

in Equation 5.8 states “the distribution of labels in the first and second position should

agree.” While, the constraint in Equation 5.9 states “if we choose labels from q, the labels

in the first and second position should agree with high probability.” The constraint in

Equation 5.9 cannot be written as a sum over constraint features that each only consider

one of the labels. Intuitively, this is because we need to specifically consider whether

y1 = y2 in order to evaluate whether a violation has occurred. Consequently, q(y1, y2)

will not factor as a product distribution. If we wanted to add an additional constraint that

q(y1, y2) = q1(y1)q2(y2), we would have a problem which is not convex (in q1 and q2) as

shown in Figure 5.2.

Figure 5.2 illustrates the following setting: y ranges over two possible outcomes, so

p1 and p2 each have one free parameter (a “heads” probability). If we require q(y1, y2) =

q1(y1)q2(y2), then q1 and q2 also each have one free parameter, and we can plot settings

of that parameter for which the constraints in Equations 5.8 and 5.9 are satisfied. With

the additional requirement that q(y1, y2) = q1(y1)q2(y2) the constraint set analogous to

Equation 5.9 is not convex (or even connected).

Note that the constraint set in Equation 5.9 is linear in q(y1, y2), since there is no re-

quirement for q(y1, y2) to factorize. For unstructured problems it would be efficient to
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Q = {q1(y1)q2(y2) :
|q1(y)− q2(y)| ≤ 0.3}

Q = {q1(y1)q2(y2) :∑
y1

∑
y2 6=y1

q1(y1)q2(y2) ≤ 0.3}

 0  0.5  1

q(y1)

 0

 0.5

 1
q(

y 2
)

 0  0.5  1

q(y1)

 0

 0.5

 1

q(
y 2

)

Figure 5.2: Illustration of two possible constraints for the optimization problem
minq1,q2 KL(q1(y1)q2(y2)||p1(y1)p2(y2)) s. t. q ∈ Q. Left: constraints similar to Equa-
tion 5.8; Right: constraints similar to Equation 5.9.

solve 5.9, since we would need to enumerate only quadratically many possibilities. How-

ever, the constraint set does not fit Definition 5.1, and for structured models the optimization

in Equation 5.9 cannot be solved by enumeration.

5.3.2 Graph Structure

Possibly the simplest kind of agreement constraint is motivated by graph-based semi-

supervised learning [Chapelle et al., 2006, and references therein]. In addition to any

labeled and unlabeled instances that we wish to classify, we receive a graph whose ver-

tices correspond to the instances in the labeled and unlabeled corpora. Commonly, we

would like to enforce that the labels our method assigns to two instances connected by an

edge are not very different. Here, pθ(Y) is a model that defines a probability distribution

over labelings of the entire corpus. However, the distribution decomposes as a product

over instances pθ(Y) =
∏

i pθ(yi). Let E be the set of edges in the graph. Then we could

encode the desired preference as:

min
q

KL(q(Y)||p(Y)) s. t. |Eq[φ(yi)− φ(yj)]| ≤ ε ∀(i, j) ∈ E, (5.10)
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where φ(y) is the vector of indicators

φ(y) =


δ(y = 0)

δ(y = 1)
...

δ(y = n)

 with δ(x) =

1 if x is true

0 otherwise
. (5.11)

Note that if we have ε = 0, the problem is reduced to choosing one distribution over labels

for every connected component of the graph.

It is not generally possible to encode disagreement in the same form as Equation 5.10.

In particular the problem:

min
q

KL(q(Y)||p(Y)) s. t. |Eq[φi(Y)− φj(Y)]| ≥ ε ∀(i, j) ∈ E (5.12)

does not have a convex constraint set, and is NP-hard to solve in general, by a reduction

from three-coloring. To see this, set ε = 1, suppose that each node chooses from one of

three labels (representing the three colors) and let p(Y) be the uniform distribution. The

constraint in Equation 5.12 requires any two nodes that are connected by an edge to be

colored differently, and so any q that satisfies the constraints implies the existence of a

three-coloring of the graph. In the special case where there are only two labels, a strong

disagreement constraint can be encoded as:

min
q

KL(q(Y)||p(Y)) s. t.
|Eq[φi,0(Y)− φj,1(Y)]| ≤ ε

|Eq[φi,1(Y)− φj,0(Y)]| ≤ ε
∀(i, j) ∈ E. (5.13)

Where φi,0(Y) takes on value 1 if an only if Yi = 0 and respectively for φi,1(Y), φj,0(Y)

and φj,1(Y). Equation 5.13 uses the fact that we know that if the label of node i is 1 and it

must disagree with node j, then the label of node j must be 0.

However, it is possible to encode a weaker notion of disagreement. Specifically, we can

say that the sum of the probabilities of labels on two instances should be at most one.

min
q

KL(q(Y)||p(Y)) s. t. Eq[φ(yi) + φ(yj)] ≤ 1 + ε∀(i, j) ∈ E. (5.14)

Note that this is a particularly weak notion of disagreement. If there are many possible

labels, it is likely that pθ(yi) ≤ 0.5 for all possible labels, and the constraints will be
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automatically satisfied. For example with ε = 0, Equation 5.10 requires that two nodes

joined by an edge have the same most likely label according to q, while Equation 5.14 does

not require that two nodes joined by an edge have different most likely labels.

5.3.3 Symmetry

Section 6.3 describes symmetry constraints for word alignment. In this case, we have a

parallel sentence pair and two hidden Markov models, with a different number of observa-

tions and hidden states. For example, suppose we have a Nepali sentence with n words and

a Malay sentence with m words. We will have one model, called Nepali→Malay, whose

hidden states correspond to the Nepali words and whose observations correspond to the

Malay words. We will have a second model called Malay→Nepali, whose hidden states

correspond to the Malay words and whose observations correspond to the Nepali words.

Hence the Nepali→Malay model will have n hidden states with m observations, and vice-

versa for the Malay→Nepali model. The interpretation of the hidden state assignment is

that if the hidden state corresponding to word i in one language generates the observation

corresponding to word j in the other language, then these two words are translations of

each other in this context. Chapter 6 describes details about the model parameterization,

however we ignore these details to focus on expressibility of constraints in this setting using

the PR framework.

Definition 5.2 (Alignment Link). An alignment link in this context is a pair (i, j) with

i ∈ {1 . . . n} and j ∈ {1 . . .m} corresponding to the statement that the ith Nepali word is

the translation of the j th Malay word in the sentence pair.

Definition 5.3 (Alignment). An alignment in this context is a complete set of alignment

links, specifying which Malay words translate to which Nepali words. This can be repre-

sented as an n × m binary matrix with entry (i, j) being 1 iff the (i, j) alignment link is

part of the alignment.

Both the Malay→Nepali and the Nepali→Malay models induce a distribution over

alignments. Given such a distribution, we can compute a probability that an alignment link
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(i, j) is present in an alignment generated by this distribution. For a hidden Markov align-

ment model, the probability of an alignment link corresponds to the posterior probability of

a particular state at a particular position in the HMM. The symmetry constraints described

in Section 6.3 encode the statement: for all i, j, the Malay→Nepali and the Nepali→Malay

models should give the same probability that the alignment link (i, j) is present. This con-

straint can be encoded by creating features
−→
φ i,j(y) that correspond to the (i, j) alignment

link being present according to the Nepali→Malay model and features
←−
φ i,j(y) that corre-

spond to the (i, j) alignment link being present in according to the Malay→Nepali model.

Then the constraint states
−→
φ i,j(y) − ←−φ i,j(y) = 0, so the constraint set is decomposable

with respect to a product distribution over the two directions.

An alternative statement that we might want to encode is: for all possible alignments,

the probability of the alignment according to the Malay→Nepali model should be equal

to its probability under the Nepali→Malay model. Perhaps surprisingly, it is ]P-hard to

normalize a distribution with this constraint. This might be surprising because in Chapter 7

we observe that a similar statement for two-view learning can be computed in closed form.

However, because the structure of the Malay→Nepali model is different from the structure

of the Nepali→Malay model, the problem becomes hard.

The proof sketch of the ]P-hardness is by a simple reduction from the problem of

computing the permanent, or equivalently of counting the number of perfect matchings

in a bipartite graph. Given a bipartite graph with n vertices in each part, construct a

Malay→Nepali model that has uniform transition probabilities and non-zero emission

probability for hidden state i to generate observed state j if and only if the bipartite graph

has a link from node i in the left part to node j in the right part. Similarly, construct a

Nepali→Malay model with uniform transition probabilities and non-zero emission proba-

bility for hidden state j to generate observed state i if and only if the bipartite graph has a

link from node i in the left part to node j in the right part. For both models, let the non-zero

probabilities be uniform. Now an alignment can be interpreted as a subset of the edges

in the original bipartite graph, and the Malay→Nepali model gives a uniform distribution

over subsets of the edges that use the right part exactly once, while the Nepali→Malay

model gives a uniform distribution over subsets of the edges that use the left part exactly
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once. The intersection of the non-zero alignments of the two models encodes exactly the

set of perfect matchings, and if we could compute the uniform distribution over these, we

would be able to count the number of perfect matchings. However, counting the number of

perfect matchings in a bipartite graph is ]P-hard [Valiant, 1979].

5.4 Sparsity Structure

Chapters 9 and 10 describe the application of PR for preferring models that display a par-

ticular form of sparsity structure in the posteriors. This section describes these sparsity

penalties and introduces a few more possible applications of the idea. In the simplest set-

ting, suppose that we have an unstructured model, and a corpus of instances: for example,

we might be interested in classifying scientific articles into a number of topics. The prior

knowledge that we want to encode is that some sets of the instances should collectively

only cover a small fraction of the topics. For example, we might know the names of the

authors of each article. We know that each author only publishes on a small subset of the

different possible topics. Let Ai be the set of authors of document i, and let a range over

authors. Assume that we know Ai for each document i. Fix a labeling Y. We say that an

author a publishes in a topic y if there is some document published by an author with topic

y. Call this event

φay(Y) =

1 if ∃i s. t. a ∈ Ai and Yi = y

0 otherwise
. (5.15)

A reasonable constraint we might want to enforce is∑
ay

Eq[φay(Y)] ≤ ε. (5.16)

Note that while this constraint penalizes all author-topic pairs, it does not penalize every

document-topic pair. That is, if an author has published in a particular topic, we will not

pay an additional penalty for other publications by the same author in the same topic; if

an author has never published in a topic then we pay a penalty for the new topic-author

pair. The model pθ(Y) in this case decomposes as a product over labels of individual
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documents, but unfortunately the constraint in Equation 5.16 does not decompose as a sum

over different instances. Instead, we can define slightly more decomposed features

φayi(Y) =

1 if a ∈ Ai and Yi = y

0 otherwise
, (5.17)

which are a refinement in the sense that φay is 1 if there is some i with φayi being 1:

φay(Y) = 1 iff ∃i φayi(Y) = 1. Note that for any fixed labeling Y,

max
i
φayi(Y) = φay(Y) (5.18)

and we approximate the expectation of φay with the max of the expectations of φayi. The

relaxed constraints are: ∑
ay

max
i

Eq[φayi(Y)] ≤ ε. (5.19)

A second potential criticism is that we are summing over all labels rather than counting the

non-zero entries. This could be encoded as∑
ay

δ
(

max
i

Eq[φayi(Y)] > 0
)
≤ ε, (5.20)

where δ(·) takes value 1 if its argument is true and 0 otherwise. Unfortunately, the formu-

lation in Equation 5.20 is not convex in q. To see this note that if we have just one instance

and one author, constraint requires at most ε labels to have non-zero probability according

to q. If ε = 1, then q(y = 1) = 1 is inside Q, and q(y = 2) = 1 is inside Q, but their

convex combination q(y = 1) = q(y = 2) = 0.5 is not.

The rest of this section lists some possible applications of the sparsity constraints.

1. Clustering: suppose we have a set of images of actor’s faces from many episodes of

many different TV programs. The goal is to cluster the faces into a number of actors.

For concreteness, suppose we know in advance the number of clusters and we will

use Gaussian clustering in the space of eigenfaces [Sirovich and Kirby, 1987]. We

might want to say: each TV show should correspond to a small number of actors. We

can do this by introducing a sparsity constraint as in Equation 5.19.
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2. Topic modeling: Suppose we have a large number of blogs, and we want to learn

a model for the topics of each post, for example using a latent Dirichlet allocation

topic model [Blei et al., 2003]. We can use PR with sparsity constraints to require

that each blog only uses a small number of subjects throughout all its posts.

3. Sequence models: Chapter 9 describes our experiments for trying to induce part-of-

speech tags using a hidden Markov model, and a PR penalty term similar to the one

in Equation 5.19 This leads to a smaller number of possible tags for each word, and

improves the usefulness of the tags.

4. Dependency trees: Chapter 10 describes our experiments on grammar induction,

where we try to train a dependency model and use a PR penalty term to make the

model prefer models that have a fewer number of possible dependency edge types.

5.5 Sequence Models

This section and the next one focus on particular classes of structured models and de-

scribe what types of information can be encoded with decomposable constraints for these

models and what prior knowledge either cannot be encoded, or there is no clear way to

encode them. This section focuses on models where the hidden variables have a sequen-

tial structure, while the following section focuses on cases where the hidden variables are

dependency trees.

Formally, a sequence model is one where the output variables are composed of a se-

quence of labels y = (y1 . . . yn). For simplicity of exposition, we will assume that n is a

fixed length and where the conditional model distribution can be encoded as a first-order

Markov model:

pθ(y|x) =
n∏
i=0

ψi(yi, yi+1,x), (5.21)

where the factor ψi may be a function of the entire observed variables x but can only

depend on two consecutive positions of the output y. Higher-order Markov dependencies

are also possible, as are semi-Markov models, and for some applications the additional

modeling power is very important, however the observations about decomposability of
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Name Application Constraint description
Labeled Features Any Given a particular rule that provides a partial

labeling, this rule should be correct at least
α fraction of the time over the entire corpus.
Multiple rules can be incorporated by enforc-
ing multiple constraints.

Expected Count POS Tagging There should be at least as many verbs as sen-
tences in the corpus. Similarly for nouns or
other labels in other applications.

Transition POS Tagging Determiners should be followed by a noun or
adjective 90% of the time. Adjectives should
be followed by nouns or other adjectives 90%
of the time.

Composition CCG supertagging Consecutive pairs of CCG supertags should
be able to combine with eachother 90% of the
time.

Table 5.2: Summary of simple constraints that are possible for sequences. In all cases,
φi,j(y) takes on the value 1 if the tree y contains an edge i → j and 0 otherwise. Conse-
quently, Eq[φi,j(y)] is the posterior probability that an edge is present in a tree drawn from
q.

constraints carries over to higher order Markov models, while semi-Markov models allow

a few additional types of constraints.

Sequence models have been used for a wide variety of tasks in natural language pro-

cessing, signal processing and bioinformatics. Canonical natural language applications

include part-of-speech tagging, shallow parsing and information extraction [DeRose, 1988,

Church, 1988, Merialdo, 1994, Lafferty et al., 2001, Sang and Buchholz, 2000b, Manning

and Schütze, 2000]. Signal processing applications include speech recognition, handwrit-

ing recognition, and optical character recognition [Juang and Rabiner, 1991, Taskar et al.,

2004]. Bioinformatics applications include gene finding [Burge and Karlin, 1997, Bernal

et al., 2007].

Examples of models whose conditional distribution follows the form of Equation 5.21

include first-order hidden Markov models [Rabiner, 1989], conditional random fields [Laf-

ferty et al., 2001] and Markov random fields [Kindermann et al., 1980]. The form of Equa-
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tion 5.21 requires that decomposable constraints should have constraint features that de-

compose as a sum of features that depend on the label of a single position yi or on a pair of

consecutive positions (yi, yi+1).

Table 5.2 summarizes some constraints that can be encoded in a decomposable way

with respect to a first-order Markov model. For simplicity, let us focus on a part-of-speech

tagging problem, so that the label at any position, yi, is a part-of-speech tag. In this setting

there are a number of constraints that we can encode.

As a first example, suppose we know that noun phrases tend to be composed of an

optional determiner, followed by an optional sequence of adjectives, followed by a se-

quence of nouns. Suppose we know that the word “the” is almost always a determiner.

This is an example of a feature-labeling constraint as described in Section 5.2. It is de-

composable with respect to the model defined in Equation 5.21, since we can encode it as

Eq[φ(Y)] ≥ εc, where c is the number of nouns in the corpus, φ(Y) counts the number

of occurrences of “the” labeled as a determiner and ε controls the confidence. Since φ(Y)

is a sum of indicator functions for the determiner, one at each occurrence of “the”, the

constraint is decomposable (Definition 5.1).

Suppose we want to ensure that in every sentence, a noun appears at some point after

the appearance of the word “the”. We can encode this by defining a constraint feature for

every occurrence of the word “the” in the corpus that counts the number of nouns after that

occurrence of “the”. Define the features:

φi(y) =

1 if yi = “noun”

0 otherwise.
(5.22)

Then for all positions i such that the word at position i is “the”, we can require that the

expected value of the sum of all features φj with j > i is at least 1. The optimization

problem then becomes:

min
q

KL(q(y)||p(y)) s. t. Eq

[∑
j>i

φj(y)

]
≥ 1 ∀i : xi = “the”. (5.23)

Note that this constraint is decomposable according to Definition 5.1, since we are taking

the expectation of a sum of φj(y), and each of the constraint features φj(y) only consider

a single token and its label.
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A related constraint that is not decomposable and cannot be encoded efficiently is the

following: With high probability there should be at least one noun somewhere in the label-

ing after the occurrence of “the”. Writing this optimization problem we have:

min
q

KL(q(y)||p(y)) s. t. Eq [φ′i(y)] ≥ 1 ∀i : xi = “the”. (5.24)

where

φ′i(y) =

1 if ∃j > i with yj =“noun”

0 otherwise.

The problem with the latter constraint of Equation 5.24 is that in order to evaluate whether

the labeling contains a noun at some point after “the”, we need to consider at the same

time all the parts-of-speech of the words following “the”. Because we essentially need a

logical “or” of the tags of a long sequence of words, we cannot express φ′i as a sum of

features that only consider the label of one word or pairs of words, and the constraint is not

decomposable according to Definition 5.1.

If we believe the determiner-adjective-noun pattern, we could add some additional con-

straints. For example, we might want to encourage determiners to be followed at some

later point by nouns. We can do this by defining an extra constraint feature φD similar to

the ones in Equation 5.22:

φD
i (y) =

1 if yi = “determiner”

0 otherwise
. (5.25)

We would then optimize the following problem:

min
q

KL(q(y)||p(y)) s. t. Eq

[
φD
i (y)−

∑
j>i

φj(y)

]
≤ 0 ∀i. (5.26)

In other words, we would require at every position that the expected number of nouns after

that position is at least as large as the probability that the label at that position is a de-

terminer. As before, this will not ensure that with probability 1 every determiner will be

followed by a noun. To encode the statement with high probability rather than in expecta-

tion would break the model’s Markov property, since the model would need to keep track
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of whether there has been a determiner at position i in order to decide whether a noun is

required at the last position.

Similarly, we can encode that the expected number of nouns in a sentence should be

at least as large as the expected number of determiners. The same constraint can also be

encoded for the entire corpus: we can say that there should be at least as many nouns

in the corpus as there are verbs, while allowing some sentences to have more verbs than

nouns. Table 5.2 contains some other examples of constraints that can be encoded using

factorizable constraint features.

5.6 Trees

Table 5.3 shows some examples of the kind of information that is easy to encode about de-

pendency trees. Two models that might be able to benefit from the constraints presented in

Table 5.3 are described in Chapter 8. Both produce a projective dependency representation.

However, Druck et al. [2009] describe a non-projective model that might potentially benefit

from the addition of a constraint that the trees should be mostly projective. The important

property of all these models is that they define a probability distribution over parse trees as

a product over edge factors:

pθ(y|x) =
1

Zθ(x)

∏
(i,j)∈y

ψθ(i, j,x), (5.27)

where y represents a tree composed of edges (i, j) with head node i and child node j. For

a non-projective parser, pθ(y|x) is normalized so that all directed trees are included and

can have non-zero probability. For a projective parser, only trees that do not have crossing

edges have non-zero probability and the distribution is normalized over these only. In both

cases, our constraint features φ must decompose as sums of edge features in order to meet

Definition 5.1. Table 5.3 summarizes a few decomposable constraints for dependency trees.

The constraints in Table 5.3 are defined in terms of basic edge features:

φi,j(y) =

1 if(i, j) ∈ y

0 otherwise.
(5.28)
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Because the definitions of Q in each row of Table 5.3 uses linear combinations of φi,j ,

they are decomposable constraints according to Definition 5.1. Table 5.3 is intended to

give some simple examples, and particularly to impart some intuition about the kinds of

statements that can be made in the language of expectation constraints on decomposable

features.

All of the constraints in Table 5.3 have corpus-wide versions that could also be encoded,

so for example rather than requiring that each sentence be mostly left-branching, we could

make a similar requirement of the entire corpus and allow some sentences to be right-

branching as long as overall the corpus is mostly left-branching.

Table 5.4 summarizes some constraints that are not decomposable with respect to a

model of the form of Equation 5.27. Note that even though they are not decomposable,

that does not mean that there is efficient projection is possible. It simply means that we

cannot directly apply Proposition 2.1 in order to compute the KL-projection. For example,

under a modified dynamic program siblings, and grandchild constraints are possible [Eis-

ner, 1996, McDonald, 2006], and we describe a procedure for projecting onto the almost

projective constraint. The rest of this section explains why the constraints in Table 5.4 are

not decomposable.

5.6.1 Depth and Branching Factor

As shown in Table 5.3, it is straightforward to encode a constraint that requires two edges

to both be in all parse trees (with probability 1). It is also straightforward to encode a

constraint that requires at least one of two edges to be on, at least in expectation. So a con-

junction and a disjunction can each be encoded using decomposable constraint features.

However, it is not possible to encode a disjunction of conjunctions in a decomposable man-

ner. If we could encode this, it would allow us to capture grandchild, sibling, depth and

branching factor relationships. In order to prove this, we will use the contrapositive of

Proposition 2.2: we will show that the minimizer q∗(y) of the KL divergence to pθ(y|x)

cannot be represented in a factorized form as in Equation 5.27. Since factorizable con-

straints lead to a factorizable distribution q∗(y) we can conclude that the constraints cannot

be factorizable.
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Name Statement How to encode it with φ
Directed Edge Token i should be a

parent of token j
Q = {q : Eq[φi,j(y)] ≥ 1}. We can replace
“≥ 1” by “≤ 0” to disallow a particular edge.

Undirected Edge Token i and j
should have some
parent/child rela-
tionship

Q = {q : Eq[φj,i(y) + φi,j(y)] ≥ 1}. We
can disallow undirected edges by disallow-
ing both directions.

Is Leaf Token i is a leaf Q = {q : Eq[
∑

j φi,j(y)] ≤ 0}. We can state
“token i is not a leaf” by using “≥ 1”.

Is Root Token i is the root Q = {q : Eq[
∑

j φj,i(y)] ≤ 0}. Is not root
can be achieved by using “≥ 1”.

Branch Left More than half of
the edges should
have the head on
the right

Q =
{
q : Eq

[∑
i>j φi,j −

∑
i<j φi,j

]
≤ 0
}
.

Similarly we can enforce more right branch-
ing than left branching by changing the
direction of the inequality.

Partial Labeling Tree should contain
an α fraction of the
labels in some set
E

Q =
{
q : Eq

[∑
(i,j)∈E φi,j(y)

]
≥ α|E|

}
.

See Chapter 8 for details on experiments
with this kind of constraint. It is also pos-
sible to require that only a few of certain set
of edges are present by changing the “≥” to
“≤”.

Table 5.3: Summary of simple constraints that are decomposable for trees. In all cases,
φi,j(y) takes on the value 1 iff the tree y contains an edge i→ j. Hence, Eq[φi,j(y)] is the
posterior probability that an edge is present in a tree drawn from q.

Suppose that we have a sentence with the three tokens “A”,“B” and “C”, and our model

is parameterized as in Equation 5.27. Let the parameters ψθ(i, j) be 1 for all edges. This

means that the distribution pθ(y|x) for a projective parser is the uniform distribution over

the trees in Figure 5.3.

Proposition 5.1. Let depth(y) be the depth of tree y. The minimizer q∗(y) of

min
q

KL(q(y)||pθ(y|x)) s. t. Eq[depth(y)] ≤ 1 + ε (5.29)

where pθ(y|x) is the uniform distribution over trees in Figure 5.3 does not factorize as

Equation 5.27 for any 0 < ε < 1. Consequently the constraint of bounded tree depth is not

decomposable.
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Name Statement Why we can’t encode it
Depth The tree should

have depth at most
d

The example in Figure 5.3; see text of Sec-
tion 5.6.1 and Proposition 5.1 for details.

Branching Factor Non-leaf nodes in
the tree should have
a large (or small)
degree

The example in Figure 5.3; see text of Sec-
tion 5.6.1 and Proposition 5.2 for details.

Sibling Nodes i and j
should be siblings
in the tree

The example if Figure 5.4 illustrates why
this is not possible. See Section 5.6.2, and
Proposition 5.3 for details.

Almost Projective The expectation
that a tree chosen
according to the
mode is projective
should be at least ε.

The example in Figures 5.4 and 5.5 illus-
trates why this is not decomposable. Note
there is a work-around, if we are willing to
let q(y) be a mixture model. See the text of
Section 5.6.3 for details.

Grandchild Node i should be
the grandparent of
node j

The example in Figure 5.6, as described in
Section 5.6.4 and Proposition 5.6.

Table 5.4: Summary of some natural constraints that cannot be efficiently enforced in the
PR framework given a first-order dependency model (Equation 5.27).

(a) A B C

(b) A B C

(c) A B C

(d) A B C

(e) A B C

(f) A B C

(g) A B C

Figure 5.3: An example illustrating why it is not possible to encode grandpar-
ent/grandchild, depth and branching factor relationships. Shown are the seven possible
projective trees on three vertices. If the parameters are identical for each edge, then each
tree occurs with probability 1

7
under the model. See text for details.
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Proof. First observe that trees (a), (d) and (e) in Figure 5.3 have depth 1 while the remaining

trees, (b), (c), (f) and (g) have depth 2. Consequently, for 1 > ε > 0, the minimizer

of Equation 5.29 has the same probability q∗(ya) for trees (a), (d) and (e) and the same

probability q∗(yb) for trees (b), (c), (f) and (g) in Figure 5.3.

We can use the fact that trees (a) and (e) have the same set of edges as trees (c) and (g)

to show that it is not consistent for trees (a) and (e) to have different probabilities from (c)

and (g).

Without loss of generality, let the model q∗(y) be parameterized as ψθ(i, j) = exp(θij).

Taking the log of Equation 5.27, we have:

log q∗(y|X) =
∑

(i,j)∈y

θij − logZθ. (5.30)

Define α = log q∗(ya|X) + logZθ and β = log q∗(yb|X) + logZθ. Trees (a), (e), (c) and

(g) give us:

θ√A + θAB + θAC = α (5.31)

θ√C + θCB + θCA = α (5.32)

θ√A + θCB + θAC = β (5.33)

θ√C + θAB + θCA = β (5.34)

respectively, where
√

represents the root symbol. By summing Equations 5.31 and 5.32

and subtracting Equations 5.33 and 5.34 we get that α = β. Consequently, q∗(y) does not

factorize as Equation 5.27, and tree depth constraints are not decomposable.

Note that as ε → 0, q∗(yb) → 0. We might potentially be interested in the limit:

lim ε → 0, in which case we might be satisfied if the probabilities of trees (b), (c), (f) and

(g) in Figure 5.3 tend to zero, without necessarily being equal to each other. The proof of

Proposition 5.1 shows that even this is not possible while maintaining a uniform distribution

over trees (a), (d) and (e).

The proof of Proposition 5.1 also shows that it is not possible to lower bound the depth

of the tree. Notice, that for trees on only three nodes, the three of depth 2 also have branch-

ing factor 1, since they are a chain, while the trees of depth 1 have branching factor 2, since
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the only non-leaf node has two children. Consequently, the same proof can be used for the

following proposition regarding branching factor.

Proposition 5.2. Let branch(y) be the branching factor of y. That is, the average number

of children of non-leaf nodes. The minimizer q∗(y) of

min
q

KL(q(y)||pθ(y|x)) s. t. Eq[branch(y)] ≥ 1 + ε (5.35)

where pθ(y|x) is the uniform distribution over trees in Figure 5.3 does not factorize as

Equation 5.27 for any 0 < ε < 1. Consequently the constraint of bounded branching

factor is not decomposable.

Note that it is also not possible to upper bound the branching factor.

5.6.2 Siblings

As with depth constraints, sibling constraints do not decompose in the same way as Equa-

tion 5.27. The proof is similar to the proof of Proposition 5.1, but uses the example in

Figure 5.4.

Proposition 5.3. Let siblingDE(y) be a function that takes on value 1 if nodes D and E are

siblings in tree y and 0 otherwise. The minimizer q∗(y) of

min
q

KL(q(y)||pθ(y|x)) s. t. Eq [siblingDE(y)] ≥ ε (5.36)

where pθ(y|x) is the uniform distribution over trees in Figure 5.4 does not factorize as

Equation 5.27 for any 0 < ε < 1. Consequently sibling constraints are not decomposable.

Proof. The proof is very similar to the proof of Proposition 5.1.

Observe that trees (a), (b) and (c) in Figure 5.4 have siblingDE(y) = 1 and the remain-

ing trees, (d), (e), (f) have siblingDE(y) = 0. Consequently, for 1 > ε > 0, the minimizer

of Equation 5.36 has the same probability q∗(ya) for trees (a), (b) and (c) and the same

probability q∗(yb) for trees (d), (e) and (f) in Figure 5.3.
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parent
root A B C D E

ch
ild

A 1 - - - - -
B - 1 - - - -
C - - 1 - - -
D - 1 1 1 - -
E - 1 1 1 - -

(a)
A B C D E

(b)
A B C D E

(c) A B C D E

(d)
A B C D E

(e)
A B C D E

(f)
A B C D E

Figure 5.4: An example illustrating why it is not possible to encode sibling relationships.
In the top panel are the parameters of a dependency. Dashes represent a zero factor; the
bottom panel shows the six projective trees with non-zero probability. Each has probability
1
6

under the model. See text for details.
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Using the same notation as in Proposition 5.1, Let α and β be defined as:

α = log q∗(ya) + logZθ − θ√A − θAB − θBC (5.37)

β = log q∗(yb) + logZθ − θ√A − θAB − θBC (5.38)

By taking the log of Equation 5.27 and substituting α and β, for trees (b–f) respectively,

we have:

θBD + θBE = α (5.39)

θCD + θCE = α (5.40)

θBD + θAE = β (5.41)

θCD + θAE = β (5.42)

θCD + θBE = β. (5.43)

Equations 5.41 and 5.42 give us that θBD = θCD. This combined with Equations 5.39

and 5.40 gives us that θBE = θCE . Combining this with Equations 5.40 and 5.43 we

get that α = β. Consequently, q∗(y) does not factorize as Equation 5.27, and sibling

constraints are not decomposable.

Note that Proposition 5.3 does not make a claim about ε = 1. It is easy to see that if

trees (a-c) have to each have non-zero probability, then trees (d-f) must also have non-zero

probability because each edge in trees (d-f) appears in trees (a-c). Similarly for ε = 0.

In practice, it might be sufficient to approximate q∗(y) as long as the approximation is

good. If we are only interested in approximating q∗(y) as ε→ 1, then it might be possible

to find decomposable constraints that have a solution that approaches q∗(y) as ε → 1. In

this case, it would not necessarily be the case that trees (d-f) have the same probability,

only that their probability is small and that trees (a-c) have approximately uniform prob-

ability. We have not been able to find decomposable constraints that achieve this kind of

approximation, and it is possible that a more detailed analysis will show they do not exist.
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(g) (h) (i)

A B C D E A B C D E A B C D E

Figure 5.5: The additional non-projective tree possible by the parameters in Figure 5.4. The
numbering continues from Figure 5.4. The probability of each tree for the non-projective
parser is 1

9
.

5.6.3 Almost Projective

If we have a model that allows non-projective trees, then the parameters in Figure 5.4

allow the tree in Figure 5.5 in addition to the trees in Figure 5.4. In that case, the dis-

tribution pθ(y) will be uniform over the nine trees. There are many languages that allow

non-projective trees, but where trees are mostly projective. For such a language we might

want to control the probability that a tree drawn from the model over the entire corpus will

be non-projective. The following proposition shows that such constraints are not decom-

posable, however see Proposition 5.5 for a workaround to this problem.

Proposition 5.4. Let proj(y) be a function that takes on value 1 if y is a projective tree

and 0 otherwise. The minimizer q∗(y) of

min
q

KL(q(y)||pθ(y|x)) s. t. Eq[proj(y)] ≥ ε (5.44)

where pθ(y|x) is the uniform distribution over the nine trees in Figures 5.4 and 5.5 does not

factorize as Equation 5.27 for any 0 < ε < 1. Consequently almost-projective constraints

are not decomposable.

Proof. The proof is very similar to the proof of Propositions 5.1 and 5.3. For 1 > ε > 0,

the minimizer of Equation 5.44 has the same probability q∗(ya) for trees (a-f) in Figure 5.4

and the same probability q∗(yb) for trees (g-i) Figure 5.5. Using the notation from the proof

of Proposition 5.3, with α corresponding to q∗(ya) and β to q∗(yb) we have for trees (b)

61



and (g-i) respectively:

θBD + θBE = α (5.45)

θAD + θBE = β (5.46)

θAD + θCE = β (5.47)

θBD + θCE = β. (5.48)

Equations 5.46 and 5.47 give us that θBE = θCE . This together with Equations 5.45

and 5.48 allow us to conclude that α = β. Consequently, q∗(y) does not factorize as

Equation 5.27, and almost-projective constraints are not decomposable.

Even though the almost-projective constraint is not decomposable, we can represent the

minimizer q∗(y) as a mixture of projective and non-projective distributions.

Concretely, suppose that pθ(y) is a non-projective model defined by defined by Equa-

tion 5.27, and define pproj
θ (y) to be the projective model defined by the same equation.

The difference between pθ(y) and pproj
θ (y) is normalization and the set of y for which the

probability is non-zero. The projection we would like to perform is

min
q

KL(q(y)||pθ(y)) s. t. Eq[proj(y)] ≥ ε. (5.49)

The following proposition can help us to solve the projection.

Proposition 5.5. The solution q∗(y), to the projection in Equation 5.49 has the form of a

mixture model between the projective and non-projective models:

q∗(y) = (1− α)pθ(y) + αpproj
θ (y), (5.50)

where 0 ≤ α ≤ 1 is the smallest real sufficient to ensure the constraint that

Eq[proj(y)] ≥ ε. Specifically α =
ε−Epθ [proj(y)]

1−Epθ [proj(y)]
if ε ≥ Epθ [proj(y)] and α = 0 other-

wise.

Proof. From Proposition 2.1 we have that q∗(y) ∝ pθ(y) exp(−λ∗proj(y)). 1 Splitting

1The dual parameters will have the constraint λ ≤ 0 because we have ≥ ε rather than ≤ ε as in Proposi-
tion 2.1.

62



this out into cases where proj(y) = 1 and where proj(y) = 0, we have

q∗(y) ∝ pθ(y)e−λ
∗proj(y) =

e
−λpθ(y) if y is projective

pθ(y) if y is not projective.
(5.51)

Because λ ≤ 0, we can express Equation 5.51 as q∗(y) ∝ pnop
θ (y)+(1−e−λ)pproj

θ (y), which

gives us Equation 5.50 with α = (1 − e−λ) as desired. The value of α is obtained by ob-

serving that under the projective model all trees are projective, and algebraic manipulation

of Equation 5.50.

Proposition 5.5 tells us how to compute the projection onto the set of constraints

Eq[proj(y)] ≥ ε, however in order to use it, we have to be able to estimate Epθ [proj(y)].

If we are interested in a corpus-wide constraint we can use samples or the Viterbi parses of

the corpus in order to estimate this value.

5.6.4 Grandparents and Grandchildren

Proposition 5.6. Let grandparentAE(y) be a function that takes on value 1 if node A is a

grandparent of node E in tree y and 0 otherwise. The minimizer q∗(y) of

min
q

KL(q(y)||pθ(y|x)) s. t. Eq [grandparentAE(y)] ≥ ε (5.52)

where pθ(y|x) is the uniform distribution over trees in Figure 5.6 does not factorize as

Equation 5.27 for any 0 < ε < 1. Consequently grandparent constraints are not decom-

posable.

Proof. The proof is very similar to the proof of Propositions 5.1, 5.3 and 5.4. For 1 >

ε > 0, the minimizer of Equation 5.44 has the same probability q∗(ya) for trees (a) and

(c) in Figure 5.6 and the same probability q∗(yb) for trees (b), (d) and (e). Using the same

notation as in the proof of Proposition 5.3, let α correspond to q∗(ya) and β correspond to

63



parent
root A B C D E

ch
ild

A 1 - - - - -
B - 1 - - - -
C - 1 1 - - -
D - - - 1 - -
E - - 1 1 1 -

*(a) A B C D E

(b) A B C D E

*(c)
A B C D E

(d) A B C D E

(e) A B C D E

Figure 5.6: An example illustrating why it is not possible to encode grandparent relation-
ships. In the left panel are the parameters of a dependency model. Dashes represent a zero
factor; the right panel shows the five projective trees with non-zero probability. Each has
probability 1

5
under the model. See text for details.
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q∗(yb). We then have from trees (a), (b), (d) and (e) respectively:

θAC + θCE = α (5.53)

θAC + θDE = β (5.54)

θBC + θCE = β (5.55)

θBC + θDE = β. (5.56)

Equations 5.55 and 5.56 imply θCE = θDE . This along with Equations 5.53 and 5.54

implies α = β. Consequently, the optimizer of Equation 5.52 does not factorize as Equa-

tion 5.27, and grandparent constraints are not factorizable.

As with sibling constraints we have not dealt with the case ε = 1. In this case, we want

to encode the uniform distribution over trees (a) and (c), in the form of Equation 5.27. It

is easy to see that this is not possible, since tree (d) in Figure 5.6 is composed of edges in

trees (a) and (c). Hence if trees (a) and (c) have non-zero probability, tree (d) must also

have non-zero probability. As with sibling constraints, we are not making a claim about

distributions that only approximate q∗(y), although a more detailed analysis might reveal a

stronger statement that includes a claim about approximations.
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Part II

Empirical Study
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Chapter 6

Statistical Word Alignments

Word alignments, introduced by Brown et al. [1994] as hidden variables in probabilistic

models for statistical machine translation (IBM models 1-5), describe the correspondence

between words in source and target sentences. We will denote each target sentence as

xt = (xt1, . . . , x
t
i, . . . , x

t
I) and each source sentence as xs = (xs1, . . . , x

s
j , . . . , x

s
J). A word

alignment will be represented as a matrix with entries yij indicating that target word i is a

translation of source word j. In cases where the model generating the alignment is a hidden

Markov model, we will use the conventional HMM notation for hidden variables yi = j to

mean yij = 1 and yij′ = 0 ∀j′ 6= j. Although the original IBM models are no longer com-

petitive for machine translation, the resulting word alignments are still a valuable resource.

Word alignments are used primarily for extracting minimal translation units for machine

translation, for example, phrases in phrase-based translation systems [Koehn et al., 2003]

and rules in syntax-based machine translation [Galley et al., 2004, Chiang et al., 2005], as

well as for MT system combination [Matusov et al., 2006]. But their importance has grown

far beyond machine translation: for instance, transferring annotations between languages

by projecting POS taggers, NP chunkers and parsers through word alignment [Yarowsky

and Ngai, 2001, Rogati et al., 2003, Hwa et al., 2005, Ganchev et al., 2009a]; discovery

of paraphrases [Bannard and Callison-Burch, 2005, Callison-Burch, 2007, 2008]; and joint

unsupervised POS and parser induction across languages [Snyder and Barzilay, 2008, Sny-

der et al., 2009b].

Here we describe two types of prior knowledge that when introduced as constraints in
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different word alignment models significantly boost their performance. The two constraints

are: (i) bijectivity: “one word should not translate to many words”; and (ii) symmetry:

“directional alignments of one model should agree with those of another model”. A more

extensive description of these constraints applied to the task of word alignments and the

quality of the resulting alignments can be found in Graça et al. [2009b].

6.1 Models

We consider two models below: IBM Model 1 proposed by Brown et al. [1994] and the

HMM model proposed by Vogel et al. [1996]. Both models can be expressed as:

p(xt,y | xs) =
∏
j

pd(yj | j, yj−1)pt(x
t
j | xsyj), (6.1)

where y is the alignment and yj is the index of the hidden state (source language index)

generating the target language word at index j. The models differ in their definition of the

distortion probability pd(yj | j, yj−1). Model 1 assumes that the target words are generated

independently and assigns uniform distortion probability. The HMM model assumes that

only the distance between the current and previous source word index is important pd(yj |
j, yj−1) = pd(yj | yj − yj−1). Both models are augmented by adding a special “null” word

to the source sentence.

The likelihood of the corpus, marginalized over possible alignments, is concave for

Model 1, but not for the HMM model [Brown et al., 1994, Vogel et al., 1996]. For both

models though, standard training using the Expectation Maximization algorithm [Dempster

et al., 1977] seeks model parameters θ that maximize the log-likelihood of the parallel

corpus.

On the positive side, both models are simple and complexity of inference is O(I × J)

for IBM Model 1 and O(I × J2) for the HMM. However there are several problems with

the models that arise from their directionality.

• Non-bijective: Multiple target words can align to a single source word with no

penalty.
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et que
à le lieu

de provoquer

la rupture

, et que
à le lieu

de provoquer

la rupture

,

Figure 6.1: Posterior distributions on an English to French sentence using the HMM
model. 1 Left: EN→FR model. Right: FR→ EN model. Top: Regular EM posteri-
ors. Middle: After applying bijective constraint. Bottom: After applying symmetric con-
straint. Squares are human annotations, circles are output from the model. Sure alignments
are squares with borders; possible alignments are squares without borders. Circle size in-
dicates probability value. Circle color in the middle and bottom rows indicates difference
in posterior from the top row. Green - higher probability, red - lower probability.

• Asymmetric: Swapping the source and target languages can produce very different

alignments, since only constraints and correlations between consecutive positions on

one side are enforced by the models.

The top row of Figure 6.1 shows an example of the posterior distribution for the align-

ment between an English and a French sentence using the HMM model. 1 The left figure

shows the alignment in the English to French direction where the rows are source words

and columns are target words, while the right figure shows the alignment posteriors of the

opposite direction. The first observation we make is that the posteriors are concentrated

around particular source words (rare words occurring less than 5 times in the corpus) in

1 For simplicity of exposition, in this chapter we have not discussed details such as the inclusion of a
special null word among the set of states, and we do not show the null word in Figure 6.1. For example,
with both bijective and symmetric constraints, the French words “et”, “que” and “à” are generated by the null
word, and hence remain unaligned.
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both directions, instead of being spread across different words. This is a well known prob-

lem when training using EM, called the “garbage collector effect” [Brown et al., 1993].

That is, rare words in the source language end up aligned to too many words in the target

language because the generative model has to distribute translation probability for each

source word among all candidate target words. Since the rare source word occurs in only

a few sentences it needs to spread its probability mass over fewer competing target words.

In this case, choosing to align the rare word to all of these target words leads to higher

likelihood than correctly aligning them or aligning them to the special null word, since

it increases the likelihood of this sentence without lowering the likelihood of many other

sentences.

6.2 Bijectivity Constraints

Bijectivity constraints are based on the observation that in most gold alignments, words

are aligned one-to-one. We would like to introduce this trend into the model, but adding

this to the model directly breaks the Markov property. In fact, summing over one-to-one or

near one-to-one weighted matchings is a classical #P-Complete problem [Valiant, 1979].

However, introducing alignment degree constraints in expectation in the PR framework is

easy and tractable. We simply add inequality constraints E[φ(x,y)] ≤ 1 where we have

one feature for each source word j that counts how many times it is aligned to a target word

in the alignment y:

Bijective Features : φj(x,y) =
∑
i

1(yi = j).

For example, in the alignment at the top right of Figure 6.1, the posteriors over the

source word schism clearly sum to more than 1. The effect of applying PR constraints to

the posteriors is shown in the second row. Enforcing the one to (at most) one constraint

clearly alleviates the garbage collector effect. Moreover, when distributing the probability

mass to the other words, most of the probability mass goes into the correct positions (as

can be seen by comparison to the gold alignments).
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6.3 Symmetry Constraints

Word alignment should not depend on translation direction, but this principle is clearly vi-

olated by the directional models. In fact, each directional model makes different mistakes.

The standard approach is to train two models independently and then intersect their predic-

tions [Och and Ney, 2003]. However, we show that it is much better to train two directional

models concurrently, coupling their posterior distributions over alignments with constraints

that force them to approximately agree. The idea of training jointly has also been explored

by Matusov et al. [2004] and Liang et al. [2006], although their formalization is quite dif-

ferent.

Let the directional models be defined as: −→p (−→y ) (forward) and←−p (←−y ) (backward). We

suppress dependence on xs and xt for brevity. Define y to range over the union of all

possible directional alignments−→y ∪←−y . We then define a mixture model p(y) = 1
2
−→p (y) +

1
2
←−p (y) where←−p (−→y ) = 0 and vice-versa (i.e., the alignment of one directional model has

probability zero according to the other model). We then define the following feature for

each target-source position pair i, j:

Symmetric Features : φij(x,y) =


+1 y ∈ −→y and −→yi = j

−1 y ∈ ←−y and←−yj = i

0 otherwise

.

The feature takes the value zero in expectation if a word pair i, j is aligned with equal

probability in both directions. So the constraint we want to impose is Eq[φij(x,y)] =

0 (possibly with some small violation). Note that this constraint is only feasible if the

posteriors are bijective. Clearly these features are fully factored, so to compute expectations

of these features under the model q we only need to be able to compute them under each

directional model, as we show below. To see this, we have by the definition of qλ and pθ,

qλ(y | x) =
−→p (y | x) +←−p (y | x)

2

exp{−λ · φ(x,y)}
Z

=

−→q (y | x)
Z−→q
−→p (x)

+←−q (y | x)
Z←−q
←−p (x)

2Z
,

(6.2)
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where we have defined:

−→q (y | x) =
1

Z−→q

−→p (y,x) exp{−λ · φ(x,y)} with Z−→q =
∑
y

−→p (y,x) exp{−λ · φ(x,y)},

←−q (y | x) =
1

Z←−q

←−p (y,x) exp{−λ · φ(x,y)} with Z←−q =
∑
y

←−p (y,x) exp{−λ · φ(x,y)},

Z =
1

2

(
Z−→q−→p (x)

+
Z←−q←−p (x)

)
.

All these quantities can be computed separately in each model.

The last row in Figure 6.1 shows both directional posteriors after imposing the sym-

metric constraint. Note that the projected posteriors are equal in the two models. Also, one

can see that in most cases the probability mass was moved to the correct place with the

exception of the word pair internal/le; this is because the word internal does not appear on

the French side, but the model still has to spread around the probability mass for that word.

In this case the model decided to accumulate it on the word le instead of moving it to the

null word.

6.4 Results

We evaluated the constraints using the Hansards corpus [Och and Ney, 2000] of En-

glish/French. Following prior work by Och and Ney [2003], we initialize the Model 1

translation table with uniform probabilities over word pairs that occur together in same

sentence. The HMM is initialized with the translation probabilities from Model 1 and with

uniform distortion probabilities. We train M1 for 5 iterations and train the HMM model

until no further improvement on precision and recall is seen on standard (small) develop-

ment set for this corpus. We note that when using regular EM training this requires around

4 iterations, while just 2 iterations suffices when using PR. This is likely due to the added

information that the constraints provide. We use a 40 word maximum length cutoff for

training sentences and train all models on 100, 000 sentences, testing precision and recall

on the standard test set.

Figure 6.4 shows the precision vs recall curves of both models (EN-FR, FR-EN inde-

pendently) when training using standard EM versus PR with both constraints, and the re-
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Figure 6.2: Precision vs Recall curves of both models using standard EM training (Regular)
versus PR with bijective constraints (Bijective) and symmetry constraints (Symmetric) and
different decoding types: decoding without any projection (NP), doing bijective projection
before decoding (BP), and doing symmetric projection before decoding (SP). Data is 100k
sentences of the Hansards corpus. Highest label in the legend corresponds to highest line
in the graph, second highest label to second highest line, and so on.
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sults of additionally applying the constraints at decode time in order to tease apart the effect

of the constraints during training vs. during testing. The first observation is that training

with PR significantly boosts the performance of each model. Moreover using the projection

at decode time always increases performance. Comparing both constraints, it seems that

bijective is more useful at training time. Note that using this constraint at decode time with

regular training yields worse results than just training with the same constraint using PR.

On the other hand, the symmetric constraint is stronger at decode time.
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Chapter 7

Mutli-view learning

This chapter is based on Ganchev et al. [2009b, 2008, 2010]. Multi-view learning refers

to a set of semi-supervised methods which exploit redundant views of the same input

data [Blum and Mitchell, 1998, Collins and Singer, 1999, Brefeld et al., 2005, Sindhwani

et al., 2005]. These multiple views can come in the form of context and spelling features in

the case of text processing and segmentation, hypertext link text and document contents for

document classification, and multiple cameras or microphones in the case of speech and

vision. Multi-view methods typically begin by assuming that each view alone can yield a

good predictor. Under this assumption, we can regularize the models from each view by

constraining the amount by which we permit them to disagree on unlabeled instances. This

regularization can lead to better convergence by significantly decreasing the effective size

of our hypothesis class [Balcan and Blum, 2005, Kakade and Foster, 2007, Rosenberg and

Bartlett, 2007]. This idea is related to the symmetry constraints described in Chapter 6.

In this chapter, we use PR to derive a multi-view learning algorithm. The idea is very

simple: train a model for each view, and use constraints that the models should agree on

the label distribution. Where our work is most similar to co-regularization schemes, a min-

imum Kullbeck-Leibler (KL) distance projection can be computed in closed form resulting

in an algorithm that performs better than both CoBoosting and two view Perceptron on sev-

eral natural language processing tasks. In this case, the resulting regularizer is identical to

adding a penalty term based on the Bhattacharyya distance [Kailath, 1967] between models

trained using different views.
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In addition, this framework allows us to use different labeled training sets for the two

classifiers, in the case where they have different label sets. That is, we don’t require that our

two views are both on the same labeled corpus. In that case, we can reduce the hypothesis

space by preferring pairs of models that agree on compatible labeling of some additional

unlabeled data rather than on identical labeling, while still minimizing KL in closed form.

When the two views come from models that differ not only in the label set but also in

the model structure of the output space, our framework can still encourage agreement, but

the KL minimization cannot be computed in closed form. Finally, this method uses soft

assignments to latent variables resulting in a more stable optimization procedure.

7.1 Stochastic Agreement

Note that the constraint in this chapter is similar to the one described in Chapter 6, but here

we focus on discriminative learning and the formulation is slightly different. For notational

convenience, we focus on two view learning in this exposition, however the generalization

to more than two views is fairly straightforward. Also, we focus on two discriminative log-

linear models and start by considering the setting of complete agreement. In this setting

we have a common desired output for the two models and we believe that each of the

two views is sufficiently rich to predict labels accurately. We can leverage this knowledge

by restricting our search to model pairs p1,p2 that satisfy p1(y | x) ≈ p2(y | x). Since

p1 and p2 each define a distribution over labels, we will consider the product distribution

p1(y1)p2(y2) and define constraint features such that our proposal distribution q(y1,y2)

will have the same marginal for y1 and y2. In particular, we will have one constraint

feature for each label y:

φy(y1,y2) = δ(y1 = y)− δ(y2 = y) (7.1)

Where δ(·) is the 0-1 indicator function. The constraint set Q = {q : Eq[φ] = 0} will

require that the marginals over the two output variables are identical q(y1) = q(y2). It will

be useful in the sequel to define an agreement between two models agree(p1, p2) as

agree(p1, p2) = arg min
q

KL(q(y1,y2)||p1(y1)p2(y2)) s. t. Eq[φ] = 0 (7.2)
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Proposition 7.1 relates the Bhattacharyya regularization term to the value of the optimiza-

tion problem in Equation 7.2. The Bhattacharyya distance is a very natural, symmetric

measure of difference between distributions which has been used in many signal detection

applications [Kailath, 1967]. It is also related to the well-known Hellinger distance.

Proposition 7.1. The Bhattacharyya distance − log
∑

y

√
p1(y)p2(y) is equal to 1

2
of the

value of the convex optimization problem

min
q∈Q

KL(q(y1,y2)||p1(y1)p2(y2))

where Q = {q : Eq[δ(y1 = y)− δ(y2 = y)] = 0 ∀y} ,
(7.3)

and where δ(cond) is 1 if cond is true and 0 otherwise. Furthermore, the minimizer decom-

poses as q(y1,y2) = q1(y1)q2(y2) and is given by qi(y) ∝√p1(y)p2(y).

Proof. The set Q can equivalently be defined as

Q = {q(y1,y2) : Eq[φ(y1,y2)] = 0]} (7.4)

where φ(y1,y2) is a vector of features of the form δ(y1 = y)− δ(y2 = y) with one entry

for each possible label y. By a version of Proposition 2.1 for equality constraints, the dual

of Equation 7.3 is

arg max
λ

− log
∑
y1,y2

p(y1,y2) exp(λ · φ) (7.5)

with q(y1,y2) ∝ p(y1,y2) exp(λ · φ(y1,y2)). Noting that the features decompose into

φ′(y1) − φ′(y2), we know that q(y1,y2) decomposes as q1(y1)q2(y2). Furthermore, our

constraints require that q1(y) = q2(y)∀y. To emphasize that q1 = q2 we drop the subscript

on q(y). We have

q(y1)q(y2) ∝ p1(y1) exp(λ · φ′(y1)) p2(y2) exp(−λ · φ′(y2)). (7.6)

Evaluating Equation 7.6 with y1 = y2 = y we have q(y)2 = p1(y)p2(y) which gives us a

closed form computation of agree(p1, p2) ∝
√
p1(y)p2(y). Substituting this solution into

the problem of Proposition 7.1, and performing algebraic simplification yields the desired

result.
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Replacing the minimum KL term in Equation 2.4 with a Bhattacharyya regularization

term yields the objective

min
θ
L1(θ1) + L2(θ2) + cEU [B(p1(θ1), p2(θ2))] (7.7)

where Li = E[− log(pi(yi|x; θi))] + 1
σ2
i
||θi||2 for i = 1, 2 are the standard regularized log

likelihood losses of the models p1 and p2, EU [B(p1, p2)] is the expected Bhattacharyya

distance [Kailath, 1967] between the predictions of the two models on the unlabeled data,

and c is a constant defining the relative weight of the unlabeled data relative to the labeled

data.

Our regularizer extends to full agreement for undirected graphical models. In the case

where p1 and p2 have the same structure, q = agree(p1, p2) will share this structure and

the projection can be computed in closed form.

Proposition 7.2. Suppose pi(Y|X), i ∈ {1, 2} factor as a set of clique potentials from a

set of cliques C:

pi(Y|X) =
1

Zi(X)

∏
c∈C

ψi(X,Yc)

then qi(Y) also factors as a product over clique potentials in C, and can be computed in

closed form modulo normalization as q(Y1,Y2) = q1(Y1)q2(Y2) with

qi(Y|X) =
1

Z ′(X)

∏
c∈C

√
ψ1(X,Yc)ψ2(X,Yc) (7.8)

Proof. The proof is simple algebraic manipulation. We start with Equation 7.9, an appli-

cation of Proposition 7.1.

qi(Y)2 ∝ p1(Y|X)p2(Y|X) (7.9)

= Z−1
1 Z−1

2

∏
c

ψ1(X,Yc)ψ2(X,Yc) (7.10)

=

(
1

Z ′(X)

∏
c

√
ψ1(X,Yc)ψ2(X,Yc)

)2

(7.11)

Note that Proposition 7.2 is not a special case of Proposition 2.2 because we have

defined one constraint feature φy for each possible labeling y, and these do not decompose
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according to C. We could alternatively have proven that ensuring agreement on clique

potentials is identical to ensuring agreement on labelings. In the case of log-linear Markov

random fields, the clique potentials are stored in log space so computing q corresponds to

averaging the values before computing normalization.

7.2 Partial Agreement and Hierarchical Labels

Our method extends naturally to partial-agreement scenarios. For example we can en-

courage two part-of-speech taggers with different tag sets to produce compatible parts of

speech, such as noun in tag set one and singular-noun in tag set 2, as opposed to noun in tag

set 1 and verb in tag set 2. In particular, suppose we have a mapping from both label sets

into a common space where it makes sense to encourage agreement. For the part-of-speech

tagging example, this could mean mapping all nouns from both tag sets into a single class,

all verbs into another class and so on. In general suppose we have functions g1(y1) and

g2(y2) that map variables for the two models onto the same space {z}. Then, pi(yi) and gi

induce a distribution:

pi(z) =
∑

y : gi(y)=z

pi(y) and pi(yi|z) = pi(yi)/pi(z).

We can encourage p1(z) ≈ p2(z) by adding a feature for each label in the joint space:

φz(yi) =


1 if i = 1 and g1(y1) = z

−1 if i = 2 and g2(y2) = z

0 otherwise.

(7.12)

In this case our objective becomes:

min
θ
L1(θ1) + L2(θ2) + cEU [B(p1(z), p2(z))] . (7.13)

In the special case where some labels are identical for the two models and others are incom-

patible, we have g1(z1) mapping the incompatible labels into one bin and the others into

their own special bins. Proposition 7.3 along with the optimization algorithm described in

Section 2.5 allows us to optimize this objective.
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Proposition 7.3. The Bhattacharyya distance − log
∑

z

√
p1(z)p2(z) is 1

2
the value of the

convex optimization problem

min
q

KL(q(Y1,Y2)||p1(Y1)p2(Y2))

s. t. Eq(φ) = 0,

where the constraint features φ are defined as in Equation 7.12. Furthermore, the minimizer

decomposes as q(Y1,Y2) = q1(Y1|z1)q1(z1)q2(Y2|z2)q2(z2), where q1(z1) = q2(z2) ∝√
p1(z1)p2(z2) and qi(Yi|zi) = pi(Yi|zi) i ∈ {1, 2}.

Note that the computation of agree(p1, p2) is still in closed form if our models are

unstructured.

Unfortunately, if we collapse some labels for structured models, p(Y) might not have

the same Markov properties as p(z). For example, consider the case where p is a distri-

bution over three states (1,2,3) that assigns probability 1 to the sequence (1,2,3,1,2,3,. . . )

and probability zero to other sequences. This is a first-order Markov chain. If the mapping

is 1 7→ 1 and 2, 3 7→ 0 then p(y) assigns probability 1 to (1,0,0,1,0,0,. . . ), which cannot

be represented as a first-order Markov chain. Essentially, the original chain relied on be-

ing able to distinguish between the allowable transition (2,3) and the disallowed transition

(3,2). When we collapse the states, both of these transitions map to (0,0) and cannot be

distinguished. Consequently, the closed form solution given in Proposition 7.3 is not us-

able. Potentially, we could compute some approximation to p(y) and from that compute

an approximation to q. Instead, we re-formulate our constraints to require only that the

marginals of each clique in p1 and p2 match each other rather than requiring the joint to

have the same probability:

φc,zc(Y1,Y2) =


1 if i = 1 and g1(y1)c = zc

−1 if i = 2 and g2(y2)c = zc

0 otherwise.

(7.14)

By Proposition 2.2, the features in Equation 7.14 lead to a q that respects the Markov

properties of the original models.
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Figure 7.1: Different Loss Functions. Top: Bhattacharyya distance regularization. Bottom
left: Exp-loss regularization. Bottom right: Least squares regularization.

7.3 Relation to Other Multi-View Learning

To avoid a long detour from PR, we describe here only CoBoosting [Collins and Singer,

1999] and two view Perceptron [Brefeld et al., 2005], the frameworks with which we empir-

ically compare our method in the next section. Since these methods are based on different

objective functions from ours it is worth examining where each one works best. Altun et al.

[2003] compare log-loss and exp-loss for sequential problems. They find that the loss func-

tion does not have as great an effect on performance as the feature choice. However, they

also note that exp-loss is expected to perform better for clean data, while log-loss is ex-

pected to perform better when there is label noise. The intuition behind this is in the rate of

growth of the loss functions. Exp-loss grows exponentially with misclassification margin

while log-loss grows linearly. Consequently when there is label noise, AdaBoost focuses

more on modeling the noise. Since CoBoosting optimizes a co-regularized exp-loss while

our work optimizes a co-regularized log-loss we expect to do better on problems where the

labels are noisy.

To get more intuition about this, Figure 7.1 shows the co-regularization loss functions

for our method, CoBoosting, and co-regularized least squares [Sindhwani et al., 2005]. For

two underlying binary linear classifiers, ŷ1 = sign(w1 · x) and ŷ2 = sign(w2 · x), the hori-
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zontal axes represent the values ŷ1 and ŷ2, while the vertical axis is the loss. If we consider

the plane parallel to the page, we see how the different co-regularizers penalize the clas-

sifiers when they disagree and are equally confident in their decision. Restricted to this

plane, all three co-regularizers grow at the same asymptotic rate as the loss functions for

the individual models: Linearly for our work, exponentially for CoBoosting and quadrat-

ically for co-RLS. If we look at the area where the two models agree (the flat part of the

CoBoosting graph) we see what the penalty is when the classifiers agree but have different

confidence. In this case co-RLS is harshest since it penalizes differences in the dot product

equally regardless of the absolute value of the dot product. Intuitively, this is a problem. If

one model predicts 1 with confidence 0.5 and the other predicts -1 with confidence 0.5 they

are disagreeing while if they both predict 1 with confidence 1000 and 1001 respectively,

they are agreeing on the label and are very close in their confidence estimates. At the other

extreme, CoBoosting imposes almost no penalty whenever the two classifiers agree, re-

gardless of their confidence. The Bhattacharyya distance co-regularizer lies between these

extremes, penalizing differences in confidence near the origin but is more lenient when the

classifiers are both very confident and agree.

Finally, if we have labeled data from one domain but want to apply it to another domain

we can use any of the co-training frameworks mentioned earlier, including our own, to

perform domain transfer. For sentiment classification we will see that our method performs

comparably with Structural Correspondence Learning [Blitzer et al., 2006], which is based

on Alternating Structure Optimization [Ando and Zhang, 2005].

7.4 Experiments

Our first set of experiments is for transfer learning for sentiment classification. We use

the data from Blitzer et al. [2007]. The two views are generated from a random split of

the features. We compare our method to several supervised methods as well as CoBoost-

ing [Collins and Singer, 1999], two view Perceptron [Brefeld et al., 2005] and structural

correspondence learning [Blitzer et al., 2007]. Results are in Table 7.1. The column labeled

“SCL” contains the best results from Blitzer et al. [2007], and is not directly comparable
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Domains MIRA Boost Perc mx-ent SCL CoBoost coPerc PR
books→dvds 77.2 72.0 74 78.5 75.8 78.8 75.5 79.8
dvds→books 72.8 74.8 74.5 80.3 79.7 79.8 74.5 81.3

books→electr 70.8 70.3 73.3 72.5 75.9 77.0 69.3 75.5
electr→books 70.7 62.5 73 72.8 75.4 71.0 67.5 74.3
books→kitchn 74.5 76.3 73.5 77.8 78.9 78.0 76.5 81.0
kitchn→books 70.9 66.5 67.3 70.3 68.6 69.8 66 72.8

dvds→electr 73.0 73.2 73.5 75.5 74.1 75.3 71.2 76.5
electr→dvds 70.6 66.3 64.8 69.3 76.2 73.5 63.3 73.0
dvds→kitchn 74.0 75.5 78.3 80.5 81.4 79.0 78.25 82.8

kitchn→dvds 72.7 61.8 64 69.5 76.9 70.1 60.5 72.8
electr→kitchn 84.0 73.2 81 86.5 85.9 85.0 83.3 85.8

kitchn→electr 82.7 66.3 81 82.8 86.8 83.0 80.5 85.5
Avg. improvement -1.87 -6.47 -3.18 N/A 1.61 0.33 -4.16 2.07

Std. deviation 3.04 4.73 2.21 N/A 3.31 2.03 2.12 1.27

Table 7.1: Performance of several methods on a sentiment classification transfer learning
task. Reviews of objects of one type are used to train a classifier for reviews of objects
of another type. The abbreviations in the column names are as follows. Boost: AdaBoost
algorithm, Perc: Perceptron, mx-ent: maximum entropy, SCL: structural correspondence
learning, CoBoost: CoBoosting, coPerc: two view Perceptron, PR: this work. The best
accuracy is shown in bold for each task. The last two rows of the table show the average
improvement over maximum entropy (the best performing supervised method), and also
the standard deviation of the improvement.

with the other methods since it uses some extra knowledge about the transfer task to choose

auxiliary problems. For all the two-view methods we weigh the total labeled data equally

with the total unlabeled data. We regularize the maximum entropy classifiers with a unit

variance Gaussian prior. Out of the 12 transfer learning tasks, our method performs best in

6 cases, SCL in 4, while CoBoosting performs best only once. Two view Perceptron never

outperforms all other methods. One important reason for the success of our method is the

relative strength of the maximum entropy classifier relative to the other supervised methods

for this particular task. We expect that CoBoosting will perform better than our method in

situations where Boosting significantly out-performs maximum entropy.

The next set of our experiments are on named entity disambiguation. Given a set of

already segmented named entities, we want to predict what type of named entity each one

is. We use the training data from the 2003 CoNLL shared task [Sang and Meulder, 2003].

The two views comprise content versus context features. The content features are words,
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Data size max-ent agree0 PR RRE
500 74.0 74.4 76.4 9.2%

1000 80.0 80.0 81.7 8.5%
2000 83.4 83.4 84.8 8.4%

Table 7.2: Named entity disambiguation. Prior variance and c chosen by cross valida-
tion. agree0 refers to performance of two view model before first iteration of EM. RRE is
reduction in error relative to error of MaxEnt model.

POS tags and character n-grams of length 3 for all tokens in the named entity, while con-

text features the same but for three words before and after the named entity. We used 2000

examples as test data and roughly 30,000 as unlabeled (train) data. Table 7.2 shows the re-

sults for different amounts of labeled train data. For this data, we choose the variance of the

Gaussian prior as well as the relative weighting of the labeled and unlabeled data by cross

validation on the train set. In order to test whether the advantage our method gets is from

the joint objective or from the use of agree(p1, p2), which is an instance of logarithmic

opinion pools, we also report the performance of using agree(p1, p2) when the two views

p1 and p2 have been trained only on the labeled data. In the column labeled “agree0” we

see that for this dataset the benefit of our method comes from the joint objective function

rather than from the use of logarithmic opinion pools. Note that we use different data than

the ones in Collins and Singer [1999], so our raw performance numbers are not comparable

to theirs.

In order to investigate the applicability of our method to structured learning we apply it

to the shallow parsing task of noun phrase chunking. We our experiments are on the English

training portion of the CoNLL 2000 shared task [Sang and Buchholz, 2000a]. We select

500 sentences as test data and varying amounts of data for training; the remainder was used

as unlabeled (train) data. We use content and context views, where the content view is the

current word and POS tag while the context view is the previous and next words and POS

tags. We regularize the CRFs with a variance 10 Gaussian prior and weigh the unlabeled

data so that it has the same total weight as the labeled data. The variance value was chosen

based on preliminary experiments with the data. Table 7.3 shows the F-1 scores of the dif-

ferent models. We compare our method to a monolithic CRF as well as averaged Perceptron

the two view Perceptron of Brefeld et al. [2005] with averaging. The Perceptron models
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size CRF SAR(RRE) Perc coPerc
10 73.2 78.2 (19%) 69.4 71.2
20 79.4 84.2 (23%) 74.4 76.8
50 86.3 86.9 (4%) 80.1 84.1
100 88.5 88.9 (3%) 86.1 88.1
200 89.6 89.6 (0%) 89.3 89.7
500 91.3 90.6 (-8%) 90.8 90.9

1000 91.6 91.1 (-6%) 91.5 91.8

Table 7.3: F-1 scores for noun phrase chunking with context/content views. Test data
comprises 500 sentences, with 8436 sentences divided among labeled and unlabeled train
data. The best score is shown in bold for each train data size.

were trained for 20 iterations. Preliminary experiments show that performance on held out

data does not change after 10 iterations so we believe the models have converged. Both two

view semi-supervised methods show gains over the corresponding fully-supervised method

for 10-100 sentences of training data, but do not improve further as the amount of labeled

data increases. The method presented in this dissertation out-performs two view Perceptron

when the amount of labeled data is very small, probably because regularized CRFs perform

better than Perceptron for small amounts of data. As the number of training sentences in-

creases, two view Perceptron performs as well as our method, but at this point it has little

or no improvement over the fully-supervised Perceptron.
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Chapter 8

Cross lingual projection

This chapter is based on Ganchev et al. [2009a,b, 2010]. For English and a handful of

other languages, there are large, well-annotated corpora with a variety of linguistic in-

formation ranging from named entity to discourse structure. Unfortunately, for the vast

majority of languages very few linguistic resources are available. This situation is likely

to persist because of the expense of creating annotated corpora that require linguistic ex-

pertise [Abeillé, 2003]. On the other hand, parallel corpora between many resource-poor

languages and resource-rich languages are ample, motivating recent interest in transferring

linguistic resources from one language to another via parallel text.

Dependency grammars are one such resource. They are useful for language model-

ing, textual entailment and machine translation [Haghighi et al., 2005, Chelba et al., 1997,

Quirk et al., 2005, Shen et al., 2008], to name a few tasks. Dependency grammars are

arguably more robust to transfer than constituent grammars, since syntactic relations be-

tween aligned words of parallel sentences are better conserved in translation than phrase

structure [Fox, 2002, Hwa et al., 2005]. The two main challenges to accurate training

and evaluation from aligned bitext are: (1) errors in word alignments and source language

parses, (2) unaligned words due to non-literal or distant translation.

Hwa et al. [2005] proposed to learn generative dependency grammars using Collins’

parser [Collins, 1999] by constructing full target parses via projected dependencies. To

address challenge (1), they introduced on the order of one to two dozen language-specific

transformation rules. To address challenge (2), they used a set of tree-completion rules.
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(a)

(b)

Figure 8.1: (a) An example word-aligned sentence pair with perfectly projected depen-
dencies. (All dependency edges are conserved in this case.) (b) Overview of our grammar
induction approach via bitext: the source (English) is parsed and word-aligned with tar-
get; after filtering, projected dependencies define constraints over target parse tree space,
providing weak supervision for learning a target grammar.

We present here an alternative approach to dependency grammar transfer. Our approach

uses a single, intuitive PR constraint to guide grammar learning. With this constraint, we

avoid the need for complex tree completion rules and many language-specific rules, yet still

achieve acceptable parsing accuracy.

It should be noted that while our source of supervision, a bitext, is the same as that

of Hwa et al. [2005], our learning method is more closely related to that of Druck et al.

[2009]. They use the GE framework to train a dependency parser. Their source of super-

vision comes in the form of corpus-wide expected values of linguistic rules provided by a

linguistic informant.

In what follows,X will indicate parallel part-of-speech tagged sentences in a bitext cor-

pus, along with a dependency parse of the source language. Y will indicate the dependency

parses for the target language sentences.

8.1 Approach

Figure 8.1(a) shows an aligned sentence pair example where dependencies are perfectly

“conserved” across the alignment. An edge from English parent p to child c is called

conserved if word p aligns to word p′ in the second language, c aligns to c′ in the second
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language, and p′ is the parent of c′. Note that we are not restricting ourselves to one-to-one

alignments here; p, c, p′, and c′ can all also align to other words. Unfortunately the sentence

in Figure 8.1(a) is highly unusual in its amount of dependency conservation, so we need to

do more than directly transfer conserved edges to get good parsing accuracy.

The key to our approach is a single PR constraint, which ensures that the expected

proportion of conserved edges in a sentence pair is at least η (the exact proportion we

used was 0.9, which was determined using unlabeled data as described in the experiments

section). Specifically, let Cx be the set of directed edges projected from English for a

given sentence x. Then given a parse y, the proportion of conserved edges is φ(x,y) =

1
|Cx|
∑

y∈y 1(y ∈ Cx) and the expected proportion of conserved edges under distribution

p(y | x) is

Ep[φ(x,y)] =
1

|Cx|
∑
y∈Cx

p(y | x). (8.1)

Consider how this constraint addresses errors in word alignment and source language

parses, challenge (1) from above. First, note that we are constraining groups of edges

rather than a single edge. For example, in some sentence pair we might find 10 edges that

have both end points aligned and can be transferred. Rather than requiring our target lan-

guage parse to contain each of the 10 edges, we require that the expected number of edges

from this set is at least 10η. This gives the parser freedom to have some uncertainty about

which edges to include, or alternatively to choose to exclude some of the transferred edges.

Our constraint does not address unaligned words due to non-literal or distant translation,

challenge (2), as directly. Yet, we find that the constraint sufficiently limits the distribution

over possible parses of unaligned words, such that the parser still makes reasonable choices

for them. It is also worth noting that if we wished to more directly address challenge (2),

we could add additional constraint features to the PR framework. For example, it seems

intuitive that unaligned words might tend to be leaves (e.g. articles that are dropped in some

languages but not in others). Thus, one constraint we could enforce would be to restrict the

number of children of unaligned words to fall below some threshold.

For both models, we compute the projection onto the constraint set using a simple line

search. This is possible since there is only one constraint per sentence and the constraints
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do not interact.

At a high level our approach is illustrated in Figure 8.1(b). A parallel corpus is word-

level aligned using the method described in Chapter 6, where we train an alignment model

via PR using symmetry constraints. The source (English) is parsed using a dependency

parser [McDonald et al., 2005]. Then, the filtering stage eliminates low-confidence align-

ments such as noun-to-verb alignments, restricts the training set to exclude possible sen-

tence fragments, and follows the method of Klein and Manning [2004] in stripping out

punctuation. We then learn a probabilistic parsing model using PR. In our experiments we

evaluate the learned models on dependency treebanks [Nivre et al., 2007].

8.2 Parsing Models

We explored two parsing models: a generative model used by several authors for unsuper-

vised induction and a discriminative model previously used for fully supervised training.

The discriminative parser is based on the edge-factored model and features of the

MSTParser [McDonald et al., 2005]. The parsing model defines a conditional distribu-

tion pθ(y | x) over each projective parse tree y for a particular sentence x, parameterized

by a vector θ. The probability of any particular parse is

pθ(y | x) ∝
∏
y∈y

eθ·f(y,x), (8.2)

where y is a directed edge contained in the parse tree y and f is a feature function. In the

fully supervised experiments we run for comparison, parameter estimation is performed

by stochastic gradient ascent on the conditional likelihood function, similar to maximum

entropy models or conditional random fields. One needs to be able to compute expectations

of the features f(y,x) under the distribution pθ(y | x). A version of the inside-outside

algorithm [Lee and Choi, 1997] performs this computation. Viterbi decoding is done using

Eisner’s algorithm [Eisner, 1996].

We also used a generative model based on dependency model with valence [Klein and

Manning, 2004]. Under this model, the probability of a particular parse y and a sentence
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Basic Uni-gram
Features

xi-word, xi-pos
xi-word
xi-pos
xj-word, xj-pos
xj-word
xj-pos

Basic Bi-gram Features
xi-word, xi-pos, xj-word, xj-pos
xi-pos, xj-word, xj-pos
xi-word, xj-word, xj-pos
xi-word, xi-pos, xj-pos
xi-word, xi-pos, xj-word
xi-word, xj-word
xi-pos, xj-pos

In Between POS Features
xi-pos, b-pos, xj-pos

Surrounding Word POS Features
xi-pos, xi-pos+1, xj-pos-1, xj-pos
xi-pos-1, xi-pos, xj-pos-1, xj-pos
xi-pos, xi-pos+1, xj-pos, xj-pos+1
xi-pos-1, xi-pos, xj-pos, xj-pos+1

Table 8.1: Features used by the MSTParser. For each edge (i, j), xi-word is the parent
word and xj-word is the child word, analogously for POS tags. The +1 and -1 denote
preceeding and following tokens in the sentence, while b denotes tokens between xi and
xj .

with part-of-speech tags x is given by

pθ(y,x) = proot(r(x)) · (8.3)(∏
y∈y

p¬stop(yp, yd, vy) pchild(yp, yd, yc)
)
·

(∏
x∈x

pstop(x, left, vl) pstop(x, right, vr)
)

where r(x) is the part-of-speech tag of the root of the parse tree y, y is an edge from parent

yp to child yc in direction yd, either left or right, and vy indicates valency—false if yp has

no other children further from it in direction yd than yc, true otherwise. The valencies vr/vl

are marked as true if x has any children on the left/right in y, false otherwise.

We regularize the models by parameter prior− log p(θ) = R(θ), where p(θ) is Gaussian

for the discriminative model and Dirichlet for the generative.

8.3 Experiments

We evaluate our approach by transferring from an English parser trained on the Penn tree-

bank to Bulgarian and Spanish. We evaluate our results on the Bulgarian and Spanish

corpora from the CoNLL X shared task. The Bulgarian experiments transfer a parser from

English to Bulgarian, using the OpenSubtitles corpus [Tiedemann, 2007]. The Spanish

experiments transfer from English to Spanish using the Spanish portion of the Europarl

corpus [Koehn, 2005]. For both corpora, we performed word alignments with the open

source PostCAT [Graça et al., 2009c] toolkit. We used the Tokyo tagger [Tsuruoka and
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Tsujii, 2005] to POS tag the English tokens, and generated parses using the first-order

model of McDonald et al. [2005] with projective decoding, trained on sections 2-21 of the

Penn treebank with dependencies extracted using the head rules of Yamada and Matsumoto

[2003]. For Bulgarian we trained the Stanford POS tagger [Toutanova et al., 2003] on the

Bulgtreebank corpus from CoNLL X. The Spanish Europarl data was POS tagged with

the FreeLing language analyzer [Atserias et al., 2006]. The discriminative model used the

same features as MSTParser, summarized in Table 8.1. Our model uses constraints of the

form: the expected proportion of conserved edges in a sentence pair is at least η = 90%.1

In order to better evaluate our method, we construct a baseline inspired by Hwa et al.

[2005]. The baseline creates a full parse tree from the incomplete and possibly conflicting

transferred edges using a simple random process. We start with no edges and try to add

edges one at a time verifying at each step that it is possible to complete the tree. We first try

to add the transferred edges in random order, then for each orphan node we try all possible

parents (both in random order). We then use this full labeling as supervision for a parser.

Note that this baseline is very similar to the first iteration of our model, since for a large

corpus the different random choices made in different sentences tend to smooth each other

out. We also tried to create rules for the adoption of orphans, but the simple rules we tried

added bias and performed worse than the baseline we report.

8.4 Results

Models are evaluated based on attachment accuracy—the fraction of words assigned the

correct parent. Figure 8.2 shows that models generally improve with more transfer-type

data. It also shows our method consistently outperforms the baseline. Note that each point

in these graphs is based on a single random subsample of the data, which leads to some

non-monotonicity in the left-half of some of the curves. The exact accuracy numbers for

the 10k training sentences point of Figure 8.2 are given in Table 8.2. Link-left baselines for

these corpora are much lower: 33.8% and 27.9% for Bulgarian and Spanish respectively.

1 We chose η in the following way: We split the unlabeled parallel text into two portions. We trained
models with different η on one portion and ran it on the other portion. We chose the model with the highest
fraction of conserved constraints on the second portion.
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Figure 8.2: Learning curves. Each graph compares transferring a single tree of edges
(baseline) and transferring all possible projected edges (our method). The models were
trained on sentences of length up to 20 and tested on CoNLL train sentences of length up
to 10. Punctuation was stripped at train time. Top: Bulgarian. Bottom: Spanish. Left:
Discriminative model. Right: Generative model. The non-monotonicity of the (such as
bottom left) is because each point is based on a single random sample of sentences. This
random selection can greatly affect performance when the number of sentences is small.

Discriminative Generative
Bulgarian Spanish Bulgarian Spanish

Baseline 63.8 67.6 66.5 68.2
Post.Reg. 66.9 70.6 67.8 69.5

Table 8.2: Accuracy values at the 10k training sentences point of Figure 8.2.

8.5 Generative Parser

The generative model we use is a state of the art model for unsupervised parsing. Before

evaluating, we smooth the resulting models by adding e−10 to each learned parameter,
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(1a)
This is a necessity which can not now be denied

Es un necesidad que nadie niega actualmente

1

(1b)

Es un necesidad que nadie niega actualmente

0.44
0.53

0.73 0.27
1.00

0.95 0.98 0.56

0.31

0.98

1

(1c)

Es un necesidad que nadie niega actualmente

1.00

0.84

0.87
0.96 0.99

0.40

0.57

0.96

1

(2a)
We need to see how its personnel are selected

Necesitamos ver cómo se selecciona su personal

1

(2b)
Necesitamos ver cómo se selecciona su personal

0.76
0.41

0.26

0.34
0.57 0.80 0.77

0.98 1.00

1

(2c)

Necesitamos ver cómo se selecciona su personal

1.00 1.00 0.35 0.60 0.94

0.56

0.32

0.26 0.70

0.60

0.30

1
Figure 8.3: Posteriors of two Spanish sentences from Europarl. The number on each edge
indicates the edge’s posterior probability. Edges with probability less than 0.25 are not
shown. Darker (more saturated) edges are higher probability. Green (with boxed number)
indicates a correct edge, red (no box) an incorrect. Dotted edges are conserved. (a) The
gold source and target parses and their alignment. (b) Unsupervised model initialized as
per Klein and Manning [2004] and trained for 100 EM iterations. (c) PR projection applied
to the posteriors of the middle figure, forcing Ep[|y ∩Cx|] ≥ |Cx| ∗ η = 3 ∗ 0.9, where Cx

is the set of transferred edges: {root→Necesitamos, Necesitamos→ver and personal→su}.
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merely to remove the chance of zero probabilities for unseen events. (We did not bother to

tune this value at all as it makes very little difference for final parses.) Unfortunately, we

found generative model performance was disappointing in the unsupervised setting. Using

the initialization procedure from Klein and Manning [2004], the maximum unsupervised

accuracy it achieves is 55.4% for Bulgarian and 41.7% for Spanish, and these results are

not stable. Changing the initialization parameters or training sample drastically affects the

results, even for samples with several thousand sentences. But when we use the transferred

information to constrain the learning, EM stabilizes and achieves much better performance,

also beating the Hwa et al. [2005]-inspired baseline. With the transferred information,

even setting all parameters equal at the outset does not prevent the model from learning

the dependency structure of the aligned language. Figure 8.3 shows an example of how PR

projection helps better estimate posteriors of two example sentences.

8.6 Discriminative Parser

Our discriminative parser is described in Section 8.2, and its features are illustrated in

Table 8.1. Training was performed using an online version of the constrained EM algorithm

described in Section 2.7. The online version proceeds as follows: for each sentence we use

the current model parameters to compute the model’s distribution over parse trees for the

current sentence pθ(y|x). We then perform a min KL-projection that sentence to get q(y).

Because we have only one constraint, this only requires a line-search to find the optimal λ∗.

We then perform a stochastic gradient step in the direction of q(y) and then move on to the

next sentence. We performed 100 such stochastic passes through the unlabeled constrained

corpus. In all our experiments we used a Gaussian prior variance of 100.

The transfer system performs better than the unsupervised generative model and the

baseline model for both Bulgarian and Spanish. We observed another desirable property of

the discriminative model: While the generative model can get confused and perform poorly

when the training data contains very long sentences, the discriminative parser does not

appear to have this drawback. In fact we observed that as the maximum training sentence

length increased, the parsing performance also improved.
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Chapter 9

Enforcing sparsity structure for POS

induction

This chapter is based on Graça et al. [2009a], Ganchev et al. [2009b, 2010]. Many impor-

tant NLP tasks (e.g. tagging, parsing, named-entity recognition) involve word classifica-

tion. Often, we know a priori that a word type might belong to a small set of classes (where

the class of a specific instance depends on its context) and should never belong to any of the

many possible classes outside this small set. The part-of-speech tagging task, described in

the running example, is one instance of this phenomenon. For example, consider the word

type “run”. It might belong to the verb class in some instances and the noun class in others,

but it will never be an adjective, adverb, conjunction, determiner, etc. Learning algorithms

typically assume that each word type can be associated with any existing tag, even though

in reality each word type is only ever associated with a few tags.

Unsupervised induction of this latent structure is normally performed using the EM

algorithm, but it has exhibited disappointing performance in previous work. One well-

known reason for this is that EM tends to allow each word to be generated by most POS

tags some of the time. In reality, we would like most words to have a small number of

possible POS tags. Previous work has attempted to solve this problem by applying the

Bayesian approach, using a prior to encourage sparsity in the model parameters [Gao and

Johnson, 2008, Johnson, 2007, Goldwater and Griffiths, 2007]. However, this approach

has the drawback of enforcing sparsity in the wrong direction; sparsity at the parameter
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level encodes a preference that each POS tag should generate only a few words, instead

of encoding that each word should generate only a few POS tags. Here we explore the

problem of biasing unsupervised models to favor the correct sparsity by encouraging the

model to achieve posterior sparsity on unlabeled training data.

9.0.1 `1/`∞ Regularization for POS tagging

We focus on the slack-penalized formulation of Section 2.3 for this task. We choose the PR

constraint to encourage each word to be associated with only a few parts of speech. Let the

constraint feature φwti(X,Y) have value 1 whenever the ith occurrence of word w has part-

of-speech tag t, and value 0 otherwise. For every word w, we would like there to be only

a few POS tags t such that there are occurrences i where t has nonzero probability. This

can be achieved if it “costs” a lot the first time an occurrence of a word takes a particular

tag, but afterwards future occurrences of the word can receive that same tag for free. More

precisely, for each word type w, we would like the sum (`1 norm), over tags t, of the

maximum (`∞ norm), over all occurrences wi of w, of p(wi | t), to be small; we want∑
t,w maxi p(wi | t) to be small. Note that in contrast to previous applications, these

constraints are corpus-wide instead of instance-specific. For notational simplicity we will

write φwti(X,Y) = φwti(Y), since any dependence on X is captured in the subscripts of

φwti.

Formally, this objective is an example of the slack-penalized formulation (as in Equa-

tion 2.5), but for simplicity we will use the notation:

min
q,cwt

KL(q||pθ) + σ
∑
wt

cwt s. t. Eq[φwti] ≤ cwt. (9.1)

Mapping this notation to the original equation we have: b = 0 and regularization strength

σ. The constraints on the features φwti and the summation over cwt together encode the

`1/`∞ norm. The variables cwt represent the `∞ norm of φwti, cwt = ||φwti||`∞ , while the

summation is the `1 norm of cwt. The dual of this objective has a very simple form:

max
λ≥0

− log

(∑
y

pθ(Y) exp(−λ · φ(Y))

)
s. t.

∑
i

λwti ≤ σ, (9.2)
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Figure 9.1: An illustration of `1/`∞ regularization. Left panel: initial tag distributions
(columns) for 15 instances of a word. Middle panel: optimal regularization parameters λ,
each row sums to σ = 20. Right panel: q concentrates the posteriors for all instances on
the NN tag, reducing the `1/`∞ norm from just under 4 to a little over 1.

where Y ranges over assignments to the hidden tag variables for all of the occurrences in

the training data, φ(Y) is the vector of φwti constraint feature values for assignment Y, λ is

the vector of dual parameters λwti, and the primal parameters are q(Y) ∝ pθ(Y) exp(−λ ·
φ(Y)).

An advantage of using slack penalties in this case is that `1/`∞ as a slack constraint in

the primal would lead to a non-differentiable dual penalty term, which somewhat compli-

cates optimization. Using a slack penalty makes sparsity regularization a primal penalty,

yielding dual simplex constraints, solvable efficiently via projected gradient, as described

by Bertsekas [1999]. Note that the simplex constraints in Equation 9.2 can be interpreted

as an `∞/`1 norm, which is the dual of the `1/`∞.

Figure 9.1 illustrates how the `1/`∞ norm operates on a toy example. For simplicity

suppose we are only regularizing one word and our model pθ is just a product distribution

over 15 instances of the word. The left panel in Figure 9.1 shows the posteriors under pθ.

We would like to concentrate the posteriors on a small subset of rows. The center panel of

the figure shows the λ values determined by Equation 9.2, and the right panel shows the

projected distribution q, which concentrates most of the posterior on the bottom row. Note

that we are not requiring the posteriors to be sparse, which would be equivalent to preferring

that the distribution is peaked; rather, we want a word to concentrate its tag posterior on a

few tags across all instances of the word. Indeed, most of the instances (columns) become
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Types Tokens Unk Tags `1/`∞
PTB17 23768 950028 2% 17 1.23
PT-Conll 11293 206678 8.5% 22 1.14
BulTree 12177 174160 10% 12 1.04

Table 9.1: Corpus statistics. All words with only one occurrence where replaced by the
‘unk’ token. The third column shows the percentage of tokens replaced. `1/`∞ is the value
of the sparsity for a fully supervised HMM trained in all available data.

less peaked than in the original posterior to allow posterior mass to be redistributed away

from the outlier tags. Since they are more numerous than the outliers, they moved less.

This also justifies only regularizing relatively frequent events in our model.

9.1 Results

In this section we present an empirical comparison of first-order HMMs trained with three

different methods: classic EM (EM), `1/`∞ PR (Sparse), and Bayesian estimation using

a variational approximation described in Johnson [2007] and Gao and Johnson [2008]

(VEM). Models are trained and tested on three different corpora: the Wall Street Jour-

nal portion of the Penn treebank [Marcus et al., 1993] using a reduced set of 17 tags [Smith

et al., 2005] (PTB17); the Bosque subset of the Portuguese Floresta Sinta(c)tica Tree-

bank [Afonso et al., 2002]1 used for the ConLL X shared task on dependency parsing (PT-

CoNLL)2; and the Bulgarian BulTreeBank [Simov et al., 2002] (BulTree) with 12 coarse

tags. All words that occurred only once were replaced by the token “unk”. To measure

model sparsity, we compute the average `1/`∞ norm over words occurring more than 10

times; the label ‘L1LMax’ denotes this measure in figures. Table 9.1 gives statistics for

each corpus as well as the sparsity for a first-order HMM trained on the labeled data.

Following Gao and Johnson [2008], the parameters were initialized with a “pseudo E-

step” as follows: we filled the expected count matrices with numbers 1 + X × U(0, 1),

where U(0, 1) is a random number between 0 and 1 and X is a parameter. These matrices

are then fed to the M-step; the resulting “random” transition and emission probabilities

1http://www.linguateca.pt/Floresta/
2http://nextens.uvt.nl/ conll/
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are used for the first real E step. For VEM X was set to 0.0001 (almost uniform) since

this showed a significant improvement in performance. On the other hand EM showed

less sensitivity to initialization, and we used X = 1 which resulted in the best results.

The models were trained for 200 iterations as longer runs did not significantly change the

results. For VEM we tested 4 different prior combinations based on the results of Johnson

[2007]; in later work Gao and Johnson [2008] considered a wider range of values but did

not identify definitely better choices. Sparse was initialized with the parameters obtained

by running EM for 30 iterations, followed by 170 iterations of the new training procedure.

Predictions were obtained using posterior decoding since this consistently showed small

improvements over Viterbi decoding.

We compare the models by measuring the mutual information between the distribution

of hidden states and the distribution of the truth. Ideally, a perfect method would have

mutual information equal to the entropy of both distributions. The farther the distribution

that a method produces is from the truth the smaller the information gain is. We also

evaluate the accuracy of the models using two established mappings between hidden states

and POS tags: (1-Many) maps each hidden state to the tag with which it co-occurs the most;

1-1 [Haghighi and Klein, 2006] greedily picks a tag for each state under the constraint

of never using the same tag twice. This results in an approximation of the optimal 1-1

mapping. If the numbers of hidden states and tags are not the same, some hidden states

will be unassigned (and hence always wrong) or some tags not used. In all our experiments

the number of hidden states is the same as the number of POS tags.

Figure 9.2 (Top Left) shows mutual information between the hidden state distribution

of each method and the truth. The entropy of the true distribution are: BulTree 3.05, PT-

CoNLL 3.49 and PTB17 3.22. Sparse is the method that achieves the biggest information

gain across all corpora, and is not particularly sensitive to the strength of regularization

used. Interestingly, VEM often has the smallest `1/`∞, even though mutual information is

often worst than EM.

Figure 9.2 (Top Right) shows the different average values of the L1LMax statistics

for each method across corpora. We see that both VEM and Sparse achieve values of

`1/`∞ close to the gold standard, on the other hand EM as expected as bigger values which
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Figure 9.2: (Top Left) Mutual information in bits between gold tag distribution and hidden
state distribution. The maximum is the entropy of the gold set (BulTree 3.05, PT-CoNLL
3.49 and PTB17 3.22), (Top Right) `1/`∞ value, and average (Bottom Left) 1-Many error,
(Bottom Right) 1-1 error over 10 different runs (same seeds used for each model) for 200
iterations. Error bars are standard deviation for the 10 runs. All models are first order
HMMs: EM trained using expectation maximization, VEM trained using variational EM
using 0.1 state to state prior and (01,0.0001) observation prior; Sparse trained using PR
with constraint strength σ = 10, 32, 100.

confirms the intuition that EM allows each word to be generated by most of the possible

POS tags.

Figure 9.2 (Bottom Left) shows errors for all methods on the different corpora after

10 random initializations using the 1-Many mapping. For both VEM and Sparse we pick

parameter settings resulting in the best average performance. A first conclusion is that using

the `1/`∞ constraint consistently and significantly improves the results when compared

with the other two methods.

Figure 9.2 (Bottom Right) shows the same errors for the 1-1 mapping. In this case

Sparse still beats the EM but does not always outperform VEM. One reason for this behav-

ior is that this metric is very sensitive to the number of word types associated with each
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hidden state. VEM tends to encourage some large hidden states with many word types,

which is preferable using the 1-1 mapping for large word categories such as nouns. On the

other hand Sparse tends to spread the nouns over 4 different hidden states. This difference

is particularly pronounced for the condensed tag sets (PTB17, PT-CoNLL) where different

kinds of nouns are joined into one large tag. Also this difference is bigger for VEM when

the observation prior is set to bigger values (0.1), leading at the same time to worse results

in 1-Many mapping.
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Chapter 10

Enforcing sparsity structure for

Grammar induction

In this chapter, we investigate unsupervised learning methods for dependency parsing mod-

els that impose sparsity biases on the types of dependencies. We assume a corpus annotated

with part-of-speech (POS) tags, where the task is to induce a dependency model from the

tag sequences for corpus sentences. In this setting, the type of a dependency is defined

as a simple pair: tag of the dependent (also known as the child), and tag of the head (also

known as the parent) for that dependent. Given that POS tags are typically designed to con-

vey information about grammatical relations, it is reasonable to assume that only some of

the possible dependency types would be realized for any given language. For instance, it is

ungrammatical for cardinal numbers to dominate verbs adjectives to dominate adverbs, and

determiners to dominate almost any part of speech. In other words, the realized dependency

types should be a sparse subset of all the possible types.

Previous work in unsupervised grammar induction has tried to achieve sparsity through

priors on model parameters. For instance, Liang et al. [2007], Finkel et al. [2007] and John-

son et al. [2007] experimented with hierarchical Dirichlet process priors and Headden III

et al. [2009] proposed a discounting Dirichlet prior. Such priors on parameters encourage

a standard generative dependency parsing model (see Section 10.1) to limit the number of

dependent types for each head type. Although not focused on sparsity, several other studies

use soft parameter sharing to constrain the capacity of the model and hence couple differ-
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ent types of dependencies. To this end, Cohen et al. [2008] and Cohen and Smith [2009]

investigated a (shared) logistic normal prior, and Headden III et al. [2009] used a backoff

scheme.

Our experiments (see Section 10.4) show that the more effective sparsity pattern is one

that limits the total number of unique head-dependent tag pairs. Unlike sparsity-inducing

parameter priors, this kind of sparsity bias does not induce competition between dependent

types for each head type. We can achieve the desired bias with a sparsity constraint on

model posteriors, similar to the constraints in Chapter 9.

As in Chapter 9, Specifically, to implement PR we augment the maximum likelihood

objective of a generative model with a term that penalizes head tag-dependent tag distri-

butions that are too permissive. In the case of parse trees, we consider two choices for the

form of the penalty, and show experimentally that the following penalty works especially

well: the model pays for the first time it selects a word with tag c as a dependent of a head

with tag p; after that, choosing a head with that p for any other occurrence of c is free.

The model and all the code required to reproduce the experiments is available online at

http://code.google.com/p/pr-toolkit.

10.1 Parsing Model

The models we consider are based on Klein and Manning [2004]’s dependency model with

valence (DMV), introduced in Chapter 8. We also investigate extensions to the DMV bor-

rowed from McClosky [2008] and Headden III et al. [2009]. These extensions are not

crucial to our experimental success with posterior regularization, but we choose to explore

them for better comparison with previous work. As will be discussed in the experiments

section, both for the basic and for the extended models accuracy can be increased by apply-

ing posterior regularization. Section 10.1.1 describes the basic model and Section 10.1.2

describes the extensions we implemented.
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Figure 10.1: Example of a dependency tree with DMV probabilities. Right-dependents of
a head are denoted by r, left-dependents by l. The letters t and f denote ‘true’ and ‘false.’
For example, in pstop(f | V, r, f) the f to the left of the conditioning bar indicates that
the model has decided not to stop, and the other f indicates V does not yet have any right
dependents. Note that the pstop(t | . . .) are omitted in this diagram.

10.1.1 Dependency Model With Valence (DMV)

The DMV model specifies the following generative process. For a sentence consisting of

POS tags x, the root head POS r(x) is generated first with probability proot(r(x)). For

example, in Figure 10.1 this corresponds to generating the V with probability proot(V ).

After generating the root, the model next generates dependents of the root. First, it

generates right dependents. It decides whether to produce a right dependent conditioned

on the identity of the root and the fact that it currently has no other right dependents. In

our example, this decision is represented by the probability pstop(f | V, r, f). 1 If it decides

to generate a right dependent, it generates a particular dependent POS by conditioning on

the fact that the head POS is r(x) and that the directionality is to the right. In our example,

this corresponds to the probability pchild(N | V, r). The model then returns to the choice of

whether or not to stop generating right dependents, this time conditioned on the fact that it

already has at least one right dependent. In our example, this corresponds to the probability

pstop(t | V, r, t), which indicates that the model is done generating right dependents of V .

After stopping the generation of right dependents, the model generates left-dependents

using the mirror reversal of the previous process. Once the root has generated all of its

dependents, the dependents generate their own dependents recursively in the same manner.

1Here f represents “false” and r represents that we are generating children to the “right.” In this case we
decide not to stop (the first f ) and conditions on not having already generated dependents on the right (the
second f ).
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Note that in Figure 10.1 the leftmost dependent of the final N is generated before the

other left dependent. The convention we are using here is that the model generates depen-

dents starting with the rightmost one, moving inward (leftward) until all right dependents

are added, then it generates the leftmost left dependent and moves inward (rightward) from

there. This convention has no effect on the final probability of a parse tree under the basic

DMV. However, as we will see in the following subsection, it does affect dependency tree

probabilities in the extended model.

10.1.2 Model Extensions

We implemented three model extensions, borrowed from McClosky [2008] and Head-

den III et al. [2009]. The first extension relates to the stop probabilities, and the second

two relate to dependent probabilities.

Extending Stop Probabilities

This extension conditions whether to stop generating dependents in a given direction on

a larger set of previous decisions. Specifically, the probability of stopping in a particular

direction depends not only on whether there are any dependents in that direction already,

but also on how many. In the example of Figure 10.1, this corresponds to changing pstop(f |
V, r, f) to pstop(f | V, r, 0) and similarly for all the other stop probabilities. The 0 in this

case indicates that V has no other right dependents when it decides whether to continue

generating right dependents.

In later sections of this chapter, when we talk about a model with maximum stop va-

lency S, this means we distinguish the cases of 0, 1, . . . , S − 1, and ≥ S dependents in

a given direction. The basic DMV has maximum stop valency 1 because it distinguishes

between having zero dependents and at least one dependent in a given direction. A model

with maximum stop valency of 2 would distinguish between having 0, 1, or at least 2 de-

pendents in a particular direction. In this case, when a head generates more dependents in a

particular direction after its second dependent, the stopping distribution it draws from will

always be the same—for head p and direction d this will be pstop(· | p, d, 2).
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Extending Dependent Probabilities

The second model extension we implement is analogous to the first, but applies to depen-

dent tag probabilities instead of stop probabilities. That is, we expand the set of variables

the model conditions on when selecting a particular dependent tag. Again, what we con-

dition on is how many other dependents were already generated in the same direction. For

the example in Figure 10.1, this means pchild(N | V, r) becomes pchild(N | V, r, 0) and

similarly for all other pchild. In later sections of this paper, when we talk about a model

with maximum child valency C, this means we distinguish between having 0, 1, . . . , C−1,

and≥ C dependents in a particular direction. The basic DMV has maximum child valency

0 because it does not make these distinctions.

This extension to the child probabilities dramatically increases model complexity.

Specifically, the number of parameters grows as O(CT 2). Thus, the third and final model

extension we implement is to add a backoff for the child probabilities that does not condi-

tion on the identity of the parent POS (see Equation 10.2).

With this model extension, the order in which dependents are generated becomes rel-

evant to the probability of an overall parse tree. We choose to stick with the conventional

generation order described in Section 10.1.1. In cases where the identity of the rightmost

and leftmost dependents have a greater influence on the true stop probability than the inner

dependents, this ordering will work to the model’s advantage. We do not investigate in

this work which languages this holds true for, though changing this ordering might be one

additional way to increase parsing accuracy for some languages.

Complete Model

Formally, under the extended DMV the probability of a sentence with POS tags x and

dependency tree y is given by:

pθ(x,y) = proot(r(x))×∏
y∈y

pstop(false | yp, yd, yvs)pchild(yc | yp, yd, yvc)×∏
x∈x

pstop(true | x, left, xvl) pstop(true | x, right, xvr)

(10.1)
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where r(x) is the root tag of the dependency tree, y is the dependency of yc on head yp

in direction yd, and yvc , yvs , xvr , and xvl indicate valence. To formally define these last

four variables, first let Vc denote the model’s maximum child valency and let Vs denote

maximum stop valency. Further, let acpd to be the number of yp’s dependents that are

further in direction yd than yc, and axl (axr) be the total number of dependents of parent x

to the left (right). Then we can formally express the valency variables as:

yvc = min(Vc, acpd), yvs = min(Vs, acpd)

xvl = min(Vs, axl), xvr = min(Vs, axr).

In the third model extension, the backoff for the child probability to a probability not de-

pendent on parent POS, pchild(yc | yd, yvc), can formally be expressed by:

λpchild(yc | yp, yd, yvc) + (1− λ)pchild(yc | yd, yvc) (10.2)

for λ ∈ [0, 1]. In Headden III et al. [2009] λ is a learned model parameter. In our experi-

ments, we do not try to tune λ, but rather fix it at 1/3. This is a crude approximation to the

value used by Headden III et al. [2009] (see Section 10.2.2 for more details).

10.1.3 Model Initialization

DMV model parameter initialization plays a crucial role in the learned model’s accuracy

because of local maxima in the likelihood function. Klein and Manning [2004] use an

“harmonic initializer”, which we will refer on this paper as K&M. This initialization uses

the posteriors for a fake E-step as initial parameter: posterior root probabilities are uniform

proot(r(x)) = 1
|x| and head-dependent probabilities are inversely proportional to the string

distance between head and dependent, pchild(yc | yp, yd, yvc) ∝ 1
|yp−yc| , normalized to form

a proper probability distribution. This initialization biases the parameters to prefer local

attachments.

Smith [2006] compares K&M with random initialization and with uniform initializa-

tion. These two alternatives were worse than K&M unless some labeled data could be used

to help pick a set of random parameters. Headden III et al. [2009] suggested using ran-

dom pools to initialize the extended model described in Subsection 10.1.2 to avoid the very
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strong tie between K&M and the DMV. A random pool consists of a set of B randomly

initialized models trained for a small number of iterations. From these B models, the one

that assigns highest likelihood to held-out development data is picked and trained until

convergence. M such pools are used to create M final models, whose mean accuracy and

standard deviation are reported. We will refer to this initialization method as RandomP; it

performs significantly better than K&M.

Recently, Spitkovsky et al. [2010] presented several initialization methods that aim

to gradually increase the complexity of the model, as measured by the size of the search

space, which in the DMV model is exponential in the size of the sentence length. The Baby

Steps (BS) method starts by training the model in sentences of length 1 where there is no

ambiguity but nevertheless some information about heads can be gleaned. The parameters

of this model are used to initialize a training run over sentences of length 2, and so on, up

to a maximum length. The second method, Less is More (LsM), uses information from the

BS method to pick a sentence length that includes enough sentences to train a model with

good predictive power, but leaves out longer sentences that do not add much information.

The hybrid method Leapfrog (LP) combines the models from the two previous approaches.

All of these methods improve over the K&M initialization. In this chapter, we use K&M

initialization for all experiments for simplicity. However , to achieve a fair comparison with

related work, we report the accuracy differences from using different initialization methods

in Subsection 10.4.3.

10.2 Previous Learning Approaches

The main comparisons for our sparse learning methods will be the expectation maximiza-

tion (EM) method and Bayesian learning with a sparsity-inducing prior. We will also com-

pare our accuracy to that achieved by several methods that use other priors. This latter

comparison will be less direct though, as these priors tend to encode linguistic information

at a finer-grained level. Before we make an empirical comparison in Section 10.4, in this

section we review the theory behind the EM method and Bayesian learning methods.
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10.2.1 Expectation Maximization

Figure 10.2 illustrates the large mismatch between an EM-trained DMV model and the

empirical statistics of dependency types. We will eventually show that a parameter prior is

insufficient to correct the mismatch, while posterior regularization is able to model depen-

dency type statistics much more accurately.

10.2.2 Bayesian Learning

Recent advances in Bayesian inference methods have been applied to DMV grammar in-

duction with varying levels of success. These approaches have focused on injecting ad-

ditional linguistic intuition into the DMV by using a Dirichlet prior to sparsify parame-

ters [Cohen et al., 2008, Headden III et al., 2009], or using logistic normal priors to tie pa-

rameters [Cohen et al., 2008, Cohen and Smith, 2009]. In the following subsections, we’ll

discuss how these methods work and the types of improvements they are able to achieve.

We’ll present a more empirical comparison with these methods later, in Section 10.4.

Sparsity-Inducing Priors

One prior that has been extensively explored for DMV learning is the Dirichlet. More

precisely, a product of Dirichlets: p(θ) =
∏

A∈VN D(θA;αA) where we consider the DMV

as a PCFG, G = (VN , VT , R, S) with VN , VT , and R a set of non-terminals, terminals, and

rules, respectively, and S a start symbol. A description of the rules of the DMV as a PCFG

can be found in Smith [2006]. Each Dirichlet in this prior has the form:

D(θA;αA) =
1

Z

∏
β:A→β∈R

θA(β)αA→β−1 (10.3)

where Z is a normalization term and αs are hyperparameters.

The true posterior over the parameters, p(θ|X) ∝ ∑
Y p(Y,X|θ)p(θ), is generally

multi-modal and intractable to compute. The typical variational approximation is to define

an approximate factored posterior over both parameters and latent variables, q(Y, θ) =

q(Y)q(θ), and use mean field updates to minimize KL(q(Y)q(θ)||p(Y, θ|X)) . As shown

by Kurihara and Sato [2004], with this type of prior, this can be accomplished efficiently.
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Figure 10.2: Comparison of parameters for a max likelihood DMV and an EM-trained DMV for English. Each square
corresponds to a parent-child pair. Parent tags are listed across, child tags down. Parent tags are sorted left-to-right in
descending order by the number of unique child tags they take. Left: Generated using max likelihood parameter settings
(supervised). The saturation of a square with parent p and child c is determined by the maximum value of the posterior
probability p(p | c) observed in the entire English training corpus [Marcus et al., 1993]. More saturated blue indicates
higher probability. Right: Generated using EM parameter settings. Black indicates EM posteriors are too high, red too
low. More saturation indicates more deviation. White indicates no deviation. There are significantly more black squares
than red, especially towards the right, indicating that EM does not learn a sparse enough model.
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Figure 10.3: The digamma function.

Assuming the hyperparameters of the prior are fixed, the coordinate descent algorithm for

updating q(Y), q(θ) is similar to EM. In theE-like-step, inference for Y is performed using

the approximate mean parameters θ̄ = Eq[θ]. The M -like-step, is a slight modification to

the standard EM M -step, both shown below:

EM M-step : θt+1
A (β) ∝ Eqt+1 [#A→β(Y)] (10.4)

Dirichlet M-step : θt+1
A (β) ∝ exp(ψ(Eqt+1 [#A→β(Y)] + αA→β)) (10.5)

where ψ is the digamma function. As Figure 10.3 illustrates, exp(ψ(x)) is upper bounded

by y = x. That is, it slightly discounts the value of x, though by no more than 0.5, as

y = x − 0.5 lower bounds it. Thus, exp(ψ(x + α)) is similar to adding α − 0.5 to x. For

any α < 0.5, this encourages parameter sparsity in the Dirichlet M-step, since small θ

will get squashed further by the digamma.

This Dirichlet prior method has been applied in several previous works. Cohen et al.

[2008] use this method for dependency parsing with the DMV and achieve improvements

over basic EM. They set all hyperparameters to 0.25, resulting in a sparsifying prior (this

is the method referred to as VB-Dirichlet in their work). Headden III et al. [2009] also use

this method to train both the DMV and the E-DMV. However, they set all hyperparameters

to 1, so their prior is not aimed at sparsifying. It nevertheless produces different results

than standard EM because it sets parameters according to the mean of the posterior q(θ)

instead of the mode.

In this chapter we will refer to our own implementation of the VB-Dirichlet method
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of Cohen et al. [2008] as the“discounting Dirichlet” (DD) method. We will show experi-

ments applying it to both the DMV and the E-DMV. In particular we will show that while

it achieves parameter sparsity, this is not the optimal sparsity to aim for in dependency

parsing. Intuitively, sparsity of pchild(c | p, d) means requiring that each parent tag has few

unique child tags. But note that, as the supervised grid in Figure 10.2 illustrates, some par-

ents should be allowed many different types of children. For example, VBZ, VBD, VBP,

VB, IN, NN, etc. all should be able to have non-zero pchild(c | p, d) for many c. We will

show that posterior regularization is one way to achieve a better type of sparsity.

Parameter-Tying Priors

In addition to Dirichlet, other types of priors have been applied, namely logistic normal

priors (LN)[Cohen et al., 2008] and shared logistic normal priors (SLN) [Cohen and Smith,

2009]. While the DD aims to induce parameter sparsity, LN and SLN aim to tie parameters

together. Essentially, this has a similar goal to sparsity-inducing methods in that it posits a

more concise explanation for the grammar of a language. That is, it suggests that POS tags

share certain properties and so the grammar is not really as ambiguous as the full range of

possible parameter settings would suggest.

The LN prior is the logistic transformation of a normal distribution, and can be approx-

imated [Cohen et al., 2008] with p(θ) =
∏

A∈VN N (µA,ΣA) where µA is a mean vector

and ΣA is a covariance matrix for a normal distribution over the PCFG rules with lefthand

side A. The ΣA allow rules with identical lefthand sides to co-vary, effectively tying these

parameters. For example, LN can tie the parameters pchild(c1 | p, d) and pchild(c2 | p, d).

The SLN prior extends the capabilities of the LN prior by allowing any arbitrary parame-

ters to be tied. In this case, parameters such as pchild(c | p1, d) and pchild(c | p2, d) can be

tied even though they correspond to PCGF rules with different lefthand sides. We compare

in the experimental section against some results from using LN and SLN and show that our

posterior regularization method produces higher accuracy results.

As a side note, Headden III et al. [2009] also implements a sort of parameter tying for

the E-DMV through a backoff distribution on child probabilities. The form of the backoff

was introduced in Equation 10.2. The way Headden III et al. [2009] choose the weighting

112



(1−λ) for the backoff is through a Dirichlet prior. To capture the intuition that events seen

fewer times should be more strongly smoothed, this prior has hyperparameter value K

for the standard child probability and value 2K for the backoff probability, where K is the

number of PCFG rules with a particular nonterminal on the left-hand side. This ensures that

the backoff probability is only ignored when enough examples of the full child probability

have been seen. The prior favors the backoff 2 to 1, which is why in our approximation of

this scheme we use weight λ = 1/3.

10.2.3 Other Learning Approaches

Several additional training alternatives have been proposed besides Bayesian methods. We

will briefly describe three such methods here because we will compare with them in Sec-

tion 10.4: contrastive estimation (CE), skewed deterministic annealing (SDA), and struc-

tural annealing (SA).

The first approach, contrastive estimation (CE), has been applied to several applications

for training log linear models on unlabeled data [Smith and Eisner, 2005a,b]. The basic idea

is to maximize the following:

log
∏
i

∑
y∈Y exp(θ · f(x(i),y))∑

(x,y)∈N(x(i))×Y exp(θ · f(x,y))
(10.6)

where f is some vector of feature functions, and N(x(i)) is a set of x that are in the “neigh-

borhood” of x(i). The intuition behind this method is that if a person chose to produce

x(i) out of all the possible x in N(x(i)), then we want to learn a model that assigns higher

value to x(i) (the numerator in Equation 10.6) than to these other x. Restricting to a neigh-

borhood is necessary for tractability, and the choice of neighborhood can encode linguistic

knowledge. For example, for dependency parsing Smith and Eisner [2005b] formed neigh-

borhoods by deleting any one word from x(i), or transposing any two words.

Two other non-Bayesian approaches of note are skewed deterministic annealing (SDA)

and structural annealing (SA) [Smith and Eisner, 2006]. SDA biases towards shorter de-

pendency links as in the K&M initializer, and flattens the likelihood function to alleviate

the difficulty of escaping local maxima. Alternatively, SA biases strongly toward short

dependency links in early iterations, then relaxes this constraint over time.
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We present an empirical comparison to the three methods from this section in Sec-

tion 10.4 and show we can often achieve superior performance with posterior regulariza-

tion.

10.3 Learning with Sparse Posteriors

At a high level, we would like to penalize models pθ(Y|X) that predict a large number

of distinct dependency types. For hard assignments, this quantity is easy and intuitive to

measure. Define an edge type as the pair composed of parent POS and child POS. Given

a corpus with parse trees, we are interested in the number of distinct types of edges used

in the labeling. Section 10.3.1 describes how to extend this definition to distributions over

parse trees, by viewing it as a mixed-norm. Having a small number of distinct dependency

types is a kind of sparsity structure we would like to impose on the model.

10.3.1 `1/`∞ Regularization

We now define precisely how to count dependency types, which will allow us to specify

different kinds of dependeny sparsity. For each child tag c, let i range over some arbitrary

enumeration of all occurrences of c in the corpus, and let p be another tag. The indicator

φcpi(X,Y) has value 1 if p is the tag of the parent of the ith occurrence of c, and value 0

otherwise. The number of unique dependency types is then given by:∑
cp

max
i
φcpi(X,Y), (10.7)

where we sum over child-parent types cp, computing the maximum (logical or) over pos-

sible occurrences of c ← p dependencies. Note that there is an asymmetry in this way of

counting types: occurrences of the child type c are enumerated with i, but all occurrences

of the parent type p are or-ed in φcpi, that is, φcpi is 1 if any occurrence of tag p is the parent

of the ith occurrence of tag c, we will refer PR training with this constraint as PR-AS.

Instead of counting pairs of a child token and a parent type, we could instead have

counted pairs of a child token and a parent token by letting p range over all tokens rather

than types. In that case, each potential dependency would correspond to a different indicator
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Figure 10.4: The `1/`∞ regularization term for a toy example. Let Φcpi = Eq[φcpi]. For
simplicity we ignore the root → c edges here, though in our experiments we incorporate
their probabilities also. Left: Two gold parse trees with two (non-root) children each.
Edges in the trees have probability 1, and all other edges probability 0, resulting in an
`1/`∞ of 3. Right: In the unsupervised setting, instead of gold trees we have a posterior
distribution over parents for each child. Given the distribution shown, the `1/`∞ is 3.3.
Since real grammars tend to have few edge types, it makes sense that the `1/`∞ of a set
of supervised trees will be small. Thus, using regularization to force `1/`∞ to be small for
posterior distributions should push these distributions closer to the gold.
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φcpij , and the penalty would be symmetric with respect to parents and children, we will refer

PR training with this constraint as PR-S. Because of the way the model is parameterized,

an asymmetry in the other direction (child-type, parent-token) does not make sense: the

sum over all child types is always 1, so the penalty term would be a constant.

Both approaches perform very well, however one approach is not clearly better than the

other when compared across the twelve languages. So, we report results for both versions

on the results section.

Equation 10.7 can be viewed as a mixed-norm penalty on the features φcpi. More pre-

cisely, we will penalize the following quantity: the sum (`1 norm) over c of the maximum

(`∞ norm) over occurrences of c of the posterior probability of selecting a parent with tag p

for that child. Figure 10.4 shows a toy example of how to compute the `1/`∞ regularization

term. The KL projection we will need to compute in order to use constrained version of the

EM algorithm described in Section 2.5 is given by:

arg min
q

KL(q(Y)||pθ(Y|X)) + σ
∑
cp

max
i

Eq[φcpi(X,Y)]. (10.8)

Which can equivalently be written as:

min
q,ξ

KL(q(Y) ‖ pθ(Y|X)) + σ
∑
cp

ξcp

s. t. ξcp ≤ Eq[φcpi(X,Y)] ∀c, p, i
(10.9)

where σ is the strength of the regularization, and ξcp corresponds to the maximum expec-

tation of φcpi over all c and p. The dual of the projection problem is a fairly simple convex

problem:

min
λ≥0

log

(∑
Y

pθ(Y|X) exp(−λ · φ(X,Y))

)
s. t.

∑
i

λcpi ≤ σ

(10.10)

where φ is the vector of feature values φcpi for assignment Y of parse trees to the entire

corpus X, and λ is the vector of dual parameters λcpi. Note that projection onto the simplex

constraints can be done very efficiently as described in Bertsekas et al. [1995].

When σ is zero, the projection is an identity mapping and the algorithm reduces to EM.

As σ → ∞, the constraints force the posterior probability of parent tag given child tag to
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be uniform. For intermediate values of σ, the constraints work to decrease the confidence

of the highest probability parent tags for each child instance. For parent tags that are

supported by many high-probability instances, this pressure is distributed among many

instances and has little effect. For parent tags that are supported by few high-probability

instances however, the probability of these instances is more severely reduced, which can

(after several iterations of the algorithm) effectively eliminate that parent tag as a possibility

for the given child tag.

10.4 Experiments

10.4.1 Corpora

We evaluate our models on 12 languages—the English Penn Treebank [Marcus et al., 1993]

and 11 languages from the CoNLL X shared task: Bulgarian [Bg] [Simov et al., 2002],

Czech [Cz] [Bohomovà et al., 2001], German [De] [Brants et al., 2002], Danish [Dk] [Kro-

mann et al., 2003], Spanish [Es] [Civit and Martí, 2004], Japanese [Jp] [Kawata and Bar-

tels, 2000], Dutch [Nl] [Van der Beek et al., 2002], Portuguese [Pt] [Afonso et al., 2002],

Swedish [Se] [Nilsson and Hall, 2005], Slovene [Sl] [Džeroski et al., 2006], and Turkish

[Tr] [Oflazer et al., 2003]. For English we train on sections 2-21 of the Penn Treebank and

test on section 23. In all languages, we train on the unlabeled corpora using the gold POS

tags. For the other languages our train and test sets are exactly those from the CoNLL X

shared task. Following the example of Smith and Eisner [2006], we strip punctuation from

the sentences and keep only those sentences that are of length ≤ 10. Table 10.1 shows the

size of the different training corpora after this filtering.

10.4.2 Results on English

We start with a comparison between EM and the two sparsity-inducing methods, PR and

the discounting Dirichlet prior (DD), on the English corpus. For all models we use the

“harmonic” K&M initializer and then train for 100 iterations. At the end of training, each

model is evaluated on the test set using the Viterbi (most probable) parse. Before evalu-
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Bg Cz De Dk En Es Jp Nl Pt Se Si Tr
tags 11 58 51 24 34 17 74 162 19 31 26 28

sentences (×103) 4.7 24 13 1.8 5.4 0.42 12 6.6 2.4 3.5 0.47 3.3
word types (×103) 11 40 19 5.8 10 2.6 1.9 11 7.3 7.6 2.8 10

word tokens (×103) 27 139 77 11 37 2.4 43 43 14 23 3.0 18

Table 10.1: Corpus statistics for sentences with lengths ≤ 10, after stripping punctuation.
Bg stands for Bulgarian, Cz for Czech, De for German, Dk for Danish, En for English,
Es for Spanish, Jp for Japanese, Nl for Dutch, Pt for Portuguese, Se for Swedish, Sl for
Slovene, and Tr for Turkish.

DD α =
EM 1 0.25 0.1 0.01

DMV 45.8 42.2 46.4 45.2 45.4
2-1 45.1 42.0 46.0 45.9 44.9
2-2 54.4 42.0 43.3 52.5 51.5
3-3 55.3 42.8 47.1 53.5 52.1
4-4 55.1 42.9 47.1 53.6 51.7

Table 10.2: Directed attachment accuracy results on the test corpus (for sentences of lengths
≤ 10, no punctuation). The second column gives EM results, and the other columns are DD
results for different settings of the hyperparameter α. The second row is for the basic DMV
model, and the other rows are E-DMV models represented by their valencies (Vc-Vs). Bold
represents the best parameter setting both for the DMV model and the E-DMV model.

ating, we smooth the resulting models by adding e−10 to each learned parameter, in order

to remove the chance of zero probabilities for unseen events. (We did not bother to tune

this value at all as it makes very little difference for final parses.) We score models by their

attachment accuracy — the fraction of words assigned the correct parent. We compare the

performance of all training procedures both on the original DMV model as well as on the

extended model E-DMV. In the case of E-DMV, we set the smoothing for child probabilities

to 0.66, based on the hyperparameter used in Headden III et al. [2009]. We keep smooth-

ing fixed across languages and model configurations to reduce the number of parameters

that need to be chosen. Following Cohen et al. [2008] we search for the best discounting

parameter α for DD training. We tried 5 different values for α: {0.01, 0.1, 0.25, 1}.
Table 10.2 shows the directed accuracy for both the DMV and the E-DMV models

trained using EM and DD. We see in Table 10.2 that the extended model generally outper-
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Model EM PR-S PR-AS
DMV

σ 80 100 120 140 160 180 80 100 120 140 160 180
45.8 60.1 60.8 61.1 62.1 60.8 60.2 40.4 53.8 61.7 61.9 54.7 54.3

Vc-Vs E-DMV
2-1 45.1 61.1 62.7 62.5 62.0 61.8 60.2 40.5 54.5 61.7 62.1 54.4 62.0
2-2 54.4 62.9 57.3 57.4 57.4 56.7 59.2 56.2 56.3 56.8 57.0 58.5 58.7
3-3 55.3 59.4 60.4 61.1 64.3 63.4 62.6 60.0 60.0 61.4 63.9 64.0 59.3
4-4 55.1 61.0 62.8 64.1 63.5 64.1 59.4 59.7 59.9 60.5 64.4 64.1 58.1

Table 10.3: Directed attachment accuracy results on the test corpus. Bold represents the
best parameter setting for the DMV model and for each of the E-DMV models. The first
column contains the Vc-Vsused. Columns represent different σ for both constraints PR-S
on the left and PR-AS on the right.

forms the DMV, for both EM and DD. However, we also see that DD does not always help:

for all valences tried for the E-DMV except (VC , VS) = (2, 1), the EM models perform

better. This contrasts with the findings of Headden III et al. [2009], potentially due to the

simplified smoothing that we implemented, and a difference in the stopping criterion —

we ran our model for 100 iterations, while Headden III et al. [2009] ran until likelihood

on a held out development set converged. Another explanation is that there are interac-

tions of the model initialization and training. Headden III et al. [2009] use the RandomP

initialization described in Subsection 10.1.3 while we use the harmonic K&M initializer.

Comparing the performance of the training methods, we see that for the DMV model, DD

training performs better and the best hyperparameter setting is 0.25 which is the same best

parameter found by Cohen et al. [2008]. The performance of our implementation of the

DD is slightly lower than the one reported in that paper, probably due to different stopping

criteria during training.

A comparison between EM and PR for both DMV and E-DMV are shown in Table 10.3.

We searched over six different regularization strengths (80, 100, 120, 140, 160, and 180) for

both the PR-S (symmetric constraint) and PR-AS (asymmetric constraint) formulations. As

with Table 10.2, the results in Table 10.3 show attachment accuracy for Viterbi decoding. In

Chapter 6 we found that projecting at decoding consistently improved results for the word

alignment task. For sparsity constraints on the task of dependency parsing, we found that

projecting at decode time produced worse results. The regularization strength parameter σ
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Figure 10.5: Accuracy and negative log likelihood on held out development data as a func-
tion of the training iteration for the DMV.

is corpus-dependent and in particular depends on the size of the corpus. Because the test

corpus is much smaller than the training corpus, using the same σ for training and testing

might be the wrong option. Thus, in this chapter we do not project at decode time.

A first observation based on Table 10.3 is that PR-S generally performs better than

the PR-AS. Furthermore, PR-S seem less sensitive to the particular regularization strength.

Comparing PR-S to EM, PR-S is always better, independent of the particular σ, with im-

provements ranging from 4% to 16%. The PR-AS constraints are also always better than

EM for each model configuration and for all but two different parameter configurations.

Note that the optimal parameter σ depends on the particular model configuration (Vc-Vs).

Figure 10.5 shows how accuracy and negative log-likelihood change on a held out de-

velopment corpus for the DMV. We see that both with EM and DD the models tend to

converge after only 10 iterations, while for the PR training it takes 20 to 30 iterations. PR

also seems to overfit and experience a degradation of performance on the test set after 40

iterations. We see in Figure 10.5 that accuracy and likelihood tend to correlate well and

could potentially be used as a stopping criterion for training. In fact, most prior work uses

this criterion to stop training. This appears to work for the DMV model. Figure 10.6 shows

similar graphs for the E-DMV model. We see in Figure 10.6 that the likelihood-accuracy

correlation does not hold as cleanly for the E-DMV model. In fact PR-AS training seem

to be improving accuracy after 100 iterations, while the optimal likelihood on the held out
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Figure 10.6: Directed accuracy and negative log likelihood on held-out development data
as a function of the training iteration for the E-DMV model with the best parameter setting.

data is achieved around iteration 20. Stopping at iteration 20 rather than 100 would have

reduced accuracy by about 4%. For the rest of this paper we run all our experiences for 100

iterations and report results for the model obtained at the end of training.

Also we note that we found no correlation between the development likelihood and

the best setting for the constraint strength when training with PR. This makes it harder

to pick constraint strength in an unsupervised setting. We also cannot use likelihood to

choose between different valencies for the E-DMV model, since the likelihoods are not

comparable.

10.4.3 Comparison with Previous Work

In this section we compare the performance of different models described in the literature

for unsupervised dependency parsing. Table 10.4 presents the accuracy values reported in

various previous papers and the values for approaches tried in this paper. We would like to

stress that the setup is not identical for all experiments. For instance, normally the stopping

criteria for training is different. While we train all our models for 100 iterations, most other

works use some kind of convergence criteria to stop training. Moreover, there are likely

differences regarding other implementation details.

We start by comparing the effects of different initialization procedures. Although or-

thogonal to the learning procedure used, these differences are significant when comparing
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Init Model Directed Undirected
≤ 10 ≤ 20 all ≤ 10 ≤ 20 all

Model Initialization
1 K&M DMV 45.8 40.2 35.9 63.4 58.0 54.2
2 RandomP DMV 55.7(8.0)
3 BS Ad-Hoc @15 55.5 44.3 39.2
4 BS Ad-Hoc @45 55.1 44.4 39.4
5 LsM Ad-Hoc @15 56.2 48.2 44.1
6 LP Hybrid @45 57.1 48.7 45.0

Smoothing effects
7 RandomP E-DMV(2,1) (smoothed) 61.2(1.2)
8 K&M E-DMV(2,1) 45.1 38.7 34.0 62.7 56.9 52.7

DMV
9 K&M DD (0.25) 46.4 40.9 36.5 64.0 58.6 54.8
10 K&M PR-Symm 140 62.0 53.8 49.1 70.0 62.6 58.4
11 K&M PR-ASymm 140 61.9 53.3 48.6 70.2 62.3 58.1
12 K&M LN I 56.6 43.3 37.4
13 K&M LN families 59.3 45.1 39.0
14 K&M SLN TieV 60.2 46.2 40.0
15 K&M SLN TieN 60.2 46.7 40.9
16 K&M SLN TieV & N 61.3 47.4 41.4
17 K&M SLN TieA 59.9 45.8 40.9
18 K&M CE 48.7 64.9
19 K&M SDA 46.7 64.3
20 K&M SA 51.5 67.9

E-DMV
21 K&M EM 3-3 55.3 46.4 42.6 69.0 61.9 58.3
22 K&M DD 4-4 (0.1) 53.6 43.8 39.6 67.5 59.0 54.9
23 K&M PR-Symm 3-3 140 64.3 57.2 53.3 69.7 60.7 56.0
24 K&M PR-ASymm 4-4 140 64.4 55.2 50.5 69.0 60.7 56.4
25 K&M EM 2-2 56.5 69.7
26 RandomP DD 2-2 (1) 53.3(7.1)
27 RandomP DD 2-2 (1) smoothed-skip-val 62.1(1.9)
28 RandomP DD 1-1 (1) smoothed-skip-head 65.0(5.7)

Table 10.4: Comparison with previous published results. Results for entries 3, 4, 5, and
6 are taken from Spitkovsky et al. [2010], entries 2, 7, 26, 27, and 28 are taken from
Headden III et al. [2009], entry 25 is taken from McClosky [2008], entries 12 and 13 are
taken from Cohen et al. [2008], entries 14, 15, 16, and 17 are taken from Cohen and Smith
[2009] and entries 18, 19, and 20 are taken from Smith [2006]. See section text for details
of the comparison.
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to previous work. We compare the results for the DMV with the different initializations de-

scribed in Section 10.1.3. All the different approaches significantly beat the K&M initial-

ization by about 10% in accuracy. There are some differences in the setup of the different

approaches: the model initialized with RandomP described in Headden III et al. [2009] is

trained using DD with a hyperparameter of 1, while all the other models are trained using

EM. Additionally, the models from Spitkovsky et al. [2010] use a larger amount of data.

The next comparison we make is between the smoothing approach described in Head-

den III et al. [2009] and the simpler implementation done in this work. Again, although

the training methods and the initialization differs we see that the smoothing performed

by Headden III et al. [2009] probably increases the accuracy of that model by around 5.5%

over our implementation of smoothing (see entries 1, 2, 7, and 8).

Entries 9 to 20 compare different training approaches for the basic DMV. Entry 9 cor-

responds to training the model with DD with the best hyperparameter setting. Entries 10

and 11 correspond to training with PR under the two types of sparsity constraints. Entries

12 and 13 use the logistic normal prior [Cohen et al., 2008] and we report the results from

the paper using Viterbi decoding. Entries 14, 15, 16, and 17 correspond to the different

shared logistic normal priors [Cohen and Smith, 2009]. These values are for MBR decod-

ing since the authors don’t report values for Viterbi decoding. This gives some advantage

to these entries, since according to the authors MBR decoding always outperforms Viterbi

decoding. Finally, entries 18, 19, and 20 represent the best value for the three learning

approaches contrastive estimation (CE), skewed deterministic annealing (SDA), and struc-

tural annealing (SA) proposed by Smith [2006]. For these entries we report the best values

found using supervised model selection. Out of all of these methods, the models trained

using PR with the sparsity inducing constraints achieve the best results, the symmetric prior

being the best. The results are similar to the best shared logistic normal prior when tested

on sentences of length up to ten, but when tested on longer sentences the PR trained models

perform significantly better then all other approaches.

The last block of results, entries 21 to 28, shows how a variety of learning methods

compare on E-DMVs. Entries 21 to 24 compare our implementation of the three different

learning approaches, EM, DD, and PR with both types of constraints. Model selection
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in these cases is supervised, based on accuracy for the ≤ 10 test data. PR significantly

outperforms the other two approaches. In particular the PR-S constraints perform the best

with an average of 10% improvement over EM and DD on sentences of lengths ≤ 10, and

an even bigger improvement for longer sentences. In entries 25 to 28 we also compare with

the original extended model of McClosky [2008] and with the smoothed extended model

proposed by Headden III et al. [2009]. The best model is the E-DMV with smoothing

on the child probability as described by Headden III et al. [2009]. It beats the E-DMV

trained with PR-S by a small amount. This small difference, 0.7%, is much smaller than

the gains from using the random initialization and the better smoothing distribution. Thus,

we believe that training the same model with random initialization, better child probability

smoothing, and the PR constraints would in fact produce the best results. We leave this as

future work.

Finally we would like to note that Table 10.4 doesn’t report results for the papers that

use extra information. Namely: Headden III et al. [2009] reports the best result published

so far, 68.8, for the test set with sentences of lengths≤ 10, when using lexical information.

Also, Cohen and Smith [2009] reports accuracies of 62.0, 48.0, and 42.2 for sentences

of lengths ≤ 10, sentences of lengths ≤ 20, and all sentences, respectively, when using

multilingual information. This result for sentences of length ≤ 10 is equal to our best

result, but is inferior to our results on longer sentences.

10.4.4 Multilingual Results

A grammar induction algorithm is more interesting if it works on a variety of languages.

Otherwise, the algorithm might just encode a lot of language-specific information. In this

section, we compare several models and learning methods on twelve different languages

to test their generalization capabilities. We do not want to assume that a user would have

parsed corpora in each language, so we do not include a supervised search over model

parameters for all languages as part of the evaluation process. Consequently, we use the

following setup: for each model, basic DMV and the four E-DMV complexities we ex-

perimented with in the previous sections, pick the best configuration found for English

according to its accuracy on the ≤ 10 test set, and use it across the other eleven languages.
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This might not select the ideal parameters for any particular language, but provides a more

realistic test setting: a user has available a labeled corpus in one language, and would like

to induce grammars for other languages of interest.

For the PR approach, since the ideal strength is related to corpus size, we try two differ-

ent approaches. The first is to use exactly the same strength with other languages as used

for English. The second approach is to scale the strength by the number of tokens in each

corpus. In this case, the strength, σx, for a particular language was found by the follow-

ing formula: σx = σen ∗ |tokensx|/|tokensen|, where σen is the best strength for English,

|tokensen| is the number of tokens of the English corpus, and |tokensx| is the number of

tokens in language x. This scaling is an approximation that attempts to require a similar

amount of sparsity for each language.

Table 10.5 shows the performance for all models and training procedures for the 12

different languages. Figure 10.7 illustrates the differences between the EM training and

the different sparsity inducing training methods for the DMV. The zero line in Figure 10.7

corresponds to performance equal to EM. We see that the sparsifying methods tend to

improve over EM most of the time. The average improvements are shown in the key of

Figure 10.7. Figure 10.8 shows a similar comparison of the PR methods with respect to a

DD learning baseline. We see in Figure 10.8 that PR is better than DD for most languages.

Figure 10.9 compares the different sparsity approaches. On the left we compare PR-S

versus PR-AS without scaling. PR-AS beats PR-S in 9 out of 12 cases, though the average

increase is only 1.5%. On the right we compare PR-S without scaling versus PR-S with

scaling. The average improvement of the unscaled version is bigger for both constraints.

Figure 10.10 compares the differences of each training method against EM training

using the E-DMV model with the best setting found for English. The results are similar

to those for the DMV model with the biggest difference being that DD training performs

worst. Both PR-S and PR-AS perform better than EM in most cases and the average im-

provement is even bigger than for the DMV model.

125



Bg Cz De Dk En Es Jp Nl Pt Se Si Tr
DMV Model

EM 37.8 29.6 35.7 47.2 45.8 40.3 52.8 37.1 35.7 39.4 42.3 46.8
DD 0.25 39.3 30.0 38.6 43.1 46.4 47.5 57.8 35.1 38.7 40.2 48.8 43.8
PR-S 140 53.7 31.5 39.6 44.0 62.1 61.1 58.8 31.0 47.0 42.2 39.9 51.4
PR-AS 140 54.0 32.0 39.6 42.4 61.9 62.4 60.2 37.9 47.8 38.7 50.3 53.4
PR-S s140 53.7 33.5 39.7 39.3 62.1 64.7 58.5 30.7 44.4 39.8 43.0 49.3
PR-AS s140 51.2 34.1 40.0 42.6 61.9 67.9 60.2 30.6 42.5 38.5 47.7 51.3

Extended Model
EM-(3,3) 41.7 48.9 40.1 46.4 55.3 44.3 48.5 47.5 35.9 48.6 47.5 46.2
DD-(4,4) 0.1 47.6 48.5 42.0 44.4 53.6 48.9 57.6 45.2 48.3 47.6 35.6 48.9
PR-S(3,3) 140 59.0 54.7 47.4 45.8 64.3 57.9 60.8 33.9 54.3 45.6 49.1 56.3
PR-AS(4,4) 120 59.0 53.2 45.4 46.3 64.4 56.1 61.5 38.3 49.8 41.3 51.2 56.4
PR-S(3,3) s140 59.9 55.4 45.5 42.7 64.3 68.3 57.9 34.0 46.5 44.4 48.1 56.4
PR-AS (4,4) s140 55.6 55.0 47.4 46.9 64.4 70.6 58.9 33.8 45.6 45.6 49.2 56.3

Scaled Strengths
σ120 89 445 246 37 120 9 138 138 48 76 11 58
σ140 103 519 287 43 140 10 161 161 56 89 13 68

Table 10.5: Attachment accuracy results. For each method we tested both the basic DMV
and the E-DMV. The parameters used were the best parameters found for English. For
the extended model the child-valency and stop-valency used are indicated in parentheses.
EM: The EM algorithm. DD: Discounting Dirichlet prior. PR-S: Our method using the
symmetric version of the constraints with strength parameter σ. PR-S-s: The same method
but strength parameter scaled proportional to the number of tokens in the train set for each
language. PR-AS / PR-AS-s: Our method with the asymmetric constraints, without and
with scaling of the strength parameter. σ: The scaled weights for each corpus for the
different values of the strength parameter used for English. Bold indicates the best method
for each learning and model type.
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Figure 10.9: Comparing the different sparsity constraints for the DMV model over twelve
different languages. Left: PR-S vs PR-AS. Right: PR-S without scaling vs PR-S with
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as a function of `1/`∞ as we vary the constraint strength. EM has `1/`∞ of 431.17.

10.5 Analysis

This section attempts to describe a more qualitative picture of what the results are and

where our gains and occasional losses are coming from.

10.5.1 Instability

In our experiments, we saw that the model was somewhat unstable with respect to the

regularization strength. Figure 10.11 shows the accuracies on the English corpus broken

down by POS tag category. The plot shows that sharp changes in overall accuracy are in

fact caused by even sharper changes in the attachment accuracies of the tag categories. This

should not be surprising, given that whether using EM or PR, the objective has many local

maxima with deep valleys between them. The problem continues to be very underspecified,

and without knowing the “true” sparsity pattern of a language, we can only achieve limited

parsing accuracy.

10.5.2 Comparison of EM, PR, and DD Errors

One common EM error that PR fixes in many languages is the directionality of the noun-

determiner relation. Figure 10.12 shows an example of a Spanish sentence where PR sig-
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Figure 10.12: Posterior edge probabilities for an example sentence from the Spanish test
corpus. Top is Gold, middle is EM, and bottom is PR.

nificantly outperforms standard EM because of this fixed relation. As is evidenced in this

case, EM frequently assigns a determiner as the parent of a noun, instead of the reverse.

PR tends not to make this error. One explanation for this improvement is that it is a result

of the fact that nouns can sometimes appear without determiners. For example, consider

the sentence “Lleva tiempo entenderlos” (translation: “It takes time to understand”) with

tags “main-verb common-noun main-verb”. In this situation EM must assign the noun to a

parent that is not a determiner. In contrast, when PR sees that sometimes nouns can appear

without determiners but that the opposite situation does not occur, it shifts the model pa-

rameters to make nouns the parent of determiners instead of the reverse, since then it does

not have to pay the cost of assigning a parent with a new tag to cover each noun that doesn’t

come with a determiner.

Tables 10.6 and 10.7 contrasts the most frequent types of errors EM, DD, and PR make

on several test sets where PR does well. The “acc” column is accuracy and the “errs”

column is the absolute number of errors of the key type. Accuracy for the key “parent POS

truth/guess→ child POS” is computed as a function of the true relation. So, if the key is

pt/pg → c, then accuracy is:

acc =
# of correct pt → c in Viterbi parses

# of pt → c in gold parses
. (10.11)
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EM DD PR
key acc errs key acc errs key acc errs

pt

n/prp→ art 0.0 39 n/prp→ art 0.0 37 prp/v-fin→ n 0.0 32
v/art→ n 0.0 31 v/art→ n 0.0 32 n/prp→ art 0.0 27

prp/art→ n 0.0 24 prp/art→ n 0.0 27 v/n→ prp 0.0 22
n/v-fin→ prp 0.0 18 n/v-fin→ art 0.0 21 n/n→ prp 0.0 20
n/v-fin→ art 0.0 17 v/v-fin→ prp 72.5 11 v/prp→ n 0.0 18

v/pron-det→ n 0.0 12 n/v-fin→ prp 0.0 10 prp/v-fin→ prop 0.0 11
v/v-fin→ prp 69.4 11 prop/prp→ art 0.0 8 prp/prp→ n 0.0 11

v/prp→ v 0.0 11 v/v-fin→ adv 68.0 8 v/v-fin→ adv 64.0 9
prp/pron-det→ n 0.0 10 prp/art→ prop 0.0 7 prop/prp→ art 0.0 8

v/prp→ prp 0.0 9 v/prp→ v 0.0 7 v/v-fin→ n 81.0 8
prop/prp→ art 0.0 8 v/prp→ n 0.0 7 v/prop→ prp 0.0 8
n/v-fin→ pron 0.0 8 <root>/conj-c→ v 0.0 5 n/prop→ prp 0.0 8
n/prp→ pron 0.0 8 v/<root>→ v 0.0 5 v/v-fin→ prp 58.8 7

n/<root>→ prp 0.0 8 v/art→ prop 0.0 5 v/prp→ v 0.0 7
prp/art→ prop 0.0 7 n/<root>→ prp 0.0 5 <root>/prp→ n 0.0 6

en

VB/DT→ NN 0.0 129 VB/DT→ NN 0.0 133 NN/NNP→ NN 54.2 76
NN/NNP→ NN 60.1 65 NN/NNP→ NN 54.7 78 IN/NN→ NN 0.0 37
NN/VBZ→ DT 0.0 52 NN/IN→ DT 0.0 56 MD/<root>→ VB 0.0 25
NN/IN→ DT 0.0 47 NN/VBZ→ DT 0.0 52 <root>/VB→MD 0.0 25
IN/DT→ NN 0.0 46 IN/DT→ NN 0.0 46 IN/NNS→ NN 0.0 24

NN/VBD→ DT 0.0 41 NN/VBD→ DT 0.0 35 VB/NN→ IN 0.0 21
VB/TO→ VB 0.0 19 VB/TO→ VB 0.0 19 NN/NN→ DT 86.5 21

NN/VBP→ DT 0.0 19 NN/VBP→ DT 0.0 18 VB/DT→ IN 0.0 20
<root>/CD→ NN 0.0 14 NN/NN→ JJ 78.9 16 IN/VBD→ NN 0.0 18

NN/NN→ JJ 81.1 14 VB/IN→ JJ 0.0 12 NN/NN→ JJ 79.2 16
NN/VB→ DT 0.0 14 VB/PRP$→ NN 0.0 12 IN/VBZ→ NN 0.0 15
NN/CD→ CD 0.0 13 <root>/CD→ NN 0.0 12 IN/VBP→ NN 0.0 13

VB/PRP$→ NN 0.0 12 NN/VB→ DT 0.0 12 VB/VB→ RB 18.8 13
VB/DT→ RB 0.0 11 NN/<root>→ CD 0.0 11 NN/<root>→ NN 0.0 11

VB/<root>→ VB 0.0 10 VB/NNS→ RB 0.0 11 VB/NNS→ NN 0.0 11

Table 10.6: Top 15 mistakes by parent POS truth/guess→ child POS for English and the
three languages where PR makes the greatest gains over EM with the E-DMV. This is the
first part. Table 10.7 contains Es and Bg.

In the following subsections we provide some analysis of the results from Tables 10.6

and 10.7 for English and Bulgarian. Corrections for the other languages can be analyzed

using the same type of reasoning as we have applied to analysis of English and Bulgarian.

We leave interpretation of Tables 10.6 and 10.7 for Spanish and Portuguese to the reader.

10.5.3 English Corrections

There are several notable differences between EM and PR errors. Similarly to the Span-

ish example described above, the direction of the noun-determiner relation is corrected by
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PR. This is reflected by the keys titled VB/DT→ NN, NN/VBZ→ DT, NN/IN→ DT,

IN/DT→ NN, NN/VBD→ DT, NN/VBP→ DT, and NN/VB → DT in the English por-

tion of Table 10.6. Recall that e.g. for VB/DT→ NN the errs column of Table 10.6 counts

the number of times that the model predicted that a noun (NN) should have a determiner

(DT) as a parent, when in fact the true parent was a verb (VB). Since determiners can never

dominate nouns, EM and DDhave accuracy 0 for this key. PR corrects this error, and prop-

agates the change: if nouns dominate determiners, then verbs should dominate nouns rather

than determiners, and prepositions should not dominate determiners in order to maintain

sparsity.

A second correction PR makes is reflected in the VB/TO→ VB key. One explanation

for the reason PR is able to correctly identify VBs as the parents of other VBs instead of

mistakenly making TO the parent of VBs is that “VB CC VB” is a frequently occurring

sequence. For example, “build and hold” and “panic and bail” are two instances of the

“VB CC VB” pattern from the test corpus. Presented with such scenarios, where there is

no TO present to be the parent of VB, PR chooses the first VB as the parent of the second. It

maintains this preference for making the first VB a parent of the second when encountered

with “VB TO VB” sequences, such as “used to eliminate”, because it would have to pay

an additional penalty to make TO the parent of the second VB. In this manner, PR corrects

the VB/TO→ VB key error of EM and DD.

A third correction PR makes is reflected in the <root>/CD→ NN key. This correction

is similar to the noun-determiner correction: CD and NN often co-occur, but while CD

almost never appears without NN, NN frequently appears without CD. Thus, if PR chose

CD as parent of NN, it would have to pay an additional penalty to select another parent for

NN in sentences where no CDs exist. Thus, PR is able to recognize that CD is not usually

a good parent for NN. Again, EM and DD have 0 accuracy for this key.

There are a couple of errors common to EM, DD, and PR. These correspond to the

NN/NN→ JJ key and the NN/NNP→ NN key. Because we are only controlling sparsity

at the tag level, the NN/NN→ JJ error is invisible to the sparsity penalty term. Similarly,

since it is possible for NNP to dominate NN in some cases, the true model is not sparse

with respect to removing that relation. Noun/adjective relations are notoriously difficult
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to get right, especially for an unlexicalized model that also has no notion of the surface

lengths of relations. We expect that combining PR with a model such as the lexicalized

DMV of Headden III et al. [2009], or applying the structural annealing technique of Smith

and Eisner [2006], could greatly reduce these types of errors. These changes could also

help reduce some of the other main errors PR makes, such as the ones corresponding to the

keys NN/NN→ DT and VB/VB→ RB.

Even after all these improvements, there would likely persist at least one type of English

error that would be hard to fix: the domination of modals by verbs. By convention, modals

dominate verbs in English dependency parses. This is a relatively arbitrary choice, as there

are linguistically sound arguments to be made for either dominating the other. In fact, in

some of the other languages we work with the annotation convention is the reverse of what

it is in English. For now we note that the keys MD/<root>→ VB and <root>/VB→MD

account for a large portion of the English errors with PR.

10.5.4 Bulgarian Corrections

We might expect the results for Bulgarian to be qualitatively different than those for English

for two reasons. First, the language is not in the same family as English, and in particular

determiners are not separate tokens but morphologically marked. Second, we have far

fewer POS tags in the Bulgarian corpus.

One large correction PR makes with respect to EM and DD corresponds to the key

N/M→ N.2 This correction is similar to the English correction involving the tag CD. An-

other substantial correction PR makes with respect to EM and DD corresponds to the key

<root>/C → V.3 So, when we train with PR, we prefer to have verbs as sentence roots

rather than as children of conjunctions. As with English determiners and nouns, the PR

trained model prefers this because many sentences do not contain conjunctions. If PR

chose C as the parent of V, it would have to pay a penalty to give V a different parent in sin-

gle clause sentences. The same reasoning explains why PR doesn’t see the V/<root>→ C

errors or the N/<root>→ C errors that EM and DD do.
2N: noun, M: numeral.
3C: conjunction, V: verb.
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EM DD PR
key acc errs key acc errs key acc errs

es

sp/d→ nc 0.0 7 sp/d→ nc 0.0 7 vm/<root>→ vm 0.0 5
nc/sp→ d 0.0 6 nc/sp→ d 0.0 6 <root>/vm→ vm 0.0 4
vm/d→ nc 0.0 5 vm/<root>→ vm 0.0 6 <root>/vm→ vs 0.0 3
vs/d→ nc 0.0 4 nc/vm→ d 0.0 6 rg/vm→ rg 0.0 2

vm/<root>→ vm 0.0 4 vm/d→ nc 0.0 5 aq/aq→ cc 0.0 2
nc/vm→ d 0.0 4 <root>/vm→ vm 0.0 4 nc/cc→ aq 0.0 2

aq/<root>→ cc 0.0 3 vs/d→ nc 0.0 4 vs/<root>→ vm 0.0 2
<root>/vm→ vm 0.0 3 vm/p→ rn 0.0 3 aq/nc→ aq 0.0 2

vm/p→ rn 0.0 3 nc/vs→ d 0.0 3 vm/vm→ sp 75.0 2
nc/vs→ d 0.0 3 nc/<root>→ d 0.0 3 vs/vm→ cs 0.0 2

vm/nc→ sp 0.0 3 vm/nc→ sp 0.0 3 vm/nc→ sp 0.0 2
vm/cs→ vs 0.0 2 <root>/rg→ vm 0.0 2 aq/cc→ aq 0.0 1
vm/d→ p 0.0 2 nc/p→ d 0.0 2 nc/vs→ aq 0.0 1
nc/aq→ d 0.0 2 <root>/d→ nc 0.0 2 <root>/aq→ nc 0.0 1

<root>/vm→ vs 0.0 2 aq/cc→ aq 0.0 2 vm/vm→ cc 50.0 1

bg

<root>/R→ V 0.0 65 N/V→ R 0.0 53 N/V→ R 0.0 56
N/<root>→ R 0.0 37 V/R→ N 0.0 47 V/R→ N 0.0 46
V/<root>→ R 0.0 29 <root>/C→ V 0.0 26 T/V→ V 0.0 26

V/R→ R 0.0 24 V/R→ R 0.0 25 V/R→ R 0.0 25
N/M→ N 0.0 20 T/V→ V 0.0 23 V/V→ T 42.4 19
V/V→ T 40.6 19 N/M→ N 0.0 20 N/N→ N 73.4 17

<root>/C→ V 0.0 18 V/V→ T 42.4 19 V/V→ N 84.8 14
V/<root>→ C 0.0 17 V/<root>→ C 0.0 17 V/V→ C 30.0 14

T/V→ N 0.0 17 N/<root>→ C 0.0 15 T/V→ N 0.0 13
N/<root>→ C 0.0 16 R/N→ N 0.0 14 <root>/V→ T 0.0 11

V/R→ N 0.0 16 T/V→ N 0.0 13 N/V→ V 0.0 10
<root>/T→ V 0.0 15 V/N→ N 0.0 11 T/V→ P 0.0 10

N/V→ R 0.0 15 N/R→ N 0.0 10 N/N→M 66.7 10
T/<root>→ V 0.0 12 V/V→ N 87.3 10 V/N→ N 0.0 10

R/N→ N 0.0 12 N/V→ V 0.0 10 <root>/V→ V 0.0 9

Table 10.7: Top 15 mistakes by parent POS truth/guess→ child POS for English and the
three languages where PR makes the greatest gains over EM with the E-DMV. This is the
second part, Table 10.6 contains the second part containing Pt and En.

Although PR is able to make great improvements for Bulgarian parsing, it is clearly

crippled by the small number of POS tags. EM, DD, and PR all make substantial errors in

deciding which verb to use as the parent of a particle (see key V/V→ T), and many of the

main remaining errors for PR are caused by similar symmetries (see keys N/N→ N, V/V

→ N, V/V→ C, N/N→M, and <root>/V→ V). As mentioned in the analysis of English,

lexicalization or incorporation of a notion of surface length of relations might help alleviate

these problems.

134



10.6 Chapter Summary

In this chapter we presented two ways of using an `1/`∞ penalty to term along with PR

training to favor posterior distributions that have a small number of unique parent-child

relations. The two constraints correspond to a symmetric constraint similar in spirit to the

sparsity constraint applied to part-of-speech (POS) induction in Chapter 9, and an asym-

metric version of the same constraint that more directly tries to minimize the number of

different parent-child types instead of different parent-child occurrences. On English our

approach consistently outperforms the standard EM algorithm and the approach of training

in a Bayesian setting where a discounting Dirichlet prior is used.

Further, we perform an extensive comparison with previous published work and show

that our learning approach achieves state-of-the-art results. We compare our approach on 11

additional languages, which as far as we know is the most extensive comparison made for

dependency grammar induction. We report significant improvements over the competing

learning approaches. The new approach beats EM training for 10 out of 12 languages with

an average improvement of 6.5%. It also beats the Bayesian learning approach for 9 out of

12 languages with average improvement of 4% to 5%.

Unlike the `1/`∞ penalty term for POS induction, the model performance is sensitive

to the strength of regularization used. The problem of choosing the correct strength in

an unsupervised manner remains unsolved. We did not find a good principled solution

that worked for all languages but we ruled out likelihood on held out development data as

a potential candidate. However, choosing a strength on one language and applying it to

others seems to work in many cases and we based our experiments on this setting.

Choosing the complexity parameters for the E-DMV model also remains an open prob-

lem. As future work we intend to investigate additional unsupervised measures for quality

of dependency parses, following the recent work of Reichart and Rappoport [2009]. Even

in the absence of a good unsupervised measure of model quality, a better formula for trans-

ferring the regularization strength parameter from one language to another is also needed.

The regularization strength is strongly dependent on the corpus, both on the number of

parent-child pairs being constrained as well as on the number of tokens for each parent and
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child. Our experiments approximated this dependence by scaling the best English regular-

ization strength by the number of tokens in other corpora, but we believe a better solution

can be found.

With respect to model initialization, the K&M initialization is highly biased to the sim-

ple DMV model, and both RandomP initialization and the initialization approaches pro-

posed by Spitkovsky et al. [2010] can significantly boost the performance of the model.

We wish to initialize our models with the approaches proposed by Spitkovsky et al. [2010],

since besides producing better results, those approaches are deterministic and reduce the

number of parameters that need to be tuned. Following the spirit of these initialization

approaches, we also propose that some success might be had by initializing the simple

DMV training it, and then using its learned parameters to initialize more complex models

(E-DMV models with larger valence values). This is similar in spirit to the methods for

training unsupervised word alignment models.
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Chapter 11

Conclusion

In this thesis we have presented posterior regularization (PR), a technique for regularizing

models by encoding prior knowledge in constraints on model posteriors. On the algorithmic

side, we have shown that PR can be solved efficiently in dual form, and that the regulariza-

tion can be easily incorporated into a variant of the classical EM optimization method. In

relating PR to similar frameworks, we have clarified its main advantages: faster optimiza-

tion speed with respect to generalized expectation [Mann and McCallum, 2007, 2008], and

greater distributional estimation accuracy with respect to constraint-driven learning [Chang

et al., 2007]. To the best of our knowledge, we are the first to link all these learning frame-

works by explicitly stating a sense in which they all approximate the Bayesian perspective

that motivates Liang et al. [2009].

In addition to discussing PR’s theoretical potential, we have demonstrated that it lives

up to this potential in a wide variety of realistic applications. The applications we focus on

in this dissertation are word alignment, multi-view learning, dependency parsing, and part

of speech tagging.

11.1 Future Directions

To conclude the thesis, we describe a few possible directions for future work. Sec-

tion 11.1.1 describes a few possible future applications, Section 11.1.2 suggests an empir-

ical comparison of PR, GE and CoDL and Section 11.1.3 suggest considering possibilities
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for new types of constraints. Finally Section 11.1.4 points out two areas where theoretical

understanding of PR could be improved.

11.1.1 New Applications

PR can express a wide variety of prior knowledge that can be encoded by functions of

model posteriors, and there remains a vast array of unexplored possible applications for

this technique. Here we address a few such applications to inspire future PR work.

First of all, PR could be applied to multilingual learning, along the lines of the work

of Snyder and Barzilay [2008], Snyder et al. [2009b,a]. For instance, simultaneously learn-

ing parsers for many languages, given parallel texts. This task would be similar to the

dependency grammar transfer of Chapter 8, but would not require as much supervision in

the sense that no language would be assumed to have a parser to begin with. The logical

PR constraint in this multilingual learning setting would be that, for pairs of aligned words,

the dependency relation should be present in both languages or absent in both languages a

high percentage of the time.

Another important future direction for PR applications is in fields outside natural lan-

guage processing. For example, consider the problem of trying to use visual data to cluster

faces by character in a TV episode, as is explored by Cour et al. [2009]. In this case, we

might use the prior knowledge that a face usually stays in the same horizontal position dur-

ing a scene to construct a PR constraint: expected proportion of times horizontal continuity

rule is broken should be less than some small value ε.

A final further set of applications we foresee for PR is in multi-view learning. Learning

with more than two views is one direction for exploration. Chapter 7 presents many ex-

periments with PR in the two-view setting that could easily be extended to the many-view

setting, weighing each view differently as in logarithmic opinion pools. Another direction

that deserves exploration with multi-view PR is problems where the proposal distribution

cannot be computed in closed form, such as when combining a dependency parser with a

phrase structure parser. Finally, it would be interesting to investigate under what condi-

tions two-view PR can be expected to work. For example, under what conditions should

we expect the two models to converge asymptotically faster than a monolithic model?
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11.1.2 Empirical Comparison

An interesting avenue for future work includes an exploration of the trade off between

computational complexity and accuracy of the different approximations presented in this

and related work (Figure 4.2). For example, is there a large performance drop as we go

from GE to PR and from PR to CODL, or are the variational and MAP approximations

accurate in practice? Similarly it would be interesting to know whether this is application

dependent. It might be the case that this depends on the accuracy of the constraints. For

example, maybe constraints that are not satisfied or nearly satisfied by the true distribution

are more tolerant of approximations, while having constraints that are satisfied by the truth

might allow us to benefit more from GE than from PR, especially if Q is small.

11.1.3 New Kinds of Constraints

A last key extension to the current PR work is to explore the case where the constraint set

Q is not easily specified using linear constraints on some constraint features φ. Thus far

we have only developed theory and applications for linear constraints. It would be inter-

esting to explore applications and derive efficient learning methods when the constraints

are not linear, for example, applications with semi-definite or polynomial constraints. Such

constraints might not permit the minimizer of the Kullback-Leibler divergence to retain the

same form as the model, but perhaps under some assumptions efficient inference would

still be possible.

An alternative avenue for specifying new kinds of constraints would be to abandon

efficient exact inference and instead consider approximations in order to compute and use

the Kullback-Leibler minimizer q∗(Y). Bellare et al. [2009] describe some experiments

with non-factorizable constraints and Monte-Carlo inference. An understanding of what

kinds of constraints allow sampling in a sufficiently short amount of time is one area for

future research.
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11.1.4 Theoretical Analysis

For supervised learning, the probably approximately correct model of learning gives us a

theoretical understanding of generalization. For example, we know that as we increase the

power of a function class we wish to learn we need a larger training set in order to have

high confidence of probably selecting an approximately correct function from that class.

However, the situation is manageable: we only need logarithmically more examples for

finite classes and for infinite classes only linearly in the Vapnik-Chervonenkis dimension

of the function class.

There is no similar theory for the generalization performance of PR, GE or CoDL. It is

not clear how much unlabeled data we need so that we can expect that constraints we that

are satisfied on the training data will be satisfied on a new sample.

In addition to sample complexity, it would be useful to know how much prior knowl-

edge we need for a particular problem. For example, if the constraint set contains only a

few distributions of labels for a large unlabeled sample, then it seems intuitively that we

should not be able to get much benefit by adding additional prior knowledge in the form of

additional constraints.
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Part III

Appendices
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Appendix A

Probabilistic models

Throughout this thesis we are interested in estimating the parameters of probabilistic mod-

els. These are models of some quantities of interest that define a probability distribution

over several outcomes. Perhaps the simplest example is a coin-flip: for some particular

coin, we want to be able to predict whether it will land “heads” or “tails” when we flip it. In

reality, the process of flipping a coin is very complicated: it involves a physical environment

which might be changing, a precise time at which the coin is flipped, and a person perform-

ing the action. Overwhelmed by this incredibly complicated system, we typically create a

very simplistic model: every time a coin is flipped, the “heads” vs. “tails” outcome is a ran-

dom event, which we represent with a random variable. Let y ∈ {heads, tails} be our nota-

tion for this random variable, which we with a single free parameter 0 ≤ p(y = heads) ≤ 1,

known as the “heads” probability. We assume that with probability p(y = heads), the coin

will land “heads” and with probability p(y = tails) = 1− p(y = heads) it will land “tails.”

The probability of all other outcomes — the coin landing on its side and balancing, be-

coming wedged vertically, being stolen by a passer-by before it reaches the ground — are

assumed to be zero. Furthermore, we assume that this probability p(y = heads) is the same

every time we flip the coin. This assumption allows us use observations of past coin flips

to try to predict future coin flips. In the machine learning jargon, coin flips are assumed to

be independently, identically distributed (IID). This means that the outcome of future coin

flips do not depend on the outcome of previous ones, and it means that all the coin flips

have the same “heads” probability.
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Obviously, with a real coin in a real environment these assumptions are violated, but

without making them it would be very hard to make any progress. Additionally, for the

case of flipping a coin, the cost of trying to make a more complicated and powerful model

outweigh the potential benefits. For phenomena where we can get more traction with rel-

atively moderate increases in model complexity we often have much more complicated

models. However, we are always forced to make simplifying assumptions, even when we

know that they will be grossly violated. A goal of this thesis is to present a way to include

information that we have about the real world so that the simple models we have at our

disposal can more effectively predict phenomena of interest.

A.1 Latent Variables, Generative and Discriminative

Models

In the coin-flip example discussed above, we have a fully observable model. When some

of the random variables are hidden from observation, we might create what is called latent-

variable model. For example, suppose that we cannot actually see the coin flip directly, but

have the result is communicated to us through a noisy channel. Because of noise in the

channel there is some probability that a result of “heads” will be communicated as “tails”

and vice-versa. Let x ∈ {heads, tails} be a random variable representing whether we

receive “heads” or “tails” from the communication channel. We say that x is the observed

variable, while y is the latent variable.

A generative model for this scenario would have three free parameters: the original

heads probability p(y = heads), as well as two free parameters for the probabilities that

describe the noisy channel p(x|y): the probability we receive heads give the coin landed

tails and the probability that we receive heads given the coin landed tails.

Potentially, we might not be interested in this full model, but might only be interested in

making a decision about y given an observation x. A discriminative model for the system

would directly model p(y|x): the probability that the coin landed “heads” vs “tails” given

what communication we receive from the noisy channel. This model now has only two free
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parameters: p(y = heads|x = heads) and p(y = heads|x = tails). Discriminative proba-

bilistic models are also known as conditional models. Chapter 2 shows how our framework

for including prior knowledge can be used with both generative and discriminative models.

A.2 Estimation and Priors

So far we have not discussed how to use our observations, knowledge and intuition to

choose the free parameters of our model. To start with, suppose that we want to base the

choice entirely on a large number of observations. In this case, the most common method

for choosing the model parameters is the principle of maximum likelihood [Aldrich, 1997].

The principle states that from all possible settings of the parameters of our model, we

should choose the set of parameters that make our data as likely as possible. That is, we

want to maximize the model’s estimate of the probability of the particular set of obser-

vations that comprise our data. In the coin-flipping example from above, the maximum

likelihood estimate has a closed form solution: the “heads” probability should be propor-

tional to the number of “heads” observations. For more complicated models, we might need

to estimate maximum likelihood parameters numerically by solving a possibly non-convex

optimization problem.

In practice, we often have some knowledge or intuition in addition to the observations

we have gathered. For example, we might know that coins “tend to be fair.” The question,

of course is how to encode this information. The Bayesian view on this problem is to treat

the parameters of our model as also being random variables and expressing our knowledge

as prior probability distributions over these parameters. After making some observations,

we can infer a posterior probability distribution over the model’s parameters. An important

distinction between the “frequentist” and “Bayesian” views of statistics is the following: In

the frequentist view, modeling a proposition as a random variable assumes that we believe

it is a random process with some associated event space. By contrast, in the Bayesian view,

the distribution of model parameters encodes our belief in different possible parameter

values, rather than in some real-world event corresponding to model parameters. 1 Treat-

1The question “What is the probability that the moon is made of cheese?” makes sense from a Bayesian
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ing model parameters as random variables is a very powerful technique and has become

very popular in the machine learning community. However, it can also lead to parameter

estimation and inference problems that are not tractable computationally, and require ap-

proximations such as Monte-Carlo methods in order to estimate the posterior distributions

of model parameters. Even if we fix the model parameters, We might still need to use an

approximation in order to perform inference in our model. One solution is to approximate

the distribution over model parameters by its mode, choosing a single maximum a poste-

riori probability (MAP) setting for the parameters. Even so, the requirement of efficient

computation often limits the kind of prior knowledge we can encode as Bayesian priors.

In this thesis we present a different approach to encoding prior knowledge, but we show in

Chapter 4 that it can be viewed as an approximation to a Bayesian approach proposed by

Liang et al. [2009].

A.3 Structured Models

The coin flip example introduced earlier represents a model over an unstructured event

space. There are two possible outcomes, and they are atomic. When dealing with more

complicated objects, the number of outcomes quickly becomes too large for us to treat

them atomically. For example, if we want to model (very small) 640× 480 8-bit gray scale

images, the number of possible outcomes are 8311 040. Treating these as separate atomic

entities would not be feasible, since we could not store even one parameter per possible

output, and could never hope to obtain enough data to estimate our model’s parameters.

Similarly, the number of possible very short news articles is unmanageably large, and the

number of possible segmentations of a DNA sequence into genes, even for a very simple

organism is astronomical. In order to cope with this combinatorial explosion, researchers

have introduce structured models that aim to decompose the distribution over possible out-

comes.

As a simplistic example, consider the following generative story. Suppose that someone

point of view. If we think the moon is not made of cheese, it will be a small probability. The question does
not make sense from a frequentist point of view – the moon is either made of cheese or it is not. There is no
random process involved.
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had access to two coins, a nickel and a dime, with different heads probabilities. They start

with the nickel and repeat the following process n times:

1. throw the current coin twice and

2. write down (output) the first outcome.

3. If the second outcome is “tails” then switch coins, otherwise keep the same coin.

4. In either case, return to step 1.

If we want to model the distribution over possible outputs, then we have to model a se-

quence of n binary flips and there are 2n possible outcomes x = (x1, . . . , xn). However,

maintaining O(2n) parameters is very wasteful, since if we know that two free parame-

ters are enough to fully specify the process: the heads probability of the nickel and the

heads probability of the dime. Here, the latent variable is the sequence of current coins

y = (y1, . . . , yn) where yi ∈ {nickel, dime}.
The process described above is known as a hidden Markov model Rabiner [1989], and

we will use them again in the running example of Chapter 2. This is a structured model

because we can decompose the distribution p(x,y) as a product over some parts:

p(x,y) =
∏
i

p(yi|yi−1)p(xi|yi). (A.1)

It is also possible to have structured conditional models, such as conditional random

fields [Lafferty et al., 2001].

A.4 Maximum Entropy and Maximum Likelihood

In Chapter 2 we use a convex duality in order to efficiently deal with factorizable prior

information in structured models. That duality is very similar to a well-known duality be-

tween maximum likelihood and maximum entropy. The idea behind the maximum entropy

principle is the following. Suppose that we have decided on a set of statistics that are suffi-

cient for our problem. That is to say, we have identified some set of features f(y), and we

have collected their expected values f̃ = E[f(y)] from some number of observations. In the
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coin-flipping example, f(y) might be just a function that has value 1 when the coin lands

“heads” and 0 when it lands “tails.” Then f̃ will be the fraction of “heads” in our sample.

In general we might collect many statistics, millions in the case of some natural language

processing applications, and f̃ will be a vector of empirical averages. We can use as f(y)

any functions whose values we can compute. Given the statistics, we want to know how to

choose a model p(y) or a conditional model p(y|x). Naturally we would like the expecta-

tions of the features f(y) under the model to be close to the values we observed f̃ , however

for most applications there are infinitely many such models. The principle of maximum

entropy [Jaynes, 1957, Good, 1963] states that we should choose the model p(y) that has

highest entropy among all models satisfying the constraints that Ep[f ] ≈ f̃ . Writing this

out as a maximization problem, we would like to solve:

max
p

Ep [− log p(y)] s. t. ||Ep[f(y)]− f̃ ||β ≤ ε (A.2)

where || · ||β is a norm, which along with ε encodes how “far” our model’s feature expecta-

tions are allowed to be from the empirical averages. Note that so far we have not stated what

form the model p should have. If y lives in a continuous space, then it might not be clear

from Equation A.2 that the maximizer of the equation — p∗(y) — is even representable

efficiently. However, by taking the dual of the optimization problem in Equation A.2 we

can see that p∗(y) can be represented as:

p∗(y) ∝ exp(f(y) · θ∗) (A.3)

where θ∗ are the optimal dual parameters. The dual problem for ε = 0 is to find the

maximum likelihood of the observed data from the family of models parameterized as in

Equation A.3. If ε > 0 then the dual of Equation A.2 can be interpreted as a maximum a

posteriori probability with some prior.

This duality is a special case of one we use in our framework, as described in Chapter 2.

A proof for the more-general case is given in Appendix C.

147



Appendix B

Scaling the strength of PR

This appendix describes how to optimize a version of our objective with scaled posterior

regularization strength. In this case, we will use a modified EM algorithm that maximizes:

F ′(q, θ) = L(θ)− αKL(q(Y) ‖ pθ(Y | X)) s. t. q ∈ Q (B.1)

where α ∈ [0, 1]. The optimization procedure closely follows the one in Section 2.5.

When performing the M-step, we use a mixture of the projected posteriors q and the model

posteriors pθ(Y|X) to update the model parameters. The updated EM algorithm is:

E′ − step : max
q
F ′(q, θ) = min

q ∈ Q
KL(q(Y) ‖ pθ(Y|X)) (B.2)

M′ − step : max
θ
F ′(q, θ) = max

θ
(1− α)Epθ′

[log pθ(X,Y)] + αEq [log pθ(X,Y)]

(B.3)

Note that the E′-step is identical to the one in Equation 2.17.

In the case where α > 1, this simple scheme will no longer work, since α is being used

to control the relative weighting of the expectations according to q and those according to

pθ. In some cases, it is possible to compute the gradient or sub-gradient of Equation B.1

with respect to θ, and then Equation B.1 can be optimized with a gradient or sub-gradient

ascent procedure.
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Appendix C

Proof of Proposition 2.1

The modified E-step involves a projection step that minimizes the Kullback-Leibler diver-

gence:

arg min
q,ξ

KL(q(Y) ‖ pθ(Y|X)) s. t. Eq[φ(X,Y)]− b ≤ ξ; ||ξ||β ≤ ε (C.1)

Assuming the setQ = {q(Y) : ∃ξ : Eq[φ(X,Y)]−b ≤ ξ; ||ξ||β ≤ ε} is non-empty, the

corresponding Lagrangian is

max
λ≥0,α≥0,γ

min
q,ξ

L(q(Y), ξ, λ, α, γ), (C.2)

where

L(q, ξ, λ, α, γ) = KL(q(Y) ‖ pθ(Y|X)) + λ · (Eq[φ(X,Y)]− b− ξ)

+ α(||ξ||β − ε) + γ

(∑
Y

q(Y)− 1

)
(C.3)

In order to compute the dual of this Lagrangian, we first represent

α ||ξ||β = max
η
ξ · η s. t. ||η||β∗ ≤ α. (C.4)

This results in a variational Lagrangian

max
λ≥0,α≥0,γ

max
||η||β∗≤α

min
q,ξ

L(q(Y), ξ, λ, α, γ, η), (C.5)
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with L(q(Y), ξ, λ, α, γ, η) defined as

L(q, ξ, λ, α, γ, η) = KL(q(Y) ‖ pθ(Y|X)) + λ · (Eq[φ(X,Y)]− b− ξ)

+ξ · η − αε + γ

(∑
Y

q(Y)− 1

)
(C.6)

∂L(q(Y), ξ, λ, α, γ, η)

∂q(Y)
= log q(Y) + 1− log pθ(Y|X) + λ · φ(X,Y) + γ = 0

(C.7)

=⇒ q(Y) =
pθ(Y|X) exp(−λ · φ(X,Y))

e exp(γ)

(C.8)

∂L(q(Y), ξ, λ, α, γ, η)

∂ξi
= ηi − λi = 0 =⇒ η = λ

(C.9)

Note that Equation C.9 implies that we have the constraint ||λ||β∗ ≤ α and also the positive

and negative λ · ξ cancel each other out. Plugging q(Y), η = λ in L(q(Y), ξ, λ, α, γ, η)

and taking the derivative with respect to γ

∂L(λ, α, γ)

∂γ
=
∑
Y

pθ(Y|X) exp(−λ · φ(X,Y))

e exp(γ)
− 1 = 0

=⇒ γ = log

(∑
Y pθ(Y|X) exp (−λ · φ(x, z))

e

)
. (C.10)

From there we can simplify q(Y) = pθ(Y|X) exp(−λ·φ(X,Y))
Zλ

, where

Zλ =
∑
Y

pθ(Y|X) exp(−λ · φ(X,Y)) (C.11)

ensures that q(Y) is properly normalized. Plugging γ into L(λ, α, γ)

L(λ, α) = − log(Zλ)− b · λ− αε (C.12)

Now our objective is:

max
λ≥0,α≥0

− log(Zλ)− b · λ− αε s. t. ||λ||β∗ ≤ α (C.13)
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We can analytically see that the optimum of this objective with respect to α is α = ||λ||β∗
and placing this in L(λ, α) we get the dual objective:

Dual E′ : arg max
λ≥0

−b · λ− log(Zλ)− ε ||λ||β∗ (C.14)

as desired.
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